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The two-dimensional2D) fluid echo is a spontaneous appearance of a diocotron wave after two
externally excited waves have damped away, explicitly demonstrating the reversible nature of
spatial Landau damping. The inviscid damping, or phase mixing, is directly imaged by a low-noise
charge-coupled device camera, which shows the spiral wind-up of the density perturbation.
Surprisingly, the basic echo characteristics agree with a simple nonlinear ballistic theory that
neglects all collective(i.e., mode effects. Also, the simple 2D picture is violated by end
confinement fields that causg-dependen® drifts, so the observed echo must be interpreted as a
superposition of separately damping and separately echoing velocity classes. The maximal echo
lifetimes agree with a theory describing weak collisional velocity scattering between velocity
classes. In addition, large second wave excitations degrade the echo ug fasfer than
collisions. ©2005 American Institute of PhysidDOI: 10.1063/1.1885006

I. INTRODUCTION form in z. The measured wave electric field at the cylindrical
wall is proportional to the radial integral oven. For our
Echo phenomena have been seen in a variety of systenehiosen profilesi(r), the excited wave rapidly damps away
spanning many scientific disciplines, including optics, by the phase mixing of spatial Landau damptfgstrong
atomic physic§, and plasma physic,3§.5 In general, echoes radial shear in theE X B rotation frequencywg(r) causes
involve the dissipationless phase mixing of a macroscopi@rogressive spiral wind-up of the perturbatidgim(r, 6,t)
signal. Later in time, a second excitation is applied and thisiear the critical radius,, where the wave-particle resonance
perturbation also damps. The echo is the “spontaneous” apoc(r.)=w;/m; is satisfied. Essentially, each “shell” of the
pearance of a macroscopic signal long after the two externgdlasma rotates at a different rate, stretching the initially
excitations damp away, and provides an explicit demonstraaligned (¢ localized density perturbation into a spiral. The
tion that the phase mixing is thermodynamically reversible. perturbed density then becomes a rapidly oscillating function
Here, experimental measurements of two-dimensionabf r, so the wave potentiai phase mixes to zero. Although
(2D) fluid echoes are presented, demonstrating the reversibtee wave potential vanishes, the spiral phase-mixing pattern
nature of spatial Landau damping. Fluid echoes have beemmains stored idn;(r, 0,t).
predicted theoreticallfy/7 and studied numericalﬁ/,but Vvis- After a chosen timer, a second diocotron wave is
cosity or other nonideal effects have prevented echo obselaunched and it too damps away, leaving its own phase-
vations in conventional fluids. We use a magnetized electromixing patternéng(r, 6,t). The second wave excitation also
column as the “working fluid” to study the echo; the modulates the perturbation remaining from the first wave,
z-averagedE X B drift dynamics of the electron column is producing a second-order perturbatigm®(r,,t). This
isomorphic to the 2D(r, #) dynamics of an idealincom-  second-order perturbation begins to unmix, and after some
pressible and inviscidfluid.” Thus, the echoes represent time the perturbations in the various shells realign, producing
Kelvin wave'® echoes, that is, surface wave echoes on a 2 wave electric field which is the echo.
inviscid vortex. A simple representation of spiral wind-up and echo for-
We demonstrate that the echo mode number, echo apration is shown in Fig. 1, using initial azimuthal mode num-
pearance time, and nonlinear saturation effect agree with ber m=2 and second mode numbeg=4. Here, white rep-
simple nonlinear ballistic theory. In addition, we find that theresents positive én(r, 6,t), black represents negative
maximal echo lifetime is fundamentally limited by electron- én(r, 6,t), and én is treated as a passive tracer density field
electron collisions, but can also be limited by large amplitudethat is advected by the shear&oX B flow. The essential
effects. feature of the second excitation is to produce radial drifts of
To produce the echo, we first launch a surface drift waveparticles, shown in Fig. (). The modulated spiral pattern
on a quiescent electron column with densiy(r). These evolves with the shear flowe(r), and after some time be-
“diocotron waves*! have density perturbation gins to unwind. At timet=27, the perturbation forms am,
oni(r)éme-«i with m=2,3,4,..., and aressentially uni- =2 echo, shown in Fig.(1).
This simple description of the 2D echo is complicated by

Paper CI1B 2, Bull. Am. Phys. S0d9, 57 (2004). 3D “e_nd”_effects that rlr;aka)E d_ependent on an electrores
PInvited speaker. velocity, i.e., wg(r,v,).”” That is, energetic electrons pen-
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FIG. 2. Electron trap with CCD camera density diagnostic. The wall signal
from sectored electrodes is used to measure the wave amplitudes.
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FIG. 1. Simple representation of phase mixing and unmixing, ugingy namics is given byp,=(eB/ 2c)r2.12 Thus, the phase mixing
=2 and(d) my=4, resuiting in(f) me=2. and unmixing are observed directly in measurements of
n(r,0,t).

etrate further into. the end confinement potential,_ and therel—l_ EXPERIMENTAL SETUP

fore have a differentz-averaged wg(r,v,). Different

z-velocity classes musteparatelyphase mix and unmix to The experiments are performed on a magnetized pure
form a combined echo, so it is somewhat surprising that thelectron plasma confined in a Penning—Malmberg trap,
echo occurs at allbecause these 3D end effects lie outsideshown in Fig. 2. A hot tungsten source injects electrons into
the 2D fluid perspective We will see that collisional veloc- a stack of cylindrical electrodes. The electrons are trapped
ity scatterings between velocity classes fundamentally limiexially by voltages ¥,=-100 V applied to end cylinders;
this recombination. the strong axial magnetic field.2 kG=B=<7 kG) provides

The fluid echoes are closely related to plasma waveadial confinement, and causes rapid cyclotron motion at fre-
echoes"® Indeed, the description of a plasma wave echo dif-quency().. The vacuum chambéwith neutral gas pressure
fers from the above 2D description only in that the waveP = 101° torr) resides inside the bore of the superconducting
electric field is given by an integral over the perturbation insolenoid.
the phase-space distributidfi(z, p,,t). The Landau damping The plasma typically has a central density~1
of k,#0 plasma waves is a phase-mixing process where< 10’ cm™3, with a length varied over the range<3.,
6f(z,p,,t) becomes progressively more rapidly oscillating in <70 cm inside a wall radiu®k,=3.5 cm. We adjust the
P, and the integral vanishes. However, a phase-mixing patplasma radius t&®,~ 1.5 cm, and create a broad radial tail to
tern remains stored iaf(z, p,,t), and this produces an echo produce strong damping, as shown in Fig. 3.
when it unmixes after modulation by a second wave. The electrons have thermal energy=Z<10 eV,

The spatial Landau damping of fluid echoes is a wavegiving an axial bounce frequency f,=v/2L,
particle resonance that occurs in configuration space as op=(0.5 MHz)Tl/Z(LpISO)‘1 and a Debye shielding lengtty
posed to the resonance in velocity space for longitudinak (0.25 cmT¥2(n/10")"Y2. Here, the thermal velocity is
plasma waves. Indeed, phase spégg,) is equivalent to =\T/M. The electron space charge creates a central poten-
configuration spacéd,r?) in a strongly magnetized electron tial —¢$,~=-30V, and the radial electric field causes< B
column, because the angular momentuntix B drift dy- rotation at a ratefg(r)=cE(r)/27rB=~ (150 kH2(n/10")
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tf_Q___S T t,=21 Figure 3 shows an image of a dumped plasma with a
J m=2 diocotron perturbation; the densityr,6) is repre-
i Se sented logarithmically by the colors. Here, the amplitude of
A ’\’\/\/V\/VV\N“ the surface wavémeasured by the eccentricity of the density
distribution is ~100x larger than the perturbations used in
ab ¢ d e f echo experiments. A typical density(r)={n,(r, #)) and cal-

culated rotation frequencyg(r) is shown in the box.
FIG. 4. Measured wall signal showing initial, second, and echo waves.

Ill. ECHO IMAGES
X (B/1 kG)™. Later, in Sec. V, we consider 3D end effects At t=0 an initial wave, with m=2 and w;=27
that make the rotation frequency depend slightlyvgn X 20 kHz, is excited by applying a voltagg=0.2—-10 V to
The frequency ordering is thus two 180°-opposed wall sectors for a timé ~ 7/ w;. Figure

1) 4 shows the received wall signal as the wave damps away
(a—9. The corresponding 2D density is initially “circular,”

whereQ).=eB/mcis the cyclotron frequency, anfg, is the i.e., ny(r) but it is distorted into an ellipticah(r, ) by the

frequency of the diocotron mode with azimuthal mate initial excitation. The peak received initial and echo wall

The fast cyclotron motion makes guiding-center theories apsignals are denotef] andS,, respectively.

plicable, and the fast bounce motion compared with Ehe The “perturbation” images of Fig. 5 have the symmetric

X B drift frequency makes the system approximately 2D. equilibrium subtracted out, displayingn(r, 8,t)=n(r, 0,t)
Sectored wall cylinders are used to excite and detectny(r), whereny(r) is the profile obtained at=0 with no

waves in the plasma. A single wall sector can be used as wall excitation. The colors show magnitude &f; the initial

receiver, or sectors can be used in combination to maximizamplitude is|on|~107n(r) but the color scale is adjusted

the signal from a wave with a particular mode number from image to image to maximize the visibility. The elliptical
At a chosen time in the evolution, tieintegrated elec- distortion rotates counterclockwise at frequeangyut in ~5

tron density n(r,6,t) can be measured by dumping the wave periods it damps back to a circular cross section due to

plasma onto a phosphor scred@mased to 15 kY, imaged by  spatial Landau damping, with spiral wind-up of the density

a low-noise 51 512 charge-coupled devi¢€ECD) camera.  perturbation.

The shot-to-shot reproducibility is godadn(r)/n=0.1%)], At time 7, a second wave witims=4 is excited by ap-

SO a time evolution is obtained by creating a sequence gblying a voltage V,=0.2—-10 V to four sectors forAtg

plasmas with identical wave excitations, each dumped at dif~ 7/ ws. (The visible wall signal represents a spurious cou-

fering timest. pling of the mg=4 excitation into them=2 detection elec-

QCIZW > fb > fE,fm,

Launch m,= 4 " Echo is m,= 2

FIG. 5. (Color). Experimental density perturbation images at six successive times. The initial wave is ex¢ieahid the density perturbation executes spiral
wind-up as the wave is spatially Landau dampll.shows the second wave excitation and the echo peal.in
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tronics) The remnants of the phase-mixed initial wave are

visible as thin filaments irfd). The second wave excitation

Phys. Plasmas 12, 055701 (2005)

H = —ed(r) + oH, (6)

causesé-dependent radial shifts of the filaments; thus, theWhere¢q(r) is the unperturbed plasma potential. In general,

filamentsE X B rotate at a new rate becausg(r) depends
onr.

the perturbed HamiltoniagH would include self-consistent
plasma effects; these effects are ignored in this ballistic ap-

The third wave packet visible in Fig. 4 is the received proximation. The perturbed Hamiltonian models vacuum po-

me=2 echo. The initial wave damping effectively unmixed,

producing arm,=2 echo response. The peak echo wall sig
nal S, occurs at a time~ 27 for the mode numbers used
here. The corresponding imagé) shows |on|=(0.3

X 1079)n(r).

IV. COLLISIONLESS BALLISTIC THEORY

Surprisingly, the essential features of the echo are ca
tured by a collisionless, ballistic thedrthat completely ne-
glects collective effects such as waves. We solve for the fre

streamingE X B drift trajectories of particles, and assume
that particle-guiding centers deviate from circular orbits only
due to the impulsively applied wall excitation voltages. This
ballistic approach is equivalent to treating the particles as

passive tracers that orbit at rate(r); that is, we assume the
perturbed density does not modify tBex B flow.

Here, we calculate the electric fiel}, at the wall of the
electron trap. Thenth Fourier component of the electric po-
tential is

2m

r'dr’f
0
(2

where(r’, ') is the source point an@,(r|r’) is the Green
function*
Following Ref. 4, we use conservation of particles

3

to express the particle trajectories in terms of the inittal
=0) coordinatedr,, 6,) and unperturbed density(r,). The
electric field at the wall is then

90¢m(r)
or

Ry o
5¢m(r,t)=—ef don(r’, 6 ,0)Gy(r|r")e™™?,

0

r'dr’ do'n(r’,0',t) =rydrodbony(r,)

Ew

Rw
Ry 2w

e f rodrg J
0 0
(4)

where we drop the prime o# for notational convenience

dOono(ro)gnlr|r’ (1o, O, t) J& M0l

tentials created by wall voltageg and Vg, applied impul-
_Sively att=0 andt=r,

SH =eA(r)sin(m;6) 8(t) — e A(r)sin(myd) 8t — 7), (7)

whereA;(r) =aViAti(r/R,)™, Ar) =aVAt(r/R,)™ repre-
sent ther dependence of the vacuum potentials from the
initial and second excitations, anx;, At represent the ac-
tual durations of the applied wall voltages. Héeg, a) re-
late the voltages applied on wall sectors to thg, m,) spa-
F;_ial Fourier components.

The equations of motion follow from Eq#6) and (7):
€ 96 _H _

at

c M

Py "~ eBrar

c | dA
= r) +
wg(r) Br

{? sin(m; 6) 8(t)

oA, )
+ o sin(ms6) S(t T):| , (8)
o_cdpy__CcH_c.
A eBrat  eBrog  prurmcosmo)s
— A((r)mgcogmgh) 8t - 7], 9

where wg(r)=-c/Brde¢,/dr is the 2D E X B rotation rate,
and we usg,=(eB/2c)r? to express the canonically conju-
gate variableg6,p,) as(6,r?). Integrating the equations of
motion fromt=0 to a timet<r, before the second wall
excitation, gives

0= 6,+ we(N)t+66,(6,), 0<t<r7 (10

r2= r§+Ai(r)miZEC codmé,), 0<t<r, (11)
where 86,=c/BroA;/dr sin(m;6,) is the impulsive § drift
from the radial electric field of the initial excitation. Thege
kicks are ignored in the remaining theory because they are
not multiplied byt, so they do not accumulate with time.

Integrating Eqs(8) and (9) from t=7 to a timet> 7,
after the second wall excitation, i.e., when the echo appears,
gives

and the radial derivative of the Green function, evaluated at

r=R,, is
aGy(rlr’")
or

rm

= R\I’[]\[’Hl'

Om(r|r) = &)

0=0(7) + we[r(FH]t-7), t>r (12
2c
r2=r+ Ai(r)miE cogm6,)
2c
- As(r)msE cogmsf(n)] t>r, (13

wheret=7" is the time immediately after the second excita-
tion. The radial displacements caused by the second wall

Below, we solve for the particle trajectories described byexcitation are given by Eq13). Particles displaced to a new

0(r,, 6,,1) in the exponential argument of EG).
The Hamiltonian for 2DE X B drift dynamics is given
by
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c 200
0(7) = O+ wg| ro+ EmiAi(r)Coimi o) T

C o
=~ G+ wg(rg) T+ — | A(r)m, cosm )7,
Br ar 0

K
~ 100
a3

where wg is Taylor expanded in the last line. Similarly, the
termwg[r(7)] in Eq. (12) is Taylor expanded. The particte
trajectories of Eq(12) are then

C (9(1)E
0(r o, 0, t) = O + we(ro)t + 57

Ai(r)m; codm; f,)t

r

C dwg FIG. 6. Echo appearance tintigvs the second wave launch time both
- (t-nD——| Adrmg normalized to then=2 wave periodT,, using various mode numbers.
Br ar r
x CO{ My0 + Mswe(ro) 7 A. Time of echo appearance
C do Equation(19) predicts the time of the echo appearance,
E

Br or

A(r)mmg cogm, 00)71, (15  which is obtained by setting the phase-mixing terms to zero.
o In the experiments, phase mixing is the spiral wind-up of the
density perturbation, creating radial ripples oh. The
unigue time at which the ripples vanish is found by setting
the r-dependent terms in the exponential argument to zero,

We make use of the exponential expansion

gria cosx — ; (=)' (a)e™™, (16)  yielding the echo appearance time
te= T& (20

whereJ, is the Bessel function of the first kind of ordeand me-m’

find that the electric field at the wall vanishes unless )

=gmy-pm. Here, p and q are the harmonic orders of the ~ We measure the echo appearance tigwith an auto-
initial and second excitations, respectively, similat to Eq. ~ Mated fit to the wall signal, using a symmetric growing/

(16). damping sine wave centeredtat The sine wave frequency
For the lowest harmonic numbers=q=1, the echo IS at the well-defined mode frequency, which does not even
mode number is predicted to be enter the theory. Figure 6 shows the measugecersus the
second wave launch time, both normalized to then=2
M= M- m. (17) wave periodT,. The dashed lines are the theory predictions,

and the initial, second, and echo mode numbers are shown in

Experiments with a variety dim,m) showm,=m.-m, and parentheses. The case with=2 andms=4 has the largest
no echo is seen ify>m data range due to the large signal-to-noise ratio of the mea-

Furthermore, we use the Bessel function identity sured echo amplitude.

To further compare the collisionless theory with experi-
ments, we evaluate E419) near the echo appearance time
te, and write the “no collision” theory prediction for the peak
echo wall signal as

Jp(c—d) = X Jpus(0)3(d), (18)

and find that the electric field at the wall, for 7, is given

Ry
by =GE(t~1)=V, f dra(nI[ANVsd, (2D
0

wherea(r) and B8(r) are given by

Ry
E, (1) = ef rdrng(r)gm(r|r ’)exp[— imewe(r)
0

_ e ng ECMMe 1\ dwg
m ¢ do a(r) = GaAte 28R, <Rw> Ny(r) o (22
X|t=7— |3 EFAi(r)mime
iy B(r) = at m-mﬁ(L)mS‘?—“’E 23
><(t—r”—m‘fﬂh[éaﬁ—“ﬂ(mwmt—ﬂ], (19 TUUBr\R, ar

The gain is given byc= (A/C)é, whereA is the area an@€

where we have dropped the subscript orior notational s the capacitance of the detection sectors, and wBésdhe
convenience. amplifier gain. The small quantity represents the difference
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between the theoretical echo appearance tyaed the mea- For t< 7, the first-order solution from the initial excita-
surement time. This measurement time is defined as the tintén only is
of the maximal echo wall signal, and is typically within 1 or
2 plasma rotation periods of the theoretital

Equation(21) follows from Eq.(19) because at~=t,, the
Bessel function argument in EGL9) containing theinitial o, r— 5
perturbation amplitude is extremely small, agdx) =~ x/2 _Impzdl V‘_‘ mfvo (ﬁ) 3} (28)
for smallx. The Bessel function argument which contains the Qclrar 30222\ ar '
secondberturbation amplitude is large at the time of the echo
appearance, so this Bessel function is not expanded. Thedhe we(v,) effect is seen in the third term in the exponential

retically, att=t,, the echo wall signal is zero, sincg(0) argument. Heregfy,/dr is the radial derivative of the unper-
=0. turbed distribution function, which is assumed to be Max-
wellian, anddL/dr represents the curvature in the ends of the
plasma. In obtaining Eq28), we have made the approxima-
V. COLLISIONAL IRREVERSIBILITY OF END-FIELD @ tion ¢?/ v’ 5f =1/ 8(3/ dv,5%)2 The rather strangé scaling
DRIFTS of the collisional term in the exponent comes from the col-
_ _ lision operator w?(¢?/aw?) acting on &f, which has the
In this section, we evaluate a second-order theory tha} _gependenté-smearing effect inwg(r,v,). This brings
fjescrlb_es coIhsmnaI_scattenng betwee_zrwelocmes, giving  downt2 and the integrabuidt' (625f/ v?) then yieldst®.
irreversible ‘9 smearing.”# motion outside the 2D perspec- Solving the Boltzmann equation to second order, and

tive arises from the radial component of the confinemengeeping only terms containing the first power mfwe find
fields, which creat& X B drifts in the ¢ direction.” Thesed  tnat the perturbed distribution function @t 7 is given by

steps depend on the particle’s end-residence time, and hence

. c dfy . .
Sf = - ImiAie_Br? - exp{— im; 6+ im; wg(r)t

on the particle’s velocity v,, S0 one must consider(r,v,). Deer _i2 C Z&wE&f_M
In the absence of collisions or other randomizing effects, of7(t) =immy Br) o or AAsT
each particle remains in its original velocity class, which
executes its own spiral wind-u@nd unwinding. Thus, the ; . _ms) |
spiral wind-up due tavg(r) and the wind-up due tag(v,) xeXF{Imea IwE(r'UZ)me(t Me )}
have similar phase-mixing effects, and thgdependentd 40252 { o \2[ m2s3
steps alone do not destroy the echo. Xexp{— ,,2;22(_) [mi_
Collisions, however, cause irreversible velocity mixing. QcLor\or 3
Particles scattered into a new velocity class change their m2(t - 7)°3
bounce-averaged rotation raig(r,v,), which degrades the + =+ At — 7) - mmer(t - 7)2} .
coherence of the spiral “unwinding,” and limits the maximal 3
echo lifetime. (29

Again, the time of the echo appearantzeis obtained by
A. Collisional theory setting ther-dependentphase mixing terms in the first ex-

o . ponential argument equal to zero.
The Boltzmann equation is used to model collisions act- At time t=t,= rm/m,, the second-order collisional so-

ing on the particle distribution functiof(r,v,,1), lution for the peak echo amplitude is
2] T (24 2 deog of
—+[LH | =w—, c \“dw
at w2 SFA(t) = im2 <_) IWETIM p
z (te) = imim, Br/ ar or AAST
where v represents the electron-electron parallel scattering .
rate v,*° given by Xexpimed)exd - y*(v,r,6,) 7], (30
v = 2.8\/7:nv_b2 In(r./b). (25) where the collisional damping term is given by
Here,r =v/Q, is the cyclotron radius and=e*/T is the ¢ \?(14L\28mmy
distance of closest approach for thermal electrons. Y(v.r,e,) = VgZT(e_Br) (EE) 3 m (31
The HamiltonianH’ used here includeszdynamics, and
is given by Here, s,=Muv?/2 is the electron kinetic energy, and the
p§ plasma length_(r,e,) is defined by the electron end reflec-
H’:m—e¢0(r,z)+5H’. (26)  tion atL/2:
The perturbed Hamiltonia@H’ neglects collective effects, ed(r, £L/12) —ed(r,0) = &,. (32
S|m!lta;. to EQ-(7), and models the impulsively applied wall Finally, we combine the collisionless result of EGJ1)
excitations. ' ' with the collisional result of Eq(29), and find that the peak
SH' =eA(reM?s(t) + eA(r)e"™?5(t — 7). 27 echo wall signal, near the echo appearance time, is given by
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FIG. 8. Echo data showing the measureg vs actual electron-electron
collision ratey,. The size of the data symbols represents the strength of the
second wave perturbation.

FIG. 7. Measured peak echo wall sigi&lvs the second wave launch time
7 for two different second excitation voltag®s. The solid lines show fits
from numerically integrating the collisional theory expression of &§).

The dashed and dot-dashed lines hayg=0.
dw
Jl(lg/rms—l &rE ST)

LJ dsz = exfd- eJT = V(verr,T,8) 71,

27 Tlo v sz

parameters are held constant. For the weak second wave ex-
citation of V,=0.25 V, the fit yieldsv.z=31 sec?, which is

fairly close to the actual electron-electron scattering rate of
y=21 secl. Thus, the decrease @, represents collisional
irreversibility. The simple collisionless theorfy.;=0) is

also shown dashed and dot dashed, using the sdraad 3’

as the solid lines.

At the larger second excitation of;=1.0 V, the de-
crease inS, at 7= 20T, represents the nonlinear saturation
effect described by the Bessel function in E(&l) and(33).
Here, the fit yieldsy.4=122 sec?, which does not represent

c?a)E &no
or or

iol_ 'V-JRWd my+mg+1
=a'V rr
0

(33

wherea’ and B’ are the coefficients ok and 8 in Egs.(22)
and(23), and are given by

ecmm, a measure of collisionality, but rather represents the absence
= GaAt EWmﬂv (34 of the late-time echo recurrence &t 85T, (and 7=~ 150T,).
Figure 8 summarizes the comparison between the colli-
sional theory and echo data. The vertical axis is the experi-
B = aAt (35 mentally determinedy, obtained from fits to 65 data sets

R,U such as Fig. 7. The horizontal axis is the actual electron-
electron collision ratey for the specific plasma parameters,
given by Eq.(25). The measured; is always greater than
that expected fromy, alone.

In Fig. 8, the strength of the applied wall voltaggused
to excited the second wave is representedarithmically
by the size of the data symbol, with larger symbols corre-
sponding to larger second excitation strengths. At a given
value ofy;, identical symbols of different sizes correspond to
identical plasma parameters, but with different values of the
second wave excitation strength. The strengtNof varied
over a factor of 50 in the data plotted here. The arrows iden-
tify the data points corresponding to Fig. 7.

The 1he, g, term arises from changing a velocity integ¢
=[dv &f to an energy integrabn=[de,5f/V2Me,. In order
to compare with experiments, the collision ratén the col-
lisional damping termy?® has been written in terms of an
effective collision ratevg:

n(r)

V= Vgt (0 )(SZ/T) -1 (36)

B. Comparison with experiments

We numerically evaluate the double integral in E2R).
A 2D Poisson solvéf is used to calculate the local density Figure 8 shows that the echo lifetime is limited by col-
n(r,z) and potentialg(r,z) from the measured-integrated lisional irreversibility of end-field9 smearing when the sec-
density from a CCD image. In obtaining the solution, localond wave excitation is sufficiently small. At large second
thermal equilibrium is presumed at evergndz. The plasma wave amplitudes, a differefunknown effect destroys the
length L(r,&,) is then calculated from Eq(32), and the echo as effectively as collisions enhanced by 200 hese
plasma rotation frequency is calculated fromg(r) large values ofv represent the absence of echo recurrence
=-c/Brd¢(r)/ar, atz=0. at large values o¥/gr.

We obtain an effective electron-electron collision rate  Note that the large variations iny translate into much
vegr DY fitting %0' of Eq. (33) to data sets of the measured smaller variations in the time of echo destruction, because of
peak echo wall signa$, versusr, with v, o/, and8’ as  the 7° scaling in the collisional exponential decay argument
fitting parameters. The solid lines of Fig. 7 are examples ofn Eq. (33). Thus, a factor of 100 enhancementuig; gives
such a fit using two different excitation voltag¥g all other  only a 4.6< reduction in the echo viability time.
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1071 11 ciated with wave damping and echo generation are imaged

| v, =08V s./2 oo". directly, and the echo mode number, appearance time, and
T=225T, S saturation effect agree with a simple ballistic theory. The

[V]o.5 R °0¢o°°°°o°o< v, pure electron plasma behaves like an ideal 2D fluid, despite

i ow"fiw‘*“*‘”é“m ] 3D end effects that makeg dependent on an electrores

oooo°° + e 1 velocity. Different velocity classes separately phase mix and
I * Nonlinear tra gggged}—«>: unmix, surprisingly forming the same echo. At late times the

o R echo is degraded, and collisional scattering between velocity

0 1 2 3 4 5

v, [V] classes gives a fundamental limit to the echo lifetime. In
i

addition, large amplitude effects degrade the echo upxo 5

FIG. 9. The peak initial wave and echo wave wall sign§lsnds,, respec-  1aster than collisions.
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