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Motion of guiding center drift atoms in the electric and magnetic field
of a Penning trap
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The ApparaTus for High precision Experiment on Neutral Antimatter and antihydrogen TRAP
collaborations have produced antihydrogen atoms by recombination in a cryogenic
antiproton-positron plasma. This paper discusses the motion of the weakly bound atoms in the
electric and magnetic field of the plasma and trap. The effective electric field in the moving frame
of the atom polarizes the atom, and then gradients in the field exert a force on the atom. An
approximate equation of motion for the atom center of mass is obtained by averaging over the rapid
internal dynamics of the atom. The only remnant of the atom internal dynamics that enters this
equation is the polarizability for the atom. This coefficient is evaluated for the weakly bound and
strongly magnetizedguiding center drift atoms understood to be produced in the antihydrogen
experiments. Application of the approximate equation of motion shows that the atoms can be
trapped radially in the large space charge field near the edge of the positron column. Also, an
example is presented for which there is full three-dimensional trapping, not just radial trapping.
Even untrapped atoms follow curved trajectories, and such trajectories are discussed for the
important class of atoms that reach a field ionization diagnostic. Finally, the critical field for
ionization is determined as an upper bound on the range of applicability of the the@90®
American Institute of Physic$DOI: 10.1063/1.1818140

I. INTRODUCTION electric field region near the edge of a long cylindrical pos-
itron column. The reason for the trapping is easy to under-
stand physically. For a uniform density unneutralized column
of positrons, the radial space charge field increases linearly
with radius inside the column and falls off inversely with
radius outside the column. Thus, there is a region of large

The ATHENA (ApparaTus for High precision Experi-
ment on Neutral Antimatt¢rand ATRAP (antihydrogen
TRAP) collaborations at CERNEuropean Organization for
Nuclear Researghhave reported the production of cold an-

tihydrogen atoms? The atoms result from recombination ' .
yarog IQeld near the plasma edge, and polarizable matetiz

when cold antiprotons are added to a cryogenic positro ‘ i atiracted t 7 f . field. Al
plasma in a Penning trap configuration. The ATRAP collabo—a_om) IS atiracted 1o a region of maximum Tieid. /lso, we
ration measured binding energies in the range of fhev will see that certain equilibrium configurations for the posi-

Here we discuss the motion of these weakly bound at;ron. plasma} make possmle full three-dimensional trapping,
ot just radial trapping.

oms in the magnetic and electric field of the trap. Becausd o N

the binding is so weak, even a modest electric field produces we will find thgt the polanza;ﬂon forceg create a poten-
a significant polarization of an atom. A gradient in the fieldt'al. yveII of approximate dgpthyE ’ whe.rea. Is the polariz-
then exerts a force on the atom, causing acceleration. Typf’-‘bIIIty _Of the. atom ande 1S th? electric f'el.d stre.ngth. n
cally, the atom is moving across the magnetic field, and it isGaUSS'an units, the _pola_r!zablllty has the dlmgnsmns length
the effective electric field in the moving frame of the atom CUbeS’ a_nd the pola_nza_\bmty for an atom of sizes .Of order
that causes the polarization and the acceleration. In the labdy "a Since the binding energy for an atom is of order

ratory frame, both electric and magnetic forces must be take /ra,_ th(_a depth of the well scales mve_rsely with the cube of
into account. the binding energy. Thus, the effects discussed here are more

In the experiments, the magnetic field is nearly uniformpronounced for weakly bound atoms. Of course, a weakly

and the electric field varies by only a small amount over thé?ound atom suffers field ionization from a relatively weak

dimensions of the atom. Also, the time scale for the internaf'wek;' ZTTJe ,Cm'tcr‘;’,‘l ffl'elgj fcir |ont|rz]at|0n IS approglmatdelgj
dynamics of the atom is short compared to the time scale for ElTy. USIng this TIEld strength as-an upper boun r
hows that the maximum well depth is the binding energy of

the atom to move a significant distance. Taking advantage )
these orderings, we obtain an approximate equation of mdhe atom:
tion for the atom center of mass. The only remnant of the

: . . . E\?(e\?2 &
atom internal dynamics that enters the equation of motionis g2 (a/r?’)r3<—) (_) <= (1)
the polarizability. The approximate equation of motion pro- aa e/r§1 2 la
vides a substantial simplification because it averages over the
rapid internal dynamics of the atom. For the example discussed in the last paragraph, trapping is

An interesting implication of the equation of motion is possible only when the atom binding energy is larger than

that a weakly bound atom can be trapped radially in the largéhe kinetic energy of the atom center of mass.
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The ATRAP collaboration uses field ionization as a di- sociated with the polarization forces is a three-dimensional
agnostic, and the ionization region is some distance from thpotential well, and atoms with sufficiently small kinetic en-
plasma. As a second application of the approximate equatioargy simply cannot escape.
of motion, we determine trajectories followed by weakly Finally, the approximate equation of motion is used to
bound atoms in moving from the recombination regian  obtain the curved trajectories followed by weakly bound at-
side the positron plasmo the field ionization region. De- oms in moving from the plasma to a field ionization region.
pending on the parameters, a straight line orbit may or maylere we use field strengths and geometry characteristic of
not be a good approximation. We will see that the polarizaATRAP.
tion forces produce a significant deflection of the atom when  For the special case of a purely radial space charge field,
the binding energy is larger than the center of mass kinetithe approximate equation of motion was obtained
energy. Knowledge of the trajectories is an important input tmreviously? The derivation here is more general in that it
estimates of antihydrogen production rates based on soligllows all three components of the electric field. Also, the
angle considerations. derivation here is not based on classical mechanics and the

The analysis divides naturally into two parts: the deriva-guiding center drift approximation. This specialization is
tion of the equation of motion and the calculation of theused here only to obtain the polarizability, not in the deriva-
polarizability. In Sec. I, we derive an approximate equationtion of the approximate equation of motion. The present dis-
of motion for the expectation value of the atom center ofcussion of the polarizability tensor is more complete than in
mass coordinategR (1) =(¥|R. V). The derivation of Ref. 7 and includes a discussion of field ionization. Also, the
the equation of motion depends on the spatial and temporglemonstration of three dimensional trapping and the deter-
orderings mentioned above but otherwise is general. On th@ination of trajectories for atoms moving from the plasma to
other hand, determination of the polarizability requires athe field ionization region are new.

more detailed specification of the internal dynamics for the
atom. Il. APPROXIMATE EQUATION OF MOTION

In Sec..II_I, we evaluatg the polariquility for t_he special We consider a positroparticle 3 and an antiproton
case of glé'd'ng center drift atorfisAs discussed in recent marticle 2, although the results apply equally to an electron
literature;"” these weakly bound and strongly magnetized atfand a singly ionized ion. The mass ratig/m, is assumed to
oms are thought to be produced in the antihydrogen expere small, but is not specified to a specific value. The two
ments. For these atoms, the cyclotron frequency for the possarticles interact electrostatically and move in the uniform
itron is much larger than the other dynamical frequencies a”ﬂwagnetic fieldB=2B and the spatially varying electric field

the cyclotron radius is much smaller than the separation bg-__vy . For the choice of vector potentid =Bxy, the
tween the positron and antiproton. Under these circUmygmiltonian operator is given by ’

stances, the rapid cyclotron motion can be averaged out and

the positron dynamics treated by guiding center drift theory. ( _ @X )2
The dynamics is quasiclassical, since the binding energy is P4 pa Pum > P
H=—"—+—"“F+————+—+
much smaller than the Rydberg enerdgur orders of mag- 2m,  2m, 2m, 2m, 2m,
nitude smaller for the meV binding energies measured in the )
ATRAP experiments Fortunately, the dynamics for guiding (p .+ ﬂ?’xz)
center atoms is integrable, and the polarizability can be ¢
evaluated with perturbation theory. 2m,
Section IV contains applications of the approximate &2
equation of motion. As a first application, we demonstrate -— +ed(Xy,Y1,21)
the radial trapping of weakly bound atoms in the large space V(X1 = X)? + (Y1 = ¥2)* + (21— 2)°
charge field of a long positron column. The geometry and — (XY Z0). )

field strengths used are characteristic of the ATHENA experi-
ments. Orbits from the approximate equation of motion areThe effect of spin has been neglected, since the magnetic
shown to be in good agreement with those from lengthyfield is uniform and the spin-field interaction does not couple
numerical solutions of the coupled positron-antiproton equathe spin and orbital dynamics. The usual spin-orbit interac-
tions of motion. These latter solutions involve over a million tion, which is smaller than the electrostatic interaction by
cycles of the internal atom dynamics. The comparison demerder (v/c)?, is very small for the small binding energies
onstrates the fidelity of the approximate equation of motion(and small velocitiesconsidered here.
and also the substantial simplification it provides in averag- It is useful to introduce relative coordinates through the
ing out the rapid internal dynamics. transformation
Certain equilibrium configurations for the positron

plasma make possible full three dimensional trapping, not  X=X; =X, pX:M,

just radial trapping. As a simple example, we consider a my +m,

spherical plasma in a quadratic trap potential. The self-

consistent fields for this equilibrium are evaluated in the Ap- m2<py1 - ﬂa)(z) - ml( Py2+ ﬂs)(l)
pendix, and in Sec. IV the fields are shown to produce full Y _ ¢ c
three dimensional trapping. The potential energy function as- Y=Y¥a=¥a BT m; +m, '
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MyP,1 — MyP,o whereM=m; +m, and u=m;m,/(m;+my,) are the total and
=02, Pz Tmm, reduced mass)cy=eB/MC is the cyclotron frequency for
the total mass, and, andr; have been introduced as short-
hand for the variables in relatiorid) and (5).

MXy + MXo  C
X= —t—22 5Pt P, Let (P)=(W¥|P|¥) be the expectation value of the total

my + M, momentum. The rate of change of this quantity is given by
eB d 1
Px=px1+px2_?(y1_Y2), a<P>=<‘P|E[P,H]|‘I’>- (8)
(2m, + My)y, — My c Using P=(A/1)(a/ 9X,dl dY a1 4Z) to evaluate the commuta-

_ e+ M)y, — Moy _ .

Y= e+ + JB(p“ + P2, Py = Py1 + P2, tor [P,H] yields the result
dP) _

_marmz " - (VIleE(ry) —eE(ro) W), 9

= m+m, 7= Pa * Pz

where the electric fielE=-V ¢, has been introduced. As
Classically, this is a canonical transformation, as can be ver@nticipated,P is a constant of the motion for the case of a
fied by observing that the Poisson brackets for the new cospatially uniform electric field.

ordinates and momenta have the canonical val(ies, We assume that the spatial gradient in the field is small
[Q.P;]=6)). Quantum mechanically, the commutators forand work only to first order in the gradient. Lef

the new operations have the canonical val(ies, [Q;,P] ~ |E|/| VE| be the scale length of the field angbe the size
=S6ith). of the atom. Formally, the wave functig®’) is negligibly

The vectorr =(x,y, 2) is the relative coordinate between small for r=[r,—r,| larger thanr,. We assume that,<¢,
the positron and antiproton. The momentin is the total ~and work only to first order in the small parametgtf <1.
(or center of magsmomentum along the magnetic field. The To this order, Eq(9) can be rewritten as
transverse components(Py,Py) are often called &(P)
pseudoment®.Py is the sum of they components of the — =(¥|[er - VE(R ) 1|¥), (10
canonical momentum for the two particle2y is the corre- dt
sponding sum that would be obtained for theomponents

using a different choice of vector potenti@e., A’=-ByX.  canter of mass position operafsee Eq(6)]. In terms of the

The two choiceS'A=Bxy and A’=-ByX) are related by & eynectation valuér)=(d|r|W), Eq. (10) takes simple form
gauge transformation and both produce the given magnetic

field (i.e., VXA=V XA’'=zB). We will see thatP d(P)
=(Py, Py, P;) are constants of the motion for the special case  gi =€) VE(Rew). (1)
of a spatially uniform electric field. o o

For future convenience, we note that the antiproton and ~ Likewise, the rate of change @Ry is given by

where (R =(¥|R.y/ V) is the expectation value of the

positron coordinates are given by d(R 1 P r
< cm> :<\I’|_—[Rcm,H]|‘1’>: Q + ﬂ X B, (12)
C m; X c myy dt in M MC
I’2: X__BPY_ " ,Y__BPX_ " ’
€ M+ € M+ My where use has been made of definitiéy Hamiltonian(7),
o mz 4 and the basic commutator relations. Taking the time deriva-
m,+m,/’ ) tive of Eq.(12) and using Eq(11) to replaced(P)/dt yields
the result
ry=ro+r. (5 dXR ) 1d
M——>"=d- VE(Rgy) + ——d X B, 13
Likewise, the center of mass coordinates are given by dt? (Rem) cdt (13
R. = myrq+mpry N ip v £P 7 ©) whered=¢(r) is the dipole moment of the atom.
em™ m; +m, B eB " eB X7/ The next step is to find an expression tbin terms of

S fields and the center of mass velocjtye., E((R.w), B, and
In terms of the new operators, the Hamiltonian is given by &(R,,)/dt]. Equation(13) will then be a proper equation of

P2 eB MOZ,, . p? motion for the evolution of R (t) in the given fields.
H=———-——(Pyx—Pxy) + (X“+y)+ The first term on the right-hand side of E43) is obvi-
2M  MC 2 2u : . . . o
ously first order in the spatial gradient of the electric field
4ueB 2 [i.e., O(1/¢)], and the second term is as well, sind&dt
Py~ 1~ M ¢ p2 2 turns out to be first order in the gradient. Thus, in Hamil-
+ T TS tonian(7) we seted(r,) —ed(r,)=€eE -r, where the fielcE is
2 2 / 2 X 1 2 A
H By T independent ofr. To zero order inr,/¢<1, we setE
+ed(ry) —ed(ry), (7)) =E(Rem)-
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There remains the question of the time dependence in aLBZ dv,, dav
E[(R:m(1)]. We assume that the time scale for the internal ( M2 )E“ MF
dynamics(relative motion is short compared to the time for 5
the atom as a whole to move a distadcd his latter time is _ 1 v {(1 B a, B )a E2+ o E2 ]
the time scale on whiclE[(R.(t)] changes significantly. 2 mMcz) ez T
Thus, we use an adiabatic approximation and neglect the V XB
time dependence iB[(R.(t)] when solving for the internal +ta,—
motion (relative motion. ¢
As mentioned earlie? is a constant of the motion for a whereV =d(R.)/dt, E is evaluated atR..), a, and a,
uniform electric field. Thus, in Hamiltonia(7) we replace have been treated as constants, and use has been made of
the operatoiP by the constant eigenvali and replace the v x E=0. Taking the dot product of E¢18) with respect to

potential differencéed(r,)—ea(r,)] by —eE-r whereE isa v and integrating over time yields an equation for conserva-
constant field. This yields a Hamiltonian for the relative mo-tion of energy

Vv
VE+a,—-V(EXB), (18)

tion
a,B2\MVZ MV?2 o E? o, B?\E2
4ueB \* mwez) 2 Y2 T TE ez
p2 Py — 1- W?X p2
H=—2+ t = const, (19
2p 2u 2u \XC+y?+ 7
where again use has been mad&vot E=0.
¥ MQEM(x2+y2) —eE-r, (14) It is convenient to introduce cylindrical coordinates for
2 the center of mas®.,=(R,0,2). Typically, the electric po-
where tential has no dependence on the argleand the azimuthal
electric field vanishes. In this case, E8) yields an equa-
PXxXB i i i
£-E+ (15) tion for conservation of canonical angular momentum
MC o B%\™! a, B
. . . . - > MV R+ REx(R,Z) | =const. (20)
is the effective field acting on the atom, and the constant MC c

term P?/(2M) has been dropped from the Hamiltonian.
For the special cas€=0, H commutes with the parity ! .
. : . terms of the energy levels for the relative motion,
operatorP. If ¢, . ..(r) is an eigenfunction oH corre- — ) _ S )
. 12 — Hp non(E2,€ ). In the adiabatic approximation considered
sponding to the eigenvalued, .., then Py o o (1) 17273

_ (=r) is an eigenfunction for th me cicesval here, the quantum numbers for the stéite., (n;,n,,N3)]
=Yy g S an eigeniunction for the same eigenvalue. o iy fixed but the energy levels evolve as a function of the
Except for very special casés.g.,B=0), one expects the

_ slowly varying £, and £, . From the relations ez=dH/ &,
energy level$d, . . to be nondegenerate. Here, the integersand (w|gH/ 9&,|¥) =3/ I€(¥|H|¥), one finds that
(nq,ny,ng) specify the quantum state. For the special case of

Formal expressions fow, and «, can be obtained in

guiding center drift dynamics, we will identify these integers d,=(ed=- ign n(ERED). (22)
in the following section. ThereforePyp, n,n, and i n,n, 9E, TS
dn‘fer_ only by a constant; further, that cons_tant must be i_l'LikeWise, one finds that
that is, i, n,n, MUSE have even or odd parity. Thus, the di-
I =Wr|¥ ishes for€=0. J —
pole momend=&(W¥|r|¥) vanishes for€=0 d, E<eh>:—EHnl,nz,nB(gz,&)- (22)
1

For sufficiently small€, Taylor expansion suggests the

linear relationshig=a- &, where the polarizability matrix is . . - .
m=a P y The linear polarizabilities are then given by

given by
PH PH
@« 00 w=- S| a=- 5o (23
&= PE PE2
a=| 0 a O] (16) zlg,e =0 Lleg,e =0
0 0 o
Because of the magnetic field, the parallel and transversil. POLARIZABILITY FOR GUIDING CENTER DRIFT
polarizabilities are not equal. ATOMS
~ Combining Eqs(12) and(16) with the relationd=a-& In this section, we evaluate the polarizability for the
yields the expressions weakly bound and strongly magnetized atoms produced in
d.= a.E the antihydrogen experiments. In recent literature, these at-
z 7=z L . 4
oms are referred to as guiding center drift atdrifsThe
a, B? 1R cyclotron frequency for the positron is much larger than the
1=V dy=a,|E, +  at <B (17)  other frequencies that characterize the dynamics, and the cy-

clotron radius much smaller than the positron-antiproton
Substituting these expressions into Etd) yields the equa- separation. Under these circumstances, the rapid and highly
tion of motion localized cyclotron motion can be averaged out and the pos-

Downloaded 24 Jan 2005 to 132.239.69.90. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



012101-5 Motion of guiding center drift atoms... Phys. Plasmas 12, 012101 (2005)

positron kinetic energy is smaller than or of order of the
electrostatic binding energyi.e., mev§/25e2/r). The in-
equality r > (m.c?/B?)Y3 then implies that o= Ve/Qce<r.

For r comparable to(m.c?/B?)Y3 our guiding center
analysis fails. All three frequencies in inequalit24) are
comparable, and the positron motion is chaotic® For r
< (mgc?/B?)3 the cyclotron frequency is small compared to
the Kepler frequency, and the positron motion is again inte-
FIG. 1. Drawing qf a guiding center drift atom. In or_der of descending rc\;rable. In this case, one can think of the Weakly bound pair
frequency, the positron executes cyclotron motion, oscillates back and fort . . ;
along a field line in the Coulomb well of the antiproton, ak B drifts as a higha Rydberg atom with a Ze_eman pertL_erati’érF.or
around the antiproton. cases wherg < (m,?/B?)Y3, equation of motion(18) re-

mains valid, but the polarizability derived here does not ap-
ply.
itron dynamics treated by guiding center drift theory. Aqua-  As mentioned, the ATRAP collaboration measured bind-
siclassical treatment of the atoms is possible, since the bindng energies of order meV, which correspond®tep sepa-
ing energy is much smalletfour orders of magnitude ration of order 10* cm? The magnetic field strength is 5 T,
smalley than the Rydberg energy. so the critical radius i$m.c2/B?)Y3=7x 10"% cm. Thus, the

Figure 1 illustrates the internal dynamig®lative mo-  separation is much larger tham.c?/B?)3, and the weakly
tion) of a guiding center drift atom for the special case wherepound pairs are guiding center atoms. The cyclotron fre-
the effective electric field vanishése., £—0). The positron  quency for the positron is about 100 times larger than the
executes very rapid cyclotron motion with a small cyclotrong x B drift frequencywp, and the cyclotron radius is about
radius. More slowly, the positron oscillates back and forth100 times smaller than the separation.
along the magnetic field in the Coulomb well of the antipro- The simple symmetry of the orbit shown in Fig. 1 is a
ton. More slowly still, the positron and antiproton move in consequence of the choiés=0. For nonzerd, the last term
circular cross magnetic field orbits around a common pointin Hamiltonian(14) modifies the motion, but for sufficiently
The positron cross field motion is well described as Ehe small £ the modifications can be treated as a perturbation.
X B drift velocity in the electric field of the antiproton, but The terme&,z shifts the field aligned oscillations, destroying
full dynamics must be retained to describe the cross fieldymmetry of the orbit in z Likewise, the terme€, -r |
motion of the antiproton. In Fig. I,=r;-r is the relative  destroys the circular symmetry of the cross field orbit. Of
position so the motion is shown from the perspective of thecourse, these distortions give rise to the polarization of inter-

antiproton. est.
The relative motion is described by Hamiltonigh4) Because the atom moves, the effective fiel
with the effective electric field set equal to zdie., £=0). =E[(Rw(t)] varies in time. As mentioned earlier, we as-

We will see that the first two terms describe the rapid cyclosyme that the time scale for this motigire., 7~ €/V,,) is
tron motion, the next two the field aligned OSCi”ationS, and|ong Compared to the time scale for the internal dynamics'
the third anq fourth the cross field motion. The cyclotronThys, frequency orderin(24) is extended to be

frequency isy1-4u/M eB/ uc=eB/m,c= .. For the case

where the amplitude of the field aligned oscillations is not ~ {lce> @z> wp > 1/7. (25
too large(i.e., Zpa,=r, =Vx*+y?), the frequency of these The frequency ordering then implies that the internal dy-

oscillations is approximately»,=e?/mgr3. This estimate namics for the atom is integrable. Because the positron cy-
has used the Taylor expansiore?/\Z2+r2~e?/r,  clotron frequency is much larger than the other frequencies,
-€?2%/2r3 . For this same case, we will see that the frequencythe cyclotron action is a good adiabatic invariant. Use of
of the cross field motion is approximatedy,+Q¢y, where  guiding center drift dynamics automatically takes this invari-
wp=ce/Br? is theE X B drift frequency of a positron in the ant into account and removes the rapid cyclotron motion
Coulomb field of a stationary antiproton. We will be inter- from the problem. Because the frequency of field aligned
ested in cases whete, = )¢y, SO we simply usevp as the  oscillations is larger than the remaining frequencies, the ac-
estimate of the frequency for cross field motion. tion for the field aligned oscillations is a good adiabatic in-
Since the positron cyclotron frequendy,.=eB/mcc, is  variant. Introducing this action and averaging over the field
related tow,=\e?/mr3 and wp=ce/Br? through the equa- aligned oscillations then leaves the cross field drift motion as
tion Q= wﬁ/wD, the requirement thd. be larger than the the largest frequency motion. Thus, the drift action is a good
other two frequencies imposes the ordering adiabatic invariant. The values of these three actions deter-
mine the internal state of the atom. In Ref. 5, Bohr-
Sommerfeld quantization rules are used to associate a quan-
The ordering is realized for sufficiently weak binding, that is, tum number with each action. To the extent that Is/small
for r>(m.c?/B?3. This inequality is required for validity compared to the frequencies for the internal dynarfiies,
of the analysis. ordering(25)], the adiabatic approximation implies that the
Note that the inequality implies not only that the posi- actions(or quantum numbeysemain constant as the atom
tron cyclotron frequency is large, but also that the positrormoves through the external field. In the language of atomic
cyclotron radius is small. We have in mind cases where th@hysics, we make a triple Born-Oppenheimer approximation.

Q> 0,> wp. (24
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Returning to Hamiltoniar{14) with frequency ordering Sommerfeld rules for quantization are used to set
(25) in mind, we first treat the cyclotron motion. The first

two terms in Eq(14) comprise the cyclotron Hamiltonian H=H[lc=7%ng|,=%n,lp=7np,&,E ], (33
4 eBx 2 where the integersn,, n, np remain fixed as

p2 Py~ 1‘VT E=E[(Rem(1)] evolves slowly in time. In expressiof23)

He= >+ : (26)  for the polarizability, the energy levels are simgy, . n.

2 2u —
. =H(ﬁn01ﬁn21ﬁnDiSZ|5L)! Where(nlln2_!n3)=(nC|nZ!nD)'
wherep, may be treated as a constant on the cyclotron time For linear polarizability, a,= ‘52H/(95§|51,5L=o can be

scale. The Hamiltonian describes oscillationxiat the fre- . _ )
LencveB eyl -4/ M= 0. and centered about the auid- evaluated setting , =0 at the outset. In this case the cross
q yebiuey M= e 9 field orbit is circular and the drift action is simply

ing center position,=p,(c/eB)(1-4u/M)*2=cp,/eB. By

introducing the cyclotron action, 1 eB

gmesy ID=—3g pydy=——r3. (34)
27 2c

1 —
le=2— jg dxp(He,x), (27) - : : : .
2 Substituting this expression f_(rﬁ_m Eqg. (31) and setting

&€, =0 yields the energy leveld=H(l,l,,1p,&,,&, =0).
The partial derivative of this equation with respecitto
yields the dipole moment

one findsﬁczlcﬂce Here,ﬁC has the same value &k but a
different functional form. Making this replacement for the
first two terms in Hamiltoniar(14) and replacingx by X,

=cp,/eB in the remainder of the Hamiltonian yields the H  H, =5
iding center drift Hamiltoniah d,=-—-=-—1". 35
guiding i iltoni == " %, i,
p? e MOZ, , . o .
H=1Qg+ == - =" es,z+ re By taking the derivative of Eq.30) with respect taf, hold-
2 Vre + 7 2 ing I, and ri=[20/(eB)]ID constant, we obtain the equation
—e€ 1y, (28) 1 dz &ﬁz
. . O=—-Q —| — +ez|, (36)
wherer | =(cp,/eB,y). In drift dynamics,y and p,=eBx/c 2w ) 2(2)| 9,
are canonically conjugate coordinate and momerituithe h
field aligned oscillations are governed by the second, third V€€
and fourth terms in Hamiltonia28). We write the sum of ) 2 = 5 7
these terms as the Hamiltonian z=t ;\/Hz+ el(ri + D) P +eg,z. (37)
P’ 2 _
H,= 2—2 - T e, (29) In Eq.(36) HZ(IZ,rzL ,&,) is independent af, so we obtain the
BN +Z result
wherer, can be treated as constant on the time scale of the dz
field aligned oscillations. The action for the field aligned 3€_—ez
— o dH, 2(2)
oscillations is given by d,=-—F="—7—". (38)
. g
= fﬁ d2V2u\H,+ (12 + 212+ ez, (30) 22)

_ _ _ Thus, the dipole moment is expressed as the time average of
which can be inverted at least formally, to obtah, ezover the semiclassical orbit. In Sec.[#ee Eq(13)], the
:Hz(ri,IZ,SZ). Again, H, has the same value &, but dif-  dipole moment was written as the expectation valee.

ferent functional form. Here, we see that the expectation value goes over to a time
SubstitutingH,(r? ,1,,&,) into Eq. (28) yields a Hamil- ~ average in the semiclassical limit.
tonian for the cross field motion To determinen,, we evaluate time averag88) numeri-

) cally with z=z(z,H,,r , ,&,) given by Eq.(37). For suffi-
H= 1l Qoet ﬁz(fi.lzfz) T Mri e, -r,. (3D ciently small&,, d, is linear in&, and a,=d,/&, is indepen-

2 dent of £,. Removal of dependence & allows the result
for the lineara, to be presented in a completely scaled form.
Figure 2 shows the scaled polarizability{H,|*/ €® versus the
scaled radiugH,|r | /€.

It is instructive to note alternate forms for these scaled
variables. In Fig. 3 of Ref. 5 the scaled radits|r , /€ is
1 — given as a function of the ratiig/\r ,, wherel, is the action
o= Z-,jg dyRly.H = Qcdelz 28], (32 for the field aligned oscillations. Largk corresponds to
_ small|H,r, /€% andl,=0 corresponds tfH,|r , /&?=1. Also,
which can be inverted formally to obtainH in the small field limit the magnitude of Hamiltoniai29)
=H(l¢,l,1p,6,,€1). Following Ref. 5, the Bohr- can be written a$H,|=€?/\r? +72,, Wherez,,, is the am-

For given values oH, I, I, &, and &, this equation de-
termines the cross field orfdite., p,(y), wherep,=(eB/c)x].

It is useful to introduce the action for the cross field motion
(drift action)
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FIG. 4. Nonlinear scaled polarizability, for the case of,=0. In this plot

- 36 ) ni
FIG. 2. The scaled polarizability,|H,|*/€° vs the scaled radiug,|r /€. ap=r° and&,=s% e

plitude of the field aligned oscillations. Thus, the scaled po-
larizability can be written ag;|H,%/€°=a,/(r* +Z,,,)%? and
the scaled radius dbl|r | /€?=r /\r* +Z2 point |H,r  /€?=1 the critical field is&,=[2/(3v3)]e/r?
Referring again to Fig. 2, we note that fii,Jr, /e  =0.3%/r?, and at the end poiniH,|r, /€?=0 the critical
=r, /\r? +Z, near unity(i.e., smallz,,/r ), a, takes the field £,=0.3%/2, .
value r3. For |HJr /€&® near zero, a, is given by The end pointH,|r , /e?=1 corresponds tb,=0. For this
(35/16)z§nax Analytic solutions are possible at both end limit, a nonlinear expression fat, can be obtained analyti-
points. The small, value of the polarizatiorii.e., @,=r3)  cally. The second two terms in Hamiltonig29) provide a
has been noted earliér. potential well with the bottom shifted toward positizafor
To gain some idea of the range &ffor which the linear  &,>0). For smalll,, the positron executes small amplitude
theory is valid, we first review previous results on field ion- oscillations near the bottom of the well. The oscillations are
ization. Clearly, the critical field for ionization is an upper symmetric about the bottom since the well is approximately
bound on the range of validity. Figure 3, which is taken fromquadratic near the bottom. Thus, the time-averayés sim-
Ref. 5, shows the scaled critical fiel}/ (H2/€®) versus the ply the z value of the shifted bottom.
scaled radiusH,|r , /€. Here, the atom starts in a low field SettingdH,/ 9z=0 to determine the shifted bottom yields
region and moves up a field gradient until field ionizationthe result
occurs. As the atom moves, the actignis conserved until
just before ionization. In contrast, the value df, d _
=H,&,,r .1, is not conserved. In Fig. 3, the value |bf,] a,= = =r3g(&), (39
that enters the scaled variables is the value in the low field &
region. Thus, the scaled radius in Fig. 3 is the same as that in
Fig. 2. Also, note that the scaled field variable can be rewrityyhere the scaled field i§,=¢,/(e/r?) and

ten as&,/(H2/e®)=E,r? +72,)] e, wherez,,, is the ampli-
tude of thez oscillations in the low field region. At the end _ o
~ 1/ 21 1 3V3~
9(&) ==| —==-cos| =| w+arccos —¢, -1
&\V3e, L3 2

041 & ((HE/ &) 3
0.38} _ &) (40
a0
0.36} 5 B _ )
Here a=r7, the value ofa, for 1,=0 and&,=0. Function
0.34} (49) is plotted in Fig. 4. For small values of the scaled field,
g(&,) is near unity so thatzz=ri in accord with the linear
032f—o—e__, value in Fig. 2. g(?g rises to its maximum value of
|HZ|rL/e2 3V3/(2\2) at €,=2/(3\3). At this upper limit, the well
ceases to exist and the atom undergoes field ionization. Note
02 04 06 08 1 that the valueg,=2/(3\3) is the critical field predicted in
FIG. 3. lonization by an electric field parallel to the magnetic field,is  Fig. 3 for end poin{H,|r , /e?=1.
the critical field for ionizationH, is the initial binding energy before the To evaluated | ande« |, we first make a canonical trans-

atom enters the electric field, and is the radius of the nearly circular ; : ; -

initial drift orbit. The solid curve results from a theory based on constancyforma_tIon ;rom the cross ﬂe_ld V.ana.lbléy’ Py .(EB/.C)X] to
of |,, and the points are numerical solutions of coupled positron-antiprotor{ea p(,_—eE.) “1(2c)], where =0 is in the direction€&,.
equations of motion. Hamiltonian(31) then takes the form
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—| 2¢c MOZ,, [ 2c 3 6
H= Iche"' Hz|: e_Bporlzagz: 0] + TCM(G_BDB) , OLJ—|[—[Z /e
—-ef \(2c/leB)p, cosb, (41

where &, has been set equal to zero. For the circular orbits 1.5

considered abovep, itself is the drift action, but for the
noncircular orbits considered here the drift action is given by

1 — o5k
lp=— H-Qul1,E,=0,E,,0]d6. 42 :
D 2ﬂ_§pﬁ[ celc ¢z s ] ( ) |Hz|rl/e2

Taking the derivative with respect 0, holding the actions 02 04 06 08 1
constant, yields the relation

FIG. 5. Scaled polarizabilityr, |H,|°/€® vs the scaled radiugi,|r , /€*. The
1 jg l ap, oH . Py :| » three curves correspond to tfBevalues:(1) 8=0.015 625(2) 5=0.125,(3)

=— (43) B=1.
21 oH (?EJ_ (95L

Using ézaH/apg and  dpyldE  =—aHIdE | 1(H]Ipy)

=er, cos@/ 6 we again find that the dipole moment is given  1his small field(linean calculation ofa, can be carried
by a time average over the semiclassical orbit out Qume_ncally for_ arbitrary,, that is, without invoking ap-
proximation(45). Figure 5 shows plots of the scaled polar-

ﬂr ()cos6 izability o, |H,|3/€® versus the scaled radiyslr /€ for
oH o(6) L several values of the parametgre®B?/(|H,J3Mc?). These
-—= (44) curves are analogous to the curve in Fig. 3 &gfH,|3/€®
I, do. versus|H,Jr , /€?. Here, more than one curve is required to
'g(g) present the results, sinee |H,/*/€® depends on two param-
_ , , eters: |[H,|r /€& and B=¢€%B?/(|H°Mc?). One can easily
To determinex, we use time averag@4) together with  cpeck that approximate expressioft) can be scaled with

HamiIFonian(41). For.smallé’l and ;malllz, a s_imple Per-  these variables. In this regard note thaf V—Mrlézl
turbation treatment yields an analytic expression for the I|n-_|H Ir, /€2 for smalll
b zZIt L z:

l:

eara, . For smalll,, the termH,(r,I,) in Eq. (41) can be Figure 6 shows the scaled critical field for ionization
approximated ds £,1(JH/€% versus the scaled radiysl,r, /€? for same
_ three values of parametgras in Fig. 5. The critical field is

H,(r 1) =——+Law,r,), (45 an upper limit on the range of validity for the small field

o (linear) results displayed in Fig. 5. Curves in Fig. 6 are dis-

Wherewz(rL):\/eZ/(/Lri) is the frequency of small ampli- Played for values of|HZ|_rL/e2 such that inequality(24)
tude field aligned oscillations and, is shorthand for holds. If the scaled radiufH,r,/e? becomes of order of
\V2cp,/ (eB). In the following, we use these two expressions[#/ (MB)]M [or equivalently, r, becomes of order of
for r, interchangebly, always being cautious to note thafC?/ '3_2)_1/3]’ the frequencies in Eq24) become equal, and
[e,p(,:eBlﬁ/(ZC)] are canonically conjugate variables. the guiding center drift approximation fails.

In the small field limit, we set,(6)=r, +4r () and
solve for &r | (6) to first order in€, using Hamiltonian(41)
and approximatiori45). The result is 25 (Tl/(HZZ/e3)

& (6 (£, /e)r® cose 48
= ’ . 2
ST 14BA3 (M) - 31,241, wed)
Substitutingr , (6)=r , +4r () into each term of time aver- 15 3
gge(44), including both the ternt , (f)cos# and the term
6 6,r (6)]=aH/dp, and then linearizing ir€, yields the 1 )
polarizability ———
2B 33 | 0® 1
d L oME " 207 & [ fe
C / z
LTI VML (47) 02 04 06 08 ]

FIG. 6. lonization by an electric field perpendicular to the magnetic field.
£, is the critical field for ionizationH, is the initial binding energy before

. . . —— the atom enters the electric field, andis the radius of the nearly circular
In this expression, the quantity/ v ur , € can be replaced by initial drift orbit. The three curves correspond to thge values: (1) B

z,znaxl(Zrzl), sincel, is small. =0.015625,2) 8=0.125,(3) B=1.

=—==— .
YT T2 L<1+ B¥® 3 |, )2
Mc? 2\ ur €
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FIG. 7. Scaled polarizabilityr, for the casd,=0 and3=0.0383. In this FIG. 8. Radial profile of the space charge electric field.

plot o, o=(5/2)r3 [1+(2/5)8]/[1+B]? andE, =€ 1% /e.

followed. The rapid internal dynamics has been averaged out

As the critical field is approached, the polarization be-in Eq. (18). For this case of relatively tight binding and,
comes nonlinear. Figure 7 shows a plotaf/a, o versus the  consequently, shallow radial well, only atoms with small ini-
scaled electric field, =&, /(|H,]?/€%) =€ 1% /e for the case tial velocity are trapped. For example, the atom would have
I,=0. For this plot we chose a particular value gf escaped, had it been given initial velocity xa0* cm/s.
=0.0383 that will be used in the next section. As in Fig. 4,  More shallowly bound atoms experience a deeper radial
a,(€,) is scaled by the linear polarizability, . Using Eq.  Well and are confined for larger initial velocity. However, the
(47) to expressa, , in terms ofr , and 3 yields the relation ~ Polarizability can easily be in the nonlinear regime for these
atoms. In the preceding section, we obtained the nonlinear
polarizability «, (£,) for an atom with parametens, =4.0
X 10°° cm andl,=0 (see Fig. 7. These parameters corre-
spond to|H,|=€?/r , =3.6 meV and8=0.0383(for B=3 T).

If the electric field is small€r?/e<0.15), the polariz-  \ve assume that such an atom moves in the radial space

ability is nearly constant indicating a linear relation betwee”charge field of Fig. 8. We anticipate that the trapped atom
the polarization and electric field. However for larger field

. . S 'will sample a space charge field 6f, =25 V/cm, which
a, Increases Wittt as field ionization approached. corresponds to the scaled figfq:0.27. One can see from
Fig. 7 that the polarizability is in the nonlinear regime for
IV. MOTION OF THE GUIDING CENTER DRIFT ATOMS  thjs field strength. We take the nonlinear value of the polar-

IN'PENNING TRAP FIELDS izability «,(€,=0.279=1.18x,,~1.8x 103 cn?, but

aL(—E’L) SNE: 2 (1+p)7

ao Vs 1+

(48)

As a first application of approximate equation of motion
(18), we consider the radial trapping of weakly bound atoms
in the large space charge field near the edge of a long cylin- R (cm)
drical positron column. LetR,®,Z) be cylindrical coordi- y
nates for the atom center of mass. The fields must be ex-
pressed in these coordinates for use in @8). We choose a
plasma densityn,=2.5x 10° cm™ and plasma radiuR,
=0.2 cm in accord with ATHENA parametetsind for con-
venience take th€éunknown density profile to be simply 0.1f
n(R)=no ex{—(R/R,)*]. For a long column, the correspond-
ing space charge field is shown in Fig. 8. Also, in accord
with ATHENA parameters we choose the magnetic field

strengthB=3T. -0. -0.1 01 02
Figure 9 shows the orbit of a rather tightly bound guid- Rx(cm)

ing center atom(r , =2.4X 10°° cm, €?/r , =5.9 meV,1,=0)

ejected in the azimuthal direction with rather small initial . -0.1f

velocity Vy=2.4%x 10° cm/s. The figure actually shows two
nearly identical curves. The solid curve is the solution of
approximate equation(18) using polarizability o, =3.6

X 107 cm?® calculated from Eq(47). The dashed curve is
the antiproton orbit from the solution of the coupled
positron-antiproton equations of motion obtained from from
Hamiltonian(7). This latter solution is difficult computation- g, 9. Trapping of rather tightly bound atom ejected with small azimuthal
ally since a million cycles of the internal dynamics must bevelocity.
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{((~)

. () ]

R’

FIG. 11. Contour plot of scaled potential energy functidiR’,2’,2/5) for

a spherical plasma equilibrium. Coordinates are scale®’aR/r, andZ
=ZlIr,, wherer, is the radius of the spherical plasma. Deeper shading cor-
responds to lower values &f, so a toroidal potential well runs around the
radial edge of the plasma.

FIG. 10. Trapping of guiding center atom with higher initial velocity and

shallower binding than in Fig. 9. Dashed curve is the ion orbit for a solution

of the coupled positron-antiproton equations of motion. The continuous

curve is the solution of approximate equati@t8) with =1.18x .

simple case of a spherical positron plasma. In the Appendix,
the fieldsE,(R,Z) andEg(R,Z) are evaluated for a spherical
treat the polarizability as constant. This anticipates the facpositron plasma that is confined in a quadratic trap
that the trapped atom samples a nearly constant field strengpotential®> The plasma is assumed to be in a state of global
while moving in a nearly circular orbit. thermal equilibrium, and the Debye length is assumed to be
Figure 10 shows the orbit of this guiding center drift small compared to the radius of the plasma. Such plasmas
atom launched with initial velocityVg=2.7x10* cm/9. have been studied extensiv@l)and are regularly observed
This velocity corresponds to initial kinetic energyVé/Z experimentall)}.4 In the Appendix, the potential energy func-
=0.38 meV, as compared to a 1.3 meV temperature quotetion is written in the form
for some ATHENA experiments. Again, the solid curve is the
solution to Eq.(18), and the dashed curve is the solution to
the coupled positron-antiproton equations of motion derived
from Hamiltonian(7). In this case, the two curves are close,
but can be distinguished, presumably because the nonline@hereE is the space charge field at the surface of the plasma
polarizability functiona, (E ) was approximated by a single sphere, and the dimensionless potentiadepends on the
value. Both curves show that the atom is confined radially. scaled coordinateR =R/r, and Z'=Z/r,,, wherer is the
One expects that this mechanism produces radial tragradius of the sphere. The parameis the ratio y=a,(1
ping for some atoms in the ATHENA experiment. Near the— o, B2/MC?)/«, . From Eqs(39) and(47), one can see that
edge of the positron column, where the space charge electrife valuey=2/5 is correct for relatively deep binding and
field is maximum(i.e., E=30 V/cm), the E X B drift veloc-  small l,, that is, fora, B2/MC?, 1,/ \J’MrLeZ< 1. We use this
ity of an ion isVp=10°> m/sec. For the quoted temperature value, but the existence of the potential well is not sensitive
of T=1.3 meV, the thermal velocity is 500 m/sec. Thus,to this choice. An analytic expression faf(R’',Z’,5) is
radial trapping can occur when atoms are born at a point i@iven in Eq.(A5).

the ion orbit where the cyclotron velocity is directed opposite  Figure 11 shows a contour plot of/(R’,Z’,2/5).

to the drift Velocity. For example, if the Cyclotron VE|OCity Deeper shading Corresponds to lower valuel pofo there is

were twice the mean thermal velocity, the atom would beg toroidal potential well that runs around the radial edge of

born at rest in the laboratory frame. the plasma. The depth of the well is approximately
We have been discussing radial trapping, but full three~ (0.4)«, E2. Atoms that are born at the bottom of the well

dimensional trapping is possible also. From Ekp) for con-  with center of mass kinetic energy less th@w)a  E? are
servation of energy, one can see that such trapping requiregpped.

a E?
V(R Z)=- lTU(R’,Z’,«y), (50)

the potential energy function Using self-consistent numerical solutions, we have
2 found three dimensional potential wells for other plasma
V(RZ) =-Le2 (R, 7)-%2(1- 4B ez r 2) (49 ilibri i
(R2)=- > “(R.,2) - >\ v 7(R,Z) (49)  equilibria (e.g., spheroidal plasmas and long columior

example, the ATHENA plasma likely produces a three di-
to be a three dimensional potential well. As a sample plasmaensional well with depth comparable to the radial well dis-
equilibrium which produces such a well, we consider thecussed above.
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FIG. 12. Axial electric fieldEz(R=0,2) (solid line) and radial electric field g 13, Trajectories of an atom with binding eneryr , =5.4 meV and
Er(R=2 mm Z) (dashed lingvs Z. These plots correspond to those reported | —q aunched in the axial direction towards the ionization region with dif-

in Fig. 2(c) of Ref. 3 for the ATRAP experiment. ferent initial velocities(1) V,=8.3X 10* cm/s,(2) V,=1.2X 10° cm/s,(3)
V,=1.7X 10° cm/s. The trajectories terminate at the point wheyeeaches
the critical value for field ionizationE,=80 V/cm.

As another application of approximate equation of mo-

tion (18) we consider the curved trajectories followed by ionization, the polarizability becomes nonlinear and some-

.untr.apped .atoms. in moving .”0”.‘ the pla_smc_at to a field 0N what larger than the linear values used to calculate the tra-
ization region. Field ionization is the principle diagnostic

. ) . jectories. Thus, the trajectories slightly underestimate the de-
used in the ATRAP experiments, so we use field strength ) ghtly

g ection. Each trajectory ends when the critical field for
and geometry characteristic of ATRAP. The ATRAP collabo-. .~ " —. jectory _ [ PN
. ; ) L ionization is reachefii.e., E;=[2/(3v3)](e/r)=80 V/cm.
ration previously estimated polarization forces parallel to the . : S . .
e As one can see in Fig. 13, depending on initial axial velocity,
magnetic field, and correctly concluded that the forces pro-_ . . .
.. . . . radial deflection of the atom can be substantial due to polar-
duce a negligible change in parallel velocity for energetic._ . L o :
. 2 15 ization forces. The deflection is smaller for larger initial axial
atoms(i.e., MV5/2=200 me\j.”> Here, we focus on slower . L :
) . velocity because the atom spends less time in the region of
atoms for which the forces are not negligible.

S high electric field.
The space charge field is much smaller than the vacuum Figure 14 shows the final radial position of the atom

field used for field ionization, so to a good approximation the,. o o
. . L ) : : (i.e., at the moment of its field ionizatipwersus its initial
electrostatic potential satisfies Laplace’s equation. Using cy:

lindrical coordinate¢R,®,Z) and noting that the potential is radial p93|t|on. Asin F|g_. 13, the atom was .Iaunche'd .v'v|th|n
: . ) the positron plasma &=5.5 cm but with different initial
independent of), we write the potential as a sum

radial positions. The three curves in the figure correspond to
dRZ) =S . [2mnZ the same three initial center of mass velocities as in Fig. 13.
(RZ)= - an sin One can see in Fig. 14 that the radial deflection of the atom

‘b <Z7Tnz>:|| (27THR) (51)
nh CO L 0 L ' 04 RZ(Cm) ,

wherelg is a Bessel function of imaginary argument, and the
coefficientsa, and b,, are chosen so that the fiel&g, E,)
=(-9®/JR,-od/dZ) provides a good approximation to the
ATRAP field. In Fig. 2 of Ref. 3 the ATRAP field component
E,(R=0,Z) was reported for the range of values L
=11.5 cm. Retaining terms up =15 in the sum51), we
obtain the field components in Fig. 12 which compare well
with those in Ref. 3.

Figure 13 shows the trajectories of atoms launched from
a point within the positron plasm@&=5.5 cm,R=0.2 cn)
with three different center of mass velocitigs) V,=8.3
X10tecm/s, (2) V,=1.2x10°cm/s, (3) V=17
X 10° cm/s. The initial transverse velocity is zero for all
three trajectories. The three initial velocities correspond to
center of mass kinetic energfV3/2=3.6 meV, 8.1 meV, R (cm)
and 14.4 meV. Initially the internal state of the atoms is 0.1 02 03 04
characterized by,=0 andr, =2.6X 10°° cm, which corre- _ . N -
sponds to binding energg’/r, =54 meV. For this state, © 1, FI% e oS e 20, ¢ e momen o e
Egs. (39) and (47) imply the linear polarizabilitiesy,=1.8

- same initial axial velocities as in Fig. 13. For reference, the dashed line
X 10 cm® and o, =4.3x 10 cm®. Shortly before field  showsR,=R,.
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increases with increasing initial radial displacement. This iSAPPENDIX: POTENTIAL ENERGY FUNCTION FOR A
due to the fact that the electric fields grow radially in the SPHERICAL POSITRON PLASMA
field ionization region, so an atom launched at larger radius

experiences larger electric field. Also, as in Fig. 13, one can A commonly used trap potential is the quadratic

4113
see that radial deflection is reduced with increasing initiaIpOtem'al’
center of mass velocity. M2 -
A simple estimate of the deflection provides useful in-  €¢r(R.Z)=—=(Z"~R72), (A1)

sight. The radial force on an atom is of ordd¥
= 9/ 9R[«EX(R, Z)]. For sufficiently smalR, we can use the where(R,0,2) are cylindrical coordinates ang? is a con-

Taylor expansion stant that is proportional to the axial confinement voltage.
P The electrodes that produce this potential are assumed to be
F=R —[aE4R2)]| (52)  distant compared to the size of the plasma, so image poten-
R R=0 tials are negligible. There is also a uniform axial magnetic
where the constant terzero order termvanishes by sym- field, B=ZB.
metry. The scale length on which the field changeRjsthe We assume that the plasma has come to a state of global

radius of the wall (electrode structuje so we set thermal equilibriunt® so the plasma rotates without shear at
&1 IR aEX(R, 2)] = aE?/ RS, Consider an atom that is born some frequency. In the rotating frame of the plasma, the
at radiusR=R, with velocity V =V,z. The radial acceleration effective trap potential is

of the particle isa=F/M=aR,E?/(MR3). The fieldE? rises R2
on a spatial scqlaZ;RW in the iqnization region, so the edr(R,2) = edr(R,Z) + Mw(Qee— w)?, (A2)
approximate radial displacement is
Rw \? aE? where()..=eB/mg is the positron cyclotron frequency. This
AR=a V_z = MV? (53 effective potential has spherical symmetry, and the plasma

consequently has spherical symmetry, if the frequencies are
The polarizability is of ordera~r§ and the field strength related as

before ionization of ordeE~e/r2, so the radial displace- 3 2
ment is of order 207 = 0({ee~ @). (A3)
er, We assume that the plasma Debye length is small com-
AR=R, (54 pared to the plasma radius. In this case, the plasma density is

MV3' : :
z nearly uniform out to some radlwgJ and there drops to
y)p_

Thus, the deflection is substantial when the binding energy igero’® The density is specified b =2w(Qee—w), where
comparable to the center of mass kinetic energy. The fact thaaifJ is the plasma frequency. From this relation and @&®Q),
the displacement is an increasing functionRyfand a de- we easily obtain the plasma space charge potegtéRr,2).

creasing function o¥/, also is apparent. The total potential in the laboratory frame is the sum
H(R,Z2)=¢pp(R,2)+ $1(R,Z), and the fields required to
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3 2
<5R’> for R2+72'2< 1

UR',Z',y) =~ 2 5 (A5)
(R’)Z }_,_; +,y(zl)2 1_; for Z/2+Rr2>l
2 (R12 + Z/2)3/2 (R/Z + 212)3/2 .
|
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