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The ApparaTus for High precision Experiment on Neutral Antimatter and antihydrogen TRAP
collaborations have produced antihydrogen atoms by recombination in a cryogenic
antiproton-positron plasma. This paper discusses the motion of the weakly bound atoms in the
electric and magnetic field of the plasma and trap. The effective electric field in the moving frame
of the atom polarizes the atom, and then gradients in the field exert a force on the atom. An
approximate equation of motion for the atom center of mass is obtained by averaging over the rapid
internal dynamics of the atom. The only remnant of the atom internal dynamics that enters this
equation is the polarizability for the atom. This coefficient is evaluated for the weakly bound and
strongly magnetized(guiding center drift) atoms understood to be produced in the antihydrogen
experiments. Application of the approximate equation of motion shows that the atoms can be
trapped radially in the large space charge field near the edge of the positron column. Also, an
example is presented for which there is full three-dimensional trapping, not just radial trapping.
Even untrapped atoms follow curved trajectories, and such trajectories are discussed for the
important class of atoms that reach a field ionization diagnostic. Finally, the critical field for
ionization is determined as an upper bound on the range of applicability of the theory. ©2005
American Institute of Physics. [DOI: 10.1063/1.1818140]

I. INTRODUCTION

The ATHENA (ApparaTus for High precision Experi-
ment on Neutral Antimatter) and ATRAP (antihydrogen
TRAP) collaborations at CERN(European Organization for
Nuclear Research) have reported the production of cold an-
tihydrogen atoms.1,2 The atoms result from recombination
when cold antiprotons are added to a cryogenic positron
plasma in a Penning trap configuration. The ATRAP collabo-
ration measured binding energies in the range of meV.3

Here we discuss the motion of these weakly bound at-
oms in the magnetic and electric field of the trap. Because
the binding is so weak, even a modest electric field produces
a significant polarization of an atom. A gradient in the field
then exerts a force on the atom, causing acceleration. Typi-
cally, the atom is moving across the magnetic field, and it is
the effective electric field in the moving frame of the atom
that causes the polarization and the acceleration. In the labo-
ratory frame, both electric and magnetic forces must be taken
into account.

In the experiments, the magnetic field is nearly uniform
and the electric field varies by only a small amount over the
dimensions of the atom. Also, the time scale for the internal
dynamics of the atom is short compared to the time scale for
the atom to move a significant distance. Taking advantage of
these orderings, we obtain an approximate equation of mo-
tion for the atom center of mass. The only remnant of the
atom internal dynamics that enters the equation of motion is
the polarizability. The approximate equation of motion pro-
vides a substantial simplification because it averages over the
rapid internal dynamics of the atom.

An interesting implication of the equation of motion is
that a weakly bound atom can be trapped radially in the large

electric field region near the edge of a long cylindrical pos-
itron column. The reason for the trapping is easy to under-
stand physically. For a uniform density unneutralized column
of positrons, the radial space charge field increases linearly
with radius inside the column and falls off inversely with
radius outside the column. Thus, there is a region of large
field near the plasma edge, and polarizable material(the
atom) is attracted to a region of maximum field. Also, we
will see that certain equilibrium configurations for the posi-
tron plasma make possible full three-dimensional trapping,
not just radial trapping.

We will find that the polarization forces create a poten-
tial well of approximate depthaE2, wherea is the polariz-
ability of the atom andE is the electric field strength. In
Gaussian units, the polarizability has the dimensions length
cubed, and the polarizability for an atom of sizera is of order
a, ra

3. Since the binding energy for an atom is of order
e2/ ra, the depth of the well scales inversely with the cube of
the binding energy. Thus, the effects discussed here are more
pronounced for weakly bound atoms. Of course, a weakly
bound atom suffers field ionization from a relatively weak
field. The critical field for ionization is approximatelyE
,e/ ra

2. Using this field strength as an upper bound forE
shows that the maximum well depth is the binding energy of
the atom:

aE2 = sa/ra
3dra

3S E

e/ra
2D2S e

ra
2D2

&
e2

ra
. s1d

For the example discussed in the last paragraph, trapping is
possible only when the atom binding energy is larger than
the kinetic energy of the atom center of mass.
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The ATRAP collaboration uses field ionization as a di-
agnostic, and the ionization region is some distance from the
plasma. As a second application of the approximate equation
of motion, we determine trajectories followed by weakly
bound atoms in moving from the recombination region(in-
side the positron plasma) to the field ionization region. De-
pending on the parameters, a straight line orbit may or may
not be a good approximation. We will see that the polariza-
tion forces produce a significant deflection of the atom when
the binding energy is larger than the center of mass kinetic
energy. Knowledge of the trajectories is an important input to
estimates of antihydrogen production rates based on solid
angle considerations.

The analysis divides naturally into two parts: the deriva-
tion of the equation of motion and the calculation of the
polarizability. In Sec. II, we derive an approximate equation
of motion for the expectation value of the atom center of
mass coordinates,kRcmlstd;kCuRcmuCl. The derivation of
the equation of motion depends on the spatial and temporal
orderings mentioned above but otherwise is general. On the
other hand, determination of the polarizability requires a
more detailed specification of the internal dynamics for the
atom.

In Sec. III, we evaluate the polarizability for the special
case of guiding center drift atoms.4 As discussed in recent
literature,5,6 these weakly bound and strongly magnetized at-
oms are thought to be produced in the antihydrogen experi-
ments. For these atoms, the cyclotron frequency for the pos-
itron is much larger than the other dynamical frequencies and
the cyclotron radius is much smaller than the separation be-
tween the positron and antiproton. Under these circum-
stances, the rapid cyclotron motion can be averaged out and
the positron dynamics treated by guiding center drift theory.
The dynamics is quasiclassical, since the binding energy is
much smaller than the Rydberg energy(four orders of mag-
nitude smaller for the meV binding energies measured in the
ATRAP experiments). Fortunately, the dynamics for guiding
center atoms is integrable, and the polarizability can be
evaluated with perturbation theory.

Section IV contains applications of the approximate
equation of motion. As a first application, we demonstrate
the radial trapping of weakly bound atoms in the large space
charge field of a long positron column. The geometry and
field strengths used are characteristic of the ATHENA experi-
ments. Orbits from the approximate equation of motion are
shown to be in good agreement with those from lengthy
numerical solutions of the coupled positron-antiproton equa-
tions of motion. These latter solutions involve over a million
cycles of the internal atom dynamics. The comparison dem-
onstrates the fidelity of the approximate equation of motion
and also the substantial simplification it provides in averag-
ing out the rapid internal dynamics.

Certain equilibrium configurations for the positron
plasma make possible full three dimensional trapping, not
just radial trapping. As a simple example, we consider a
spherical plasma in a quadratic trap potential. The self-
consistent fields for this equilibrium are evaluated in the Ap-
pendix, and in Sec. IV the fields are shown to produce full
three dimensional trapping. The potential energy function as-

sociated with the polarization forces is a three-dimensional
potential well, and atoms with sufficiently small kinetic en-
ergy simply cannot escape.

Finally, the approximate equation of motion is used to
obtain the curved trajectories followed by weakly bound at-
oms in moving from the plasma to a field ionization region.
Here we use field strengths and geometry characteristic of
ATRAP.

For the special case of a purely radial space charge field,
the approximate equation of motion was obtained
previously.7 The derivation here is more general in that it
allows all three components of the electric field. Also, the
derivation here is not based on classical mechanics and the
guiding center drift approximation. This specialization is
used here only to obtain the polarizability, not in the deriva-
tion of the approximate equation of motion. The present dis-
cussion of the polarizability tensor is more complete than in
Ref. 7 and includes a discussion of field ionization. Also, the
demonstration of three dimensional trapping and the deter-
mination of trajectories for atoms moving from the plasma to
the field ionization region are new.

II. APPROXIMATE EQUATION OF MOTION

We consider a positron(particle 1) and an antiproton
(particle 2), although the results apply equally to an electron
and a singly ionized ion. The mass ratiom1/m2 is assumed to
be small, but is not specified to a specific value. The two
particles interact electrostatically and move in the uniform
magnetic fieldB= ẑB and the spatially varying electric field
E=−=f. For the choice of vector potentialA =Bxŷ, the
Hamiltonian operator is given by

H =
pz1

2

2m1
+

px1
2

2m1
+
Spy1 −

eB

c
x1D2

2m1
+

pz2
2

2m2
+

px2
2

2m2

+
Spy2 +

eB

c
x2D2

2m2

−
e2

Îsx1 − x2d2 + sy1 − y2d2 + sz1 − z2d2
+ efsx1,y1,z1d

− efsx2,y2,z2d. s2d

The effect of spin has been neglected, since the magnetic
field is uniform and the spin-field interaction does not couple
the spin and orbital dynamics. The usual spin-orbit interac-
tion, which is smaller than the electrostatic interaction by
order sv /cd2, is very small for the small binding energies
(and small velocities) considered here.

It is useful to introduce relative coordinates through the
transformation

x = x1 − x2, px =
m2px1 − m1px2

m1 + m2
,

y = y1 − y2, py =

m2Spy1 −
eB

c
x2D − m1Spy2 +

eB

c
x1D

m1 + m2
,
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z= z1 − z2, pz =
m2pz1 − m1pz2

m1 + m2
,

X =
m1x1 + m2x2

m1 + m2
+

c

eB
spy1 + py2d,

PX = px1 + px2 −
eB

c
sy1 − y2d,

Y =
s2m2 + m1dy2 − m2y1

m1 + m2
+

c

eB
spx1 + px2d,PY = py1 + py2,

Z =
m1z1 + m2z2

m1 + m2
, PZ = pz1 + pz2. s3d

Classically, this is a canonical transformation, as can be veri-
fied by observing that the Poisson brackets for the new co-
ordinates and momenta have the canonical values(i.e.,
fQi ,Pjg=di j). Quantum mechanically, the commutators for
the new operations have the canonical values(i.e., fQr ,Psg
=drsi").

The vectorr =sx,y,zd is the relative coordinate between
the positron and antiproton. The momentumPZ is the total
(or center of mass) momentum along the magnetic field. The
transverse components sPX,PYd are often called
pseudomenta.8 PY is the sum of they components of the
canonical momentum for the two particles;PX is the corre-
sponding sum that would be obtained for thex components
using a different choice of vector potential(i.e., A8=−Byx̂).
The two choices(A =Bxŷ and A8=−Byx̂) are related by a
gauge transformation and both produce the given magnetic
field (i.e., =3A = = 3A8= ẑB). We will see that P
=sPX,PY,PZd are constants of the motion for the special case
of a spatially uniform electric field.

For future convenience, we note that the antiproton and
positron coordinates are given by

r 2 = SX −
c

eB
PY −

m1x

m1 + m2
,Y −

c

eB
PX −

m1y

m1 + m2
,Z

−
m1z

m1 + m2
D , s4d

r 1 = r 2 + r . s5d

Likewise, the center of mass coordinates are given by

Rcm =
m1r 1 + m2r 2

m1 + m2
= SX −

c

eB
PY,Y −

c

eB
PX,ZD . s6d

In terms of the new operators, the Hamiltonian is given by

H =
uPu2

2M
−

eB

MC
sPYx − PXyd +

MVCM
2

2
sx2 + y2d +

px
2

2m

+

Spy −Î1 −
4m

M

eB

c
xD2

2m
+

pz
2

2m
−

e2

Îx2 + y2 + z2

+ efsr 1d − efsr 2d, s7d

whereM =m1+m2 and m=m1m2/ sm1+m2d are the total and
reduced mass,VCM;eB/MC is the cyclotron frequency for
the total mass, andr 2 and r 1 have been introduced as short-
hand for the variables in relations(4) and (5).

Let kPl;kCuPuCl be the expectation value of the total
momentum. The rate of change of this quantity is given by

d

dt
kPl = kCu

1

i"
fP,HguCl. s8d

Using P=s" / ids] /]X,] /]Y,] /]Zd to evaluate the commuta-
tor fP,Hg yields the result

dkPl
dt

= kCufeEsr 1d − eEsr 2dguCl, s9d

where the electric fieldE=−=f, has been introduced. As
anticipated,P is a constant of the motion for the case of a
spatially uniform electric field.

We assume that the spatial gradient in the field is small
and work only to first order in the gradient. Let,
,uEu / u=Eu be the scale length of the field andra be the size
of the atom. Formally, the wave functionuCl is negligibly
small for r = ur 1−r 2u larger thanra. We assume thatra!,,
and work only to first order in the small parameterra/,!1.
To this order, Eq.(9) can be rewritten as

dkPl
dt

. kCufer · = EskRcmldguCl, s10d

where kRcml;kCuRcmuCl is the expectation value of the
center of mass position operator[see Eq.(6)]. In terms of the
expectation valuekr l;kFur uCl, Eq. (10) takes simple form

dkPl
dt

. ekr l · = EskRcmld. s11d

Likewise, the rate of change ofkRcml is given by

dkRcml
dt

= kCu
1

i"
fRcm,HguCl =

kPl
M

+
ekr l
MC

3 B, s12d

where use has been made of definition(6), Hamiltonian(7),
and the basic commutator relations. Taking the time deriva-
tive of Eq. (12) and using Eq.(11) to replacedkPl /dt yields
the result

M
d2kRcml

dt2
= d · = EskRcmld +

1

c

d

dt
d 3 B, s13d

whered;ekr l is the dipole moment of the atom.
The next step is to find an expression ford in terms of

fields and the center of mass velocity[i.e., EskRcmld, B, and
dkRcml /dt]. Equation(13) will then be a proper equation of
motion for the evolution ofkRcmlstd in the given fields.

The first term on the right-hand side of Eq.(13) is obvi-
ously first order in the spatial gradient of the electric field
[i.e., Os1/,d], and the second term is as well, sinced/dt
turns out to be first order in the gradient. Thus, in Hamil-
tonian(7) we setefsr1d−efsr2d=eE ·r , where the fieldE is
independent ofr . To zero order inra/,!1, we set E
=EskRcmld.
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There remains the question of the time dependence in
EfkRcmlstdg. We assume that the time scale for the internal
dynamics(relative motion) is short compared to the time for
the atom as a whole to move a distance,. This latter time is
the time scale on whichEfkRcmlstdg changes significantly.
Thus, we use an adiabatic approximation and neglect the
time dependence inEfkRcmlstdg when solving for the internal
motion (relative motion).

As mentioned earlier,P is a constant of the motion for a
uniform electric field. Thus, in Hamiltonian(7) we replace
the operatorP by the constant eigenvalueP and replace the
potential differencefefsr 1d−efsr 2dg by −eE ·r whereE is a
constant field. This yields a Hamiltonian for the relative mo-
tion

H =
px

2

2m
+

Spy −Î1 −
4m

M

eB

c
xD2

2m
+

pz
2

2m
−

e2

Îx2 + y2 + z2

+
M

2
VCM

2 sx2 + y2d − eE · r , s14d

where

E = E +
P 3 B

MC
s15d

is the effective field acting on the atom, and the constant
term P2/ s2Md has been dropped from the Hamiltonian.

For the special caseE=0, H commutes with the parity
operatorP. If cn1,n2,n3

sr d is an eigenfunction ofH corre-

sponding to the eigenvalueH̄n1,n2,n3
, then Pcn1,n2,n3

sr d
=cn1,n2,n3

s−r d is an eigenfunction for the same eigenvalue.
Except for very special cases(e.g., B=0), one expects the

energy levelsH̄n1,n2,n3
to be nondegenerate. Here, the integers

sn1,n2,n3d specify the quantum state. For the special case of
guiding center drift dynamics, we will identify these integers
in the following section. Therefore,Pcn1,n2,n3

and cn1,n2,n3
differ only by a constant; further, that constant must be ±1,
that is,cn1,n2,n3

must have even or odd parity. Thus, the di-
pole momentd=ekCur uCl vanishes forE=0.

For sufficiently smallE, Taylor expansion suggests the
linear relationshipd=â ·E, where the polarizability matrix is
given by

â = 1a' 0 0

0 a' 0

0 0 az
2 . s16d

Because of the magnetic field, the parallel and transverse
polarizabilities are not equal.

Combining Eqs.(12) and (16) with the relationd=â ·E
yields the expressions

dz = azEz

S1 −
a'B2

MC2 Dd' = a'FE' +
1

c

dkRcml
dt

3 BG . s17d

Substituting these expressions into Eq.(13) yields the equa-
tion of motion

MS1 −
a'B2

MC2 DdVz

dt
ẑ+ M

dV'

dt

=
1

2
= FS1 −

a'B2

MC2 DazEz
2 + a'E'

2 G
+ a'

V' 3 B

c
· = E + a'

V

c
· = sE 3 Bd, s18d

where V ;dkRcml /dt, E is evaluated atkRcml, az and a'

have been treated as constants, and use has been made of
=3E=0. Taking the dot product of Eq.(18) with respect to
V and integrating over time yields an equation for conserva-
tion of energy

S1 −
a'B2

MC2 DMVz
2

2
+

MV'
2

2
−

a'E'
2

2
− azS1 −

a'B2

MC2 DEz
2

2

= const, s19d

where again use has been made of=3E=0.
It is convenient to introduce cylindrical coordinates for

the center of mass,Rcm=sR,Q ,Zd. Typically, the electric po-
tential has no dependence on the angleQ, and the azimuthal
electric field vanishes. In this case, Eq.(18) yields an equa-
tion for conservation of canonical angular momentum

S1 −
a'B2

MC2 D−1FMVuR+
a'B

c
RERsR,ZdG = const. s20d

Formal expressions foraz and a' can be obtained in
terms of the energy levels for the relative motion,

H̄n1,n2,n3
sEz,E'd. In the adiabatic approximation considered

here, the quantum numbers for the state[i.e., sn1,n2,n3d]
remain fixed but the energy levels evolve as a function of the
slowly varying Ez and E'. From the relations −ez=]H /]Ez

and kCu]H /]EzuCl=] /]EzkCuHuCl, one finds that

dz ; kezl = −
]

]Ez
H̄n1,n2,n3

sEz,E'd. s21d

Likewise, one finds that

d' ; ker 'l = −
]

]E'

H̄n1,n2,n3
sEz,E'd. s22d

The linear polarizabilities are then given by

az = − U ]2H̄

]2Ez
2U

Ez,E'=0

a' = − U ]2H̄

]2E'
2 U

Ez,E'=0

. s23d

III. POLARIZABILITY FOR GUIDING CENTER DRIFT
ATOMS

In this section, we evaluate the polarizability for the
weakly bound and strongly magnetized atoms produced in
the antihydrogen experiments. In recent literature, these at-
oms are referred to as guiding center drift atoms.4–6 The
cyclotron frequency for the positron is much larger than the
other frequencies that characterize the dynamics, and the cy-
clotron radius much smaller than the positron-antiproton
separation. Under these circumstances, the rapid and highly
localized cyclotron motion can be averaged out and the pos-
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itron dynamics treated by guiding center drift theory. A qua-
siclassical treatment of the atoms is possible, since the bind-
ing energy is much smaller(four orders of magnitude
smaller) than the Rydberg energy.

Figure 1 illustrates the internal dynamics(relative mo-
tion) of a guiding center drift atom for the special case where
the effective electric field vanishes(i.e.,E→0). The positron
executes very rapid cyclotron motion with a small cyclotron
radius. More slowly, the positron oscillates back and forth
along the magnetic field in the Coulomb well of the antipro-
ton. More slowly still, the positron and antiproton move in
circular cross magnetic field orbits around a common point.
The positron cross field motion is well described as theE
3B drift velocity in the electric field of the antiproton, but
full dynamics must be retained to describe the cross field
motion of the antiproton. In Fig. 1,r =r 1−r 2 is the relative
position so the motion is shown from the perspective of the
antiproton.

The relative motion is described by Hamiltonian(14)
with the effective electric field set equal to zero(i.e.,E=0).
We will see that the first two terms describe the rapid cyclo-
tron motion, the next two the field aligned oscillations, and
the third and fourth the cross field motion. The cyclotron
frequency isÎ1−4m /M eB/mc.eB/mec;Vce. For the case
where the amplitude of the field aligned oscillations is not
too large (i.e., zmax& r'=Îx2+y2), the frequency of these
oscillations is approximatelyvz=Îe2/mer'

3 . This estimate
has used the Taylor expansione2/Îz2+r'

2 <e2/ r'

−e2z2/2r'
3 . For this same case, we will see that the frequency

of the cross field motion is approximatelyvD+VCM, where
vD;ce/Br'

3 is theE3B drift frequency of a positron in the
Coulomb field of a stationary antiproton. We will be inter-
ested in cases wherevD*VCM, so we simply usevD as the
estimate of the frequency for cross field motion.

Since the positron cyclotron frequency,Vce=eB/mec, is
related tovz=Îe2/mer'

3 andvD=ce/Br'
3 through the equa-

tion Vce=vz
2/vD, the requirement thatVce be larger than the

other two frequencies imposes the ordering

Vce@ vz @ vD. s24d

The ordering is realized for sufficiently weak binding, that is,
for r @ smec

2/B2d1/3. This inequality is required for validity
of the analysis.

Note that the inequality implies not only that the posi-
tron cyclotron frequency is large, but also that the positron
cyclotron radius is small. We have in mind cases where the

positron kinetic energy is smaller than or of order of the
electrostatic binding energy(i.e., meve

2/2&e2/ r). The in-
equality r @ smec

2/B2d1/3 then implies thatrce;ve/Vce! r.
For r comparable tosmec

2/B2d1/3 our guiding center
analysis fails. All three frequencies in inequality(24) are
comparable, and the positron motion is chaotic.5,9,10 For r
! smec

2/B2d1/3, the cyclotron frequency is small compared to
the Kepler frequency, and the positron motion is again inte-
grable. In this case, one can think of the weakly bound pair
as a high-n Rydberg atom with a Zeeman perturbation.11 For
cases wherer , smec

2/B2d1/3, equation of motion(18) re-
mains valid, but the polarizability derived here does not ap-
ply.

As mentioned, the ATRAP collaboration measured bind-
ing energies of order meV, which corresponds toē− p̄ sepa-
ration of order 10−4 cm.3 The magnetic field strength is 5 T,
so the critical radius issmec

2/B2d1/3=7310−6 cm. Thus, the
separation is much larger thansmec

2/B2d1/3, and the weakly
bound pairs are guiding center atoms. The cyclotron fre-
quency for the positron is about 100 times larger than the
E3B drift frequencyvD, and the cyclotron radius is about
100 times smaller than the separation.

The simple symmetry of the orbit shown in Fig. 1 is a
consequence of the choiceE=0. For nonzeroE, the last term
in Hamiltonian(14) modifies the motion, but for sufficiently
small E the modifications can be treated as a perturbation.
The termeEzz shifts the field aligned oscillations, destroying
symmetry of the orbit in ±z. Likewise, the termeE' ·r '

destroys the circular symmetry of the cross field orbit. Of
course, these distortions give rise to the polarization of inter-
est.

Because the atom moves, the effective fieldE
=EfkRcmlstdg varies in time. As mentioned earlier, we as-
sume that the time scale for this motion(i.e., t,, /Vcm) is
long compared to the time scale for the internal dynamics.
Thus, frequency ordering(24) is extended to be

Vce@ vz @ vD @ 1/t. s25d

The frequency ordering then implies that the internal dy-
namics for the atom is integrable. Because the positron cy-
clotron frequency is much larger than the other frequencies,
the cyclotron action is a good adiabatic invariant. Use of
guiding center drift dynamics automatically takes this invari-
ant into account and removes the rapid cyclotron motion
from the problem. Because the frequency of field aligned
oscillations is larger than the remaining frequencies, the ac-
tion for the field aligned oscillations is a good adiabatic in-
variant. Introducing this action and averaging over the field
aligned oscillations then leaves the cross field drift motion as
the largest frequency motion. Thus, the drift action is a good
adiabatic invariant. The values of these three actions deter-
mine the internal state of the atom. In Ref. 5, Bohr-
Sommerfeld quantization rules are used to associate a quan-
tum number with each action. To the extent that 1/t is small
compared to the frequencies for the internal dynamics[i.e.,
ordering(25)], the adiabatic approximation implies that the
actions(or quantum numbers) remain constant as the atom
moves through the external field. In the language of atomic
physics, we make a triple Born-Oppenheimer approximation.

FIG. 1. Drawing of a guiding center drift atom. In order of descending
frequency, the positron executes cyclotron motion, oscillates back and forth
along a field line in the Coulomb well of the antiproton, andE3B drifts
around the antiproton.
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Returning to Hamiltonian(14) with frequency ordering
(25) in mind, we first treat the cyclotron motion. The first
two terms in Eq.(14) comprise the cyclotron Hamiltonian

Hc =
px

2

2m
+

Spy −Î1 −
4m

M

eBx

c
D2

2m
, s26d

wherepy may be treated as a constant on the cyclotron time
scale. The Hamiltonian describes oscillations inx at the fre-
quencyeB/mcÎ1−4m /M .Vce and centered about the guid-
ing center positionxg=pysc/eBds1−4m /Md1/2.cpy/eB. By
introducing the cyclotron action,

Ic =
1

2p
R dxpxsH̄c,xd, s27d

one findsH̄c= IcVce. Here,H̄c has the same value asHc but a
different functional form. Making this replacement for the
first two terms in Hamiltonian(14) and replacingx by xg

=cpy/eB in the remainder of the Hamiltonian yields the
guiding center drift Hamiltonian5

H = IcVce+
pz

2

2m
−

e2

Îr'
2 + z2

− eEzz+
MVCM

2

2
r'

2

− eE' · r ', s28d

where r '=scpy/eB,yd. In drift dynamics,y and py=eBx/c
are canonically conjugate coordinate and momentum.12 The
field aligned oscillations are governed by the second, third,
and fourth terms in Hamiltonian(28). We write the sum of
these terms as the Hamiltonian

Hz =
pz

2

2m
−

e2

Îr'
2 + z2

− eEzz, s29d

wherer' can be treated as constant on the time scale of the
field aligned oscillations. The action for the field aligned
oscillations is given by

Iz =
1

2p
R dzÎ2mÎH̄z + e2/sr'

2 + z2d1/2 + eEzz, s30d

which can be inverted at least formally, to obtainH̄z

=H̄zsr'
2 ,Iz,Ezd. Again, H̄z has the same value asHz but dif-

ferent functional form.

SubstitutingH̄zsr'
2 ,Iz,Ezd into Eq. (28) yields a Hamil-

tonian for the cross field motion

H = IceVce+ H̄zsr'
2 ,Iz,Ezd +

MVCM
2

2
r'

2 − eE' · r '. s31d

For given values ofH, Ice, Iz, Ez, andE' this equation de-
termines the cross field orbit[i.e., pysyd, wherepy=seB/cdx].
It is useful to introduce the action for the cross field motion
(drift action)

ID =
1

2p
R dypyfy,H̄ − VceIc,Iz,Ez,E'g, s32d

which can be inverted formally to obtain H̄

=H̄sIc,Iz,ID ,Ez,E'd. Following Ref. 5, the Bohr-

Sommerfeld rules for quantization are used to set

H̄ = H̄fIc = "nc,Iz = "nz,ID = "nD,Ez,E'g, s33d

where the integers nc, nz, nD remain fixed as
E=EfkRcmlstdg evolves slowly in time. In expression(23)

for the polarizability, the energy levels are simplyH̄n1,n2,n3

=H̄s"nc,"nz,"nD ,Ez,E'd, wheresn1,n2,n3d=snc,nz,nDd.
For linear polarizability,az= u−]2H̄ /]Ez

2uEz,E'=0 can be
evaluated settingE'=0 at the outset. In this case the cross
field orbit is circular and the drift action is simply

ID =
1

2p
R pydy=

eB

2c
r'

2 . s34d

Substituting this expression forr'
2 in Eq. (31) and setting

E'=0 yields the energy levelsH̄=H̄sIc,Iz,ID ,Ez,E'=0d.
The partial derivative of this equation with respect toEz

yields the dipole moment

dz = −
]H̄

]Ez
= −

]H̄z

]Ez
. s35d

By taking the derivative of Eq.(30) with respect toEz hold-
ing Iz and r'

2 =f2c/ seBdgID constant, we obtain the equation

0 =
1

2p
R dz

ższd
F ]H̄z

]Ez
+ ezG , s36d

where

ż= ±Î 2

m
ÎH̄z + e2/sr'

2 + z2d1/2 + eEzz. s37d

In Eq. (36) H̄zsIz,r'
2 ,Ezd is independent ofz, so we obtain the

result

dz = −
]Hz

]Ez
=
R dz

ższd
ez

R dz

ższd

. s38d

Thus, the dipole moment is expressed as the time average of
ezover the semiclassical orbit. In Sec. II[see Eq.(13)], the
dipole moment was written as the expectation valueker l.
Here, we see that the expectation value goes over to a time
average in the semiclassical limit.

To determineaz, we evaluate time average(38) numeri-
cally with ż= ższ,Hz,r' ,Ezd given by Eq. (37). For suffi-
ciently smallEz, dz is linear inEz andaz=dz/Ez is indepen-
dent of Ez. Removal of dependence onEz allows the result
for the linearaz to be presented in a completely scaled form.
Figure 2 shows the scaled polarizabilityazuHzu3/e6 versus the
scaled radiusuHzur' /e2.

It is instructive to note alternate forms for these scaled
variables. In Fig. 3 of Ref. 5 the scaled radiusuHzur' /e2 is
given as a function of the ratioIz/Îr', whereIz is the action
for the field aligned oscillations. LargeIz corresponds to
small uHzur' /e2, andIz=0 corresponds touHzur' /e2=1. Also,
in the small field limit the magnitude of Hamiltonian(29)
can be written asuHzu=e2/Îr'

2 +zmax
2 , wherezmax is the am-
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plitude of the field aligned oscillations. Thus, the scaled po-
larizability can be written asazuHzu3/e6=az/ sr'

2 +zmax
2 d3/2 and

the scaled radius asuHzur' /e2=r' /Îr'
2 +zmax

2 .
Referring again to Fig. 2, we note that foruHzur' /e2

=r' /Îr'
2 +zmax

2 near unity(i.e., smallzmax/ r'), az takes the
value r'

3 . For uHzur' /e2 near zero, az is given by
s35/16dzmax

3 . Analytic solutions are possible at both end
points. The smallIz value of the polarization(i.e., az=r'

3 )
has been noted earlier.6

To gain some idea of the range ofEz for which the linear
theory is valid, we first review previous results on field ion-
ization. Clearly, the critical field for ionization is an upper
bound on the range of validity. Figure 3, which is taken from
Ref. 5, shows the scaled critical fieldEz/ sHz

2/e3d versus the
scaled radiusuHzur' /e2. Here, the atom starts in a low field
region and moves up a field gradient until field ionization
occurs. As the atom moves, the actionIz is conserved until
just before ionization. In contrast, the value ofHz

=HzsEz,r' ,Izd is not conserved. In Fig. 3, the value ofuHzu
that enters the scaled variables is the value in the low field
region. Thus, the scaled radius in Fig. 3 is the same as that in
Fig. 2. Also, note that the scaled field variable can be rewrit-
ten asEz/ sHz

2/e3d=Ezsr'
2 +zmax

2 d /e, wherezmax is the ampli-
tude of thez oscillations in the low field region. At the end

point uHzur' /e2=1 the critical field is Ez=f2/s3Î3dge/ r'
2

.0.39e/ r'
2 , and at the end pointuHzur' /e2=0 the critical

field Ez=0.32e/zmax
2 .

The end pointuHzur' /e2=1 corresponds toIz=0. For this
limit, a nonlinear expression foraz can be obtained analyti-
cally. The second two terms in Hamiltonian(29) provide a
potential well with the bottom shifted toward positivez (for
Ez.0). For smallIz, the positron executes small amplitude
oscillations near the bottom of the well. The oscillations are
symmetric about the bottom since the well is approximately
quadratic near the bottom. Thus, the time-averagekzl is sim-
ply the z value of the shifted bottom.

Setting]Hz/]z=0 to determine the shifted bottom yields
the result

az =
dz

Ez
= r'

3 gsẼzd, s39d

where the scaled field isẼz=Ez/ se/ r'
2 d and

gsẼzd =
1

Ẽz
S 2

Î3

1

Ẽz

cosH1

3
Fp + arccosS3Î3

2
ẼzDGJ − 1D1/2

;
azsẼzd

az0
. s40d

Here az0=r'
3 , the value ofaz for Iz=0 andEz=0. Function

(40) is plotted in Fig. 4. For small values of the scaled field,

gsẼzd is near unity so thataz. r'
3 in accord with the linear

value in Fig. 2. gsẼzd rises to its maximum value of

3Î3/s2Î2d at Ẽz=2/s3Î3d. At this upper limit, the well
ceases to exist and the atom undergoes field ionization. Note

that the valueẼz=2/s3Î3d is the critical field predicted in
Fig. 3 for end pointuHzur' /e2=1.

To evaluated' anda', we first make a canonical trans-
formation from the cross field variablesfy,py=seB/cdxg to
fu ,pu=eBr'

2 / s2cdg, where u=0 is in the directionE'.
Hamiltonian(31) then takes the form

FIG. 2. The scaled polarizabilityazuHzu3/e6 vs the scaled radiusuHzur' /e2.

FIG. 3. Ionization by an electric field parallel to the magnetic field.Ez is
the critical field for ionization,Hz is the initial binding energy before the
atom enters the electric field, andr' is the radius of the nearly circular
initial drift orbit. The solid curve results from a theory based on constancy
of Iz, and the points are numerical solutions of coupled positron-antiproton
equations of motion.

FIG. 4. Nonlinear scaled polarizabilityaz for the case ofIz=0. In this plot

az0=r'
3 and Ẽz=Ezr'

2 /e.
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H = IcVce+ H̄zF 2c

eB
pu,Iz,Ez = 0G +

MVCM
2

2
S 2c

eB
puD

− eE'
Îs2c/eBdpu cosu, s41d

whereEz has been set equal to zero. For the circular orbits
considered above,pu itself is the drift action, but for the
noncircular orbits considered here the drift action is given by

ID =
1

2p
R pufH̄ − VceIc,Iz,Ez = 0,E',ugdu. s42d

Taking the derivative with respect toE', holding the actions
constant, yields the relation

0 =
1

2p
R F ]pu

]H

]H̄

]E'

+
]pu

]E'

Gdu. s43d

Using u̇=]H /]pu and ]pu /]E'=−]H /]E' / s]H /]pud
=er' cosu / u̇ we again find that the dipole moment is given
by a time average over the semiclassical orbit

d' = −
]H

]E'

=

R du

u̇sud
r'sudcosu

R du

u̇sud

. s44d

To determinea' we use time average(44) together with
Hamiltonian(41). For smallE' and smallIz, a simple per-
turbation treatment yields an analytic expression for the lin-

ear a'. For smallIz, the termH̄zsr' ,Izd in Eq. (41) can be
approximated as5

H̄zsr',Izd . −
e2

r'

+ Izvzsr'd, s45d

wherevzsr'd=Îe2/ smr'
3 d is the frequency of small ampli-

tude field aligned oscillations andr' is shorthand for
Î2cpu / seBd. In the following, we use these two expressions
for r' interchangebly, always being cautious to note that
fu ,pu=eBr'

2 / s2cdg are canonically conjugate variables.
In the small field limit, we setr'sud=r'+dr'sud and

solve fordr'sud to first order inE' using Hamiltonian(41)
and approximation(45). The result is

dr'sud =
sE'/edr'

3 cosu

1 + B2r'
3 /sMc2d − 3Iz/s2Îr'me2d

. s46d

Substitutingr'sud=r'+dr'sud into each term of time aver-
age (44), including both the termr'sudcosu and the term

u̇fu ,r'sudg=]H /]pu, and then linearizing inE' yields the
polarizability

a' =
d'

E'

=
5

2
r'

3

1 +
2

5

B2r'
3

Mc2 −
33

20

Iz

Îmr'e2

S1 +
B2r'

3

Mc2 −
3

2

Iz

Îmr'e2D2 . s47d

In this expression, the quantityIz/Îmr'e2 can be replaced by
zmax

2 / s2r'
2 d, sinceIz is small.

This small field(linear) calculation ofa' can be carried
out numerically for arbitraryIz, that is, without invoking ap-
proximation(45). Figure 5 shows plots of the scaled polar-
izability a'uHzu3/e6 versus the scaled radiusuHzur' /e2 for
several values of the parameterb=e6B2/ suHzu3Mc2d. These
curves are analogous to the curve in Fig. 3 forazuHzu3/e6

versusuHzur' /e2. Here, more than one curve is required to
present the results, sincea'uHzu3/e6 depends on two param-
eters: uHzur' /e2 and b=e6B2/ suHzu3Mc2d. One can easily
check that approximate expression(47) can be scaled with
these variables. In this regard note thatIz/Îmr'e2=1
− uHzur' /e2 for small Iz.

Figure 6 shows the scaled critical field for ionization
E' / suHzu3/e3d versus the scaled radiusuHzur' /e2 for same
three values of parameterb as in Fig. 5. The critical field is
an upper limit on the range of validity for the small field
(linear) results displayed in Fig. 5. Curves in Fig. 6 are dis-
played for values ofuHzur' /e2 such that inequality(24)
holds. If the scaled radiusuHzur' /e2 becomes of order of
fm / sMbdg1/3 [or equivalently, r' becomes of order of
smc2/B2d1/3], the frequencies in Eq.(24) become equal, and
the guiding center drift approximation fails.

FIG. 5. Scaled polarizabilitya'uHzu3/e6 vs the scaled radiusuHzur' /e2. The
three curves correspond to theb values:(1) b=0.015 625,(2) b=0.125,(3)
b=1.

FIG. 6. Ionization by an electric field perpendicular to the magnetic field.
E' is the critical field for ionization,Hz is the initial binding energy before
the atom enters the electric field, andr' is the radius of the nearly circular
initial drift orbit. The three curves correspond to theb values: (1) b
=0.015 625,(2) b=0.125,(3) b=1.
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As the critical field is approached, the polarization be-
comes nonlinear. Figure 7 shows a plot ofa' /a'0 versus the

scaled electric fieldẼ'=E' / suHzu2/e3d=E'r'
2 /e for the case

Iz=0. For this plot we chose a particular value ofb
=0.0383 that will be used in the next section. As in Fig. 4,

a'sẼ'd is scaled by the linear polarizabilitya'0. Using Eq.
(47) to expressa'0 in terms ofr' andb yields the relation

a'sẼ'd
a'0

= a'sẼ'd
2

5r'
3

s1 + bd2

1 + s2/5db
. s48d

If the electric field is smallsEr'
2 /e,0.15d, the polariz-

ability is nearly constant indicating a linear relation between
the polarization and electric field. However for larger field,
a' increases withE' as field ionization approached.

IV. MOTION OF THE GUIDING CENTER DRIFT ATOMS
IN PENNING TRAP FIELDS

As a first application of approximate equation of motion
(18), we consider the radial trapping of weakly bound atoms
in the large space charge field near the edge of a long cylin-
drical positron column. LetsR,Q ,Zd be cylindrical coordi-
nates for the atom center of mass. The fields must be ex-
pressed in these coordinates for use in Eq.(18). We choose a
plasma densityn0=2.53108 cm−3 and plasma radiusRp

=0.2 cm in accord with ATHENA parameters,1 and for con-
venience take the(unknown) density profile to be simply
nsRd=n0 expf−sR/Rpd4g. For a long column, the correspond-
ing space charge field is shown in Fig. 8. Also, in accord
with ATHENA parameters we choose the magnetic field
strengthB=3T.

Figure 9 shows the orbit of a rather tightly bound guid-
ing center atom(r'=2.4310−5 cm, e2/ r'=5.9 meV,Iz=0)
ejected in the azimuthal direction with rather small initial
velocity VQ=2.43103 cm/s. The figure actually shows two
nearly identical curves. The solid curve is the solution of
approximate equation(18) using polarizability a'=3.6
310−14 cm3 calculated from Eq.(47). The dashed curve is
the antiproton orbit from the solution of the coupled
positron-antiproton equations of motion obtained from from
Hamiltonian(7). This latter solution is difficult computation-
ally since a million cycles of the internal dynamics must be

followed. The rapid internal dynamics has been averaged out
in Eq. (18). For this case of relatively tight binding and,
consequently, shallow radial well, only atoms with small ini-
tial velocity are trapped. For example, the atom would have
escaped, had it been given initial velocity 1.63104 cm/s.

More shallowly bound atoms experience a deeper radial
well and are confined for larger initial velocity. However, the
polarizability can easily be in the nonlinear regime for these
atoms. In the preceding section, we obtained the nonlinear

polarizability a'sẼ'd for an atom with parametersr'=4.0
310−5 cm and Iz=0 (see Fig. 7). These parameters corre-
spond touHzu=e2/ r'=3.6 meV andb=0.0383(for B=3 T).
We assume that such an atom moves in the radial space
charge field of Fig. 8. We anticipate that the trapped atom
will sample a space charge field ofE'.25 V/cm, which

corresponds to the scaled fieldẼ'=0.27. One can see from
Fig. 7 that the polarizability is in the nonlinear regime for
this field strength. We take the nonlinear value of the polar-

izability a'sẼ'=0.27d.1.18a'0.1.8310−13 cm3, but

FIG. 7. Scaled polarizabilitya' for the caseIz=0 andb=0.0383. In this

plot a'0=s5/2dr'
3 f1+s2/5dbg / f1+bg2 and Ẽ'=E'r'

2 /e.

FIG. 8. Radial profile of the space charge electric field.

FIG. 9. Trapping of rather tightly bound atom ejected with small azimuthal
velocity.
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treat the polarizability as constant. This anticipates the fact
that the trapped atom samples a nearly constant field strength
while moving in a nearly circular orbit.

Figure 10 shows the orbit of this guiding center drift
atom launched with initial velocitysVQ=2.73104 cm/sd.
This velocity corresponds to initial kinetic energyMVQ

2 /2
=0.38 meV, as compared to a 1.3 meV temperature quoted
for some ATHENA experiments. Again, the solid curve is the
solution to Eq.(18), and the dashed curve is the solution to
the coupled positron-antiproton equations of motion derived
from Hamiltonian(7). In this case, the two curves are close,
but can be distinguished, presumably because the nonlinear
polarizability functiona'sE'd was approximated by a single
value. Both curves show that the atom is confined radially.

One expects that this mechanism produces radial trap-
ping for some atoms in the ATHENA experiment. Near the
edge of the positron column, where the space charge electric
field is maximum(i.e., E.30 V/cm), theE3B drift veloc-
ity of an ion isVD.103 m/sec. For the quoted temperature
of T.1.3 meV, the thermal velocity is 500 m/sec. Thus,
radial trapping can occur when atoms are born at a point in
the ion orbit where the cyclotron velocity is directed opposite
to the drift velocity. For example, if the cyclotron velocity
were twice the mean thermal velocity, the atom would be
born at rest in the laboratory frame.

We have been discussing radial trapping, but full three
dimensional trapping is possible also. From Eq.(19) for con-
servation of energy, one can see that such trapping requires
the potential energy function

VsR,Zd = −
a'

2
E'

2 sR',Zd −
aZ

2
S1 −

a'B2

MC2 DEZ
2sR,Zd s49d

to be a three dimensional potential well. As a sample plasma
equilibrium which produces such a well, we consider the

simple case of a spherical positron plasma. In the Appendix,
the fieldsEZsR,Zd andERsR,Zd are evaluated for a spherical
positron plasma that is confined in a quadratic trap
potential.13 The plasma is assumed to be in a state of global
thermal equilibrium, and the Debye length is assumed to be
small compared to the radius of the plasma. Such plasmas
have been studied extensively13 and are regularly observed
experimentally.14 In the Appendix, the potential energy func-
tion is written in the form

VsR,Zd = −
a'E2

2
UsR8,Z8,gd, s50d

whereE is the space charge field at the surface of the plasma
sphere, and the dimensionless potentialU depends on the
scaled coordinatesR8=R/ rp and Z8=Z/ rp, where rp is the
radius of the sphere. The parameterb is the ratiog=azs1
−a'B2/MC2d /a'. From Eqs.(39) and(47), one can see that
the valueg=2/5 is correct for relatively deep binding and
small Iz, that is, fora'B2/MC2, Iz/Îmr'e2!1. We use this
value, but the existence of the potential well is not sensitive
to this choice. An analytic expression forUsR8 ,Z8 ,bd is
given in Eq.(A5).

Figure 11 shows a contour plot ofUsR8 ,Z8 ,2 /5d.
Deeper shading corresponds to lower values ofU, so there is
a toroidal potential well that runs around the radial edge of
the plasma. The depth of the well is approximatelyDV
.s0.4da'E2. Atoms that are born at the bottom of the well
with center of mass kinetic energy less thans0.4da'E2 are
trapped.

Using self-consistent numerical solutions, we have
found three dimensional potential wells for other plasma
equilibria (e.g., spheroidal plasmas and long columns). For
example, the ATHENA plasma likely produces a three di-
mensional well with depth comparable to the radial well dis-
cussed above.

FIG. 10. Trapping of guiding center atom with higher initial velocity and
shallower binding than in Fig. 9. Dashed curve is the ion orbit for a solution
of the coupled positron-antiproton equations of motion. The continuous
curve is the solution of approximate equations(18) with a=1.18a'0.

FIG. 11. Contour plot of scaled potential energy functionUsR8 ,Z8 ,2 /5d for
a spherical plasma equilibrium. Coordinates are scaled asR8=R/ rp and Z
=Z/ rp, whererp is the radius of the spherical plasma. Deeper shading cor-
responds to lower values ofU, so a toroidal potential well runs around the
radial edge of the plasma.
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As another application of approximate equation of mo-
tion (18) we consider the curved trajectories followed by
untrapped atoms in moving from the plasma to a field ion-
ization region. Field ionization is the principle diagnostic
used in the ATRAP experiments, so we use field strengths
and geometry characteristic of ATRAP. The ATRAP collabo-
ration previously estimated polarization forces parallel to the
magnetic field, and correctly concluded that the forces pro-
duce a negligible change in parallel velocity for energetic
atoms(i.e., MVZ

2 /2.200 meV).15 Here, we focus on slower
atoms for which the forces are not negligible.

The space charge field is much smaller than the vacuum
field used for field ionization, so to a good approximation the
electrostatic potential satisfies Laplace’s equation. Using cy-
lindrical coordinatessR,Q ,Zd and noting that the potential is
independent ofQ, we write the potential as a sum

FsR,Zd = o
n
Fan sinS2pnZ

L
D

+ bn cosS2pnZ

L
DGI0S2pnR

L
D , s51d

whereI0 is a Bessel function of imaginary argument, and the
coefficientsan and bn are chosen so that the fieldsER,EZd
=s−]F /]R,−]F /]Zd provides a good approximation to the
ATRAP field. In Fig. 2 of Ref. 3 the ATRAP field component
EZsR=0,Zd was reported for the range ofZ values L
.11.5 cm. Retaining terms up ton=15 in the sum(51), we
obtain the field components in Fig. 12 which compare well
with those in Ref. 3.

Figure 13 shows the trajectories of atoms launched from
a point within the positron plasmasZ=5.5 cm,R=0.2 cm)
with three different center of mass velocities:(1) VZ=8.3
3104 cm/s, (2) VZ=1.23105 cm/s, (3) VZ=1.7
3105 cm/s. The initial transverse velocity is zero for all
three trajectories. The three initial velocities correspond to
center of mass kinetic energyMVZ

2 /2=3.6 meV, 8.1 meV,
and 14.4 meV. Initially the internal state of the atoms is
characterized byIz=0 and r'=2.6310−5 cm, which corre-
sponds to binding energye2/ r'=5.4 meV. For this state,
Eqs. (39) and (47) imply the linear polarizabilitiesaz=1.8
310−14 cm3 and a'=4.3310−14 cm3. Shortly before field

ionization, the polarizability becomes nonlinear and some-
what larger than the linear values used to calculate the tra-
jectories. Thus, the trajectories slightly underestimate the de-
flection. Each trajectory ends when the critical field for
ionization is reached[i.e., EZ=f2/s3Î3dgse/ r'

2 d=80 V/cm].
As one can see in Fig. 13, depending on initial axial velocity,
radial deflection of the atom can be substantial due to polar-
ization forces. The deflection is smaller for larger initial axial
velocity because the atom spends less time in the region of
high electric field.

Figure 14 shows the final radial position of the atom
(i.e., at the moment of its field ionization) versus its initial
radial position. As in Fig. 13, the atom was launched within
the positron plasma atZ=5.5 cm but with different initial
radial positions. The three curves in the figure correspond to
the same three initial center of mass velocities as in Fig. 13.
One can see in Fig. 14 that the radial deflection of the atom

FIG. 12. Axial electric fieldEZsR=0,Zd (solid line) and radial electric field
ERsR=2 mm,Zd (dashed line) vs Z. These plots correspond to those reported
in Fig. 2(c) of Ref. 3 for the ATRAP experiment.

FIG. 13. Trajectories of an atom with binding energye2/ r'=5.4 meV and
Iz=0 launched in the axial direction towards the ionization region with dif-
ferent initial velocities:(1) VZ=8.33104 cm/s,(2) VZ=1.23105 cm/s,(3)
VZ=1.73105 cm/s. The trajectories terminate at the point whereEz reaches
the critical value for field ionization,EZ=80 V/cm.

FIG. 14. Final radial position of the atomR2 (at the moment of field ion-
ization) vs its initial radial positionR1. Curves 1, 2, and 3 correspond to the
same initial axial velocities as in Fig. 13. For reference, the dashed line
showsR1=R2.
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increases with increasing initial radial displacement. This is
due to the fact that the electric fields grow radially in the
field ionization region, so an atom launched at larger radius
experiences larger electric field. Also, as in Fig. 13, one can
see that radial deflection is reduced with increasing initial
center of mass velocity.

A simple estimate of the deflection provides useful in-
sight. The radial force on an atom is of orderF
.] /]RfaE2sR,Zdg. For sufficiently smallR, we can use the
Taylor expansion

F . RU ]2

]R2faE2sR,ZdgU
R=0

, s52d

where the constant term(zero order term) vanishes by sym-
metry. The scale length on which the field changes isRW, the
radius of the wall (electrode structure), so we set
]2/]R2faE2sR,Zdg.aE2/RW

2 . Consider an atom that is born
at radiusR=R0 with velocity V =VZẑ. The radial acceleration
of the particle isa=F /M =aR0E

2/ sMRW
2 d. The fieldE2 rises

on a spatial scaleDZ=RW in the ionization region, so the
approximate radial displacement is

DR. aSRW

VZ
D2

. R0
aE2

MVZ
2 . s53d

The polarizability is of ordera, ra
3 and the field strength

before ionization of orderE,e/ ra
2, so the radial displace-

ment is of order

DR. R0
e2/ra

MVZ
2 . s54d

Thus, the deflection is substantial when the binding energy is
comparable to the center of mass kinetic energy. The fact that
the displacement is an increasing function ofR0 and a de-
creasing function ofVZ also is apparent.
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APPENDIX: POTENTIAL ENERGY FUNCTION FOR A
SPHERICAL POSITRON PLASMA

A commonly used trap potential is the quadratic
potential,13

efTsR,Zd =
mvZ

2

2
sZ2 − R2/2d, sA1d

wheresR,Q ,Zd are cylindrical coordinates andvZ
2 is a con-

stant that is proportional to the axial confinement voltage.
The electrodes that produce this potential are assumed to be
distant compared to the size of the plasma, so image poten-
tials are negligible. There is also a uniform axial magnetic

field, B=ẐB.
We assume that the plasma has come to a state of global

thermal equilibrium,13 so the plasma rotates without shear at
some frequencyv. In the rotating frame of the plasma, the
effective trap potential is

efRsR,Zd = efTsR,Zd + mvsVce− vd
R2

2
, sA2d

whereVce=eB/mec is the positron cyclotron frequency. This
effective potential has spherical symmetry, and the plasma
consequently has spherical symmetry, if the frequencies are
related as

3
2vz

2 = vsVce− vd. sA3d

We assume that the plasma Debye length is small com-
pared to the plasma radius. In this case, the plasma density is
nearly uniform out to some radiusrp and there drops to
zero.13 The density is specified byvp

2=2vsVce−vd, where
vp

2 is the plasma frequency. From this relation and Eq.(A3),
we easily obtain the plasma space charge potentialfPsR,Zd.
The total potential in the laboratory frame is the sum
fsR,Zd=fPsR,Zd+fTsR,Zd, and the fields required to
evaluate potential energy function(51) are ERsR,Zd
=−]f /]R andEZsR,Zd=−]f /]Z.

Substituting the fields into Eq.(51) yields the result

VsR,Zd =
a'

2
E2UsR8,Z8,gd, sA4d

whereE=smvz
2rp/ed is the plasma space charge field at the

surface of the plasma and

UsR8,Z8,gd = −5S
3

2
R8D2

for R82 + Z82 , 1

sR8d2F1

2
+

1

sR82 + Z82d3/2G2

+ gsZ8d2F1 −
1

sR82 + Z82d3/2G2

for Z82 + R82 . 1.6 sA5d

Here, the scaled coordinates are given byR8;R/ rp and Z8
=Z/Rp andb=saz/a'ds1−a'B2/MC2d.
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