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Collisional diffusion in a 2-dimensional point vortex gas
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Abstract

Simulations showing the effect of shear on the collisional diffusion of a 2D point vortex gas are compared to theory. For
finite shear the diffusion is considerably smaller than previous zero-shear theories predict. Surprisingly, changing the sign of
the applied shear changes the diffusion by an order of magnitude. 2001 Elsevier Science B.V. All rights reserved.

The self-diffusion of a 2-dimensional (2D) gas of
interacting point vortices is a classic problem in non-
equilibrium statistical physics, with relevance to the
behavior of type-II superconductors, dislocations in
solids, rotating superfluid helium, and turbulence and
transport in Euler fluids and plasmas. This Letter con-
siders the effect of an applied shear on the diffusion.

Early work on this problem focused on the case
of a quiescent, homogeneous shear-free gas [1,2].
When the vortices are distributed randomly, represent-
ing high-temperature thermal fluctuations, Taylor and
McNamara showed that the diffusion coefficient (for
diffusion in 1 direction) has the following simple form:

(1)DTM = 1

8π

√∑
α

Nαγ 2
α

π
,

whereNα is the number of point vortices of typeα,
each with circulationγα . The diffusion coefficient
is not an intensive quantity because the diffusion
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process is dominated by large “Dawson–Okuda vor-
tices” whose size is of order the system size [2].

We find that in the presence of applied shear, the
Dawson–Okuda vortices are disrupted and the diffu-
sive transport is greatly reduced compared to Eq. (1).
This result may be relevant to current experiments and
theories in fusion plasmas, which also observe reduced
transport in the presence of shear [3]. In such plas-
mas, the fluctuations are unstable and turbulent; and
so the transport is difficult to determine theoretically.
However, in a stable gas of point vortices, statistical
theory determines the transport explicitly. Our theory
may therefore be considered as a simple paradigm for
the shear-reduction of transport seen in more complex
turbulent systems.

Our theory also applies directly to experiments mea-
suring collisional diffusion in a cylindrical pure elec-
tron plasma column [4,5], confined by a uniform mag-
netic fieldBẑ. Such plasmas can be held in conditions
such that individual electrons act as rods of charge
that E × B drift in the fields of the other rods. Under
such conditions, theseE × B drifts are the main cause
of collisional diffusion, dominating over the classical
diffusion [6] caused by velocity-scattering collisions.
The E × B dynamics of a collection of charged rods
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is isomorphic to a gas of point vortices [7]: each rod,
with chargeq < 0 per unit length, is equivalent to
a point vortex with circulationγ = −4πcq/B > 0.
Furthermore, such plasmas rotate with a rotation fre-
quencyω(r) = vθ (r)/r > 0 that may have substan-
tial radial shear, characterized by a local shear rate
S(r) ≡ r dω/dr.

In order to evaluate the diffusion in such a sheared
plasma/point vortex gas, we considerN identical vor-
tices confined to a cylindrical patch of radiusR, with
uniform densityn = N/πR2, giving an average inter-
particle spacinga = (πn)−1/2. To this vortex patch an
external sheared rotationω(r) is applied, with uniform
shear rateS. For this system a dimensionless measure
of the shear rate can be defined:

(2)s = 2S/nγ,

which is the shear rate compared to the rotation fre-
quency of the uniform patch in the absence of an ap-
plied shear.

In this Letter, we focus on the case of moderate
to strong dimensionless shear, i.e.,|s| > 1. We derive
the results of our statistical theory for self-diffusion,
and compare these results to molecular dynamics and
particle in cell simulations. We find that the simula-
tions agree with our theory provided thats is negative
(i.e., negative shear, the usual circumstance in a stable
pure electron plasma). Surprisingly, however, whens

is positive the transport observed in the simulations is
roughly an order of magnitude smaller than our theory
predicts. We will discuss a qualitative explanation of
this effect, but at present no precise theory exists.

We first describe theory for the diffusion that ap-
plies to the negative shear regimes � −1. (The case
s � 1 will be discussed in relation to the simulations.)
In the shear ranges � −1, we find that two separate
collisional processes are responsible for radial diffu-
sion in the presence of the applied shear: small impact
parameter collisions between vortices, described by
a Boltzmann formalism, and large impact parameter
collisions, described by a quasilinear formalism. Here
small and large impact parameters mean radial dis-
placements between vortices that are smaller or larger
than a distance 2l, where the “trapping distance”l is
defined as

(3)l ≡ √−γ /4πS = a/
√−2s.

Note that fors > 0, the trapping distance is unde-
fined. We will presently see that the lack of a trapping
distance fors > 0 has a profound effect on the diffu-
sion. The trapping distance arises when one consid-
ers the trajectories of 2 identical vortices in the shear
flow, at positionsr1 and r2. For simplicity, we take
|r1 − r2| 	 r1, and introduce local Cartesian coordi-
nates in a moving frame with an origin initially at the
initial average positionR(0) = [r1(0) + r2(0)]/2, and
moving with the local fluid rotation velocityω(R(0)).
Thex-axis of this frame corresponds to the radial di-
rection, and they-axis corresponds to the direction of
local flow (theθ -direction). In this coordinate frame,
the vortices have positions∆r1 = (x1, y1) and∆r2 =
(x2, y2), where∆r ≡ r − R. Their interaction is de-
scribed by the stream function

ψ(∆r1,∆r2) = S

2

(
x2

1 + x2
2

)
+ γ

4π
ln

[
(x1 − x2)2 + (y1 − y2)2].

(4)

Here the term proportional to the shear rateS is the
stream function due to the shear flow, and the logarith-
mic term describes the vortex interaction. The motion
of vortex 1 then follows from the Hamiltonian equa-
tions

dx1

dt
= − ∂ψ

∂y1
,

dy1

dt
= ∂ψ

∂x1
,

and similarly for vortex 2. Under this dynamics,ψ is
a conserved quantity, and it is straightforward to show
that∆r1 + ∆r2 is also conserved, taking the value

(5)∆r1 + ∆r2 = 0.

Applying Eq. (5) to Eq. (4),ψ can be written as a
function of the position of vortex 1 alone:

(6)ψ(x1, y1) = S
[
x2

1 − l2 ln
[
4
(
x2

1 + y2
1

)]]
,

where the trapping distancel is given by Eq. (3).
Contours of constantψ are displayed in Fig. 1, with
(x1, y1) = 0 at the center of the figure.

For s < 0, vortices are retrograde (rotating against
the shear), and they follow the trajectories shown in
Fig. 1(a). According to Eq. (5), vortex pairs have re-
flection symmetry through the center of the figure,
moving in opposite directions in this frame of refer-
ence. The separatrix in Fig. 1(a) has stagnation points
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Fig. 1. Streamlines for the interaction of 2 vortices in a shear flow. (a)s < 0 (retrograde vortices). (b)s > 0 (prograde vortices). Arrows show
flow direction assumingγ > 0.

at x = ±l, y = 0, and using Eq. (6) this implies that
the separatrixxs(y) is determined by

x2
s = l2

(
1+ ln

[(
x2

s + y2)/l2
])

(7)≈ l2
(
1+ ln

[
y2/l2

])
,

where the second line is correct fory � l.
Vortices that begin in the shaded region inside the

separatrix take a radial step due to their interaction.
Provided thata > l (i.e., |s| > 1), an uncorrelated
sequence of these small impact parameter collisions
will occur, causing radial diffusion of the vortices.
This diffusion can be estimated asν∆r2, where the
radial step∆r is of orderl, and the collision rateν ∼
n|S|l2 is the number of vortices per unit time carried
by the shear flow into the shaded trapping region of
a given vortex (Fig. 1(a)). This results in a diffusion
coefficientν∆r2 ∼ n|S|l4 ∼ γ /|s|.

A rigorous Boltzmann calculation of the radial dif-
fusion due to these small impact parameter collisions
agrees with this estimate. To determine the diffusion
coefficientDB , we integrate over random steps due
to a flux Γy of vortices carried by the shear flow:
Γy = n|Sρ|, wheren is the areal density (in cm−2)
and ρ = x2 − x1 is the x-displacement (impact pa-
rameter) between the vortices when the vortices are
well-separated iny (i.e., before the collision begins,
but after the previous collision with some other vortex
has ended). Let us call thisy-displacementy0. Then
Fig. 1(a) shows that if|ρ| � 2xs(y0), the two vortices
will take a step in thex-direction of magnitude|ρ| as
they exchangex-positions in the collision. The Boltz-

mann diffusion coefficient is therefore

(8)DB = 1

2

2xs(y0)∫
−2xs(y0)

dρ ρ2Γy.

Using our previous expression forΓy , the integral
can be performed yieldingDB = 4n|S|x4

s (y0). Finally,
Eq. (7) implies thatxs(y0) depends only logarithmi-
cally ony0, so an estimate fory0 is sufficient. There-
fore, for y0 we use the meany displacement between
collision events (the mean free path),y0 � 1/(4ln).
Then the Boltzmann diffusion coefficient becomes

(9)DB = γ

2π2|s| ln2
(

eπ2s2

4

)
,

where we have employed Eqs. (2), (3) and (7). The
logarithm increasesDB over our previous estimate of
γ /|s| because the shaded region in Fig. 1(a) diverges
logarithmically with increasing|y|, increasing both
the size of the radial step∆r and the collision rateν.

However, the Boltzmann result for self-diffusion
given by Eq. (9) neglects diffusion from large impact
parameters. In the Boltzmann description, two vortices
with a large impact parameter (outside the shaded re-
gion) stream by one another and suffer no net change
in radial position. Actually, large impact parameter
collisions are not isolated events; many are occurring
simultaneously, leading to random motion in the fluc-
tuations.

An estimate of the diffusion from these distant col-
lisions is easily obtained. For these collisions the step
size is now smaller than before, because interacting
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vortices are farther apart. If the impact parameter be-
tween vortices isρ, the radial step∆r is of order
∆tγ /ρ, where∆t is the time over which the inter-
action takes place. For particles streaming along un-
perturbed circular orbits,∆t ∼ 1/|S|, which implies a
small step∆r ∼ l2/ρ. There are many of these inter-
actions per unit time; the collision rate isν ∼ n|S|ρ2,
leading to a diffusion coefficientν∆r2 ∼ n|S|l4 ∼
γ /|s|, which is the same order as Eq. (9).

This diffusion from multiple distant collisions can
be obtained more quantitatively from a quasilinear
calculation [9] based on the Kubo formulaDK =∫ ∞

0 dt 〈δvr (t)δvr (0)〉. Hereδvr (t) is the radial veloc-
ity fluctuation of a test vortex at position(r, θ) due to
p = 1, . . . ,N other vortices at positions(rp, θp), and
〈 〉 denotes an ensemble average over a random dis-
tribution of the vortices within the vortex patch. The
velocity fluctuation is determined by a superposition
of N flow fields [8],

(10)δvr (t) = − γ

4πr

N∑
p=1

∂

∂θ
ln |r − rp|2,

easily written in terms of Fourier modes:

δvr (t) = γ

4πr

N∑
p=1

∞∑
m=−∞

m�=0

im

|m| eim(θ−θp)(r</r>)|m|,

(11)

wherer<(>) is the lesser (greater) ofr and rp . The
time integral in the Kubo formula can then be done
using integration along unperturbed orbits, assuming
that each vortex merely rotates about the center of the
vortex patch, i.e.,rp = const,θp(t) = ω(rp)t + θp0.
The ensemble average can also be easily calculated
using standard techniques for random distributions,
converting〈∑p

∑
p̄〉 to

∑
p̄ δpp̄

∫
rp drp dθp0 n(rp).

The result, after performing theθp0 andt integrals,
is

DK = γ 2

(4πr)2

∞∑
m=−∞

m�=0

2π2

∞∫
0

rp drp n(rp)

(12)× δ
(
m

[
ω(r) − ω(rp)

])( r<

r>

)2m

.

The δ-function, arising from the time integral over
unperturbed orbits, implies that resonant interactions

are the most important to the transport process. If we
then assume thatω(r) is monotonic inr so that only
r = rp contributes, the radial integral yields

(13)DK = nγ 2

8r|∂ω/∂r|
∞∑

m=−∞
m�=0

1

|m| .

The divergent sum occurs because nearby vortices fol-
lowing unperturbed orbits take a long time to sepa-
rate and therefore take a large radial step. However,
the sum can be cut off by noting that there is a min-
imum separationd for which unperturbed orbits are
a good approximation. Adding the cutoff to Eq. (13)
implies

(14)DK = γ

2|s| ln[r/d],
where we have used Eq. (2).

One possible estimate ford is the trapping dis-
tancel, since vortices separated byl do not follow
unperturbed orbits. Another possibility is that vor-
tices diffuse apart before they are carried away by the
shear, and so cannot be treated with unperturbed or-
bit theory. For vortices separated inr by a distance
δ, the time to shear apart a distance of orderδ is
given by 1/|S|, and the time to diffusively separate
by a distanceδ is δ2/4DK . Setting the two times
equal gives the diffusion-limited minimum separation
δ = [4DK/|S|]1/2. Accordingly, in Eq. (14) we take
the maximum of our two estimates:

(15)d = max(δ, l).

Note that Eqs. (2), (3) and (14) imply thatδ/l =√
(8π/|s|) ln[r/d], so the shear required to makeδ < l

is rather large. In our simulations it will turn out that
δ > l, so we used = δ in Eq. (14).

Finally, the total diffusion coefficient is the sum of
the Boltzmann and Kubo diffusion from small and
large impact parameter collisions:

(16)D = DB + DK.

Eq. (16) is correct only when the shear is large
enough so thatD < DTM, whereDTM is the zero-
shear result given by Eq. (1). However, comparing
Eqs. (1) and (16), we see that only a small shear,
s ∼ O(1/N1/2), is required to meet this inequality.
When |s| � 1, Boltzmann collisions no longer occur
since a < l, so DB = 0; but Eq. (14) forDK still
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holds. This implies that Eq. (16) is valid whenDK �
DTM, or |s| � ln[r/d]√16π3/N . In other words,
small shears wipe out the large-scale Dawson–Okuda
vortices responsible for the diffusion predicted by
Eq. (1).

We have tested this theory using numerical simula-
tions ofN identical point vortices, initially placed ran-
domly inside a circular patch, with an applied uniform
external shear rateS. We find that Eq. (16) works well
for s � −1, but overestimates the diffusion fors � 1.

As a check of the numerics, we employ two sep-
arate simulation techniques, a 2D molecular dynam-
ics (MD) method for point vortices, and a 2D parti-
cle in cell (PIC) simulation. The MD simulation is a
standardN2 code using the fourth-order Runge–Kutta
method. The PIC simulation has been described pre-
viously [10]. In the PIC simulation the diffusion co-
efficient is an increasing function of the number of
grid points, but for sufficiently fine grid the diffusion
is independent of the number of grid points to within
our measurement error of about 30%. We use up to a
2048× 2048 square grid in the largest PIC simula-
tions. In both the PIC and MD codes, time steps are
chosen to conserve energy at the 0.1% level or bet-
ter over the course of the simulation, and angular mo-
mentum (mean square radius of the cylindrical patch)
is typically conserved even more accurately. Also, the
time step was varied by factors of two in both codes,
with no observable change in the diffusion.

In order to measure the diffusion coefficient, we
chose as test particles all vortices in the band of radii
from 0.43R to 0.57R. For these vortices we followed
the mean square change in radial position,〈δr2(t)〉,

Fig. 2. Mean square change in radial position of vortices vs. time,
〈δr2(t)〉, for N = 50,000. Two shear rates are shown,s = 12 and
s = −12.

where for vortexi, δri(t) = ri (t) − ri (0). (We also
verified that〈δr(t)〉 = 0.)

Two examples withN = 50,000 are shown in
Fig. 2, for the casess = ±12. Here, the unexpectedly
low diffusion for s > 0 is apparent. The diffusion
coefficient is found from the equation〈δr2(t)〉 = 2Dt .
More precisely, we fit a straight line to the segment of
the curve that has nearly constant slope, and we take
D as half the slope of that line.

Figs. 3 and 4 summarize our results for the self-
diffusion coefficient. Fig. 3 displays the diffusion co-
efficient as a function of the particle numberN for
four different values of the shear parameter,s = 0,
−1.2, −12, and+12. The first case corresponds to a
shear free plasma, and can be seen to match the ex-
pected Taylor–McNamara scaling with particle num-
ber, Eq. (1), shown by the dashed line. The casess =
−1.2 and−12 correspond to moderate and strong neg-
ative shear. The measured diffusion matches Eq. (16)
quite well. However, fors = +12 the diffusion is an
order of magnitude smaller.

In Fig. 4, the diffusion coefficient is shown as a
function of shear for fixed particle numberN = 104.
The scaling withs matches Eq. (16) whens < 0. At
large s, we obtainD ∝ 1/|s|, although both Boltz-
mann and Kubo logarithms also introduce dependence
on shear, which at low shear can be quite strong. Gen-
erally at low to moderate shear, the Kubo result domi-
nates, but at lowN or large shear the Boltzmann result
dominates.

Fig. 3. Self-diffusion coefficient vs. particle numberN , for shear
ratess = 0, −1.2, −12 and 12. Solid points are from MD simu-
lations, open points are from PIC simulations. The dashed line is
Eq. (1). The solid lines are Eq. (16), evaluated ats = −1.2 and
s = −12.
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Fig. 4. Self-diffusion coefficient vs. the shear rates, for N = 10,000.
Solid points are from MD simulations, open points are from PIC
simulations. The dashed line is Eq. (1), and the solid line is Eq. (16).
The dot-dashed line and the dotted line are the separate Kubo and
Boltzmann contributions to the diffusion, Eqs. (14) and (9).

However, fors > 0 the simulations do not match
Eq. (16): the measured diffusion is up to an order of
magnitude less than the theory, depending on the shear
rate. It is not surprising that the Boltzmann diffusion
theory fails to work for this case; the Boltzmann
picture of nearby particles reflecting off one another
is no longer correct. Fors > 0 vortices are prograde
(rotating with the shear). Two isolated vortices orbit
around one another rather than suffer reflections, as
shown in Fig. 1(b). As a result, the measured〈δr2(t)〉
has a large slope at early times as vortices begin to
rotate around one another, but then relaxes to a smaller
slope as vortices return to their initial radii (see Fig. 2).

Fig. 4 shows that even if one neglects Boltzmann
diffusion, Kubo diffusion by itself also overestimates
the s > 0 simulation results. We believe that fluctua-
tions now consist of several self-trapped vortices fol-
lowing elliptical orbits similar to the streamlines of
Fig. 1(b). Vortices return to their initial radii several

times, and net transport occurs only through the break-
up of these fluctuations through interaction with other
similar fluctuations. The Kubo theory fails because the
unperturbed orbit approximation fails for such fluctu-
ations. A proper transport theory must go beyond the
unperturbed orbit approximation in this case; such a
theory will be the subject of future work.
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