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This paper investigates the evolution in binding energy of antihydrogen atoms formed from
stationary antiprotons located within a strongly magnetized positron plasma. Three-body
recombination and a collisional cascade to deeper binding, limited by a kinetic bottleneck at a
binding energy of 4T, dominate the initial antihydrogen formation process. A classical Monte-Carlo
simulation is used to determine the collisional transition rate between atomic binding energies, using
the drift approximation for initial conditions that allow it, and full dynamics for initial conditions
resulting in chaotic motion. These transition rates are employed in determining mean energy-loss
rates for an ensemble of atoms, as well as in a numerical solution of the master equation to find the
rate at which atoms are formed over a range of binding energies. The highly excited atoms formed
by this process separate into guiding-center drift atoms and chaotic atoms. The phase-space
distributions of the atoms are investigated, along with their implications for magnetic confinement
and radiative energy loss. Estimates of radiative energy loss indicate that radiation is unimportant
for guiding-center atoms, but increases rapidly near the chaotic regime, taking over as the dominant
energy-loss process for parameters typical of recent experiments. Furthermore, the fraction of
low-magnetic field seekers is considerably larger than suggested by estimates of the magnetic
moment based on guiding-center dynamics, due to effects associated with chaos. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3040168�

I. INTRODUCTION

Current antihydrogen formation experiments use nested
Penning traps to contain a strongly magnetized, cryogenic
positron plasma through which antiprotons can transit.1,2

Bound antiproton-positron pairs formed in these traps, how-
ever, are typically far from the ground state with binding
energies near the thermal level of a few Kelvin. These
weakly bound atoms are characterized by slow E�B drift
time scales, so radiation is precluded as an energy-loss
mechanism until comparatively deep binding is achieved.
Before this point, classical three-body collisions dominate
the equilibration process. Using a Monte-Carlo simulation
with classical dynamics,4 we determine the number of bound
antihydrogen atoms formed through collisions with the back-
ground positron plasma at various binding energies as a
function of time. We retain finite magnetic field effects, in-
cluding drift and, where relevant, cyclotron motion. The an-
tiproton is assumed to be stationary.

After a brief review of the behavior of Rydberg atoms in
strong magnetic fields, in Sec. II we consider the manner in
which an ensemble of such atoms distributes itself in the
available phase space, and in Sec. III discuss implications
that this distribution has for magnetic confinement of the
atoms. In Sec. IV we then introduce the Monte-Carlo method
employed to evaluate the collisional transition rate between
atomic binding energies, and in Sec. V we test the simulation
using analytic theory for large impact parameter collisions.
In Sec. VI we then use the results of the simulation to evalu-
ate the mean energy-loss rate of an ensemble of atoms as a
function of binding energy, and the evolution of the energy
distribution of the ensemble due to collisions is considered in

Sec. VII. The basic simplifying assumption in this analysis is
that an ensemble of atomic positrons undergoing three-body
recombination ergodically covers the available energy sur-
face of bound states at any given binding energy. This allows
us to follow the distribution of binding energies using a mas-
ter equation with transition rates taken from the Monte-Carlo
simulations. This assumption, which cannot be justified rig-
orously, nevertheless yields results that are in good agree-
ment with previous work, as well as with our own simulation
results. Finally, in Sec. VIII we estimate the effect that ra-
diation has on binding energy.

When considering collisional evolution of the weakly
bound atoms, the ambient positron plasma temperature T
�measured in energy units� sets the energy scale. The time
scale is set by the collision frequency

� = nv̄b2 = 1.3 � 107 s−1�n/108 cm−3��T/4 K�3/2,

where n is the positron plasma density, v̄=�T /me is the pos-
itron thermal speed, and b=e2 /T is the classical distance of
closest approach.

Three-body collisions continuously form bound charge
pairs and re-ionize them. Previous work3–5 indicates that
such pairs are likely to remain bound only after they reach a
binding energy of about 4T, known as the kinetic bottleneck.
The rate at which atoms at this energy cascade to deeper
binding was found to be

R3 � 0.07n2v̄b5 = 7 � 103 s−1�n/108 cm−3�2�T/4 K�−9/2

�1�

for the case of infinite magnetic field. The rate increases as
magnetic field decreases. For zero field, the rate is about ten
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times larger than Eq. �1�.3 For a large finite field, the result is
about 1.5 times larger.5 However, the atoms formed are
charge neutral and no longer confined by the Penning trap
fields. Preliminary calculations suggest that almost all charge
pairs exit the trap before collisional processes cause them to
become deeply bound.7 The present work finds the same re-
sult more conclusively, but also is consistent with results by
Pohl et al.6 showing a small fraction of atoms which do
reach deep binding.

The temperature scaling of Eq. �1� motivates the use of
cryogenic temperatures for recombination experiments. Low
temperature and high magnetic field place such experiments
in the strongly magnetized regime defined by the magnetiza-
tion parameter �, where

� �
v̄

b�c
= 0.0018

�T/4 K�3/2

�B/6 T�
� 1, �2�

and where �c=eB /mec is the positron cyclotron frequency.
Cross-field motion is dominated by E�B drift dynamics in
this regime, so much of the theoretical analysis is carried out
using the drift approximation.

Weakly bound atoms fall into two dynamical categories:
drifting pairs �or giant dipoles� and guiding-center atoms. In
the first category, transverse charge separation exceeds both
the positron cyclotron radius rcp and the antiproton cyclotron
radius rca. The two charges drift together in the same direc-
tion, each in the electric field of the other. At slightly deeper
binding, when the transverse charge separation � is smaller
than the antiproton cyclotron radius rca, but still larger than
rcp, a guiding-center atom is formed �see Fig. 1�. Here the

positron E�B drifts slowly about the antiproton at fre-
quency �� and bounces back and forth along the magnetic
field in the antiproton’s electrostatic well at frequency �z.
For small bounce motion,

�c =
v̄
b

�−1,

�z �
v̄
b

	3/2, �3�

�� �
v̄
b

�	3,

where

	 = U/T �4�

is the binding energy U, normalized by temperature. In the
limit of infinite antiproton mass, the binding energy of an
atom is

U =
e2

r
−

1

2
me�vz

2 + v�
2 � . �5�

The coordinate r is the spherical radius, with the antiproton
located at the origin. Note that a minus sign has been intro-
duced so that a positive value of U indicates a bound state.

Low binding energy �	�O�1�� and large magnetic field
���1� implies the following frequency ordering: �c
�z


��. This is the regime of guiding-center drift atoms.4 In
the guiding-center drift regime, we will neglect the perpen-
dicular velocity v� in Eq. �5�. Most perpendicular kinetic
energy is bound up in the cyclotron adiabatic invariant �c

when the atom is in the drift regime. As long as the adiabatic
invariance of �c holds and the E�B drift velocity is smaller
than the axial bounce velocity vz, perpendicular kinetic en-
ergy can be ignored. The parallel action Iz is also adiabati-
cally invariant for the frequency ordering of a guiding-center
atom. There are two exact constants of the motion, which are
valid in or out of the guiding-center drift approximation.
They are the binding energy U and the angular momentum
p� conjugate to the azimuthal coordinate,

p� = me�
2��̇ + 1

2�c� . �6�

When normalized binding energy 	 reaches 	c, where

	c = �−2/3, �7�

positron cyclotron motion, parallel bounce motion, and
cross-field drift motion become coupled as their respective
frequencies converge. This coupling marks a transition to a
regime in which the atom exhibits chaotic orbits and in
which electromagnetic radiation can no longer be neglected
�see Fig. 2�a��. We show, using a phase-space average of the
classical Larmor power, that radiation becomes the dominant
energy-loss mechanism after this transition. While the ana-
lytic theory for collisional energy loss is invalid in this re-
gime, the simulation, which can include cyclotron motion,
still applies. At still deeper binding energy, but before the
atom relaxes to a low quantum n number, the magnetic field
can be treated as a weak perturbation on a classical Kepler

FIG. 1. �Color online� The orbital trajectory of a guiding-center atom. Here,
rcp���rca. The positron E�B drifts about the antiproton and bounces
along the z-axis. The antiproton is assumed stationary for simplicity. Also,
perpendicular kinetic energy is neglected �E�B drift approximation�.
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orbit. In this regime, the plane of the elliptical orbit precesses
about the magnetic field at the cyclotron frequency, as in
Fig. 2�b�.

II. ATOMIC DISTRIBUTIONS

In the guiding-center drift approximation, the perpen-
dicular kinetic energy is dropped from the Hamiltonian. The
normalized atomic binding energy in the guiding-center ap-
proximation then becomes

	GC =
1

r̂
−

1

2
v̂z

2. �8�

Above, and throughout the rest of the paper, a hat �ˆ� denotes
a dimensionless variable rescaled by b for length and b / v̄ for
time. For angular momentum, the dimensionless form is

p̂� =
p�

mev̄b
.

The adiabatically isolated perpendicular velocity is of ap-
proximately fixed magnitude and does not participate in the
dynamics. Consequently, we anticipate that an ensemble of
atoms at fixed energy 	0�	c will be ergodically distributed
over phase-space variables r and vz, but not over the perpen-
dicular velocity v�. This guiding-center distribution differs
qualitatively from one in which all velocity variables are
uniformly populated, referred to here as a three-dimensional
�3D� distribution.

The guiding-center distribution PGC and the three-
dimensional distribution P3D are defined as

PGC�r̂, v̂z� =

�	 − 	0�
�v��

	
�	 − 	0�
�v��4�r̂2dr̂d3v̂�
, �9�

P3D�r̂, v̂� =

�	 − 	0�

	
�	 − 	0��4��2r̂2v̂2dr̂dv̂
. �10�

In the guiding-center distribution, we have set v�=0 for con-
venience. In reality the cyclotron action is expected to be
fixed at the thermal level. However, perpendicular energy
does not play a role in the atomic dynamics until the chaotic
regime is reached, at which point the binding energy is typi-
cally much greater than T, so setting the perpendicular en-
ergy to zero rather than T does not have a significant effect
on results until the chaotic regime is approached �see the
discussion surrounding Fig. 6�.

The distributions in the rescaled spherical radius r̂	
illustrate the difference between guiding-center and 3D
distributions:

PrGC�r̂	� =
1

	

 PGC�r̂, v̂z�4�r̂2dv̂z, �11�

Pr3D�r̂	� =
1

	

 P3D�r̂, v̂��4��2r̂2v̂2dv̂ . �12�

The integrals in Eqs. �11� and �12� are straightforward, giv-
ing the two spherically symmetric distributions as functions
of r̂	:

PrGC�r̂	� =
16

5�

�r̂	�5/2

�1 − r̂	
,

�13�

Pr3D�r̂	� =
16

�
�r̂	�3/2�1 − r̂	 .

These two distributions are plotted in Fig. 3�a�.
In our Monte-Carlo simulations, we sample initial con-

ditions for the atomic positron from the guiding-center rather
than the 3D distribution. At shallow binding, where guiding-
center dynamics are a good approximation, this is consistent

FIG. 2. �Color online� When binding energy 	 reaches approximately 	c=�−2/3, a convergence of frequencies breaks the cyclotron and bounce adiabatic
invariants, leading to chaotic orbits �a�. At deeper binding, the magnetic field becomes a small perturbation on a classical elliptical orbit and perturbed Kepler
motion �b� results. Radiation is potentially significant in both orbital regimes.
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with the basic assumption in our approach, that atomic dy-
namics are approximately ergodic on the energy surface. At
deeper binding, this Monte-Carlo scheme still works because
the chaotic nature of the atomic dynamics allows the positron
orbit to sample the available energy surface so as to naturally
establish a distribution qualitatively similar to the 3D distri-
bution. This is shown in Fig. 3, which plots the distributions
of an atomic ensemble in r, vz, and v�—each begun with the
guiding-center distribution �v�=0�—averaged over time. At
each binding energy, atom orbits establish a distribution that
evolves from the guiding-center form to the three-

dimensional form continuously as binding energy increases,
to the extent allowed by conservation of p�.

Regardless of binding energy, adiabatic invariance of cy-
clotron action breaks if the positron orbit passes near a dis-
tance r̂chaotic=1 /	c from the nucleus. At 	�	c, this condition
is always met. At weaker binding, the fraction of atoms with
near-nucleus orbits will also exhibit chaotic behavior, and the
effect of this can be seen in Fig. 3�a� as such atoms approach
the 3D distribution. Such atoms, sometimes known as helical
atoms, have low angular momentum and orbits which are
elongated along the magnetic field.8

III. MAGNETIC MOMENT

We can use ergodic distributions like the ones in Eqs. �9�
and �10� to predict the average magnetic moment. Below, we
determine what fraction of atoms in an ergodic ensemble
would be confined by a magnetic multipole trap. When con-
sidering atomic orbits in the absence of collisions, let us
adopt a second set of dimensionless units, similar to the col-
lisional units used above but with binding energy U taking
the place of T. A �ˇ� denotes units rescaled by

�e2/U� for length,

�e2/U��me/U for time, and

me
�U/me for momentum.

Note that �̌c in these units is related to � and 	 by

�̌c = ��	3/2�−1.

The chaotic orbit condition of Eq. �7� becomes �̌c=1. When

�̌c
1, the atom is in the guiding-center drift orbit regime.

When �̌c�1, the orbit is nearly Keplerian.
The atom will be confined within a magnetic mirror trap

if the time-averaged magnetic moment �z is negative. The
instantaneous magnetic moment is proportional to the kine-
matic angular momentum,9 so the time-averaged kinematic
angular momentum must also be negative:

2�Ume

e3 ��z� = �Ľz� = 
 p̌� −
1

2
�̌2�̌c� � 0.

The angular momentum p̌� is conserved and can be removed
from the average. The confinement condition then becomes

p̌� − 1
2�̌c��̌2� � 0. �14�

The average in Eq. �14� is over time for a single positron
trajectory. We can replace this time average with a phase-
space average over the surface traced out by the orbit. For a
single trajectory, both energy U and angular momentum p�

are conserved. In the guiding-center orbit regime, the cyclo-
tron magnetic moment �c is also conserved. Let us assume
that the positron ergodically covers the surface defined by
fixing the appropriate parameters: p�, U, and �c in the case
of guiding-center atoms; p� and U in chaotic atoms. We will
address each case separately, beginning with guiding-center
atoms.
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FIG. 3. �Color� The time-averaged probability density �a� Pr in the spherical
radius r, �b� Pvz

in the velocity parallel to the magnetic field, and �c� Pv�
in

the magnitude of the perpendicular velocity. The plots are for �=0.001,
making the chaotic cutoff 	c=100. The binding energies 	=4, 35, and 100
are the solid-black, dotted-black, and solid-gray curves, respectively. The
probability density is averaged over two Kepler periods and an ensemble of
500 atoms whose initial conditions are chosen from the guiding-center
phase-space distribution �red, dashed curves�. Full dynamics �including cy-
clotron motion� are used. As binding energy 	 increases, the atom orbits
naturally tend toward the fully ergodic 3D distribution �blue, dot-dashed
curves�.
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The fixed cyclotron action �c expressed in orbital �ˇ�
units is

�̌c =
�v̌� − v̌E�B�2

�̌c

.

The perpendicular velocity v̌� and the instantaneous drift
velocity v̌E�B are given in cylindrical coordinates by

v̌� = p̌�a�� + � p̌�

�̌
−

1

2
�̌�̌c�a��,

v̌E�B = �̌�̌�a��.

Above, p̌� is the canonical momentum associated with coor-
dinate � and a�� is the unit vector along �. The instantaneous
drift frequency

�̌� =
1

�̌c��̌2 + ž2�3/2
.

The quantities above order as follows with respect to the

large parameter �̌c:

p̌� : O��̌c� ,

�̌, ž,� p̌�

�̌
−

1

2
�̌�̌c� : O�1� ,

�̌c,�̌� : O�1/�̌c� .

Fixing the guiding-center binding energy, given by

ǓGC =
1

��̌0
2 + ž2�1/2 −

1

2
p̌z

2 = 1,

as well as angular momentum p̌� and cyclotron action �̌c

defines the phase-space surface over which the average in

Eq. �14� is taken. Above, �̌0=�2p̌� /�̌c is the fixed guiding-
center radius from the large �c limit of Eq. �6�. The phase-
space average is expressed as

��̌2� =

 �̌2
�ǓGC − 1�
��̌c�̌c − p̌�

2 − � p̌�

�̌
−

1

2
�̌�̌c − �̌�̌��2�dp̌�dp̌zdžd�̌


 
�ǓGC − 1�
��̌c�̌c − p̌�
2 − � p̌�

�̌
−

1

2
�̌�̌c − �̌�̌��2�dp̌�dp̌zdžd�̌

.

Upon performing integrals over p̌� and p̌z, we obtain the following expression:

��̌2� =


 �̌2

��̌c�̌c − � p̌�

�̌
−

1

2
�̌��̌c + 2�̌���2

��̌0
2 + ž2�1/4

�1 − ��̌0
2 + ž2�1/2

d�̌dz


 1

��̌c�̌c − � p̌�

�̌
−

1

2
�̌��̌c + 2�̌���2

��̌0
2 + ž2�1/4

�1 − ��̌0
2 + ž2�1/2

d�̌dz

. �15�

Cyclotron oscillations in the cylindrical radius �̌ about

the guiding-center value �̌0=�2p̌� /�̌c are of order �1 /�̌c�.
Let us neglect the effect these small oscillations have on the

already small �O�1 /�̌c�� instantaneous drift frequency and
approximate

�̌� �
1

�̌c��̌0
2 + ž2�3/2

.

The integral over �̌ in Eq. �15� can then be performed ana-
lytically. The integration domain is

�̌1 −
��̌c�̌c�1/2

�̌c + 2�̌�

� �̌ � �̌1 +
��̌c�̌c�1/2

�̌c + 2�̌�

,

with

�̌1 =
�2p̌���̌c + 2�̌�� + �̌c�̌c

�̌c + 2�̌�

.

As �̌c→�, the left and right limits converge on the guiding-
center radius �̌0. After performing the integration along �̌, we
obtain

��̌2� =

2
 �̌c + p̌�

�̌c + 2�̌�

��̌0
2 + ž2�1/4

�1 − ��̌0
2 + ž2�1/2

dž


 ��̌0
2 + ž2�1/4

�1 − ��̌0
2 + ž2�1/2

dž

.

Expanding the integrand above and keeping terms up to

O�1 /�̌c
2� gives
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��̌2� �
2

�̌c� p̌� + �̌c − �0
2


 �̌�

��̌0
2 + ž2�1/4

�1 − ��̌0
2 + ž2�1/2

dž


 ��̌0
2 + ž2�1/4

�1 − ��̌0
2 + ž2�1/2

dž � .

Finally, we note that the integrand in the denominator of the
third term is proportional to the integral of the original
phase-space distribution over all variables but ž. This factor
is therefore the appropriate weighting factor in taking an av-
erage over ž. Returning to Eq. �14�, we obtain the confine-
ment condition in the guiding-center drift regime:10

p̌� − 1
2�̌c��̌2� = �̌0

2�̌� − �̌c � 0,

which implies that

�̌c � �̌0
2�̌� �16�

is required for confinement. Above, the bounce-average drift
frequency �̌� is given by

�̌� =


 1

��̌0
2 + ž2�3/2

��̌0
2 + ž2�1/4

�1 − ��̌0
2 + ž2�1/2

dž

�̌c
 ��̌0
2 + ž2�1/4

�1 − ��̌0
2 + ž2�1/2

dž

.

The left side of Eq. �16� is the magnetic moment due to
cyclotron motion, which favors confinement. The right side
is the magnetic moment due to the E�B drift orbit, which
opposes confinement.

The fraction NtrapGC of such confined atoms is given by
an integral of the atomic distribution over the �c and p�

parameters that give confinement. The magnetic moments �̌c

are distributed according to the thermal distribution

P���̌c� =
�̌cU

2T
e−�̌c�̌cU/2T =

�̌c	

2
e−�̌c	�̌c/2.

Let us assume that the angular momenta are distributed er-
godically on the guiding-center energy surface:

Pp�GC�p̌�� =
	
�ǓGC − 1�d�̌dždp̌�dp̌z

	
�ǓGC − 1�d�̌dždp̌�dp̌zdp̌�

=
16

5��̌c



0

�1−2p̌�/�̌c

�2p̌�

�̌c

+ ž2�1/4

�1 − �2p̌�

�̌c

+ ž2�1/2dž .

�17�

Above we made the substitution �̌0
2=2p̌� /�̌c. According to

Eq. �16�, the fraction of atoms that are magnetically confined
is

NtrapGC =
�̌c	

2



0

�̌c/2
dp̌�


2p̌�/�̄c�̌�

�

d�̌ce
−�̌c	�̌c/2Pp�GC�p̌��

= 

0

�̌c/2
e−	p̌��̌�Pp�GC�p̌��dp̌�. �18�

This fraction is shown at �=0.001 as a function of 	 in Fig.
4 �dashed curve�. As guiding-center atoms become more
deeply bound relative to the thermal energy, the confined
fraction decreases drastically, because the magnetic moment
associated with E�B drift motion increases. We see next
that this condition improves once atoms pass into the regime
of chaotic orbits and the cyclotron action �c is no longer at
the thermal level, as perpendicular energy is shared with the
other degrees of freedom.

In the chaotic regime, the cyclotron adiabatic invariant is
broken. In this case, the average in Eq. �14� should be taken
over the phase-space surface defined by fixing energy and p�

only. The three-dimensional energy Ǔ3D is now used:

Ǔ3D =
1

��̌2 + ž2�1/2 −
1

2
�p̌z

2 + p̌�
2 + � p̌�

�̌
−

1

2
�̌�̌c�2� = 1.

The average ��̌2� at fixed energy and angular momentum p̌�

is given by

��̌2� =
	�̌2
�Ǔ3D − 1�d�̌dždp̌�dp̌z

	
�Ǔ3D − 1�d�̌dždp̌�dp̌z

.

In both the numerator and denominator, all but one of the
integrals can be done analytically and the expression reduces
to

2 5 10 20 50 100
0.01

0.02

0.05

0.1

0.2

0.5

1

FIG. 4. The predicted fraction of atoms with a magnetic moment favoring
confinement by a magnetic trap ��z�0� as a function of 	 �on a log-log
scale� for �=0.001. The dashed and solid curves represent predictions in the
guiding-center and chaotic atom regimes, respectively. The dots show the
confined fraction of 1000 simulated atoms distributed ergodically in
guiding-center phase space with cyclotron action distributed thermally. As
binding energy increases, atoms switch to the chaotic distribution and con-
finement improves.
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��̌2� =



�̌min

�̌max

�̌2�4�2 + � p̌�

�̌
−

1

2
�̌�̌c�2�−2

− �̌2d�̌



�̌min

�̌max�4�2 + � p̌�

�̌
−

1

2
�̌�̌c�2�−2

− �̌2d�̌

.

�19�

Above, the limits �̌min and �̌max are determined by the posi-
tive, real roots of

4�2 + � p̌�

�̌
−

1

2
�̌�̌c�2�−2

− �̌2 = 0.

The confinement condition of Eq. �14�, combined with
Eq. �19�, defines the values of p̌� for which chaotic atoms are

confined for a given value of �̌c. This includes all available
values of p̌� below some p̌�con. The magnetically confined
fraction Ntrap3D of chaotic atoms is the integral of Pp�3D�p̌��
over the confined domain:

Ntrap3D = 

p̌�min

p̌�con

Pp�3D�p̌��dp̄�. �20�

The ergodic distribution of angular momenta in the chaotic
regime is given by

Pp�3D�p̌�� =
	
�Ǔ3D − 1�d�̌dždp̌�dp̌z

	
�Ǔ3D − 1�d�̌dždp̌�dp̌zdp̌�

=
4�2

�



�̌max

�̌min�4�2 + � p̌�

�̌
−

1

2
�̌�̌c�2�−2

− �̌2d�̌ .

�21�

The solid curve in Fig. 4 shows the predicted fraction of
confined atoms for �=0.001 as a function of 	 in the chaotic
regime. The dots in the figure show the fraction of 1000
simulated atoms with an average kinematic angular momen-
tum �Lz� indicating confinement. The atom initial conditions
are populated as is appropriate for the guiding-center regime,
but full three-dimensional dynamics are followed. At low
energies, the confined fraction matches the guiding-center
prediction. At deeper binding, the cyclotron adiabatic invari-
ant breaks and the confined fraction converges on the chaotic
prediction. At deep binding, both the simulated atoms and
the chaotic prediction converge on a confined fraction of 0.5.
In this range atoms are effectively unmagnetized and are
equally likely to be in a confined or unconfined state.

IV. SIMULATION PROCEDURE

As discussed in Sec. I, we investigate three-body recom-
bination using a numerical simulation based on classical dy-
namics. The simulation follows the dynamics of a bound
positron with a given initial binding energy as it collides with
an unbound positron, chosen randomly from a positron
plasma at temperature T.

The simulation consists of many independent, single-
collision events whose initial conditions are taken from the
same distribution. Each collision’s initial and final conditions
are saved for analysis. Initial conditions in each collision are

always randomly regenerated, not saved from event to event.
Around 20 000–100 000 collisions are performed for each
initial atomic binding energy chosen.

Each independent shot in the simulation begins using the
guiding-center equations of motion, but will switch to three-
dimensional �i.e., cyclotron inclusive� dynamics if the dis-
tance between any two of the three charges �bound positron,
free positron, and antiproton nucleus� becomes less than
2r̂chaotic=2�2/3. When charges are separated by the chaotic
cutoff radius rchaotic, the instantaneous E�B drift orbit fre-
quency is equal to the cyclotron frequency �c and cyclotron
action is no longer a good adiabatic invariant. If activated,
full dynamics remain on for the duration of the simulated
collision. This approach is required to conserve energy.

Initial conditions for the bound positron are chosen from
the guiding-center ergodic distribution of Eq. �9� at each
fixed binding energy. As discussed above, the distribution
evolves toward the form appropriate for the atomic binding
energy before the collision occurs.

For the free positron, the initial parallel velocity in every
shot is chosen from a weighted Maxwellian distribution at
temperature T given by

f�vz� � �vz�e−vz
2/2v̄2

.

If the simulation switches over to full dynamics, the perpen-
dicular velocities of both the free and bound positrons begin
at zero, conserving total energy and canonical angular mo-
mentum p�. Setting the free particle’s initial perpendicular
kinetic energy to zero is equivalent to setting the positron
plasma perpendicular temperature to zero. The effect of this
choice is a slight enhancement of the cascade to deep bind-
ing, as discussed in relation to Fig. 6. However, in some
high-B and low temperature trap configurations, a two-
temperature distribution �T��T�� may be physical, since cy-
clotron cooling affects only the perpendicular temperature
while heating due to field errors acts mainly on the parallel
temperature. Furthermore, perpendicular to parallel tempera-
ture equilibration is exponentially suppressed in the strongly
magnetized regime ��1.11

The free positron’s initial position relative to the
guiding-center atom orbit is chosen with equal probability
for equal area, with radius restricted to 0� r̂p�10 /	0, where
	0 is the initial binding energy.

We must initially place the impacting positron far
enough away in z to approximate a collision from infinity.
The distance is largest for large impact parameter collisions.
As the free positron approaches the atom, the bound
positron’s drift orbit becomes distorted, resulting in fluctua-
tions in the orbit’s cylindrical radius � with period �� �the
drift frequency� and magnitude of order


�̂ =
�̂3�̂p

ẑp
3 ,

where �̂p and ẑp are the cylindrical radius and axial position,
respectively, of the free positron. The predicted step in cy-
lindrical radius ��̂ for a large impact parameter collision
comes from an integral over unperturbed orbits �Eq. �43�
below�. For appropriate accuracy, we require that
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��̂

�̂min, where 
�̂min occurs at ẑlimit. Choosing sin���
=−1 /2 for simplicity, we obtain

ẑlimit
2 


�̂p�̂6v̂z
2

�2K1�� �̂��̂p

v̂z
�� . �22�

The free positron is initially placed at least ten times the ẑ
separation dictated by Eq. �22� and the run is ended when
either positron reaches the same ẑ-separation again.

V. COLLISIONAL TRANSITION PROBABILITY
RATE DENSITY

The previously described simulation has been used to
numerically evaluate w�	 ,	��, the collisional transition rate
of an atom from energy 	 to energy 	� averaged over all
other variables. Since atom orbits appear to fill phase space
in a qualitatively ergodic manner �Fig. 3�, we consider only
the evolution of the distribution f�	� in this variable, with the
assumption that all other variables are populated ergodically.
In Sec. VII we will use w�	 ,	�� to determine the collisional
evolution of a distribution of weakly bound atoms to deeper
binding. In Sec. VIII, we consider atomic evolution due to
radiation.

In order to connect the simulation results to ��	 ,	��,
consider the master equation for the collisional time evolu-
tion of f�	�:

�f

�t
=
 �f�	��w�	�,	� − f�	�w�	,	���d	�. �23�

For any transition probability rate density w�	 ,	��,


 w�	,	��d	� � �eff =
total number of events

time
.

The rate extracted from the simulation includes collisions
within a disk of radius

�̂max =
10

	
,

or ten times the atom radius, for each initial binding energy
considered. The effective collision frequency �eff is then

�eff = nv̄b2��̂max
2 	−�

� �v̂z�e−v̂z
2/2dv̂z

	−�
� e−v̂z

2/2dv̂z

= nv̄b2�2�
100

	2 . �24�

To extract w�	 ,	��, consider the evolution of a delta
function �f�	��t=0=
�	−	0� �our initial condition in the simu-
lations� after a short time �t:

�f�	��t=�t = 
�	 − 	0� + � �f

�t
�

t=0
�t .

Substituting Eq. �23� into this expression gives

�f�	��t=�t = 
�	 − 	0� + �tw�	0,	� − �eff�t
�	 − 	0� . �25�

Recall that �eff �Eq. �24�� is the effective collision frequency
for all considered collisions. In time �t, the probability Pn of
an atom undergoing n collisions is given by a Poisson distri-
bution,

Pn =
��eff�t�n

n!
e−�eff�t.

For very short times �t,

P0 = 1 − �eff�t ,

P1 = �eff�t ,

Pn = O��tn�, n � 1,

and the distribution is given to first order in �t by

�f�	��t=�t = P0f0 + P1f1,

where f0 is the original distribution and f1 is the normalized
distribution of atoms that have undergone one collision. For
the simulation, f0=
�	−	0� and f1 is the final distribution in
binding energy. This gives

�f�	��t=�t = �1 − �eff�t�
�	 − 	�� + �eff�tf1. �26�

Comparing Eqs. �25� and �26� readily yields

w�	0,	� = �eff f1. �27�

Thus, the distribution of final states from our Monte-Carlo
simulation is proportional to the transition probability rate
density. Equations �25� and �26� are exact as �t approaches
zero, so Eq. �27� is exact as well.

Figure 5 shows w�	 ,	�� for 	=4 and 	=20. It shows that
replacement collisions, where the free positron replaces the
bound one, usually at deeper binding, constitute a larger frac-
tion of collisions with large energy steps. Only a small frac-
tion of collisions resulting in small energy steps were of this
variety.

We have chosen a fit w�	 ,	�� to a function of the form

w�	,	�� = nv̄b2 � ��AL�	 − 	���L + BL�	 − 	���L�−1 for 	� � 	

�AR�	� − 	��R + BR�	� − 	��R�−1 for 	� � 	
� �28�

over most of the domain. At low values of 	, a fit ensuring
detailed balance is used �see below�. The fit parameters A, B,
�, and � vary for different values of 	. The best fit values to
the simulation data are supplied in Tables I–III. To generate a

smooth transition rate for all values of 	 and 	� on the simu-
lation grid used in Sec. VII, we first calculated w�	 ,	�� on
every grid point �excluding the singularity at 	=	�� using
linear interpolation between the discrete 	 fits in Tables I–III.
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The grid runs from 0.1 to 100 in 	 and 	�, with a spacing of
0.1. Variation along 	 was smoothed by replacing each point
with an average of itself and the point along the line con-
necting the two adjacent points corresponding to the same 	
value, represented by the following algorithm:

wi,j =
1

2
�wi,j

�0� + wi−1,j
�0� +

wi+1,j
�0� − wi−1,j

�0�

	i+1 − 	i−1
�	i − 	i−1�� .

Above, the i and j indices represents 	 and �	=	�−	

variation, respectively. The values wi,j
�0� are the original, un-

smoothed fitting functions with the singular point at 	=	�
omitted. The algorithm was applied to every point but the
endpoints. This procedure helps ensure a smoother, more
physical time evolution of f�	�. Rapid, monotonic variation
in �	 precludes the need for smoothing in this parameter.
Transitions near 	=	� were treated with a diffusive model
�see below�.

As a check on our numerics, we have tested where the
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FIG. 5. �Color online� The transition probability rate densities w�4,	�� and w�20,	�� as extracted from the Monte-Carlo simulation for �=0.001. The lines
represent fitting functions which are defined independently for the left and right sides of the distribution. A diffusive model is used to approximate the
contribution to Eq. �23� from the region −0.1� �	�−	��0.1, but a smoothed version of the fit is used for the rest of the integral. The large dots �right axis�
indicate the fraction of collisions in each bin where the bound positron was liberated and replaced by the initially free positron.

TABLE I. Three-body recombination rate coefficient C versus magnetization parameter �. The fitting parameters for w�	 ,	�� �see Eq. �28�� at �=0
�infinite magnetic field�. The left and right cutoffs are given by the functions �	min=−�1 /2��5.468	1.248 / �4.445+	1.248�+6.010	1.321 / �4.353+	1.321�� and
�	max= �1 /2��0.777	1.049+1.160	1.073�. For 	�20, the detailed balance form wdb �Eq. �31�� is used. Only the right fits are employed in this range.

	

Left fit Right fit

D
	AL BL �L �L AR BR �R �R

0.1 0.1504 0.6056 23 540 2.502 0.1046 0.559 71 590 2.655 0.355 4

1 70.88 1.415 6673 12.29 15.25 1.131 698.7 2.395 0.044 67

2 47.03 1.265 66.65 5.064 52.52 1.296 267.9 2.871 0.010 9

3 76.52 1.431 0.3462 11.33 98.08 1.463 34.5 3.84 0.004 253

4 65.74 1.315 10.68 4.693 87.73 1.386 14.49 4.943 0.002 198

5 81.43 1.363 2.911 5.878 72.33 1.319 5.903 4.948 0.001 216

7 81.34 1.274 3.138 5.673 62.91 1.176 10.53 3.426 0.000 525 9

10 81.15 1.207 20.94 3.862 57.61 1.041 9.884 3.076 0.000 204 3

13 105.3 1.247 14.43 4.214 81.01 1.196 0.002 043 6.619 0.000 117 8

15 88.3 1.14 35.38 3.604 64.11 1.071 7.975 2.587 0.000 080 32

18 94.16 1.15 52.93 2.953 65.99 1.034 0.625 3.599 0.000 049 37

20 123 1.218 11.27 5.029 90.76 1.136 0.010 5 4.774 0.000 036 03

23 84.9 1.057 68.34 3.313 60.91 0.9181 3.651 2.752 0.000 023 59

25 146.7 1.265 26.19 3.613 69.14 0.9683 1.382 2.933 0.000 021 95

30 179.4 1.28 1.794 5.792 64.86 0.9684 1.915 2.719 0.000 013 04

40 80.43 0.9935 128.3 2.813 66.33 0.8854 5.307 2.311 7.144�10−6

50 94.45 1.021 67.83 2.992 81.05 1.009 0.177 3.169 4.665�10−6

60 106.3 1.026 67.06 3.665 73.96 0.9375 0.853 6 2.619 2.914�10−6

70 127.4 1.03 38.07 4.158 69.58 0.9128 1.504 2.436 2.027�10−6

80 148.7 1.095 26.43 4.599 82.75 0.9705 0.082 78 3.124 1.491�10−6

90 105.4 0.9857 59.2 3.642 77.41 0.9405 0.456 2 2.617 1.327�10−6

100 138 1.058 21.71 4.576 75.81 0.9044 0.271 2.825 9.751�10−7
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function w�	 ,	�� obeys detailed balance. This requires the
integrand in Eq. �23� to vanish when the distribution function
takes the thermal equilibrium form f th�	�:

f th�	�w�	,	�� = f th�	��w�	�,	� . �29�

For v�=0 �and T�=0�, the thermal equilibrium density of
particles in phase space is

Pth�	� =
n

�2�v̄2�1/2e	.

This form neglects positron-positron interactions, equivalent
to assuming nb3�1. In this limit, the number density f th�	�
is given by

f th�	� = ��	�Pth�	� ,

where ��	� is the density of states at energy 	. The value of
��	0� is equivalent to the area of the phase-space surface
defined by energy 	=	0:

��	0� = 4�
 
�	GC�r,vz� − 	0�r2drdvz.

Above, we use the guiding-center �v�=0� expression for the
energy appropriate for our simulation �Eq. �8��. The integral
can be performed analytically, and the result is

f th�	� =
5�3/2

4
nb3 e	

	7/2 . �30�

The fitting form used for w�	 ,	�� �Eq. �28�� is phenom-
enological and does not guarantee detailed balance. In Fig. 6,
we compare the two sides of Eq. �29� for three values of the
atomic binding energy 	 to check detailed balance. The ther-
mal equilibrium distribution function f th�	� used is the one
appropriate for the guiding-center drift atom regime �Eq.
�30��. The figure shows that our measured transition rates
satisfy detailed balance at shallow and moderate binding, but
at deep binding there is a discrepancy. This is because we
employed a two-temperature distribution for the positrons,
taking v�=0. This is not important at shallow or moderate
binding, but at deep binding, close collisions are more likely
to cause energy exchange with the perpendicular degrees of
freedom. As a result, transitions to deeper binding are some-
what more favored than detailed balance would predict, be-
cause the plasma is colder in the perpendicular degrees of
freedom than is assumed by detailed balance.

To assure that detailed balance is exactly satisfied in
the low-	 regime, we replace the fitting function in this

TABLE II. The fitting parameters for w�	 ,	�� �see Eq. �28�� at �=0.001. The left and right cutoffs are given by the functions �	min=−�1 /2�
��5.045	1.218 / �2.844+	1.218�+5.307	1.235 / �2.949+	1.235�� and �	max= �1 /2��1.182	1.083+2.001	1.115�. For 	�20, the detailed balance form wdb �Eq. �31�� is
used. Only the right fits are employed in this range.

	

Left fit Right fit

D
	AL BL �L �L AR BR �R �R

0.1 4037 2.126 2.001�1010 7.853 8853 2.203 8.415�107 5.158 0.3819

1 68.56 1.421 3607 10.51 54.41 1.369 717.5 2.767 0.047 8

2 79.39 1.539 3.315 10.61 77.72 1.424 214.1 3.375 0.011 63

3 67.69 1.45 6.606 6.499 72.71 1.446 74.48 3.359 0.007 069

4 86.72 1.68 0.090 73 9.453 91.26 1.707 10.42 4.351 0.007 572

5 87.12 1.938 2.43 5.527 90.23 1.974 1.349 4.879 0.009 146

7 92.19 2.398 0.016 02 9.16 55.3 2.166 1.843 3.892 0.009 197

10 0.4479 0.4127 54.47 3.078 0.4816 0.4709 24.08 2.689 0.004 058

13 1.838 0.7418 29.06 3.905 0.8423 0.4916 11.07 2.781 0.001 656

15 2.211 0.7622 20.41 4.053 1.56 0.6736 6.527 2.786 0.001 091

18 5.459 1.09 6.583 4.85 3.665 0.9685 2.645 3.05 0.000 665 8

20 5.832 1.043 6.205 4.351 2.277 0.7394 5.004 2.476 0.000 497 9

23 13.66 1.395 0.508 9 6.285 5.507 1.051 1.857 2.804 0.000 358 4

25 11.91 1.265 2.41 5.176 7.423 1.144 0.715 3 3.098 0.000 283 5

30 21.64 1.477 0.637 1 6.03 11.43 1.263 0.132 5 3.436 0.000 175 5

40 42.61 1.675 2.565 4.915 15.4 1.32 0.030 25 3.42 0.000 094 84

50 35.02 1.504 77.9 3.38 17.44 1.339 0.001 338 3.944 0.000 060 89

60 54.03 1.515 57.2 3.668 15.62 1.28 0.000 116 6 4.488 0.000 032 53

70 37.83 1.284 86.61 3.396 12.01 1.294 1.478�10−10 7.454 0.000 026 55

80 30.61 1.144 15.31 4.476 11.74 1.236 0.002 453 3.457 0.000 016

90 14.39 0.9845 10.42 4.987 13.55 1.279 0.001 039 3.438 0.000 012 27

100 10.01 0.9653 5.311 5.08 14.31 1.32 0.000 429 2 3.628 0.000 010 96
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range with an analytic form that automatically meets this
condition:

wdb�	,	�� = � f th�	��
f th�	�

w�	�,	� for 	� � 	

w�	,	�� for 	� � 	
� . �31�

Here, w�	 ,	�� is the smoothed function described above. We
use the detailed balance form wdb for 	�20 for the �=0 and
�=0.001 cases and for 	�10 in the �=0.005 case. This
adjustment assures the highest accuracy in the low-	 range
where detailed balance is satisfied.

It is important to truncate the fit for w�	 ,	�� near the
energy of the largest observed transition from the simulation,
for both 	��	 and 	��	. Outside the range �	min�	�−	
��	max, w�	 ,	�� is set to zero. Expressions for �	min and
�	max are given in the captions to Tables I–III. If the entire
power-law tail in Fig. 5 is included, as many as 20 transition
events are predicted to occur in the removed region for the
simulated number of collisions. In fact, no transitions appear
in this region, justifying the removal. The cutoff has a clear
physical meaning for negative transitions. Jumps larger than
	�−	�1 will be exponentially unlikely because a thermal
positron cannot impart more than its kinetic energy to the
atom. When detailed balance is satisfied, the cutoff for nega-
tive transitions implies one for positive transitions. Without
such a cutoff, the expression for wdb�	 ,	�� in Eq. �31� would
diverge as 	�→0 where f th�	��→� �see Eq. �30��. Our simu-
lation results, which indicate that a single collision event
cannot result in an arbitrarily large jump to deeper binding,
verify the existence of this forward cutoff. Note that while
truncation of w�	 ,	�� implies that deeply bound states are
not populated after only one collision event, such states can
still be populated within one collision time �nv̄b2�−1, as a
result of multiple collisional deexitations. Truncation of the
tail in w�	 ,	�� is further tested in the section on distribution
evolution.

The fit used in Eq. �28� diverges at 	=	�, so does not
describe the central peak of w�	 ,	�� accurately. However,
the small steps in energy accounted for in this narrow region
can be treated with Fokker–Planck theory. The contribution
to the integral in the master equation from the region

TABLE III. The fitting parameters for w�	 ,	�� �see Eq. �28�� at �=0.005. The left and right cutoffs are given by the functions �	min=−�1 /2�
��4.208	1.344 / �1.885+	1.344�+4.160	1.349 / �1.842+	1.349�� and �	max= �1 /2��2.668	1.240+1.242	1.264�. For 	�10, the detailed balance form wdb �Eq. �31�� is
used. Only the right fits are employed in this range.

	

Left fit Right fit

D
	AL BL �L �L AR BR �R �R

0.1 1.06�108 5.88 2735.0 2.031 5.456 1.097 711 40.0 2.844 0.390 7

1 74.82 1.49 950.3 7.04 136.3 1.624 519.3 3.377 0.047 44

3 90.44 1.953 0.06559 11.5 134.8 2.12 0.730 2 6.487 0.022 37

5 54.22 2.101 4.352 5.705 27.01 1.848 11.23 3.333 0.015 64

7 7.026 1.266 37.06 3.569 6.965 1.29 8.924 3.039 0.006 272

10 19.73 1.541 2.69 5.838 13.05 1.391 1.467 3.38 0.001 981

12 21.24 1.451 4.195 5.236 17.43 1.44 0.352 1 3.63 0.001 106

15 55.4 1.711 0.2511 7.284 24.5 1.484 0.008 166 4.339 0.000 581 9

20 77.61 1.636 13.29 4.819 24.34 1.258 0.063 54 3.44 0.000 219 2

25 22.51 1.207 86.02 3.253 15.05 1.38 0.001 401 4.177 0.000 204 4

30 13.96 1.172 32.51 4.841 17.43 1.375 0.002 155 3.8 0.000 163

35 8.743 1.053 16.9 5.32 16.09 1.407 0.003 868 3.584 0.000 159 2

40 2.151 0.6582 37.17 4.065 15.19 1.57 0.000 048 56 4.233 0.000 137 9

50 1.09 0.4703 61.87 4.212 9.523 1.76 0.065 23 3.611�10−9 0.000 096 4

60 0.4087 0.1642 58.77 3.458 8.247 1.678 0.063 9 5.399�10−11 0.000 066 46

70 0.5294 0.1882 43.36 3.119 0.1172 4.028�10−9 3.991 1.663 0.000 052 43

80 0.529 0.1931 50.44 3.368 9.45 1.464 9.435�10−6 3.957 0.000 041 86

90 2.07 0.6824 27.06 3.557 9.227 1.41 0.000 098 37 3.373 0.000 034 73

100 3.856 0.9123 15.65 3.976 8.905 1.337 7.067�10−8 4.665 0.000 028 48

ε'

ε=20 ε=40

ε=60

χ=0.001

FIG. 6. A comparison of �f th�	�� / f th�	��w�	� ,	� �gray, dashed lines� and
w�	 ,	�� �black, solid lines� �rescaled forms of the first and second terms in
Eq. �23� in thermal equilibrium� for three energies 	 �20, 40, and 60� and
plotted against 	�, for �=0.001. Detailed balance requires the two terms to
be equal. At large 	, detailed balance fails because the zero-temperature,
perpendicular degrees of freedom participate in the collision in this range.
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−
	� �	�−	��
	 is approximated by expanding the first
term in the integrand of Eq. �23�.

To facilitate derivation of the Fokker–Planck equation,
we define W�	 ,�	�=w�	 ,	−�	�. Letting 	�=	+�	, we get



	−
	

	+
	

f�	��w�	�,	�d	�

= 

−
	


	

f�	 + �	�W�	 + �	,�	�d�	

� 

−
	


	 � f�	�W�	,�	� + �	
�

�	
�f�	�W�	,�	��

+
1

2
�	2 �2

�	2 �f�	�W�	,�	���d�	 . �32�

Reverting to notation in terms of w�	 ,	��, substitution of Eq.
�32� into Eq. �23� gives

�f

�t
= 


−�

	−
	

�f�	��w�	�,	� − f�	�w�	,	���d	�

−
�

�	
�M
	�	�f�	� − D
	�	�

�f

�	
�

+ 

	+
	

�

�f�	��w�	�,	� − f�	�w�	,	���d	�, �33�

where the diffusion coefficient D
	�	� and mobility coeffi-
cient M
	�	� are defined as

D
	�	� �
1

2



	−
	

	+
	

�	� − 	�2w�	,	��d	�, �34�

M
	�	� � 

	−
	

	+
	

�	� − 	�w�	,	��d	� +
�

�	
D
	�	� . �35�

In thermal equilibrium, the condition of detailed balance
requires

M
	�	�f th�	� − D
	�	�
�f th�	�

�	
= 0.

The resulting Einstein relation for M
	 and D
	 is

M
	�	� = D
	�	�
�f th/�	

f th�	�
. �36�

Either D
	 or M
	 can be extracted from the discrete simula-
tion output, with the integral in Eqs. �35� and �36� being
replaced by a sum over points in the range. However, since
M
	 involves a first moment of w�	 ,	�� as well as a deriva-
tive of D
	 �which itself is defined only at discrete 	�, we
choose to use the Einstein relation for M
	. While detailed
balance does not hold for deeply bound atoms, it does for
more weakly bound guiding-center atoms. Given the discrete
simulation data, the M
	 generated by Eq. �36� varies much
more smoothly than its counterpart determined by Eq. �35�.

VI. THEORY OF LARGE IMPACT
PARAMETER COLLISIONS

Here we test the results of our simulation against a
Fokker–Planck theory for collisions with large impact pa-
rameter. In the drift approximation, we develop a theoretical
expression for the collision induced diffusion coefficient D	

�distinct from D
	� in the otherwise conserved energy 	.
From an Einstein relation, we predict the first moment of
w�	 ,	�� when only these large impact parameter collisions
are considered. Good agreement is found at small to moder-
ate binding energies 	, where guiding-center drift theory is
applicable.

The development below follows Ref. 7, but includes the
effect of z-axis bounce motion and preserves the diffusive
term in the Fokker–Planck equation. Both effects decrease
the energy-loss rate: the parallel degree of freedom picks up
kinetic energy on adiabatic steps inward, reducing the net
change in binding energy, and the diffusive term creates
some flux away from the nucleus, resulting in a net decrease
in energy-loss rate. In the analysis, collisions are assumed
adiabatic in both z-axis and cyclotron dynamics. If the colli-
sion duration is much greater than one parallel bounce pe-
riod, guiding-center atom frequency ordering implies that it
is also much longer than a cyclotron period:

�min

v̄

 �z

−1 
 �c
−1. �37�

Here, �min is the minimum impact parameter considered. The
assumption always holds for sufficiently large choice of �min.

Within the atom, cylindrical symmetry about the mag-
netic field implies conservation of momentum p�. In a colli-
sion, p� can change, but Iz and � are still assumed static. For
an ensemble of guiding-center atoms with distribution
f�Iz , p� ,��, the adiabatic invariance of Iz and � means that
all energy change is due to changes in p�. The flux in energy
space is

�	 = M	 f − D	

�f

�	
. �38�

Here, D	 is the diffusion coefficient in coordinate 	 and M	 is
the energy-space mobility. The mobility is related to the dif-
fusion coefficient by an Einstein relation of the form of Eq.
�36�. Note that in the previous analysis, D
	 and M
	 were
determined for energy steps smaller than 
	. Here, we are
instead considering collisions with an impact parameter
larger than �min.

The diffusion coefficient D	 due to large impact param-
eter collisions is defined as

D	 = 1
2 ���	2� . �39�

Here, �	 is the change in energy experienced in the collision.
The average is over initial conditions with collisional impact
parameters greater than �min and all atoms at fixed binding
energy 	. The average over atomic variables is required to
make D	 a function of energy only, in keeping with a de-
scription of evolution in only this parameter. As before, if the
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distribution is a function of energy only, ergodically spread
over phase space on each energy surface, then this descrip-
tion is self-consistent. The diffusion coefficient d	 before the
atom average is a function of both binding energy and atomic
angular momentum. Once d	 is found, we will average over
atomic states to obtain D	. For colliding positrons streaming
along the magnetic field lines at velocity vz and intersecting
the z=0 plane at position �p:

d	 =
1

2



−�

�

�vz�e−vz
2/2v̄2 n

�2�v̄
�	2d2�pdvz. �40�

Only energy changes due to angular momentum changes are
significant, so

�	 �
�	

�p�

�p� = − �̂��p̂�. �41�

In the guiding-center drift approximation, we may discard
the kinetic piece in the canonical angular momentum p�

from Eq. �6�. In this limit, a step in p� is equivalent to a step
along cylindrical radius �:

�p� � me�c��� . �42�

As long as the bounce frequency �z is much faster than the
drift frequency ��, the drift orbit can be considered of uni-
form speed. If the impact parameter �p is also much larger
than 1 /	, the atomic length scale, we may use �from Ref. 7�

�� = − 2�b2v̄ sin������

vz
2 �K1�����p

vz
�� . �43�

This is the radial step taken in one collision, where � is the
relative angle between the bound and passing positrons’ po-
sition vectors at the moment when the passing positron
crosses the z=0 plane. K1 is the modified Bessel function of
the first kind. Combining Eqs. �40�–�43� gives the diffusion
coefficient d	 in the E�B drift approximation:

d	 = 2�2��nv̄b2��p̂��̂�
2 F����min

v̄
� , �44�

with

F��� � 

�

� 

−�

�

sK1
2� s

�x�� e−x2/2

�x�3
dxds . �45�

This expression is valid in the guiding-center atom regime,
defined as 	�	c=�−2/3, for collisions with large impact pa-
rameter, and thus small individual steps in energy, only.

Lastly, we average d	 from Eq. �44� over all available
atom states at energy 	0 to obtain the diffusion coefficient D	

as a function of energy only. For simplicity of notation, let us
introduce a dimensionless form of the diffusion coefficient

D̂	:

D̂	 =
D	

�nv̄b2�
.

Then,

D̂	 =
	d	
�	 − 	0�dp�dIz

nv̄b2	
�	 − 	0�dp�dIz

,

�46�

D̂	 = 2�2��


 p̂�

�̂�
2

�̂z

F����min

v̄
�dp�


 1

�̂z

dp�

.

We may extract the diffusion coefficient D̂	 from the
simulation results as well. Recalling that the final distribution
in the simulation is proportional to w�	 ,	��, we can use Eq.
�34�, letting w�	 ,	�� be the appropriately weighted distribu-
tion from only those collisions with impact parameter above
�min and extending 
	 to �. The integral becomes the follow-
ing discrete sum:

D̂	 =
1

2
�2���10

	
�2

− �̂min
2 � 1

N
�
i=1

N

��	i�2. �47�

The impact parameters considered for purposes of calculat-

ing D̂	 lie in the range from �̂min��̂p�10 /	. Since the simu-
lation samples all possible atom initial conditions at a fixed
binding energy as well, the average over all accessible
atomic states �for a given 	� is included in the sum above.

In Fig. 7, simulation and theory for D̂	 agree over a
range of binding energies before the chaotic cutoff. As bind-
ing energy increases, �� increases and eventually exceeds
the inverse collision duration v̄ /�min. An exponential de-

crease in D̂	 is observed as p� becomes adiabatically invari-
ant on the collision timescale. At deep binding, cyclotron
motion becomes relevant and the theory expression �46�, de-
rived using the E�B drift approximation, no longer applies.

D

ρ
min
=5/ε

FIG. 7. �Color online� Theory �solid and dashed lines� and simulation

�crosses and squares� for the diffusion coefficient D̂	 from collisions with
impact parameter greater than �̂min=5 /	 at �=0.001 and �=0.005, respec-
tively. The theory assumes guiding-center drift motion with adiabatic invari-
ance of Iz. At deep binding energies 	, the E�B drift approximation be-
comes invalid as the atom passes into the chaotic regime and the theory
fails.
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The adiabatic invariance of Iz is confirmed a posteriori by
agreement between theory and simulation at midrange ener-
gies.

We now calculate the mean rate at which energy is lost
by an ensemble of guiding-center atoms at an initial binding
energy 	 due to diffusion and mobility caused by large im-
pact parameter collisions. We will use the Fokker–Planck

flux in 	 of Eq. �38� and the theoretical expression for D̂	 in
Eq. �46�.

Consider an ensemble f�	� of atoms distributed in energy
	. The average binding energy 	 is

	̄ =
		�f�	��d	�

	f�	��d	�
. �48�

The energy-loss rate follows:

�	̄

�t
=

 	�

�f

�t
d	�


 f�	��d	�

. �49�

The continuity equation

�f

�t
= −

��	�

�	�
, �50�

combined with Eq. �39�, closes the system. Choosing
f�	��=
�	�−	� gives the energy-loss rate ��	̄ /�t�drag due to
large impact parameter collisions at energy 	. Integrating by
parts twice:

� �	̄

�t
�

drag
=
 �M	 +

�D	

�	�
�
�	� − 	�d	�.

The Einstein relation �36� gives the mobility coefficient M	.
In our dimensionless variables, the energy-loss rate due to
drag is

� �	̄

��
�

drag
= D̂	

�f th/�	

f th�	�
+

�D̂	

�	
, �51�

where �=nv̄b2t.
The first term in the numerator of Eq. �51� arose from

the first term in Eq. �38�, and thus represents energy loss due
to mobility flux. This term is positive definite beyond the
kinetic bottleneck, as one would expect. The second term
arises from the second term in Eq. �38�, representing change
in binding energy due to diffusive spreading. The second,
diffusive term can be positive or negative, as seen in Fig. 7.

A procedure similar to that leading to Eq. �47�
gives ��	̄ /���drag from the simulation. This time we calculate
the first moment of w�	 ,	��:

�	

��
= �2���10

	
�2

− �̂min
2 � 1

N
�
i=1

N

�	i. �52�

Again, only collisions beyond radius �̂min and within radius
10 /	, the maximum considered in the simulation, are consid-
ered in the sum.

Equations �51� and �52� give the mean energy-loss rate
due to collisions outside the cutoff radius �min as a function

of the binding energy 	. The minimum impact parameter �min

can be chosen arbitrarily, as long as it satisfies r̂min
	−1.
Figure 8 shows the energy-loss rate from Eq. �51� compared
with the same rate obtained from the Monte-Carlo simula-
tion. As 	 increases, the loss rate also increases, up to
	��−1/2, at which point the adiabatic cutoff causes an order
of magnitude reduction in the rate, as expected from guiding-
center theory. This peak corresponds roughly to the energy at
which the drift velocity equals the thermal velocity,

vdrift = ��

b

	
� v̄�	2 = v̄2,

which occurs when

	 = �−1/2. �53�

At larger energies, where 	��−2/3, the atom enters the cha-
otic regime where guiding-center theory no longer applies.
For 	��−2/3, the timescale of rotational motion of the posi-
tron about the antiproton is set by the cyclotron frequency
and is roughly independent of 	. At still larger values of 	,
i.e., 	
�−2/3, the atom becomes effectively unmagnetized
and we would again expect a reduction in the loss rate with
increasing 	. However, we have not studied this unmagne-
tized regime in detail. For �=0.001, it would require
	
100.

Figure 9 shows the energy-loss rate due to all collisions.
The simulation gives the contribution from impact param-
eters �̂ below 10 /	 �through Eq. �52� with �min=0�. The
theory gives the �small� contribution for all larger impact
parameters. For the infinite-magnetic-field ��=0� case, 	
scaling comes from dimensional arguments:4

ρ
min
=3/ε

FIG. 8. �Color online� The energy-loss rate due to large impact parameter
collisions ��̂min=3 /	� for �=0.001 �crosses� and �=0.005 �squares�. The
theory lines come from Eq. �51�. The exponential cutoff at large 	 is ob-
served in the simulation results until the chaotic cutoff energy is approached
�	c=100 and 	c=34.2 for �=0.001 and �=0.005, respectively�, after which
the drift approximation used in deriving the transport coefficient D	 is
invalid.
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lim
�→0

�	

��
�

1

2	
. �54�

This is merely a statement that the collisional cross section
scales roughly as 1 /	2. However, when the field is finite,
energy loss from collisions with large impact parameter re-
mains relevant even at deep binding �as seen in Fig. 8�. In
this case, the total collisional energy-loss rate does not drop
as rapidly with binding energy. For the smaller values of �,
the energy-loss rate follows the infinite field form but devi-
ates as 	 approaches �−1/2, as expected from Eq. �53�. At this
energy, drag on E�B drift motion is significant and the
energy-loss rate is enhanced.

VII. DISTRIBUTION EVOLUTION

To calculate the rate of antihydrogen formation from a
thermal plasma, we follow a method similar to that used by
Glinsky and O’Neil in Ref. 4, assuming a thermal distribu-
tion of atoms at small binding energies 	. Unlike previous
work, however, we use the master equation �23� directly,
with only the transition probability rate density w�	 ,	�� de-
rived from simulation. Once w�	 ,	�� has been established,
this method allows us to rapidly predict the evolution of an
arbitrary distribution of atomic energies. Each energy surface
is assumed to remain uniformly populated during the evolu-
tion so that the distribution is a function of energy only. With
such a simplification, there is a risk of discarding important
dynamics. However, good agreement is found between pre-
dictions made with our method and a much more time-
consuming method which follows many atoms through col-
lisional evolution. We also find that our method predicts
three-body recombination rates in agreement with previous
work.4,5

In solving the master equation �33�, we use a discrete
grid with a spacing of 
	=0.1 in 	, and omit the grid point
associated with 	−	�=0, since this point is accounted for
through the terms proportional to M
	 and D
	. The time

integration is performed using an adaptive-time-step, fourth-
order explicit Runge–Kutta algorithm. To check the accuracy
of this procedure, we compared it to a numerical simulation
in which we followed an ensemble of 14 358 atoms through
100 collision times, preserving atom variables between col-
lisions. Figure 10 shows good agreement between the simu-
lation results and the solution of the master equation for an
initial Gaussian distribution. The best agreement is found in
the case where the cutoff �	 in w�	 ,	�� is placed between
the first empty bin and the largest observed transition �solid
lines in Fig. 10�. We therefore use this �	 in the following
numerical solution to the master equation �see captions to
Tables I–III�.

To predict the rate of antihydrogen formation, we set the
initial distribution f�	�= f th�	� �from Eq. �30�� for 	�1 and
hold it fixed in this region. Maximum atom size and avail-
able states diverge at 	=0. We truncate f�	� at small 	 by
omitting the 	=0 grid point. For 	�1, f�	� is initially zero
and evolves according to the master equation. Deeper bind-
ing states become populated as atoms “trickle in” from the
fixed thermal region. With this boundary condition, f is nor-
malized such that the integral of f over all positive binding
energies yields the total number of bound atoms per antipro-
ton. Figure 11 shows the distribution f�	� for various num-
bers of collision times with the magnetization parameters
�=0 �infinite magnetic field�, �=0.001, and �=0.005.

A roughly power-law distribution is established at deep
binding, behind which a steady state is established. This
power-law distribution moves to progressively deeper bind-
ing as time increases. The exponent in the power law de-
creases as � increases, from roughly 8 at �=0 to roughly 5.5
at �=0.005, indicating that a weaker magnetic field allows
more rapid population of deeply bound states. The value of 8

χ=10-5

χ=10-4
χ=10-3

χ=5 × 10-3

χ=0

FIG. 9. �Color� The total collisional energy-loss rate for �=0, 10−5, 10−4,
10−3, and 5�10−3.
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τ=100
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FIG. 10. �Color� The evolution of a sample Gaussian distribution centered at
	=10 for �=0.001. The black curve shows the initial distribution, blue is
after 30 collision times, and red is after 100 collision times. The three curves
show the solution for different choices of the cutoff �	 in w�	 ,	��. The
cutoff was chosen either at the largest observed transition �dashed line�, the
first empty bin �dotted line�, or an average of the two �solid line�. The solid
circles show the evolution of an ensemble of atoms that were chosen from
the same initial distribution and followed through multiple collisions for the
same amount of time. Best agreement is found for the solid line, so the
middle value of �	 is used in the simulation.
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for the exponent for �=0 was also observed in the simula-
tions of Glinsky and O’Neil.4,12

The rate at which the power-law tail moves to deeper
binding is displayed in Fig. 12. This plot shows the time �
for which f�	� at a given 	 reaches half its steady-state value.
The dashed lines are fits to the data, scaling as �0.52 for
�=0, �0.63 for �=0.001, and �0.59 for �=0.005. A scaling of
	��1/2 for the front location is consistent with Eq. �54�, and
was also observed for �=0 by Glinsky and O’Neil.4

Figure 11 also shows that, as time increases, a steady-
state �not thermal equilibrium� form for f�	� is reached at

progressively higher values of 	. In the steady-state region, a
balance is reached where flux to deeper binding is indepen-
dent of binding energy �divergence free�. In thermal equilib-
rium, detailed balance means the net particle flux vanishes.
Our steady state exists indefinitely only because the f�	�=0
boundary condition at 	=100 provides an infinite sink of
particle flux. In a physical system, the steady state becomes
established from low energies down to the ground state, then
the thermal distribution is populated from the ground state
upward.

The time scale for the downward, steady-state flux is set
by the collision frequency nv̄b2 �see Eq. �28��, while the
number of thermal atoms available �Eq. �30�� scales with the
small parameter nb3. As previously predicted,3–5 this con-
stant flux R3, the three-body recombination rate, must there-
fore be given by

R3 = C�nv̄b2��nb3� � T−9/2, �55�

where the T−9/2 scaling neglects the relatively weak depen-
dence on T of the rate coefficient C���. This coefficient is
given in Table IV for each value of � simulated. These val-
ues are consistent with fluxes calculated previously for re-
combination in strong magnetic fields;4,5 for instance, see Eq.
�1�. A stronger magnetic field �lower �� inhibits flux through
the kinetic bottleneck.

At deep binding the steady state takes many collision
times to become established. Flux at binding energies 	
greater than the maximum for which steady state has been
established �for a given �� does not have the simple tempera-
ture scaling of Eq. �55�. Figure 13 shows the number of
atoms that have reached binding energy 	, or larger, after 1,
10, 100, and 1000 collision times. Figure 14 shows this same
quantity, but for a constant relaxation time t and binding
energy U and varying temperature. Neither the number of
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FIG. 11. �Color online� The distribution of antihydrogen atoms f�	� for �a�
�=0, �b� �=0.001, and �c� �=0.005 at �= tnv̄b2=1, 10, 100, 1000, and
5000. At deeper binding, the steady-state distribution takes longer to estab-
lish. The chaotic cutoff energies 	c=�, 100, and 34.2 for �=0, 0.001, and
0.005, respectively. The dashed curve indicates a thermal equilibrium distri-
bution. The straight dashed lines are power-law fits to the tail region at
�=100.
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FIG. 12. �Color online� Location of the power-law tail as a function of time
for three different values of � �dots, squares, and crosses�, together with fits
�lines�.

TABLE IV. Three-body recombination rate coefficient C versus magnetiza-
tion parameter �.

� 0 0.001 0.005

C 0.076 0.10 0.14
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collision times � nor the rescaled binding energy 	 are con-
stant in this case. The T−9/2 temperature scaling is only seen
for long relaxation times, when the steady state has had time
to become established.

In actual experiments, nearly all atoms exit the plasma in
much less than the time required for a steady state distribu-
tion to be established at deep binding. Atomic state diagnos-
tics in the ATRAP experiment show a field ionization spec-
trum equivalent to f�	��	−5.6 This is consistent with our
results at early times. In particular, the �=0.005 case shows
a similar scaling for the power-law tail to that observed in
the experiment �see Fig. 11�.

At high temperatures, the fixed binding energy U is
smaller than the kinetic bottleneck energy 4T. For the choice
of U in Fig. 14, i.e., U=6.89 meV=80 K, this occurs when
T�20 K. In this temperature range the fraction N of atoms
per antiproton depends much less strongly on the amount of
time the antiproton spends in the trap, as shown by the con-
vergence of the three curves in Fig. 14�a�. In addition, for
small relaxation times, the recombination fraction actually
scales favorably with increasing temperature. Similar tem-
perature scaling was predicted by Driscoll12 based on results
from Ref. 4.

Below the chaotic cutoff energy 	c, we will show that
radiation becomes more significant, dominating the cascade
process. Once an atom is in the chaotic orbit regime, we
will see that it relaxes to deep binding on its own through
radiation much more rapidly than in the guiding-center drift
regime.

VIII. RADIATION

In this section, we estimate the recombination rate due to
electromagnetic radiation, using the classical Larmor
formula,9

�U

�t
=

2

3

e2

c3 ẍ · ẍ , �56�

where U is the unscaled binding energy, given by Eq. �5�.
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FIG. 13. �Color online� The number N of atoms per antiproton that have
passed binding energy 	 for �a� �=0, �b� �=0.001, and �c� �=0.005 for
different numbers of collision times �= tnv̄b2. Note that N is scaled to nb3,
with nb3�1 assumed.
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FIG. 14. �Color online� The fraction of atoms N, per antiproton, that have passed binding energy U=6.89 meV �	=20 at T=4 K�, given 1.84 �s �curves
labelled �1��, 7.36 �s �curves labelled �2��, and 184 �s �curves labelled �3��. Density is fixed at 108 cm−3. The times correspond to 25, 100, and 2500 collision
times, respectively, given this density and a plasma temperature of 4 K. In �a�, the magnetic field is infinite, so �=0 at all temperatures. In �b�, B=6 T and
� ranges up to 0.005. The N shown is calculated from a linear interpolation between the discrete values of � treated in the simulation.
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Our procedure will be to calculate the energy-loss rate of
a bound positron using this formula, assuming classical dy-
namics as in the previous sections. In addition, to simplify
the analysis, we average the energy-loss rate over an en-
semble of atoms described by ergodic distributions, as de-
scribed below. We find that atoms in low-angular-momentum
states radiate most rapidly, as the positrons in these atoms are
able to strongly interact with the central antiproton. For such
atoms, quantum effects neglected in our classical approach
become important when p� is on the order of �. We attempt
to estimate the magnitude of these quantum effects on the
radiative energy-loss rate, and find they are most important
for weakly bound atoms in helical states, but less important
for atoms near the chaotic regime where our classical esti-
mates should be more relevant.

In what follows, we evaluate Eq. �56� in cylindrical co-
ordinates, writing

U =
e2

��2 + z2�1/2 −
1

2me
�p�

2 + pz
2 + � p�

�
−

1

2
me��c�2� ,

�57�

where � is the cylindrical radius and � the azimuthal angle,
so that we may express the radiation rate in terms of the
conserved quantities in the absence of radiation: p� and U. If
the positron orbit is chaotic, these are the only constants of
its motion. For an ergodic orbit, the time-average rate of
change of U is equivalent to a phase-space average of �U /�t
at fixed U and p�, provided the radiation rate is sufficiently
slow; that is, we assume

U̇

U
,
ṗ�

p�

�
�̇

�
, �58�

where � is any phase-space variable except for p�. We also
assume the � variables ergodically cover the available states.
Even without the restriction in Eq. �58�, the phase-space av-
erage of �U /�t can be interpreted as the average energy-loss
rate from an ergodic ensemble of atoms at a fixed energy and
angular momentum. Similar classical averaging methods
have been used by previous authors for both magnetized and
unmagnetized Rydberg atoms.13–15

The average Larmor power at angular momentum p�0

and binding energy U0 is


 �U

�t
� =

2

3

e2

c3

	
�p� − p�0�
�U − U0�ẍ · ẍd3xd3p

	
�p� − p�0�
�U − U0�d3xd3p
. �59�

The integral in � is trivial. The integral in p� sets p�= p�0.
We will hereafter omit the subscript 0 in p�0 with this
understanding.

Since the radiation rate is independent of plasma param-
eters and depends only on atomic parameters, let us use the
orbital �ˇ� units. In these units, Eq. �57� becomes

1 =
1

��̌2 + ž2�1/2 −
1

2
�p̌�

2 + p̌z
2 + � p̌�

�̌
−

1

2
�̌�̌c�2� � Ǔ .

�60�

Now we can rewrite Eq. �59� as


 �U

�t
� =

2

3
� U

mc2�3U

T
	
�Ǔ − 1�x̌̈ · x̌̈d�̌dp̌�dždp̌z

	
�Ǔ − 1�d�̌dp̌�dždp̌z

. �61�

Above, T is a characteristic classical radiation time, defined
as

T �
e2

mc3 = 9.4 � 10−24 s.

The Hamiltonian equations of motion provide ẍ. In di-
mensionless units,

x̌̈ = �−
�̌

��̌2 + ž2�3/2 + �̌c� p̌�

�̌
−

1

2
�̌�̌c��a�� + �̌cp̌�a��

−
ž

��̌2 + ž2�3/2a�z, �62�

where a�� is the unit vector in the direction of coordinate �.
Its dot product with itself is

x̌̈ · x̌̈ =
1

��̌2 + ž2�2 −
2�̌c

��̌2 + ž2�3/2�p̌� −
1

2
�̌2�̌c�

+ �̌c
2�p̌�

2 + � p̌�

�̌
−

1

2
�̌�̌c�2� . �63�

Substituting Eq. �63� into Eq. �61�, we can carry out the
integral analytically in all but the cylindrical radius:


 �U

�t
� =

2

3
� U

mc2�3U

T
F�p̌�,�̌c� , �64�

where the dimensionless function F is given by

F�p̌�,�̌c� =
1

	�̌min

�̌maxžmaxd�̌



�̌min

�̌max

d�̌� žmax

2�̌2��̌2 + žmax
2 �

+
arctan�žmax/�̌�

2�̌3 − 2�̌cžmax

p̌� − 1
2 �̌2�̌c

�̌2��̌2 + žmax
2 �1/2 + žmax�̌c

2� p̌�

�̌
−

1

2
�̌�̌c�2

−
�̌c

2

2
žmax�2 + � p̌�

�̌
−

1

2
�̌�̌c�2� +

�̌c
2

2
�ln���̌2 + žmax

2 + žmax� − ln���̌2 + žmax
2 − žmax��� , �65�
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and where

žmax =�4�2 + � p̌�

�̌
−

1

2
�̌�̌c�2�−2

− �̌2

is the maximum accessible value of ž at the given value of �̌.
Furthermore, �̌min and �̌max are the values of p̌ for which žmax

vanishes, with 0��̌min��̌max�1.
Solutions for �̌min and �̌max exist only for p̌� in the range

p̌�min� p̌�� p̌�max, where p̌�min��̌c� and p̌�max��̌c� are, re-
spectively, the minimum and maximum values of scaled an-
gular momentum at given binding energy and magnetic field.
These two functions are plotted in Fig. 15. The orbits corre-
sponding to p̌�min and p̌�max are circular orbits in the

z=0 plane, moving clockwise and counterclockwise,
respectively, when viewed from the positive z axis. At

�̌c=0 �an unmagnetized atom�, p̌�max=−p̌�min=1 /�2, and

when �̌c
1 �a strongly-magnetized atom�, p̌�max=�̌c /2 and

p̌�min=−3�32�̌c�−1/3. In this strongly magnetized limit, the
value of p̌�max corresponds to a circular E�B drift orbit in
the z=0 plane, and the value of p̌�min corresponds to a cir-
cular cyclotron orbit, modified in frequency by the presence
of the antiproton at the orbit’s center.

In general, we must perform the integral in Eq. �65�
numerically. Results of such calculations are presented in
Fig. 16. However, a simplified expression is obtainable in the
limit of small p̌�. In this regime, radiative energy loss is
dominated by close passes to the origin, for which the mag-
netic field has no significant impact. We may therefore take

�̌c=0 in this regime. For the moment, however, let us leave
the normalization factor 	�̌min

�̌maxžmaxd�̌ in its magnetic-field-
dependent form but take the zero-field limit of the more
complicated numerator. In the limit of small p̌�, where orbits
near the origin are allowed, the integral is dominated by
small �̌. Equation �64� then simplifies greatly to


 �U

�t
� �

2

3
� U

mc2�3U

T
1

	�̌min

�̌maxžmaxd�̌

3�

8
p̌�

−4. �66�

Taking the zero-field, small p̌� limit of the normalization
factor

�

�̌min

�̌max

žmaxd�̌�
�̄c=0,p̌�=0

= 

0

1
�1 − �̌2d�̌ =

�

4
,

simplifies the expression for the energy-loss rate:


 �U

�t
� � � U

mc2�3U

T
p̌�

−4. �67�

The energy-loss rate diverges as p̌�
−4, because for small p̌�,

the positron can make close passes to the antiproton. Low-
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FIG. 15. �Color online� Allowed range of angular momentum for an atom
with fixed binding energy, vs magnetic field.
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FIG. 16. �Color� The mean radiation rate ��U /�t� from Eq. �65� �solid curves� plotted against p̌� for a magnetic field of 1 T at three binding energies: U

=0.332 meV �black�, 1.54 meV �red�, and 7.14 meV �blue�, corresponding to �̌c=100, 10, and 1, respectively. Separate log-log plots are shown for �a� p̌�

�0 and �b� p̌��0. The dashed lines, proportional to p�
−4, estimate the rate in the region of strong radiation from Eq. �66�. The dotted lines plot the rate

omitting the electric force from Eq. �62� and represent cyclotron radiation. For large �̌c, cyclotron radiation dominates for all but the lowest angular momenta.

At the chaotic cutoff ��̌c=1�, all available states radiate more rapidly than the cyclotron level. The dots at the end of the solid curves are for circular orbits
in the z=0 plane.
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angular-momentum states radiate more rapidly to deeper
binding.

Equation �67� differs from the well-known result for the
classical energy-loss rate of an unmagnetized Rydberg atom
because only p� and U are assumed to be conserved in Eq.
�67�, whereas other conserved quantities exist for an unmag-
netized atom �i.e., the other components of angular momen-
tum�. If we were to hold these quantities fixed in the ergodic
average, we would recover the result of Ref. 9 �p. 807�.

At finite field, however, no simple analytic expression
exists for the normalization factor. While the numerator is

well approximated in the small p̌� region by the �̌c=0 case,

the normalizing denominator exhibits �̌c dependence. This
dependence is a reflection of available phase space. At small

p̌� and �̌c
1, invariance of p̌� restricts orbits to small �̌.

Zero-field ��̌c=0� orbits are not similarly restricted. We
must use the more general equation �66� to approximate the
strong radiation region �small p̌�� for finite magnetic field.

Figure 16 shows the radiative energy-loss rate of Eq.

�65� plotted against p̌� at three values of �̌c in a 1 T mag-
netic field. At low p̌�, the loss rate agrees with the p̌�

−4 diver-

gence given by Eq. �66�. For large p̌� and large �̌c, the loss
rate is dominated by cyclotron radiation. This can be seen by
comparing the rates plotted in Fig. 16�b� at large p̌� to the
dashed lines, which plot the rate obtained by omitting the
electric force in Eq. �62�, so that only cyclotron radiation is

kept. In the guiding-center atom regime �high-�̌c�, slowly
radiating, high-p̌� states constitute much more of available
phase space than in the chaotic regime. For such states, ra-
diation is not an important effect. However, low-p̌� states
�helical atoms� radiate much more rapidly.

In addition to transporting energy away from the atom,
radiation also carries away angular momentum. We will use
an ergodic average identical to that used in deriving the
energy-loss rate of Eq. �65� to obtain an expression for the
time rate of change of p� due to radiation. The instantaneous
torque is given by

�p�

�t
= r � Frad · a�z,

where Frad is the radiative reaction force, given by

Frad =
2

3

e2

mc3mx�.

Taking the derivative of Eq. �62� once in time and switching
to dimensionless variables, the instantaneous radiative torque
is

�p�

�t
=

2

3
� U

mc2�3/2
U�̌�−

�̌

��̌2 + ž2�3/2 �̌̇ + �̌c�̌�̌̇2 − �̌cp̌̇�� .

�68�

To express Eq. �68� in terms of coordinates and momenta
only, we use the canonical definition of p� �Eq. �6�� along
with the Hamiltonian relation

ṗ̌� =
�Ǔ

��̌
.

This gives the instantaneous torque in terms of phase vari-
ables ��̌ ,� , ž , p̌� , p̌� , p̌z�:

�p�

�t
=

2

3
� U

mc2�3/2
U�� 3

2 �̌2�̌c − p̌��
��̌2 + ž2�3/2

+ �̌c
2�1

2
�̌2�̌2 − p̌��� . �69�

Once again presuming an ergodic orbit, we take a phase-
space average over the distribution 
�U−U0�
�p�− p�0� as in
Eq. �59� to get the average rate of change of p�:


 �p�

�t
� =

2

3
� U

mc2�3/2
UG�p̌�,�̌c� , �70�

where the dimensionless function G is given by

G�p̌�,�̌c� =
1

	�̌min

�̌maxd�̌žmax



�̌min

�̌max

d�̌žmax

�� 3
2�̌c − p̌�/�̌2

��̌2 + žmax
2

+ �̌c
2�1

2
�̌2�̌c − p̌��� . �71�

While Eq. �71� gives the physical torque, we need to
consider energy loss as well to find the rate of change of the
rescaled p̌�:


 �p̌�

�t
� = 
 �

�t

p�

e2�me/U
� =

��p�/�t�
e2�me/U

+
1

2
p̌�

��U/�t�
U

.

�72�

This quantity, plotted in Fig. 17, has the same sign as p̌� for
nearly the full range of p̌�. Atoms thus evolve toward circu-
lar orbits in the z=0 plane, where �p̌�� is maximal. At small
values of p̌�, the first term, proportional to p̌�

−1, is dominated
by the second term, proportional to p̌�

−3 �from Eq. �66��. In
this strong-radiation regime, torque is negligible, and orbits
evolve toward circles in the z=0 plane as energy is radiated
away.

Figure 18 shows two evolutions in U and p̌� predicted
by Eqs. �65� and �72�. For both low- and high-angular-
momentum states, the rate of radiative relaxation accelerates

near the chaotic regime. At small �̌c, the magnetic field no
longer restricts the positron to an E�B drift orbit and the
energy-loss rate of Eq. �65� approaches its unmagnetized
value. This rate is proportional to U4, evolving U to infinite
energy in finite time. Concurrently, the radiative torque of
Eq. �71� pushes the atom toward a circular orbit. When the
initial angular momentum is small �indicating an eccentric
orbit�, the atom reaches deep binding before a circular orbit
is established.

Note that the zero-field, small-angular-momentum
energy-loss rate of Eq. �67�, combined with ��p̌� /�t� in the
same limit,
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��p̌�/�t� �
1

2
� U

mc2�3 1

T
p̌�

−3, �73�

creates a system of differential equations in time with an
analytic solution:

U�t� =
U0p̌�0

4

p̌�0
4 − �U0/mc2�3�t/T �

,

�74�

p̌��t� = p̌�0�U�t�
U0

.

Scaled angular momentum p̌� grows without bound in this
simple approximation, but the recombination time tc �i.e.,
when the solution becomes singular�, is still accurate for
small initial p̌�:

tc = T �mc2

U0
�3

p̌�0
4 . �75�

By neglecting the magnetic field, we obtain a result for the
recombination time that is even in p̌�. While the estimate is
most applicable to orbits with an initially small angular mo-
mentum, Eq. �75� provides useful scaling for the recombina-
tion time with initial energy and angular momentum even
near the extreme values of p̌� �circular orbits�. Figure 19
shows the true recombination time found by simultaneously
solving Eqs. �65� and �72� compared against the estimated tc

for two initial binding energies. For small p̌�, the analytic
approximation tc works well. At larger angular momenta, the
expression �66� underestimates the loss rate and the relax-
ation time is overestimated by tc.

The recombination times plotted in Fig. 19 follow from a
purely classical analysis. This analysis breaks down when
the initial energy U0 is near the ground state energy
+13.6 eV or when the initial angular momentum is on the
order of �. While U0�13.6 eV in the cases considered here,
the predicted p�

−4 divergence in the energy-loss rate �Eq.
�66�� is not physical when p���. This implies that there is a
minimum recombination time set by quantum uncertainty in
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FIG. 17. �Color� The average change in p̌� due to radiation ��p̌� /�t� �from Eq. �71�, solid curves� plotted against p̌� for a magnetic field of 1 T at binding

energies U=0.332 meV �black�, 1.54 meV �red�, and 7.14 meV �blue�, corresponding to �̌c=100, 10, and 1, respectively. To accommodate log-log plots, �a�
p̌��0, and �b� p̌��0 appear on seperate plots, with the sign of the vertical axis switched in the first case. Because p̌� includes energy in its definition, its rate
of change includes an energy change contribution as well as physical torque. The dashed lines, proportional to p�

−3, estimate dp̌� /dt in the region of strong
radiation ��p̌���0�, given by the second term in Eq. �72� and dominated by energy change. The dotted lines plot the torque due only to accelerations produced
by the magnetic force �i.e., due to cyclotron radiation�. Near the extreme values of p̌�, the plotted quantity becomes negative �not shown�.
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FIG. 18. �Color online� Evolution in �a� binding energy U and �b� rescaled
angular momentum p̌� due to radiation for two atom initial conditions. The

magnetic field is 1 T, and both atoms begin at U=3.43 meV ��̌c=3.5�. The
atoms are begun with p̌�=0.945 �solid curves� and p̌�=0.472 �dotted
curves�. In �b�, the dashed and dot-dashed curves show the values
p̌�= p̌� max that give �positively oriented� circular orbits for the higher and
lower initial p� atoms, respectively. The higher-p� atom radiates to a slowly
evolving, circular orbit before it reaches the chaotic cutoff energy
�7.14 meV for a 1 T magnetic field�. The lower-p� atom stays in an eccen-
tric orbit through its evolution past the chaotic cutoff.
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the positron position, which may be estimated by replacing
p�0

by ��, where � is a factor of order unity in Eq. �75�:

tcmin = T �mc2

U0
�3� ��

e2�m/U0
�4

=
1.68�4 �s

U0/1 meV
. �76�

No state at energy U0 can evolve to the ground state faster
than tcmin. The vast majority of states, having p�
�, will
take much longer than tcmin to relax, as seen by the p̌�0

4

dependence in Eq. �75�.
If atoms radiate for a given time �t starting at binding

energy U, there exist low and high values of p̌�, between
which atoms will have fallen to the ground state �i.e., for
which tc��t�. The estimated recombination time given in
Eq. �75� is even in p̌�, so the low and high values of p̌� have
the same absolute magnitude:

p̌�high = − p̌�low = ��t

T � U0

mc2�3�1/4
. �77�

By integrating an ergodic distribution in p̌� from
p̌�low to p̌�high, we may estimate the fraction of atoms that
will radiatively relax after a given time.

Figure 20 shows the estimated times required for 10%
and 50% of a distribution at energy associated with quantum
number n to relax to the ground state in a 6 T magnetic field.
The initial distribution is ergodic except for the restriction
that �p���� ��=1� and �p���2� ��=2�, in keeping with the
quantum estimate of Eq. �76�. The results at 50% recombi-
nation are consistent with a quantum calculation performed
by Topçu and Robicheaux.16 The 10% results predict a re-
combination time five times faster than Ref. 16 for n=35 and
�=2. The 10% recombination time depends sensitively on �
because the depleted region of phase space ��p������ is of
comparable volume to the volume of the radiating region.
Quantum effects are most important in these low-p� states,
and our result is only an order-of-magnitude estimate in this
region.

Figure 21 shows the fraction combined after one colli-
sion time �nv̄b2�−1 as a function of initial binding energy,

given a 6 T magnetic field and a number density of
108 cm−3. Three values of the ad hoc quantum parameter �
�from Eq. �76�� are shown: �=0 �a fully classical point of
comparison�, �=1, and �=2. For �=0 �uppermost curve,
black lines and dots�, suppression of radiation below the cha-
otic cutoff is clearly visible. For the other cases, where p� is
restricted to be larger than ��, in keeping with the estimate
of Eq. �76�, the combined fraction is suppressed �middle
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FIG. 20. �Color online� Estimated time required for 10% �a� and 50% �b� of
states from an ergodic distribution at quantum number n �U=13.6 eV /n2� to
relax to the ground state. Quantum effects are approximated by depleting the
initial distribution for �p�����. Dots and crosses are for �=1 and �=2,
respectively.
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curve, red and blue lines and dots�. One can see that the
value of the quantum parameter is important, indicating that
radiation is dominated by atoms with small p� and that a
fully quantum calculation of the radiative recombination is
necessary.16 Our results, based on classical dynamics with an
ad hoc quantum cutoff, can provide only an estimate of ra-
diative effects.

With this caveat in mind, let us estimate the fraction of
atoms that will relax to the ground state �due to radiation�
from the collisional energy distributions previously deter-
mined. We assume that the radiating fraction is small, so that
the distribution function f�	� is not perturbed from the colli-
sional one calculated earlier. �Later, we will discuss the limi-
tations of this assumption.�

As radiation causes atoms with the lowest values of an-
gular momentum p̌� to relax to the ground state, the ergodic
distribution in angular momentum becomes depleted around
p̌�=0. At any particular energy, this “hole” in phase space
widens as more time passes and the maximum angular mo-
mentum p̌�max for which atoms will have relaxed increases.
The number of atoms in the depleted region constitutes an
estimate of the fraction of atoms in the ground state.

Consider the collisionally evolved distribution f�	 , t�,
calculated in the previous chapter. We now “turn on” radia-
tion, allowing this distribution to radiatively relax for a pe-
riod of time �t. In this time some atoms at small angular
momenta will fall to the ground state. We may ignore the
simultaneous collisional evolution provided that we only
consider short radiative relaxation times �t compared to the
total collisional evolution time � /nv̄b2. In this case, the num-
ber of atoms NGS�t� radiatively relaxed to the ground state
from a fixed distribution f�	 , t� after time �t is

N�t� = nb3�
 f�	,t�

p̌�low�	,�t�

p̌�high�	,�t�

Pp�
�	, p̌��dp̌�d	

+ N100�t�

p̌�low�100,�t�

p̌�high�100,�t�

Pp�
�100, p̌��dp̌�� , �78�

where Pp�
�	 , p̌�� is the ergodic probability of finding an

atom with angular momentum p̌� at energy 	, given by Eq.
�17�. The second term in the integral above accounts for
atoms that have passed 	=100; i.e., the left boundary of the
numerical solution of f�	�. N100 is the number of such atoms,
all of which are assumed to lie at 	=100 for purposes of
radiation rate. Since p̌�high and p̌�low are proportional to �t1/4

�Eq. �77��, and Pp�
�	 , p̌�� is peaked around p̌�=0, a moder-

ate change in relaxation time �t has very little effect on the
estimated number of atoms N in the ground state. The black
curves in Fig. 22 show this estimate for two different choices
of the radiative relaxation time �t. The density is 108 cm−3

for all curves. As expected, the choice of �t has little effect
on the predicted number of ground state atoms formed.

To estimate quantum effects along the lines of the dis-
cussion surrounding Eq. �76�, we also calculated N�t� by
setting Pp�

�	 , p�� equal to zero for �p����. This has a strong
effect on N at early times when the mean binding energy is
weak, because strong radiation occurs only for �p����. This
indicates that quantum effects cannot be ignored when deter-
mining radiative relaxation of such weakly bound states.

The previous estimates artificially turned on radiation for
a time �t. In actuality, radiation is acting during the entire
collisional evolution. The radiation tends to depopulate
low-p̌� states, and collisions tend to repopulate these states
through Stark mixing.17,18 Let us estimate this effect by
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FIG. 21. �Color� The fraction of particles that would relax to the ground
state after 0.074 �s �one collision time at 108 cm−3 and 4 K� as a function of
initial energy, using a quantum estimate that requires �p�����. The purely
classical case is �=0 �black�. The quantum estimates are �=1 �red� and
�=2 �blue�. The dots come from simultaneous solutions of Eqs. �65� and
�72�, while the lines use the estimated relaxation time tc from Eq. �75�. The
dots and solid lines are for a magnetic field of 6 T. The dashed line is for the
magnetic-field-free case. At energies smaller than the chaotic cutoff, the
magnetic field reduces the recombined fraction below that for the unmag-
netized case.
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FIG. 22. �Color� The number of atoms NGS that are estimated to reach the
ground state per antiproton as a function of the transit time �Eq. �78��, using
several methods. The black curves are purely classical estimates and the red
curves include quantum effects by requiring �p����. The magnetic field is
6 T, the temperature is 4 T, and the density is 108 cm−3. The solid and
dashed curves are obtained by allowing the collisionally evolved distribution
after time t given by f�	 , t� to relax radiatively for a time �t, where
�t=0.1t and �t=0.05t, respectively. The dot-dashed curves show an esti-
mate if radiation is allowed to act continuously, and collisions are assumed
to populate low-angular-momentum states. The requirement �p���� �red
curves� strongly reduces the ground state fraction at early times where atoms
are weakly bound, but has less effect at later times where the collisional
cascade has populated more deeply bound states, and the Stark-mixing time
is longer.
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breaking it into a two-step process: beginning with a colli-
sionally evolved distribution f�	 , t�, ergodically distributed in
p�, radiation depopulates the low-p� states in a time �t,
creating a hole in the distribution. The hole is then filled in
by Stark mixing, and the distribution also evolves in energy
according to the previous collisional calculation. This as-
sumes that the fraction of p� states depopulated by radiation
is small, so that the radiation has only a negligible effect on
the collisionally evolved distribution calculated previously.
For �t, we then choose the time required to fill in the hole by
Stark mixing. We estimate this time as

�t =
	2

nv̄b2 . �79�

This time is longer for atoms at deep binding because such
atoms have a smaller collisional cross section. This is
roughly the scale on which the energy distribution evolves
collisionally �see Fig. 12�, and we assume that the angular
momentum distribution evolves on the same timescale. This
estimate clearly requires verification through more detailed
analysis.

In this crude model, the number of atoms NGS�	 , t� that
reach the ground state in time t from energy 	 is

NGS�	,t� = �
m=0

t/�t 

p̌�low�	,�t�

p̌�high�	,�t�

dp̌�Pp�
�	, p̌��f�	,m�t�nb3.

For small �t, this can be rewritten as

NGS�	,t� =
nb3

�t



p̌�low�	,�t�

p̌�high�	,�t�

Pp�
�	, p̌��dp̌�


0

t

f�	,t��dt�.

For deep binding, �t grows large and can exceed the total
evolution time t. To account for this, we must take the
smaller of t or �t in the denominator of the prefactor above.
With this consideration, the total number of atoms in the
ground state is given by the integral over 	. Switching the
time integration variable from t� to �= t�nv̄b2= t�� and using
the estimate for �t from Eq. �79�, the number NGS�t� is

NGS�t� = nb3�
 1

Min�	2,t��
p̌�low�	,�t�

p̌�high�	,�t�

Pp�
�	, p̌��dp̌�

�

0

t�

f�	,��d�d	 +
1

t�



p̌�low�100,�t�

p̌�high�100,�t�

dp̌�

�Pp�
�100, p̌��


0

t�

N100���d�� . �80�

As before, all atoms that have cascaded deeper than 	=100
are considered to be at this energy.

As before, we evaluate Eq. �80� using a pure classical
model, as well as a quantum estimate by setting Pp�

=0 for
�p����. The two results for the fraction of atoms in the
ground state are shown by the black and red dot-dashed lines
in Fig. 22. The quantum estimate yields a much lower

combined fraction at short times where the collisional cas-
cade has only populated weakly bound states. At longer
times, where more strongly bound states are collisionally
populated, radiation from states with p��� plays an impor-
tant role. For long transit times, deep binding is reached
through collisional de-excitation and radiation overtakes col-
lisional energy loss. For deeply bound atoms, the radiatively
depopulated hole around p̌�=0 now encompasses a large
fraction of available phase space, and the Stark mixing time
is long. Most such atoms relax quickly to the ground state, so
the hole is only filled in when atoms cascade from more
shallow binding.

The previous argument should be taken only as a crude
estimate of the effect of Stark mixing on the radiative recom-
bination rate. A more rigorous examination of this issue re-
quires solution of the master equation for the evolution of a
distribution in both 	 and p�, including radiative depopula-
tion of the low-p� states and collisional repopulation of these
states, and including quantum effects. This important but
computationally intensive problem will be the subject of fu-
ture work.

IX. CONCLUSIONS

A numerical solution of the master equation for colli-
sional evolution of the energy distribution of weakly bound
antihydrogen atoms in a cold positron plasma was obtained
using a transition probability rate density derived from a
classical Monte-Carlo simulation. Only transitions in atomic
binding energy were considered in the solution, with all other
variables assumed to fill an ergodic distribution. This ap-
proximation was justified by numerically evaluated atomic
orbits, and by agreement between the master equation solu-
tion and a time-consuming simulation where no such ap-
proximation was made.

The approximation of ergodic orbits was shown to apply
well over all investigated binding energies. Ergodic phase-
space distributions differ qualitatively between guiding-
center drift atoms and chaotic atoms. In the first case, the
cyclotron action provides an additional constant of the mo-
tion and modifies the distribution from the fully ergodic,
three-dimensional form seen in chaotic atoms. At each bind-
ing energy, atom orbits were found to qualitatively fill the
appropriate distribution. This had important consequences
for magnetic confinement of antihydrogen. An increase in the
number of low magnetic field seeking states was seen to
accompany the shift from guiding-center atoms to chaotic
atoms �Fig. 4�. This shift improves prospects for magnetic
confinement of charge-neutral antihydrogen once deeper
binding is reached.

The master equation solution shows that the distribution
in energy evolves collisionally to a nearly flat, steady-state
value with a power-law tail. The steady state is rapidly es-
tablished at binding energies weaker than the kinetic bottle-
neck, then progresses slowly to deeper binding, reaching the
chaotic cutoff in a few hundred to a few thousand collision
times. The flux of atoms to deeper binding is constant in the
steady-state region �but not in the power-law tail� and scales
with temperature as expected;5 i.e., as T−9/2. However, anti-
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hydrogen atoms observed in experiments lie in the tail, not in
the steady-state region, so their formation rate does not
match the steady-state value. In particular, the scaling of this
rate with plasma temperature depends strongly on antiproton
transit time, and is much less dependent on temperature than
the steady-state flux, as seen in Fig. 14.

The estimated rate of radiative energy loss, also in the
classical approximation, was used to predict the number of
atoms that relax to the ground state. Only atoms with chaotic
orbits, due either to low angular momentum �helical atoms�
or deep binding, radiate significantly. The fraction of atoms
where the collisional cascade to deep binding is outpaced by
radiative energy loss increases with deeper binding, espe-
cially as the chaotic cutoff energy 	c is reached. Collisional
Stark mixing enhances this capture rate by repopulating rap-
idly radiating, low-angular-momentum states, but quantum
effects limit the radiative rate. For an antiproton transit time
of 10 �s through a 4 K positron plasma with density of
108 cm−3 and a magnetic field of 6 T, our crude estimates
predict that around one antiproton transit in 10 000 will re-
sult in a ground-state atom �see the red, dot-dashed curve in
Fig. 22�.

The radiation rate depends sensitively on angular mo-
mentum as well as energy, implying that a more rigorous
determination of the angular momentum distribution will be
needed in the future. Such a determination requires a more
comprehensive solution of the master equation, preserving
evolution in both energy and angular momentum, to cor-
rectly characterize the distribution of angular momenta dur-
ing the collisional cascade. In addition, a quantum calcula-
tion of the radiative energy loss similar to Ref. 16 must be
combined with the collisionally evolved distribution in order
to properly account for radiation from states with angular
momenta of order �. This computationally intensive but im-
portant problem will be the subject of future work.
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