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Theory of vortex crystal formation in two-dimensional turbulence
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Experiments on pure electron plasmas have found that the decay of two-dimen&@nal
turbulence can lead to spontaneous formation of “vortex crystals,” which are symmetric arrays of
strong vortices within a background of weaker vorticity. This paper presents a theory of these novel
equilibrium states of 2D turbulence. The paper consists of two parts. In the first part, we show that
the vortex crystals are well described as “regional” maximum fluid entrédpyIFE) states, which

are equilibrium states reached through ergodic mixing of the background by the strong vortices. In
the second part, a theory is advanced that allows us to predict from the initial conditions the
approximate number of the strong vortices in the final state 2600 American Institute of Physics.
[S1070-664X00)90705-5

I. INTRODUCTION Vortex crystals are not predicted by previous theories of

. i freely decaying 2D turbulence. The inverse cascade theory of
Some properties of certain natural turbulent flows can beyaichelor proposes that the energy of 2D turbulence cas-

described by two-dimensionalD) models. Examples of cages to large scaldsAs a result, 2D turbulent flows are
such flows include hurrlcar!es, Iargg scale ocean eddies, a'%‘;(pected to decay into structures that have a typical dimen-
the Great Red Spot on JupiteThe simplest model of freely gjon comparable to the system size. The statistical theory of
relaxing 2D turbulence is the 2D Euler equation, in which,p turbulence, initiated by Onsadeand further developed
the flow is inviscid and incompressible. In this model, theby Joyce and Montgomerry,MiIIer,G and Robert and
vorticity of the flow, w(r,t) =V Xv(r,t), is convected by the  gommerid assumes that vorticity of a 2D turbulent flow is
velocity field v(r,t) according to the Euler equatiofto  grgodically mixed. We refer to this theory as global maxi-
+v-Vw=0. The stream functiog/(r,t) determines the ve- ., fluid entropy(GMFE) theory. Like Batchelor's theory,
locity by v=V X yz= (dyi, — dxt), and is related to the vor- GMFE theory predicts smooth vorticity distribution over

ticity via the Poisson’s equation scales of system size in the relaxed states of turbulent flows.
) The existence of strong vortices with radius much smaller
Vy=—-w. (1) than the system size indicates that vortex crystals cannot be

explained by either the inverse cascade theory or the statis-
In this paper, we present a theory of “vortex crystals,” tical theory.

which are surprisingly complex yet ordered equilibria result-  The emergence of isolated strong vortices in 2D turbu-
ing from the inviscid relaxation of 2D turbulence. Vortex lence has been previously observed in computer
crystals were discovered in recent experiments by Fingimulations® Based on these observations, Carnewlel.
et al? The experiments were performed with pure electronproposed a punctuated scaling theQFyST).lO This theory
columns, whose dynamics is isomorphic to the 2D Eulerdescribes 2D turbulence as a collection of strong vortices
equation with free-slip boundary condition in a circular re-whose chaotic dynamics can be described by the Hamil-
gion (i.e., #=0 on the circular boundayy In the experi-  tonian dynamics of point vortices punctuated by occasional
ments, initial conditions are chosen so that strong vorticesergers of like-sign strong vortices. The theory predicts that
(compact patches of high vorticitform due to a Kelvin—  the number of strong vortices should decrease according to a
Helmholtz instability. The strong vortices move chaotically power law, until only a single vorteor a pair of opposite
due to mutual advection, resulting in pairwise merger eventsigned vortices remains. The early evolution of the flows
and the formation of filamentary structures. These filamentshat form vortex crystals agrees with PSHowever, the
are mixed by the flow, forming a low vorticity background. theory does not explain why several strong vortices remain
This turbulent flow then relaxes spontaneously to a vortexand form equilibrium patterns in the relaxed states.
crystal equilibrium, in which a number of strong vortices  In this paper, we show that vortex crystals form due to
remain and form a stable pattern in the low vorticity back-an interaction between the strong vortices and the low vor-
ground. The equilibrium pattern of strong vortices persistsicity background. The key idea is to recognize that some
for 10* turnover times of the column, until nonideal dissipa- regions of the flow are well-mixed, while other regions are
tion e.ffects dgstroy the individual strong vortlce§. Severa}hot_ The strong vortices ergodically mix the background,
experimental images of the vortex crystals are displayed igiriving it toward a state of maximum fluid entropy. This

the top row of Fig.1. mixing, in return, affects the punctuated dynamics of the
strong vortices, “cooling” their chaotic motions, and driving
*Paper UI2 4 Bull. Am. Phys. Sod4, 290 (1999. j[hem toward an gquilil_nrium pattern. Howeyer, the _vorticity
"Invited speaker. in the strong vortices is trapped and remains unmixed. The
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FIG. 1. (Color Top: examples of experimental images of vortex crystal stagd®en from Ref. B Bottom: corresponding regional maximum fluid entropy
states. False color contour plots of vorticity are displayed.

resulting equilibrium is called a “regional” maximum fluid The fluid entropyS wy(r)] of the background can be
entropy (RMFE) state, in order to distinguish it from the calculated by counting the number of ways of arranging mi-
GMFE state that allows no unmixed regions and hence naroscopic vorticity elements to obtain the given coarse-
strong vortices. The RMFE theory predicts the positions ofgrained vorticity wy(r). For the simplest case of vorticity
the strong vortices as well as the vorticity distribution of theelements all having the same positive vorticity, the en-
background, provided that several conserved quantities dfopy is Fwp(r)]=—fdrp(r)Inp(r)+(1—p(r))

the 2D Euler flow are known; these include: the total circu-XIn(1—p(r))], wherep(r)= w,(r)/w; .5’ The second term
lation, total angular momentum, and total energy, as well ass due to the incompressibility of the vorticity elements, and
the number of strong vortices and the vorticity distributionsdoes not appear in the usu@oltzmann expression of the

in each strong vortex. entropy for a point vortex flow.

However, the RMFE theory must assume a given num-  Maximization of § w,(r)] enables us to find the RMFE
ber of strong vortices remains in the final state. The secondtate. However, the maximization must be constrained by
half of this paper outlines a method for predicting the num-several dynamically conserved quantities. First, the flow con-
ber of strong vortices in the vortex crystal from characteris-serves the total circulatioi = [dr? »; the angular momen-
tics of the initial flow. Two time scales are important: the tum L= — [dr? wr?/2 (conserved since the flow is bounded
average timer,, between mergers, and the timgrequired by a free-slip circular boundary and the energy
to cool the chaotic motions of the strong vortices throughH = [dr?|v|?/2= [dr? yw/2. Second, the vorticity levels of
their interaction with the background. Whet), becomes the microscopic vorticity elements making up the back-
longer thanz., the strong vortices cool into a crystal state ground must be specified. Finally, the numbgrof the sur-
before the next merger event can occur and the mergesdving strong vortices and the vorticity distributioris(|r
cease, leaving), vortices in the final state. Through estima- —R;|), i=1,... N. in each strong vortex are conserved.
tion of 7, and ., we find thatN; can be predicted from the HereR,; is the position of theth strong vortex(These prop-
characteristics of the turbulent flows in the early stage of thesrties of the strong vortices are dynamically conserved since

relaxation. we focus here on the evolution of the flow after mergers of
the strong vortices have ceased.
Il. RMFE THEORY The maximization ofS while keepingH, L, andI" con-

In this section, we show that vortex crystals can be ex—Stant 's carried out by finding the extrema $f=S- 5(H

plained by ergodic mixing of the background by the strong_QL+“F) with respect to the independent va_rla}b{és}

. ' . ndwy(r). Here,B, Q, andu are Lagrange multipliers that
vortices. To do so, we first characterize the RMFE states, an?an be interpreted as inverse temperature. rotation frequenc
then show that the vortex crystal states are well-described b P b i q Y

RMFE states. More detailed presentations of the theory ca%nd the chemical potential, respectively. The extrem&'of

be found in Refs. 11 and 12. with respect to[R;} are given by

Ergodic mixing of the background, due mainly to the 9S’
strong vortices, causes the background to approach a maxi- 75~ = 75" (H—QL)=0. ()
mum fluid entropy state. To be more precise, the macro- ' '
scopic state of the background, specified by a coarse-graine&inceH — QL is the Hamiltonian of the system in a frame
vorticity distribution wy(r), approaches a functional form rotating at frequency?, Eq. (2) shows that in the RMFE
that allows the maximum number of arrangements of thestate the velocities of the strong vortices are zero in this
microscopic vorticity elements in the background. Since onlyrotating frame: in other words, the strong vortices are in
vorticity elements in the background are mixed, this state igquilibrium, rotating rigidly at frequenc{.
termed an RMFE state, to distinguish from the GMFE state  The extremum ofS’ with respect towy(r) is given by
that allows no unmixed regions. 8S'=0, i.e., fdrqInp(r)—In(1—p(r)) + Bwsp]Sw,(r)=0
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for small, arbitrarydwy(r), where =+ 3Qr?+ u is the N(t)=N(to)(t/tg) "%, 4
stream function in the rotating frame. Therefore, the equilib- _ ) )
rium vorticity distribution is predicted to be where&>0 is a constant, ang, is any time chosen from the
range of times where the power law scaling is observed.
wp(r) = wr /(PP +1). (3)  (Typically, this time range does not include the initial con-

This is very similar to the Fermi distribution in quantum dition of the flow, since it often takes some time for the

statistics, which is not unexpected since the microscopic vorstrong vortices to form.Other quantities associated with the

ticity elements are incompressible. strong vortices also evolve in time according to power laws.
We now show that the observed vortex crystals are wellFFor example, the average circulation per vortex of the strong

described by RMFE states. From an experimental flow, wevortices,I'(t), increases in time as

first determine the number of the strong vortidds by o -

counting the clumps with local vorticity extrema much larger ~ T'(t) =T (to)(t/to) 7%, 6)

than the average vorticity of the flow. Next, the vorticity

distribution in theith strong vortex (=1, ... N,) is speci- where >0 is a constant. Although PST predicts fixed val-

fied by the vorticity radial profile;(|r—R;|) around the lo-  U€S for the (_axponents, we find .that their values vary in dif-
cal extremum. The vorticity profilérather than merely the ferent experlment.s. and simulations. We therefore take Egs.
circulation of each strong vortex is required because thel4) @nd(5) as empirical laws, and measup@nd¢ separately
self-energy of the strong vortex must be includedHin from each flow. _ _

In order to completely specify the problem, we must The average timer,, between successive mergers is

choose a value for the Fermi vorticity; associated with the 9Ven by the time required for the number of the strong vor-

vorticity elements of the background. In fact, the generaflices to decrease by JAN=-—1. _Flo_r large N, AN/7p,
= s, ~dN(t)/dt= — EN(to) (t/ty) L /to, where in the

theory allows for a distribution of values fas;,%’ but we
have found that a single value is sufficient to explain the!@St Step Eq(4) was used. Therefore,
experimentsiw;=2.15 is used in all of our calculations. A . ] -1 1+
discussion of the physical reasoning behind this choice can "™ L(AN/dt) =tog™ *N(to) " (t/to)" " (©)
be found in Refs. 11 and 12. Lengths are scaled pythe The cooling time scaler, is estimated from the time
radius of the circular free-slip boundayyand vorticities are  scale for the strong vortices to completely randomize the
scaled byl'/rg,. background flow. This is the time scale for vorticity elements
Along with o and {;, we also evaluate the conserved of the background to be distributed randomly, and hence the
quantitiesH, L, and I' from the experimental flow using time scale for the background to approach to the maximum
their previous definitions. These inputs from the experimenentropy state, in which the strong vortices are in equilibrium.
tal flow determine the Corresponding RMFE state with no Assuming that the Strong vortices are primary mixers of
free parameters. For fixed; and {; we numerically search  the background, we can estimate the complete randomization
for the proper values 08, (), andu needed to match the time of the background by treating the strong vortices as
experimental values off, L, andI', with the background point vortices, and the background as passive scalars. We
vorticity given by Eg.(3). Meanwhile, we also search for then study the chaotic advection of passive scalars in the
{Ri},i=1,... N, so that Eq(2) is satisfied. fields of point vortices in order to understand the mixing of

The RMFE solutions reproduce the observed vortexhe background. This approach to understanding complex
crystal patterns and the observed background vorticity, aguid mixing was pioneered by Aréf:1

shown in Fig. 1. The trajectory of a passive scalar is chaotic if its
Lyapunov exponenk is positive, nonchaotic otherwise. The
Ill. ESTIMATION OF N, Lyapunov exponent of a trajectory is defined in terms of the

difference or(t)=r(t) —r,(t) of two infinitesimally close
In the previous section, the numhég of strong vortices  trajectories, ry(t) and ro(t): A=lim .t~ * In(|or (t)|/
in the vortex crystal was not predicted by the theory; rather| sr(0)|). Since the rate of mixing of the passive scalars in
it was merely taken as an experimental input. In this sectiofihe flow field of the point vortices is given by the Lyapunov
we show thatN. can be roughly estimated from certain char- exponents\ of the chaotic trajectories of the passive scalars,
acteristics of the turbulent flow in the early stages. we identify the inverse cooling timec’l with the average

The analysis depends on the physical picture of vorte y45,n0y exponent of a collection of passive scalars,
crystal formation discussed in the Introduction. In particular,comting only those passive scalars with positive

we need to estimate the average time between successive We can estimata with dimensional analysis. When the

merger eventsr,,,, and the “cooling” time 7., defined as . . ) . .
the time scale for the vortices to cool into a vortex crystal pomt vorpces have appro_xmately_ equal cwculaﬂon; and
" their motions are chaotic in a region of aréathe main

We can estimater,,, from the observed time evolution . . . .
N(t) of the number of the strong vortices in the early stagePYsical quantities that determineare the average circula-

of the turbulent evolution. As previously discussed intion I' of the point vortices and the average distarize

connection with PST, numerical simulatidnsand = VA/N between the nearby point vortices. This implies that
experiment$'* have found thaN(t) evolves according to a = =
power law 7. =A=~al'ID°=al'1/A, @)
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' ! - * . PR this is so is not completely understood. One possibility is that
= o -7 ] our model assumes that the strong vortices are randomly
2 =0 o 0/’ 3 distributed after each merger event, requiring a full cooling

S X 0*// B . cre . .

o e . time 7 to relax to equilibrium. However, by the time of last
S 10 % ;/’ 3 merger event, the strong vortices are no longer randomly
o < OQ’Q?/ ] distributed, and may be close to their equilibrium positions.

= et simulglion:
L , PeT e IV. DISCUSSION

o}

0 10 20 , .
N, (predicted) Until now, vortex crystals have only been observed in

turbulent flows with a single sign of vorticity, subject to a
circular, free-slip boundary condition. It is of interest to de-
termine whether vortex crystals can form in more general
cases with both signs of vorticity and/or different boundary
conditions. As we have shown in this paper, one requirement
is that there should be many strong vortices in the initial
wherew is a constant, anfiy=NT is the total circulation of  stages of the turbulent flow. Our theory also suggests that
the point vortices. Numerical calculations confirm K@),  two conditions are crucial for vortex crystal formation. First,
with @~0.03113 calculations similar to those we have done in Ref. 11 should
The cooling timer, depends on the total circulation of be carried out for more general flows to reveal that ordered,
the strong vortices, which decreases as the strong vorticegable structures for the strong vortices can emerge by maxi-
merge. From Egs.(4) and (5, we obtain I't(t)  mization of the fluid entropy of the low vorticity back-
=N(to) I (to) (t/to) "¢ ¢. Therefore, from Eq(7) we find that  ground. The second condition is that the mixing time seale
the cooling time increases as the flow evolves of the background must be sufficiently fast. This can be in-
vestigated by considering the chaotic advection of point vor-
~ A (l ®) tices, as we have done in Ref. 13. It is conceivable that
aN(t)T'(to) | to can vary considerably depending on the characteristics of the
. . turbulent flow. For example, if there are an approximately
timecr?irgrizarslfgvr\]/l Oftﬁgifs) :}zge(s)jgovz_shg:zgcrgz\;\gt:z equgl number Qf. similar-sized positive and negative strorig
v m = . ' 9 vortices, the mixing of the background may not be as effi-
from 7,<7., 7, will eventually catch up withr, att=t,, . L . .

’ . . cient as the case we have studied in this paper, since the
and mergers of the strong vortices will stop. Hegs found opposite signed strong vortices tend to form dipole pairs and
by setting7.~7,, and from Eqgs(6) and (8) we arrive at
ty~to(£A atol (to)) YA 79, Accordingly, the number of the

hence at least partially cancel each other's mixing ability.
strong vortices in the vortex crystals is obtained by settinpACKNOWLEDGMENTS
t=t, in Eq. (4)

FIG. 2. Comparison of the predicted numib&rof the strong vortices in the
vortex crystals with theN, of the experiments and the simulations. Each
data point represents a particular evolution of the turbulent flow.
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