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This paper examines two-dimensional vortex motion in a shear-flow with nonuniform vorticity.
Typically, a vortex travels to an extremum in the background vorticity distribution. In general, the
rate of this migration increases with the magnitude of the background vorticity gradient; however,
a retrograde vortex, which rotates against the local shear, nuydess of magnitudéaster than a
prograde vortex of equal strength. Retrograde and prograde vortices travel at different speeds
because they perturb the background vorticity differently. Linearized equations accurately describe
the background vorticity perturbation that is created by a weak retrograde vortex, whereas nonlinear
effects dominate for a prograde vortex of any strength. An analytic theory is developed for the
velocity of a retrograde vortex, based on the linearized equations. The velocity of a prograde vortex
is obtained by a simple “mix-and-move” estimate, which takes into account the nonlinear trapping
of fluid around the vortex. Both velocity predictions are verified by vortex-in-cell simulations. If the
ratio of background shear to background vorticity gradient exceeds a critical level, there is no vortex
motion up or down the background vorticity gradient. Estimates of the critical shear are obtained for
both prograde and retrograde vortices. These estimates compare favorably to vortex-in-cell
simulations. ©2001 American Institute of Physic§DOI: 10.1063/1.1359763

I. INTRODUCTION vortices to lose their intensity, so that they are eventually
sheared apart. As a result, the shear-flow becomes axisym-
Two-dimensional(2D) shear-flows, from laboratory to metric. This experiment demonstrates that the rate of axi-
atmospheric scales, typically contain long-lived vortices.symmetrization can be controlled by the rate at which vorti-
Such vortices are carried along by the shear-flow, but theges move along a background vorticity gradient.
can also drift in the transverse direction. This transverse drift ~ Vortex motion on a background gradient also applies to
is generally toward an extremum in the vorticity distribution the problem of hurricane motion; here, the background vor-
of the shear-flow, i.e., a peak or trough in the “background” ticity gradient includes the north-south variatigs) in plan-
vorticity. etary vorticity. The prediction of hurricane tracks is a prob-
In this article, we derive simple expressions for the ratelem of great practical importance, so it is hardly surprising
at which a vortex drifts transverse to the shear-flow, up othat a considerable body of literature has been devoted to the
down a background vorticity gradient. These analytic resultsubject='? As mentioned earlier, we focus on the regime
are found to agree with vortex-in-cell simulations of the 2Dwhere (i) the vortex is point-like, andii) the background
Euler equations. We focus on the regime where the vortex ilow has strong shear. Perhaps because this regime is not of
point-like, and the background flow has strong shear. In thislirect application to hurricane motion, the results described
regime, we find that the vortex speed increases with the magp this paper(and the earlier lettér have not been discussed
nitude of the local background vorticity gradient, whereaspreviously. Nevertheless, while point-like vortices and
the vortex speed decreases as the local background shesirong background shear may be rare in geophysical settings,
intensifies. When the shear-flow is reversed, the vortex spedtiey are common in non-neutral plasf&s®and may also
changes byorders of magnitudeWe also demonstrate that be found on planets like Jupiter that have intense storms in
there is a critical level of background shear, above which thetrong zonal wind$®
transverse vortex motion is suppressed. A brief account of We assume that viscosity and compressibility are negli-
some of these results has been published in a previous’ettegible; that is, we assume that the flow is governed by the 2D
One motivation for this article is a recent electron Euler equations:
plasma experimefibn the free relaxation of an unstable cy- Py
lindrical shear-flow. In this experiment, a Kelvin—Helmholtz —
instability generates multiple vortices within the shear-flow. Jt
These vortices then “creep” radially outward, down a back-  7=2xV, (1b)
ground vorticity gradient. The outward radial drift causes the

+0-V{=0, (1a

VEy={. (10

dpresent address: Advanced Study Program, National Center foHereﬁ(Fat). is the velocity figldg(r,t)zz~ V Xﬁ. is vorticity
Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307. and (r,t) is a stream function. The variabieis a 2D po-
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sition vector ¢-F=0), andt is time. For analysis, the vor- whereas holes descend the gradefitFigure 2 illustrates
ticity is decomposed into vorticesv) and background this phenomenon for the case of cylindrical geometry, point-

(b): {=¢pt+2¢,. like vortices and strong background shear.tAtO, a clump
In order to facilitate discussion, we make the following (black spot and a holgwhite spoj are placed in a cylindri-
definitions: cal shear-flow. The system is evolved with a vortex-in-cell

(VIC) simulation that numerically integrates the 2D Euler

equations(see Ref. 15 for a description of the VIC simula-

tion). Eventually, the clump is driven to the peak in back-

ground vorticity, whereas the hole is driven toward the mini-

I',>0 for clumps, mum.

I,<0 for holes, (2) Figurg 3 shqws the gradient-driven separation of a glump
and hole in straight zonal flow. The flow is evolved using a

whereI',=fd?r¢,. This terminolog§ is motivated  v|C simulation in a periodic box. As beforéFig. 2), the

by the fact that a clump is a localized excess of vor-clymp migrates to the peak in background vorticity, whereas

ticity, whereas a hole is a localized deficit of vorticity. the hole migrates to the minimum. Thus, clumps and holes

In a geophysical context, a clump is a “cyclone” in tend to opposite extremes in the background vorticity, in

the northern hemisphere, whereas a hole is amoth curved and uncurved geometry.
13 1 ” 17 ] .
anticyclone. When the boundary conditions have rotational or trans-

(i)  Suppose that there is a background shear-flayv |ational symmetry, the opposite drifts of clumps and holes
=AyXsuperposed on a vortex =0, wherex andy  are easily explained using conservation of angular or linear
are Cartesian coordinates. The quanétywith units  momentum. Similar arguments have been used to explain the
of frequency is called the “local shear-rate” of the motion of phase-space density clumps and holes in plasma
flow. Furthermore, the vortex is termed “retrograde” t,rpulence-?
if it rotates against the local shear, whereas it is  \we first consider a small clumiFig. 4@)] or hole[Fig.
termed “prograde” if it rotates with the local shear; 4(p)] in an initially axisymmetric backgrouné,(r, 6,t) that
that is, decreases slowly with. Here, {,6) is a polar coordinate
I',/A>0 for retrograde vortices, system, with its origin at the center of the backgroud. In

(3)  time, background vorticity contours tend to wrap around the

vortex, or evolve in such a way that a plateau starts to form

in the #-averaged background vorticity profile. We refer to
this process as the local “phase-mixing” of vorticity.

(i) A vortex is a “clump” if its total circulationl", is
positive, whereas a vortex is a “hole” if its total cir-
culation is negative; that is,

I',/A<O for prograde vortices.

The clump/hole status of a vortex determinesdit®c-
tion of motion through the background vorticity distribution
{,. On the other hand, thgpeedat which a vortex climbs/
descends a background vorticity gradient depends on
whether it is retrograde or prograde. T=0 1.5

As illustrated in Fig. 1, both clumps and holes can be
either retrograde or prograde, depending on the sign of the
local shear-ratéA. In Secs. llI-VII, we will focus on the
motion of a single small vortex in a cylindrical shear-flow,
where the initial background vorticity is positive, axisym-
metric and decreases monotonically with radiusin this
backgroundA is positive, making a clump retrograde and a vorticity
hole prograde. _ _ . . . .

We now brifly discuss the basic physics of vortex mo-i5 2, 11C susioncl o grdeniten e sepvan o e

tion driven by a background vorticity gradien_t._ It is W_ell dimensionless measure of time that is introduced in Secfdllow-
known that clumps ascend a background vorticity gradienting Eq. (16)].
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FIG. 3. VIC simulation of the gradient-driven separation of a clump and hole in straight zonal flow. The numbers on each snap-shot indicate time

in arbitrary units.

The phase-mixing of background vorticity near the vor-

When there is no local vorticity gradient, local phase-

tex causes the vortex to move. If the fluid is contained by amixing does not affect the background vorticity distribution.

free-slip cylindrical boundary at=R,,, the motion is con-

strained by conservation of canonical angular momeritum,

Therefore, wheré{ =0, there is no local mechanism for the
vortex to exchange angular or linear momentum with the

P,=/d?rr2(r,6,t). This canonical angular momentum is background. This suggests that clumps will settle on hills of
a convenient simplification of the actual angular momenturrbackground vorticity and that holes will settle in troughs,
per unit length of the fluid, which is defined by the equationwhere ¢/ =0. This relaxation principle is consistent with

L=2-[d?r X pi=2p(ToRe—P,). Here, p is the uniform
mass density of the fluid, anld,, is the total circulation of
the flow.

It is convenient to writeP, in terms of a background
contribution and a vortex contribution,

Py=Tp(r?)p+T,r2. (4)

HereI',>0 is the total circulation of the background flow,
I', is the vortex circulationr, is the radial position of the
vortex and(r?), denotes the,-weighted spatial average of
r2. As shown in Fig. 4, local phase-mixing increage$),,
by flattening the backgroungince {;(r)<0]. To conserve
Py, the clump {,>0) must decrease, and climb the
background gradient, whereas the hole,€0) must in-
crease, and descend the gradient, as observed in Fig. 2.

If the fluid is bounded by parallel walls gt=*Y, the
2D Euler equations conserv®,, the canonical linear
momentum-’

PXEJ dzx yg(X,Y-t):Fb<Y>b+Fuyu- (5)

Figs. 2 and 3.

We now turn our discussion to the speed of the vortex
motion. We will see in Sec. IV that retrograde vortices move
toward extrema of,, orders of magnitude faster than pro-
grade vortices of equal strengffi,|. This is because retro-
grade and prograde vortices perturb the background vorticity
differently. In the case of a weak retrograde vortex, a linear
model (Secs. Il and 1] provides a good approximation for
the evolution of the background vorticity perturbation. Using
this linear model, we will obtain an analytic expression for
the vortex velocity that agrees with vortex-in-cell simula-
tions. On the other hand, a prograde vortex generally creates
a nonlinear perturbation to the background vorticity, over the
time scale of interest. As a result, the motion of a prograde
vortex is better described by a simple “mix-and-move”
model, which we will describe in Sec. VI.

A sufficiently large background shear will suppress the
gradient-driven motion of both retrograde and prograde vor-
tices. For both cases, we will estimate the critical levels of
shear that are required to prevent excursions toward extrema
of {,. These estimates compare favorably to vortex-in-cell

Here (x,y) is a rectangular coordinate system in the plane okjmulations.

the flow. The motion of a vortex along thegradient ingy,
can be explained by conservationRf, just as motion along
the radial gradient was explained by conservatiorPgfin

We now give an outline of the main text. In Sec. II, we
present a simple linear theory of vortex motion that is driven
by a background vorticity gradief@n abbreviated version of

cylindrical flow. If £;(y)<0, local phase-mixing increases this simple theory appears in Refl. In Sec. IIl, we present

(y)p - By conservation oP, a clump must climb the gradi-

a more detailed linear theory for the case of a weak vortex in

ent and decreasg, , whereas a hole must descend the graa cylindrical shear flow. In Sec. IV, we compare the linear

dient and increasg, .

®

hole
Li<0||™™

FIG. 4. Local phase-mixing of the background vorticity increasé%, . By
conservation oP,, clumps and holes react oppositely.

theory of Sec. Il to a nonlinear VIC simulation. We find that
linear theory works well only for retrograde vortices, and
fails for prograde vortices. In Sec. V, we discuss why linear
theory fails for prograde vortices. In Sec. VI, we obtain a
more accurate estimate of the velocity of a prograde vortex
in a cylindrical shear-flow, using a simple “mix-and-move”
model. In Sec. VII, we show that gradient-driven vortex mo-
tion is suppressed when the local shear-rate is sufficiently
large. In Sec. VIII, we summarize our results, and discuss
some physical systems where they may apply. Many inter-
mediate results are derived in the appendices.
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where§(X—X,) is the two-dimensional Dirac delta-function,
centered at the vortex position. The equation for the vortex

/’_\
1 trajectory is given by
>> @ < %, =AYy, X+2X Vs , (10)
V v

AT wherex,(t) andy,(t) are the vortex coordinates along the
“ @ (b) x-axis andy-axis, respectively.

® If the vortex is sufficiently weakI(,—0), it is reason-
FIG. 5. Initial streamlines near a retrograde vortaxand a prograde vortex able to negIeCt terms in E(ﬁ8) _that are_' sec_ond order vy
(b) in a linear shear-flows,=Ay%, A>0. and 6,. Then, we are left with the linearized Euler equa-

tion,
48¢, 6L,  IoY

Il. SIMPLE CALCULATION OF GRADIENT-DRIVEN at Ay ox + ox $o=0. (11)
DRIFT

This linearized Euler equation clearly breaks down at dis-
In this section, we determine the speed at which a pointtances less thah[Eq. (7)] from the point-vortex, where the
vortex in a shear-flow moves up/down a background vorticvortex velocity field(incorporated indi) can not be treated
ity gradient, making a few reasonable approximations tha@s a perturbation to the background shear-flow. The time
reduce the algebra. A more detailed analysis is presented gtale for the linearized Euler equation to remain valid is
Sec. lll, for the case of a point-vortex in a cylindrical shear-addressed in Sec. V.

flow. We focus our present attention on the initial evolution of
For simplicity, we suppose that the initial velocity field 6, . During this “fast time scale,” the vortex is approxi-
near the vortex is given approximately by mately stationary; that ix,=0. We also assume that, in the

background, the vortex contribution @/ [Eq. (9)] domi-
(6) nates the contribution frondZ,. This implies that, in the
background,sy=(4m) T, In (x*+y?). Using this approxi-

I, xy—ykx

U(X,y,t=0)=AyX+ E XZTyZ

Here, ,y) is a rectangular coordinate system, centered apnation, Eq.(11) reduces to
the initial vortex position. The first term on right-hand-side 9 9
of Eq. (6) is the first nonzero term in a Taylor expansion ﬁ*‘AY&
(aboutx,y=0) of the initial background shear-flow. The sec-
ond term in Eq.(6) is the vortex velocity field. We also Equation(12) can be solved by the method of characteristics,
assume that there is an approximately uniform vorticity graYielding
dient, {, ¥, in the region of interest surrounding the vortex. T ¢
Figure 5 shows the velocity field that is given by E), 8Lp= 7 ° A—°
for the case of a clumga) and a hole(b). In this figure, ™ Ay
A>0, so the clump is retrograde and the hole is prograde. The transverse velocity, of the vortex is given by the
For a retrograde vortexFig. 5@], there are stagnation y-component of Eq(10), which has the following integral
points at a distanckabove and below the vortex, where solution:

I=V|l,27A|. (7 .95y

Yo = IX

r, x
~5§b+§éz;2+—y2=0. (12)

x2+y?

N G AyhZHy?

. (13

It is evident that the vortex velocity field dominates the back- 8
ground shear-flow at distances less thafnom the vortex. 1 (= (= . —x
Fora prograde vortex, there_ are no stagnation points, and we = _f f dy dx———— — 8Lp(X%,Y,1).
will see(Secs. IV-VI) that this fact has a profound effect on 27 Joo ) o (X, =X) "+ (Y, —Y)
the evolution of the system. (14)

In time, the vortex creates a perturbatiéti,(x,y,t) to . .
the background vorticity, and moves in response. The EulePVer the fast time scale, the vortex remains close to the
equation for the evolution of vorticitjEq. (18] can be writ-  ©rigin; so, we leX,=0 in Eq. (14). If in addition we substi-
ten as a set of two coupled equations: one for the evolutiof'te the linear resulEq. (13)] for 6Z, into Eq. (14), we

of 8¢, and the other for the point-vortex trajectory(t). obtain

The equation ford{, near the vortex is given by T, Zbidy [+ u ul+1
asLy asy| 98Ly SY [, 3Ly y”:4w2Kf. TJ_wd“uzﬂ'” (U—ADZ+1]’
Tt YT Ty Tk Tk et Ty }:O’ ® (15

whereu=x/y. A small scale () and a large scald.() cut-off
are introduced in thg-integral to keepy, finite. The small
scale cut-offl is given by Eq.(7): at distances closer to the
V25y=6,+T,6(X—X,), (9 origin (the vortey, the linear-resul{Eq. (13)] for 8¢, is

where 8y is the stream function perturbation. The stream
function perturbation satisfies the equation
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invalid. The large scale cut-off is ambiguous, without fur- flow by {,(r) and Q,(r), respectively. In addition, we de-
ther specification of the background shear-flow. Presumablyjote the radial and angular positions of the vortexr pft)

L is the distance from the vortex where our initial approxi-and 6, (t).

mations of the background shear-flow become inaccurate. If ~We restrict our attention to weak vortices. To make this
the background velocity field is curved, as opposed/go statement quantitative, we introduce the dimensionless pa-
=Ay¥, thenL is likely the radius of curvature at the vortex rameter

position. If the shear-flow is straight, thdn is likely the T -
length scale for variations ig;. In any case, we have as- I/r :i, / v ] (17)
sumed that therortex is sufficiently wealso thatl is much ©ory V|2ar,Q4(r,)

less thanL. We have also assumed that the contributionsHere | is the “
from 8¢, at short 1) and long &L) distances from the ’
vortex have negligible contributions tg, .

The integrals in Eq(15) yield

trapping length” that is defined by Ed7),
with A=—r, Q/(r,). A vortex is “weak” if |/r,<1. The
initial streamlines near|{—r,|<r,) a weak vortex in a cy-
lindrical shear flow closely resemble the streamlines in Fig.

- r, & _q 5, provided that the flow is viewed in a rotating frame, where
Yo= 5o W'” (L) -tan™=(T/2) the vortex is initially at rest. To convert Fig. 5 to cylindrical
s . geometry, simply le§—F# andX— — 6§, wheref and @ are
=£Z%In(L/)-tan" (T/2), (16)  the radial and azimuthal unit vectogat the vortex position
whereT=|A|t and +/- is for clumps/holes. The-integral, In time, the vortex creates a perturbatiai,, to the

which gives the time dependence, is evaluated in Appendi;‘eackground vortic?ty distribution. This perturbation is de-
A. ForT>1, the inverse-tangent is approximatet{2 andy, ~ fined by the equation
is approximately constant. Lo(r,0,0)=Lo(r)+ 8Lu(r,0,1). (18)
Over a slow time scale, the vortex moves a distance of _ )
orderL, and the stationary vortex approximation that is used' N Stréam function can also be written as that of the unper-
for Egs.(12)—(16) is invalid. We propose that over this slow turbed shear-flow plus a perturbation; i.e.,
time scale T>1), the transverse velocity, is given by the Ry
time-asymptotic limit of Eq(16), with £, andl changing as (r,0,t)= —f ar' r'Qe(r’)+oY(r,o,t). (19
the vortex moves. This model of the slow vortex motion is '
reasonable only if the vortex is sufficiently weak, so that theThe perturbationsys consists of a background contribution
time for the vortex to move a distande(the small scale and a vortex contribution, that is,
cut-off) is much greater tha=1 (t=|A|™ ).
We note that a similar argument is made in the text-book  y25,,— 8¢,+T, or—r,)o(6-0,) _
theory of a charged particle that is decelerated by Cerenkov ry
rad|§t|on?° In t.h|s theory, _the asymptotlp force on a charggd-rhe boundary condition i$y=0 at the wall radiuRR,, .
particle, emitting waves in a plasma, is calculated keeping  aqin Sec. II, we rewrite the Euler equation for the evo-
the particle fixed on its unperturbed trajectory. This| tion of vorticity [Eq. (18] as a set of two coupled equa-
asymptotic force is then assumed to change parametricallyyns: one for the evolution 0b¢,, and the other for the

with slow changes in the particle’s position and velocity. point-vortex trajectoryf,(t)=r,(t)f(t). The equation for
Equation(16) gives a reasonable scaling for the vortexine evolution of 8¢, is

speedy, increases witi", and ¢/, whereas it decreases as

the local shear-raté\ intensifies. However, the validity of %
Eqg. (16) rests on the accuracy of E¢lL2), which neglects at
(among other thingscurvature in the background shear-
flow, and the contribution t@y from 6. In the next sec- 2N+ %}
tion, we will calculate the the transverse velocity of a vortex ° ar
in a cylindrical shear-flow, keeping these effects. This calcuro equation for the vortex trajectory is
lation reproduces Eq(16) in the time asymptotic limit. It

(20

Qo(r)+

196y 988, 198y
roor | a0 r 96

=0. (21)

also provides a precise argument for the logarithm, so that 'rU:rUQO(rU),‘gJF IX VSl . (22)
we can compare vortex-in-cell simulations to an analytic !
theory that has no free parameters. Equations(21) and (22) are coupled, sinceSy [Eq. (20)]

depends on botl#¢, andr, .
Because the vortex is weak/,<1), it is reasonable to
lll. LINEAR THEORY OF GRADIENT-DRIVEN VORTEX neglect terms in Eq(21) that are second order iy and

MOTION IN A CYLINDRICAL SHEAR-FLOW 8Ly . We are then left with the linearized Euler equation,

We now calculate the radial velocity of a point-vortex in 98¢, 98¢, 1 a5y
a cylindrical shear-flow. For this case, it is convenientto use ——+Q,(r)——— - —;(r)=0. (23
. . - - at a6 r a6
a polar ,6) coordinate system which has its origin at the
center of the background. We denote thigial vorticity pro-  We note that Eq(23) incorporates curvature in the back-
file and angular rotation frequency of the background shearground shear-flow, which was neglected in the linear theory
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of Sec. Il. In addition, Eq(23) keeps the background con- Note that Eq(29) is written for a frame that rotates with the
tribution to 6y [via Eq. (20)], which was also ignoreteven-  the orbital frequency of the vortex. In this frame,

tually) in Sec. II. _ _ =Q,(r,)=0, and we have s&t, equal to zero.
It is convenient to expand the perturbation, using a Fou-  Combining Eq.(28) with Eq. (29), we obtain the follow-
rier series in the polar anglé ing equation fo,{ff(r,s);
S\ _ 5 me[ YD Tir )= 1o
=3 e Gman ) @4 T(8=5560r, ). (30
Substituting Eqs(24) into Eq. (23), it is found that each Here, G is the Green’s function of a differential operdiqr,
Fourier coefficient of the vorticity perturbation evolves inde- S(r—ry)
pendently, according to DJG(r|r,,s)]= - (3D
d o(1) andDy is defined by the equation
S HImO(n) -z:im$\p. (25) s yThe eq
# 19 m? imgL(r)

D= gt — e [ (32)

Here, we have suppressed the superscriph)*(on Z and a2 o 12 r[s+imQy(r)]"
. This will be standard, unless it would cause ambiguity.
According to Eq(22), the radial velocity of the vortex is

Fy=—(1Ir,)(964%136) |7, which can be written

To obtainW (r,t), we must invert the Laplace transfofii&qg.
(30)]. This yields the following integral expression for
W (r,t):

(33

f,=

2 faﬂw G(rlr,,s)
= s——e°.,

a—io S

> mm[wM(r, t)elme]. (26) V(rt)=—%
vm=1 474
Here, Im stands for the imaginary part of the quantity inThe integral in Eq(33) is along the vertical lins=a+iw
square brackets. We assume that the angular velocity of tH8 the complex plane, where is positive and— o <w<.
vortex 8, is dominated by the unperturbed background rota-  FOr now, we follow standard procedure, and neglect any
tion. So, we use the following approximation, poles ofG(r|r,,s) that might exist in the right half of the
complexs-plane(including the imaginary axjs We then use

6,=Q(r,). (27)  the Plemelj formula to obtain the following limit of E¢33)
asa—0":
Equation (27) is justified upon comparison to numerical

simulations of the exact vortex motige.g., Fig. 7 in Sec. W)= L;Q_{ Pf“’ de(r|rv,O++|w) giot
V). 4T % 0]
The value off, is now calculated using amnperturbed
orbit approximation In this approximation, the background +in(r|rv,O*)}. (34)
perturbation is evolved with the vortex moving along an un-

perturbed circular orbit, and, is taken to be the radial ve- Here. P denotes the “
locity perturbation that develops gf. Based on Sec. Il, we ’
expect thaf, rapidly (t~|A|"t=|r,Q.(r,)| 1) asymptotes
to a finite value. We will shoWEg. (38)] that this asymptotic
speed is a function of the vortex strendtrand the local

principal part” of the integral, which
has a singular integrand at=0.

From our simple calculatiofEq. (16)], we found that
(therey,) rapidly asymptotes to a constant value. We assume

back q - dient’ h that the same is true here, and concern ourselves only with
ackground vorticity gradienj,(r,). We propose that over ;¢ time-asymptotic limit. In Appendix D, we show that the

a.slon time scalet(>>|A.|*1), f, is given by this function, time-asymptotic limit of the integral in EQ.34) is
with ¢4(r,) andl changing as the vortex moves through thei 7G(r|r,,07). Therefore,
background.

According to Eq(26), to calculateg ,, , we must calculate
the Fourier coefficient§W (™} of the stream function. Let
Z(r,s) and \T’(r,s) denote the temporal Laplace transforms o ] ] )
of Z(r,t) andW(r,t). Here,s is the Laplace transform vari- Substituting Eq.(35) into Eq. (26), we find that the time-
able. From Eq(25), and the initial conditiorz(r,0)=0, we asymptotic value of the radial drift is given by the following

T, .
2W|m[G(r|rv,0 )] (39

lim Im[W(r,t)]=
t—oo

have equation:
o NI
. 5 _ N3 imr, = . (m) +

[s+imQq(r)]-Z=im Or v, (28) t'Tlru p— mZ:l m-Im[G™(r,[r,,0")]

From Eq.(20), Ver, /1
==2/Q(r,)[I” 2 m-Im[G™(r,[r,,00)], (36
#? 19 m T3 r, 8(r—r,) - m=1
P Tl B P @ \here+i— is for clumps/holes.
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In Eqg. (36), we have truncated the series at
=.er,/l. This value ofm is one over the azimuthal width
(in radians of the small trapping regiofiTR) that surrounds
a retrograde vortehe shaded area in Fig(&]. Shortly, we
will see that the series in E36) diverges logarithmically as
the upper limit ofm approaches infinity, so that a large
cut-off is necessary.

The series divergence in E(6) is an artifact of using
the linearized vorticity equatiohEg. (23)] to describe the
evolution of §Z, in the TR. In the TR, the circular vortex

flow dominates the background shear-flow, contrary to the

assumption that led to ER3). The perturbation in the TR is
represented by wave-numbera=er,/l; therefore, m
=.er,/l is the appropriate cut-off.

Of course, neglectingr> \/Ervll amounts to neglecting
the contribution ta, from 6, in the TR. This is physically
reasonable as/r,—0, and the area~+1?) of the TR be-

D. A. Schecter and D. H. E. Dubin

Le T T
; Eq. (36
ol — Ea.G6)
T E
o 2
;:P 10 3
e 10
104 L
10—5- e N
1 10! 10? 10°

Ver, |l
FIG. 6. Comparison of Eq.36) for r, to the Iarge\/Er,, /1 approximation,
Eq. (39).

tion we will show that neglecting the excitation of discrete

comes vanishingly small. Although the TR is defined onlymodes is acceptable, for a case where the background vor-
for a retrograde vortex, we will try the same cut-off for a ticity varies slowly withr. However, vortex-mode interac-

prograde vortex.
For smallm, the Green’s function G(r,,0") must(in

general be found numerically, as discussed in Appendix B.

However, for largem, the imaginary part of the Green's

tions may be important when there are large steps in the
radial profile of the backgrourtd.

function can be calculated analytically. From this analytic!V- THE SUCCESS AND FAILURE OF LINEAR

calculation, we obtain

wLo(ry)

|m[G(rv|ru,0+)]*>m,

m>1. (37
Equation(37) is derived in Appendix B.

Because of Eq(37), the sum in Eq(36) diverges loga-
rithmically as them-number cut-off goes to infinity, i.e., as
[/r,—0. Thus, for sufficiently weak vortices, the time
asymptotic radial drift is approximately given by

. m ’ 2

rv=iE§0(rv)l In(c-r,/1). (39
Here, +/— is for clumps/holes, and is determined by the
low-m values of the Green’s function(®@(r,|r,,0%). Note
that Eq. (38) is equivalent to theT—o limit of our
back-of-the-envelope calculation, Ed.6), with y,—, and
L—cr,.

In practice, we obtain the value ofby setting Eq.(38)
equal to a numerical solution of E(B6) for any large value
of the m-number cut-off,\/e r, /I. The resulting equation is

easily solved forc. As an example, we consider the radial

velocity of a vortex atr,=0.4, in the background distribu-
tion of Eq. (39 (see next sectign For this case, we obtain
c=0.43. In Fig. 6, we plot the time asymptotic valuergf,
given by Eq.(36), versuser, /I. Also in this figure, we plot
the time asymptotic value af, that is given by Eq(38),
with c=0.43. Clearly, Eq(38) is an excellent approximation
of r, for all I/r,=<0.1. Althoughc in general depends an ,
we find that for the vorticity profile of Eq(39), c=0.43
works for allr,=<0.7.

THEORY

We now demonstrate that the linear equations of motion
apply only to retrograde vortices, and that nonlinear effects
must be kept to explain the slower drift of prograde vortices.
We reach this conclusion first by comparing(reonlineay
VIC simulatiorf? to a numerical integration of the linearized
equationg Egs. (25)—(27)]. In both simulations, the fluid is
bounded by a cylindrical wall of radiug,,, at which there is
free slip(¢=0 atR,,). In the following, frequencies are mea-
sured in units of,(0), andlengths are measured in units of
R,. Furthermore, the flow is viewed in a rotating frame,

where the vortex is initially at regt,(0)=0].

In the linear simulation, the vortex positiaip and the
Fourier coefficientsZ(™} of the background vorticity are
evolved forward in time with third-order Adams—Bashforth
steps ¢ 10° steps per background rotatjorThe Fourier co-
efficients {¥'(M} of the stream function are each decom-
posed into a background contributioW () and a vortex con-
tribution (V,): ¥ =v,+W¥,. The background contribution
satisfies the equation

# 1 m| -
(??—FFO.‘T_I' '\Pb (r,t):Z (r,t),

which is solved to second order accuracy in the radial grid-
point spacing € R,/2000). Form= /e r,()/1(t), the vor-
tex component ofV is given by

r, (r- ml ro\2m
47Tm: R_W

wherer. (r.) is the greate(smalley of r andr(t). The

q,f)m)(r,t):_ e*imﬁu(t),

Finally, the linear theory presented in this section ne-number of(excited Fourier components is made finite in the

glects poles(in the s-plane of the Green’s function

linear simulation by setting?™=0 for m> e r,(t)/I(t).

G(r|r,,s). This amounts to neglecting the excitation by theWith this scheme, the vortex never excites wave numbers
vortex of discrete modes in the background. In the next seagreater than the maximum value gé r, /I over the vortex
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FIG. 7. Inward spiral of a retrograde clump, computed with a linear simulation and a nonlinear VIC simyftseguence of contour plots, afig (r, , 6,)
vs T=|Q/|r,(0)t.

trajectory. This cut-off was use@nd explainefpreviously  the clump strength/r, are evaluated at,=0.363. The dia-
in deriving an analytic expression for the radial velocity of monds correspond to linear simulations and each “X” cor-

the vortex[Eq. (36)]. responds to a VIC simulation. The solid curve is E88),
We consider the specific case where the initial backwith c=0.43.
ground vorticity distribution {,, att=0) is given by Figure 8 presents several important results. To begin

1-125r r=08 with, the VIC simulations generally agree with the linear
Lo(r)= ' T (390  simulations. This indicates that the linear equatipBss.
0, r>08. (25)—(27)] are valid for retrograde vortices, whefr,<1.

The rotation frequency of this background in the lab frame igVloreover, both simulations are well described by the ana-
Q,(r)=0.5-0.417r, for r<0.8. The background chosen IYtic Imear_theory of Eq.(38), which relies on the unper-
here represents a larger class, whéyelecreases monotoni- turbed orbit approximation and neglects discrete modes of

cally with r, and the radial derivativeg, and Q/ vary the background. The accuracy of Eg8) appears to improve
slowly with r. asl/r, approaches zero.

We first examine the motion of clumps, which aws- Good agreement between the simulations and our linear
rogradein this background. Figure 7 shows the inward spiralanalysis|Eq. (38)] may seem surprising, especially because
of a clump toward the center of the background. The cIumﬁhe analysis neglects the interaction of the_vortex with the
strengthl/r,, is initially 0.12. d_|screte normal mo_des of the backgrm(t_hht is, the_analy-

Figure 7a) shows a sequence of vorticity contour plots SiS Neglects poles in the Green’s functiop. Ghe discrete
for both the linear simulation and the VIC simulation. Al- modes of a cylindrical background flow vary “"é(mewf)’
though the linear evolution is not identical to the VIC simu-and the vortex motion is resonant with a mode if
lation, several features appear similar. These include the rate @/m. Using Eq.(27), this resonance condition can also be
at which the clump travels toward the center of the distribu-
tion, and the wake that is left behind the clump.

Figure 7b) provides a more concise comparison of the e
clump trajectories. The top graph shows the lin@ashed - retrograde ]
line) and the VIC(solid line) computations of ,(t). There is — 102 L clumps ¢ ]

good agreement between the linear and VIC results. The bot-
tom graph shows that there is similar agreementéfgdt).

It is apparent from Fig. (b) that the clump rapidly ac-
celerates to an approximately constant radial speed. In Fig. 8,
we plot the value of this speed as a function of the clump
strengthl/r, . Here, all clumps start ai,= 0.4 and the back- 105 & ! !
ground is always given by E@39). The clump strengtivr,, 1072 102 Ur 10 1
is varied by changing’, only. The value ofr, is obtained v
from a straight-line fit tar, vst, asr, decreases from 0.375 giG. g.t, vs|/r, for retrograde clumps in a linear simulatiédiamond
to 0.35. In the plotj, is normalized ta’,r?. Both¢,r? and  and a VIC simulationX’s). The solid line is Eq(38), with c=0.43.

T

i 3| ]
& 107 £ Eq. (38) 3
* F ]
‘_‘>
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i : ' ' T ; ‘ T asymptotic value ofr,. These oscillations have the same

Ot frequency as then=1 discrete mode, viewed in a frame that
T 1t rotates with the orbital angular frequency of the vortex,
ol ‘ Qo(r,). In the lab frame, the frequency, of the m=1
& 2 OV ; . .
o discrete mode & Q,(R,,); therefore, in the rotating frame,
: 3 01=Q6(Ry) —Qo(r,).
4L We now consider the motion of prograde holes. Figure
10 shows the outward spiral of a prograde hole toward the
-5+ Eq. (38) ] edge of the background. As before, the background distribu-
6 b . ) , , , , . tion is given by Eq(39), and the initial vortex strengthir,
0 10 20 30 40 50 60 70 80 is 0.12.
T Figure 1@a) shows a sequence of contour plots for both

the linear simulation and the VIC simulation. In contrast to
FIG. 9. Radial velocity perturbation that developsfat for a retrograde the motion of a retrograde clump, here there is a dramatic
clump that is artificially fixed on its initial circular orbit. The solid lineisa . . L .
linear simulation, and the dashed line is the time-asymptotic linear theor)ﬂlf_rerence Petwee“ th_e I|ne§r S'mUIa.tlon ?‘nd th? VIC simu-
neglecting discrete modes. lation: the linear equations give a radial drift that is much too
fast. Figure 1(b) showsr ,(t) and 6,(t) for both the linear
) 7 ) (dashed ling and VIC (solid line) simulations. AfterT~1
written, Q4(r,) = w/m. It has been shown that if the back-  here is a sharp divergence between the linear and nonlinear
ground is monotoni¢e.g., Eq.(39)], the latter equation can yaiectories. This rapid breakdown of linear theory is ex-
be satisfied for a discrete mode onlyrif is outside the plained in the next section.

background vorticity distribution, wherg, is zero. There-
fqre, a vortex inside the background can not resonate with & NONLINEAR TRAPPING
discrete mode.

Nevertheless, discrete modes can still exist, and there is In this section, we examine the time scale at which linear
a question as to how much they influence the vortex motiontheory begins to fail in the “mixing layer” that surrounds a
Figure 9 demonstrates explicitly that the effect of the discretevortex in a cylindrical shear-flow. We find that for a pro-
modes is negligible. Here, we plot the radial velocity pertur-grade vortex, like the hole in Sec. IV, this time scale is
bation that develops &, as a function of time, for a vortex practically instantaneous. On the other hand, for a retrograde
that is fixed on its initial circular orbit. The vortex strength is vortex, the linear time scale becomes infinitel &5 — 0.

[/r,=0.03, and the background is given by E&9). To Figure 11a) shows the initial streamlinegin r—6

calculater,,, we used the linear simulation, but keptarti-  space that are produced by a retrograde vortex in the cylin-

ficially fixed at 0.4. drical shear flow that is given by E¢39). Here, the stream-
The value oft, in Fig. 9 rapidly converges to E¢398), lines are shown in a rotating frame, where the vortex is ini-

with ¢=0.43. Therefore, in deriving E438), we were jus- tially stationary. Figure 1(b) shows the initial streamlines
tified in neglecting the discrete modes. The only noticeabldin r — § space that are produced by a prograde vortex in the
effect of these modes is small oscillations about thesame background shear flow. Both flows have mixing layers

T=0 6'0 12'1 a -I|III|\II|III|III|III_
() 08___VIC _:(b)
g ‘°l --- linear .- 7
é r __ ”' __
v [ s ~
_//',__——————"z
0.4+ —
or B
oL X
= vE :
21 _
el ggalsgalsgasloaglogil

051015T25

>1

vorticity

FIG. 10. Outward spiral of a prograde hole, computed with a linear simulation and a nonlinear VIC simé&ts@gyuence of contour plots afig (r,, ,6,)
vs T=|Q/|r,(0)t.
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FIG. 12. The time scaler(, ) at which linear theory breaks down, for pro-
Iy =) 2l grade and retrograde vortices.
0‘. 1 1
- 0 0 n Thus, for retrograde vortices, linear theory stays valid infi-

FIG. 11. Initial st li d mixing layefshadedl for (a) t d nhitely long asi/r, —Q0.
. 11. Initial streamlines and mixing layefshaded for (a) a retrograde . . . .
vortex and(b) a prograde vortex at,= 0.4 in the cylindrical shear-flow that For prograde vortices, the fluid partlde has an orbit of

is given by Eq.(39). Both vortices have strengllir, =0.05. The asterisks €Ngth ~1 and a velocity that is proportional 1o therefore
correspond to the fluid particles whose orbital perieggive the time scale 7, remains constant d¢r ,— 0. On the other hand, the time
at which linear theory breaks down. scale for the prograde vortex to move a distance of ofder
becomes infinite. Thus, the time scale for linear theory to fail

. ) becomes “instantaneous” relative to the time scale of vortex
(shadedicentered at, , in which the¢-averaged background motion. This explains the sharp contrast between linear
vorticity would flatten with time @(Zp),/dr —0), if the  theory and the VIC simulation of the trajectory of a prograde
vortex remained stationary. hole (Fig. 10.

The mixing layer of the retrograde vortex consists of two e emphasizehat linear theory fails for the holes in our
regions: an inner trapping regigiTR) and an outer trapping - simulations not because the holes have negative vorticity, but
region (OTR). This differs from the case of a retrograde pecause the holes are prograde with respect to our particular
vortex in an uncurved shear-flow where there was only on@noice of the background shear-flg&q. (39)].
trapping regionshaded region in Fig.(8)], corresponding
to the ITR. The mixing layer of the prograde vortex consists
of only one elongated strip.

The success of linear theory for retrograde vortices angy; pix-AND-MOVE ESTIMATE FOR PROGRADE
the failure of linear theory for prograde vortices can be un+/oRTICES
derstood by considering the streamlines in Fig. 11. In a mix-
ing layer, the fluid particles have secondary orbits, either In Sec. IV, we showelFig. (10)] that linear theory fails
around the vortex or around a point 180° opposite the vortexto describe the motion of a prograde vortex up/down a back-
In the jargon of plasma physics, such fluid particles are saiground vorticity gradient. In Sec. V, we explained why: a
to be “trapped” by the vortex. The linearized Euler equation prograde vortex creates a nonlinear perturbation to the back-
for the evolution of background vorticif\Eq. (23)] does not  ground flow “instantaneously.” However, it is still possible
account for the secondary orbit of a trapped fluid particle, forto estimate the rate at which a prograde vortex climbs or
times greater than or equal to the orbital period. descends a background vorticity gradient.

In developing linear theory, we applied the linearized In this section, we estimate the radial velocity of a
Euler equatior{Eq. (23)] outsidea disc of radius~1, cen-  prograde vortex in a cylindrical shear-flow, using a “mix-
tered at the vortex. This was done indirectly, by imposing theand-move” model of the vortex motion. This model is based
cut-off m=\/er, /I in Eq. (36). So, we expect linear theory on conservation of canonical angular momentiy [Eq.
to fail for times greater than the orbital period of a trapped(4)]. A more detailed estimate, which gives the same result,
fluid particle initially atf, , where|r, —F,|~I. is carried out in Appendix F.

Let 7, denote the orbital period of a fluid particle that A prograde vortex tends to phase-mix a thin layer of
has the initial polar coordinates (,—2l/r,). This initial background vorticity, and move a distande in response.
position is indicated by a*” in Fig. 11. The periodr, is  This mixing layer(ML) was described in Sec. V, and corre-
plotted as a function of vortex strengtfr, in Fig. 12, for  sponds to the shaded region in Fig.(l)1 From Fig. 11b),
both the retrograde case and the prograde case. we see that the ML extends frot= — 7 to 7 and has an

For retrograde vortices, the fluid particle is in the OTR, average radial width of-2I.
and 7, diverges to infinity as the vortex strength goes to  Suppose that the prograde vortex levels the entire ML
zero. This divergence occurs because the particle velocityd({,),/dr —0) and has a negligible effect on fluid outside
tends to zerdin the rotating framgwith the vortex strength, the ML. This phase-mixing increases the background com-
while the length of the orbit tends to a finite valuer#,). ponent ofP, by an amount
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wotb T T T T are from straight-line fits to, vst, asr, increases from 0.5
prograde to 0.6. The ratid/r,, and the velocity normalizatiotir are
102 holes ] evaluated at,=0.55.
T 2 ] The simulation velocitiesdenoted by O’sare between
Y3 107 L 38 ] 0.6 and 1.1 times the values that are predicted by the mix-
t,: Eq. (38) E and-move estimate. Although the estimate is not perfect, it is
c” 104 , ] much more accurate than linear thegdashed ling
e E The drift velocity of prograde holes down a vorticity
10° gradient was recently measured by Huang, Fine and

10 102 Ur 10! 1 Driscoll? This experiment was performed on a magnetized

v electron column, which behaves like an ideal 2D fluid. The
FIG. 13.F, vs|/r, for prograde holes in a VIC simulaticfuircles and an ~ €XPeriment starts with an unstable flow that rapidly evolves
experimen{squarg. The solid line is the prediction of the “mix-and-move” iNnto an axisymmetric vorticity distribution with twéocca-
estimate[Eq. (43)], and the dashed line is the prediction of linear theory S|ona||y three prograde ho]eisee Ref. 2 Typ|ca||y these
(Eq. (38)] prograde holes are evenly spaceddiand have roughly the
same values for,. The remainder of the relaxation is con-
trolled by the slow drift of the prograde holes down the back-
ground vorticity gradient, and out of the distribution.

T r,+1
Angb~—§(’,J' def drri(r—r,) There was some concern that the slow radial drift of
T ! prograde holes was a “kitchen effect” of the experiment,
—4mllr 2I3+O(I5). (400  Wwhich has nothing to do with 2D Euler flow. However, the

measured value af, (plotted in Fig. 13 is within a factor of
Here, we use the symbol~" to indicate that the equation 3 of Eq. (43), which is at the level of our estimated error.
is an estimate. By conservation Bf,, the radial positiorr,  Although strong conclusions should not be drawn from a
of the vortex must change by an amout. Assuming that  single datum, it appears that we have captured the fundamen-

Ar/r,<1, we have tal mechanism for the radial motion of prograde holes in the
, experiments.
Ar= —APyp ) 4o (41) A more critical eye might notice, disregarding error bars,
2T ,r, Q.| that the VIC simulation gives a larger value igf than the
, experiment. This suggests that the presence of an additional
where +/— is for clumps/holes. prograde hole, which changes the structure of the ML, might

~To obtain the velocity of the prograde vortex also re-gjy down the outward radial drift. This has been verified by
quires an estimate of the timt for the ML to flatten. Pre-  550ing an additional prograde hole in the VIC simulation,
sumably, this time is given by the orbital period of a fluid 1 gg° opposite the original prograde halend at the same
particle near the separatrix, which encloses the ML. We es; ,). The value off, decreases by a factor of 2, in close
timate that the average angular spe@)l ¢f this fluid par- agreement with the experiment.
ticle is ~|Q¢|l, in the frame that rotates with the vortex.
Since the orbit covers-4+ radians(27 in the clockwise

direction, and 2r in the counter-clockwise directipnwe
VIl. THE SUPPRESSION OF GRADIENT-DRIVEN

have DRIFT BY LARGE SHEAR
4 . . . .
Afe T (42) The mix-and-move estimate of the previous section as-
Q! sumes that the prograde vortex continuously moves into new

regions where th@-averaged background vorticity is unper-
turbed; that is, wherd({,),/dr =¢; . However, if the mix-
O Ar 1 2 ing layer (ML) moves with the prograde vorteg{ ) /dr
My~ At i4 o (43 shortly becomes zero at, and the radial drift stops.
We propose that most of the ML moves adiabatically
where +/— is for clumps/holes, and, and| are evaluated with the prograde vortex, and the radial drift is suppressed,

Finally, the velocity of the prograde vortex is given by

at the vortex position. when
Note that thd-scaling in linear theoryEqg. (38)] differs
from thel-scaling in Eq(43) by a factor of In €r,/I). There- t;>At. (44

fore, our estimate suggests that a retrograde vortex, which
follows linear theory, will move infinitely faster than a pro- Here,t, is the predicted time for, to change by, which is
grade vortex a$/r,—0. the radial length scale of the ML, and is the time required

In Fig. 13, we compare Eq43) to the late-time pro- for the ML to be phase-mixed.
grade hole velocities that are observed in the VIC simula- In the previous section, we argued that the mixing time
tions. As before, is given by Eq.(39) and the prograde At is approximately 4/1|Q)| [Eq. (42)]. The “escape
holes are located initially at,=0.4. The plotted values af, time” t, is given byl/|i,| . Here, we assume thaj is given
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FIG. 14. VIC simulations of the motion of a prograde hole in different levels of background $legr.vs T for different shear strengthé) i, vs Q;/ ¢, .
Inset: equilibrium obtained fof)//¢,=2.67.

by Eg. (43). Putting these estimates into E44) yields the The inset of Fig. 1) is a contour plot of the equilib-
following condition for no radial drif{past a displacement of rium that forms when(}//{/=2.67. Note that the ML has
orderl): been flattened. The gray levels are the same as in Figs. 7 and
10. We remark that the equilibration observed here is analo-
Q' gous to the nonlinear saturation of a growiftg decaying
—2>1. (45)  plasma wave; i.e., it is akin to the formation of a Bernstein—
%o Greene—Kruskal(BGK) mode?’” A BGK mode forms

through the flattening of the electron distribution function in
Equation(45) indicates that a large shear prevents the proa resonant layer; here, an asymmetric equilibrium forms
grade vortex from drifting radially. through the flattening of thé-averaged vorticity distribution
Alternatively, one can propose that radial drift is sup-in the mixing layer.
pressed wheih>Ar. Here,Ar is the radial displacement of Equation (45) suggests that, for prograde vortices, the
the prograde vortex due to phase-mixing of the entire ML shear strength required to suppress outward radial drift does
and is determined by conservation Bf,. In the previous not depend explicitly on (i.e., on|T',|). This result is con-
section, we estimated thAr ~1£//Q/ [Eqg. (41)]. Using this  sistent with the VIC simulation data in Fig. 15. Here, the
result, we regain Eq45) for the suppression of radial drift. radial velocity is plotted as a function of shear strength
For the simulation data in Fig. 18)//¢,=3% soonly a Qg/;, for initial prograde hole strengthidr, that range
small fraction of the ML moves with the prograde héte. from 0.08 to 0.4. All cases show the same qualitative behav-
However, by artificially increasing)/| in the VIC simula- ior. WhenQ./{;=<1, t, is approximately given by the mix-
tion, so that(),/¢, has an order of magnitude that is greaterand-move estimate. On the other hand, wkEji{;=1, T,
than or equal to 1, we can examine the motion of a progradé zero.
hole when the mix-and-move model breaks down. A stronger shear is required to suppress the radial drift of
Figure 14 shows how, changes with();/¢{; for pro-  a retrograde vortex. The general criterion is presumably the
grade holes of initial strength/r,=0.2. The background same as for a prograde vorteys>At. However, the mixing
vorticity is given by Eq.(39); however, the shed/ is gen- time At and escape timg both differ.
erally not consistent with Poisson’s equation. Instead, the

fluid particles in the VIC simulation are given aaditional 3 ' 0 ixandmove 1 g agts
angular rotation frequency of the forBr, where the con- —— 8~ O Rnn 17
stantSis an adjustable parameter. The initial vortex strength :'<: + ] ©oom
I/r,(t=0) is kept fixed in this set of simulations by increas- & °f ® S i Z'jz
ing the magnitude of , in proportion to the total shedd . G af o © + 1 o 0'2
Figure 14a) showsr, as a function of time for different * L 0 1 4 0'3
shear strengths. Her&=|Q/|r,(0)t, with Q! evaluated for = 5[ o 1 0oq
the case of no additional shea®=0). Figure 14b) shows O : '
r, vsQJ/ ¢, . The value of , is obtained by a straight line fit Y erew— ,m,,ﬁ A
tor, vs.t, as the prograde hole moves fram=0.5 to 0.6. 01 } Qi
For Q//¢(<1, i, is approximately constant, and equal to critical shear estimate.

~0.6 times the simple mix-and-move estimate, E4B).2° G151 veOy/ 1 e holes with inital et
. s - .15.1, vs Q/[/¢/ for prograde holes with initial strength&, that range
However'rv drOpS to zero aﬂolé’o 1,as prEdICted by Eq. from 0.08 to 0.4. The critical local shear-rate for the suppression of radial

(45). A velocity of Zero means that the hole stops drifting it seems to be independent kfas predicted for prograde holes by Eq.
outward before a radial displacementlof (45).
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FIG. 16. VIC simulations of the motion of a retrograde clump in different levels of background $hegy.vs T for different shear strengthgb) i, vs
Q¢ . The X's are data from VIC simulations. The solid line connects points to aid the eye. The dashed ling3§)Fgith ¢ a function of(), . Inset:
“equilibrium” obtained for Q;/ ;= 20.

We show in Appendix F that, for a retrograde vortex, VIIl. DISCUSSION
At~ 427/ Q|1 (r, /). Furthermore, we use the linear

theory fort, [Eq. (38), with c=1] to estimate the escape Two-dimensional vortex motion driven by a background
time t|E|/||"U|_ Then, the condition for an equilibrium to vorticity gradient has been examined numerically and ana-
form (t;>At) becomes lytically. As illustrated in Figs. 2 and 3, clumpgorticity
Q' excesses move toward peaks in background vorticity,
—2s>\B8x2\In(r, /). (46)  whereas holegvorticity deficity move toward minimd:'®
0 The rate of this migration is determined by whether the vor-

Equation(46) is more stringent than Ed43) for prograde tex is retrograde or prograd&q. (5)]: a weak retrograde
vortices. According to Eq46), asl/r,—0, an infinite shear vortex moves orders of magnitude faster than a prograde
is required to suppress the radial drift of a retrograde vortexvortex of equal strength.

Figure 16 illustrates how, changes with) [/ ¢/ for ret- In Sec. Il, we presented a simple analytic theory of vor-
rograde clumps, of initial strengtiir,=0.1. As before, the tex motion driven by a background vorticity gradient. This
background vorticity is given by Eq39), and the shear is theory was based on a reduced linear equation for the evo-
varied artificially. Figure 1@) showsr, as a function of lution of background vorticitfEq. (12)]. In a few steps, we
time for different shear strengths. Figure(iéshowsi , as a  derived a closed-form expression for the vortex spisql
function of Q//{;. The value ofi, is obtained from a (16)]. This expression showed that the vortex speed increases
straight-line fit tor, vs t, as the retrograde clump moves with the magnitude of the local background vorticity gradi-
from r,=0.375 to 0.35. As()//{, increasesf, increases ent, and decreases as the local shear intensifies.
and then drops to zero &//{,~10. This transition point In Sec. Ill, we carried out a more detailed analysis of
has the same order of magnitude as the critical shear strenggfnadient-driven vortex motion, for the case of a point-vortex
estimate /8 72/ (r, /), which is indicated on the graph. in an axisymmetric background. This theory was also based

The inset of Fig. 1) is a contour plot of the “equilib- on a linear equation for the evolution of background vorticity
rium” that forms whenQ//¢;=20. Here, we put “equilib- [Eq. (23)], but kept various terms that were neglected in Sec.
rium” in quotes, because the ML is not fully phase-mixed by Il. Despite the additional terms, we showed that the vortex
the time the simulation was stopped. velocity [Eq. (36)] reduces to the simple result of Sec. Il

It is worth mentioning that linear theory still captures the [Egs.(16) and(38)], asl/r,— 0. However, upon comparison
initial increase ini, with the shear strength. The dashedto vortex-in-cell simulations, linear theory proved accurate
curve in Fig. 16b) corresponds to linear theory of, Eq.  only for retrograde vortices. A prograde vortex always cre-
(38). In Fig. 16b), the shear strength is varied keepihg ates a nonlinear perturbation to the background flow, and
fixed; so,i, [EqQ. (38)] varies with the shear strength only moves at a much slower rate. Interestingly, a good estimate
through the variable in the argument of the logarithm. In [Eq. (43)] of this rate was obtained from a simple “mix-and-
Fig. 16b), it is shown that, (in linear theory asymptotes to move” model of the vortex motion.

a fixed value as)//{;—. An analytic expressiofEq. Of course, the principal results of Secs. 11I-\Ags.(38)
(C2)] for this “infinite” shear limit of i, is derived in Ap- and (43)] have limits of applicability. To begin with, the
pendix C. vortex must be weak compared to the background shear

Note that in Fig. 16b), the curve for linear theory was flow; for example, if the shear flow is cylindrical, we require
calculated withl/r,=0.116, which is slightly greater than thatI/r,<1. Second, the vortex must not resonate with a
the initial vortex strength,l/r,=0.1. The larger vortex discrete normal modéor quasi-modg of the background
strength is due to the change lifr, from the initial vortex  (see Sec. IY. In addition, the background shear rate must not
position (,=0.4) to the point where the radial velocity is exceed a critical levelEgs. (45 and (46)], beyond which
measured(,=0.363). gradient-driven vortex motion is suppressed.
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Furthermore, the viscosity of the fluid must be negli- 60
gible. In particular, we require that the kinematic viscosity
satisfy the following:

20| == LRS _(hl) |

v<l?/r, (47) B @ |

Latitude, deg.
(=
I

wherer is the projected time scale of vortex motion through 201 oGRS (D)
the background. If Eq(47) is satisfied, then viscosity acts 40 0 BT WO (cl) -
only at length scales<|, over the time period of interest ( 6o 1
=7). In the theory of vortex motion presented here, the . !
structure of the background vorticity perturbation is unim- -100 o 100 200
portant at these small scales. Howeveryif|?/ 7, viscosity u (m/s)

creates Iarge Scale(l) changes to the baCkground vorticity, FIG. 17. Location of long-lived storms in Jupiter's zonal flgRef. 28.

and thereby alters the vortex motion. We note that(B@).is | rs, B, GRS and WO denote Little Red Spot, Barges, Great Red Spot and
also required to keep dretrograd¢ vortex intact. If v White Ovals, respectively. “cl” denotes clump and “hl” denotes hole.

=12/, then the vortex will diffuse over a separatrix, into a
region where the background shear-flow dominates the cir-

cular vortex flow. As a result, the vortex will be sheared ; e )
apart in a time less than or equal 40 related to the background potential vorticyon Jupiter by
i the foIIowing:U:gHy(a)‘z. Here,y is the local Cartesian

Our study of gradient-driven vortex motion was in par X . . o
motivated by an electron plasma experiment on the free recoordinate that increases in the northward directprs the

laxation of an unstable cylindrical shear-fléwn this experi- (p_ositive reduced grayity, and, -denotes the deriv_ative “_lf
ment, the shear-flow developed into a state with multipIeWI','[h rezpect ltw' If this model is co_rr:act, th,e,n Fig. 1k7_'m'
vorticity holes in an axisymmetric background. In time, theseP!i€S_that clumps are on potential vorticity peaks, (

prograde holes crept radially outward, toward a minimum in—0» Gyy<0), whereas holes are in potential vorticity

the background vorticity distribution. The measured hole Ve_troughs@],cf OI Ay~ 031' . 1 this articl

locity proved to be consistent with Eq43). Recently, a As a final note, the wor pr_esented_ In this article as-
complementary set of experimeftsneasured the relaxation SUMeS that a background vorticity gradient already exists.
rate of a cylindrical shear-flow that contained small-scalg’\SO: clumps, holes and background were treated as separate

vorticity clumps. In these experiments, the retrograde C|ump§ntities, whereas in fact all contribute to the overall vorticity.
moved to peaks in the background vorticity at a rate consisOUr results suggest that a preexisting overall vorticity gradi-
tent with Eq.(38) ent could be amplified as clumps and holes congregate in the

We speculate that the results of this article can also servBeaks and troughs of the background. The motion of clumps
as a “zeroth-order” model of certain atmospheric flows. Forand holes through a background vorticity could therefore

example, Eqs(38) and (43 may provide reasonable ap- provide a mechanism for 'the spontaneous formaﬁion of zonal
proximations for the motion of small retrograde and pro_flows. Ir_l order to_ study t_hls transport process, it is necessary
grade vorticegrespectively within a larger tropical cyclone. t© consider the interaction of many clumps and holes and
In addition, Eq.(16) may provide a reasonable estimate forthelr_effect on background vorticity. These subjects will be
the north-south drift of a retrograde vortex on a planet withconsidered in future work.
strongly shearedeast-west zonal winds. In this case, the
large scale cut-oft., which appears in Eq16), is likely the
width of a zone. The authors gratefully acknowledge useful conversations
Of course, a planetary vortex is not governed by 2Dwijth Professor T. M. O'Neil, Professor C. F. Driscoll, and
Euler flow [Egs. (1a—(1c)]. In the “shallow-water” theory Dr. A. Kabantsev.
of planetary flow, potential vorticityy=({+f)/h replaces This work was supported by National Science Founda-

vorticity { as the conserved quantity along the Lagrangianion Grant No. PHY-9876999 and Office of Naval Research
trajectory. Heref is the Coriolis parameter aridis the thick-  Grant No. NO0014-96-1-0239.

ness of the atmosphere. The effect of background potential

VOftiCity (PV) is similar to the effect of background VOftiCity APPENDIX A: EVALUATION OF THE u-INTEGRAL
in 2D Euler flow3 2 So, in a planetary atmosphere, we ex-

According to Dowling’s modef? the zonal windu is

ACKNOWLEDGMENTS

pect to find long-lived clumpsrotating counter-clockwige _In this appendix, we evaluate theintegral in Eq.(15),
on PV maxima, and long-lived holéeotating clockwisg on wh!ch.glves the time dependence of the vortex’s radial ve-
PV minima. locity 7, . _
This equilibrium appears to be consistent with the ar- L€t 1(t) denote the integral:
rangement of long-lived hurricanes in Jupiter's atmosphere. +o0 u u2+1
Figure 17, adapted from Ref. 28, shows the velocitpf |(t)Ef ) duz7In (U—ADZF1|’ (A1)

Jupiter’'s east-west zonal winds as a function of latitude. This
graph also shows that the long-lived hurricanes rest approxiFo evaluatd (t), we first express the fractian'(u?+ 1) as a
mately on zeros ofi. sine transform. Then,
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2+1 f dk e ¥sin(ku). (A2)
Substituting Eq(A2) into Eq. (A1) yields
| f dkf ol (v+At/2)2+1
(= YN T AY2) 2+ 1
, At
x e Xsin(kv) cos(k?>. (A3)

Here, we have also made the transformation of variables

u—v, wherev=u—At/2.
The v integral in Eq.(A3) is in Ref. 30:

[ avn

Substituting Eq(A4) into Eq. (A3), we obtain

41
Kk

(v+ At/2)%+1
(v— At2)2+1

At
%)
(Ad)

sin(kv)= e sm(k

» o Sin(kAY) 71
I=27rf dke Tsztan (T/2)sgn(A),
0
(A5)
whereT=|A|t. Equation(A5) is the desired result.

APPENDIX B: THE GREEN'S FUNCTION

D. A. Schecter and D. H. E. Dubin

2. Analytic solution for large m

We now demonstrate that the imaginary part of
G(r,|r,,0%) is given by Eq.(37) for large m.

For analysis, it is convenient to rewrite the differential
equation for the Green'’s function, E@1), as follows:

imgi(r) S(r—r,)
" srimagn) &S = T

(B3)

Here, L is the Fourier transform of the 2D Laplacian,
A P m? B4
Swrtra N

Note that G in Eq(B3) has an implicitm-dependence.
We now decompose the Green'’s function into two parts:

G(r[r,,8)=0o(r|r,)+0a(rlr, .s). (B5)
Hereg,(r|r’) is the Green’s function of L,
o(r—r )
L[go(r[r")]= ——— (B6)

r’

and accounts for the vortex stream function. The explicit
functional form ofg,(r|r,) is given by the following:

1 (r_\m ro\2m
surtro=— (=) Ta-(2]).
wherer-. (r.) is the greatefsmalley of r andr,, .
The “correction” g, accounts for the response of the

(B7)

In this appendix we describe how to calculate thebackground to the vortex. Substituting EB5) into Eq.(B3)

Green’s function G(|r,,s) of the differential operatoD

[Eq. (32)], in the limit thats goes to zero along the positive

real axis.

1. General solution

The Green'’s function is defined by the equation

B (92 14 n']2 |m§(',(r)
DLGrIr,. 9=\ 22+ T 5 ~ 72 " ilsrimay)]
~G(r|rvis):M' (B1)

r

v

and the boundary conditions G(Q,s)=G(R,]|r,,s)=0.
Equation(B1) has the formal solution

fs(ro)hg(r-)
G S)=——— B2
(rlre9)= =i (82)
Here,r- (r.) is the greatersmalley of r andr,. The

functions f4(r) and hg(r) are independent solutions to the

homogeneous equation; that B, f]=DJh]=0. They are

distinct in thatf4(r) vanishes at =0, wherea$(r) vanishes

at R,. The Wronskian Wr) is defined by the equation
W(r)=fs(r)hg(r) —hs(r)fe(r).

For smallm, the functionsfg andhg are found numeri-

gives the following differential equation fayy :

mZy(r)
L[gl(r|rv15)]_m[go(r|r )

+ga(r|r,,s)]. (B8)
A formal integral solution to Eq(B8) is as follows:
Ro L imgg(r’)
91(f|rv,5)—fo dr’ go(rlr )m
X[go(r'|r,) +0a(r'[r, ,8)], (B9)

where R, is the radial extent of the background vorticity
distribution. We can use the Plemelj formyknd some mi-
nor algebra to evaluate the integral in the limg—0",
yielding

1(r]r,,0%)
Lo(r)] (r'[r,,0")
_Pj d ' o(r ) glgo(r|l|r ) go(r|r,)go(r,|rv)
imgi(ry) ga(r,|r,,0M)
mwn{ ;J“)%mMmmm.

(B10)

cally, using standard methods. To obtain the radial drift ofNote that the Plemelj formula applies at=r,, since

the vortex[Eq. (36)], we need G(|r, ,s) in the limit thats
—0%. Therefore, we decreasealong the positive real axis
until the Green’s function converges to its limiting form.

Q,(r,)=0 in the rotating frame.
So far, we have made no approximations. However, for
largem, we will assume that
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FIG. 18. Convergence of IfiG] to Eq.(B13) asm—oe.

|91(r]r,,07) [ <[go(r]r,)]. (B11)

Then, for largem, the terms involvingg,/g, in Eq. (B10)
can be neglected, yielding

!

Ro  Lolr)
1(r|ru,0+)2PJO bdr’mgo(r“’)go(r’“v)

7Lo(T )

5] Golry|1y). (B12)

+%MHMQ

Equation(B12) gives a solution that is consistent with our
original assumption, EqB11), in the limit of largem: From
Eq. (B7), we haveg,~ 1/m, and by inspection of EqB12),
we haveg,~1/m?. Therefore|g,|<|g,| for largem.

We are interested primarily in the imaginary part of
G(r|r,,0%), since it alone contributes g [Eq. (36)]. Since
g, is real, the imaginary part of ®fr,,0") is equal to the
imaginary part ofg(r|r,,0").

In the largem limit, we argued thaty,(r|r,,0") is given
by Eqg. (B12). The integral in Eq(B12) is real. So, in the
large m limit, the imaginary part of G(|r,,0") is given
solely by the second term on the right-hand side of Eq
(B12); that is,

wLo(ry)
|QO( U)

Equation(B13) is compared to a numerical solution in Fig.
18. Here, the background is given by E@®9), andr,
=0.4. The numerical solution for If@&(r|r,,0%)] is in good
agreement with Eq(B13), for m=10.

We now use Eq(B13) to evaluate IfG(r,|r,,07)],
which appears in Eq.36) for r,. Substituting Eq(B7) for
g, into Eq.(B13), we find that

w1, )[1—(r, /Ry)*™?
4m?Qg(r,)|

For largem, the quantity ¢,/R,)™ is negligible, and Eq.
(B14) reduces to Eq(37) of the main text.

Im[G(r|r,,0")]=go(r|r,) |Qlo(lfu|r ). (B13

Im[G(r,|r,,0")]=

(B14)

APPENDIX C: LINEAR THEORY FOR f, IN THE CASE
OF VERY STRONG BACKGROUND SHEAR

In Sec. VII, we discussed the effect of large shear pn
Our primary point was that large shear bririgsto zero, by
causing the mixing layer to flatten rapidly. However, this
suppression of radial drift occurs only whexj/{; exceeds a
critical level [Egs. (45 and (46)]. For weaker shear, we

found that linear theory provides a good approximation for
f,, inthe case of a retrograde vortex. Moreover, we saw that
in linear theory,r, asymptotes to a finite value &,— o,
keepingl, ¢/, r, andR,, fixed [Fig. 16b)]. We now cal-
culate this “infinite” shear limit ofr .

We first note that Eq(B12) is valid for all m, asQ/
—oo, In this limit, both terms on the right-hand-side of Eq.
(B12) tend to zero, for alm. Therefore, for large shear and
all m, Eq. (B12) gives a self-consistent solution; that is,
|gll<|go|-

This means that for alin we can use EqB14), which
gives an expression for [&(r,|r,,07)] that is based on Eq.
(B12). Substituting Eq(B14) into Eq.(36) for ,, we obtain

\er/lll r, 2m12
_R_W )

S L(r)12 2 o
Note that this expression far, depends only ot, ¢, r,
andR,,. If these quantities are held fixed &%, increases,
there will be no change in, .
For smalll/r,, Eq. (Cl) has the following approximate
form:

lim 1,= (CY

t—x

. . ™ ’ 2
lim rv=t§§0(rv)l In(c,r, /1), (C2
t—x
wherec, is defined as
- | Jver, /I 1 r 2mi2
°*:.,!':anexp| 2ol e

The dependence af, onr,/R, was obtained numerically
and is plotted in Fig. 19.

3k E

2
“ F
1E

0 g P PR R S T N1 P R J

0 0.2 0.4 0.6 0.8 1

r,/ R,
FIG. 19. The “infinite” shear limit ofc as a function of , /R, .
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FIG. 20. The streamlines in the mixing layers of a prograde vof@gand a retrograde vorteth) can be parametrized by the anglg (0<6,~<w). This
angle is where the streamline passes through

Figure 1@b) of the main text demonstrates that EG2) r r, .
gives the correct value for the “infinite” shear limit of , in ~ ¥= fo drir’Qo(r')+ g —In[ro+r,—2rr, cos(6-6,)].

linear theory. (E1)
APPENDIX D: TIME ASYMPTOTIC LIMIT OF THE Here, we have neglected the image of the vortex due to the
w-INTEGRAL. wall. We now go into a rotating frame whefg,(r,) is zero,

and we se¥), equal to zero. Furthermore, we assume fhat

_In this appendix, we evaluate the-c limit of the s approximately constant. Then, the stream function in Eq.
w-integral in Eq.(34), which is required to obtain the late- (g1) simplifies to

time limit of i, .

is i - r3 2 T
Let J(t) denote this integral: y=0! = L I (r2+r2—2rrv cosh). (E2)
Y 3 2 4w v
= o G(rlr,, 0" +iw) .
J(t)=P _mdwTe : (D1) The important nonlinear dynamics occurs in the mixing

layer (ML). Consequently, we focus on streamlines in this
We now make the change of variables—v, where v region. We refer the reader to Sec. V, and in particular Fig.
=ot. In terms ofy, we have 11, for our definition of the ML.
o G(r|r,, 0" +ivlt) . All streamlines are contours along whigi{r, 6) is con-
J(t)=Pf dy——¢"". (D2) stant. A streamline in the ML is parametrized by the angle
*w v 0, (0=0,<m), where it passes through (the radial po-
In the t—oo limit, Eq. (D2) becomes sition of the vortex. The angled,, is defined pictorially in
) . Fig. 20. The separatrix which outlines the ML of a weak
fﬂ dvm. (D3) (I/r,<1) prograde vortex is the streamline for whidh,
— 4 = . The separatrix which outlines the ML of a weak retro-
grade vortex is the streamline for whiehy=1/ Je r,.
The streamline equation isj(r,0)=y(r,,0,), or

lim J(t)=G(r|r,,0") P

t—oo

The cosine term in EqD3) vanishes, since cagv is odd.
The sine term yields

equivalently
. . "
tIET:OJ(t)_|7TG(r|ru=O ) (D4) , 2 . I 2 2(1+p)(1_co30)+p2
prr P 2(1—cosé,) -
Equation(D4) is the desired result. v i E3

Here,p=(r—r,)/r, andl is defined by Eq(17). The sign of

the third term is “+” for a prograde vortex [[,/Q/>0)
In this appendix, we examine the initial stramlinesand “—” for a retrograde vortex (,/Q.<0). Forl/r,

around a weak vortex in a cylindrical shear-flow. We con-<1, and 6>1/r,, we obtain the following approxima-

sider both prograde and retrograde vortigs|. (3)]. The  tjon for p:
results derived here are used in Appendix F to estimate the

APPENDIX E: STREAMLINES IN THE MIXING LAYER

: : : I [1—cosb,,|
radial vgloc@y of a prograde vortex, which can not pe calcu- _ \/In Y| prograde (E4a
lated using linear theory. The results are also used in Appen- ry | 1—cosd |
dix F to estimate the critical local shear-rgfqgs. (45) and p(0)= | 1—cos0 |
(46)] for the suppression of radial drift, for both prograde - \/In T cosa. retrograde.  (E4b
v L+ A

and retrograde vortices.
Up to an arbitrary constant, the stream function around alere, = indicates thap has a positive and a negative value
vortex of circulationl”, in a cylindrical shear-flowf),(r) is  for any givené.
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APPENDIX F: ANALYSIS OF NONLINEAR MOTION i .
~ 15
1. Detailed mix-and-move estimate for 7, TS F

Q

We now carry out a detailed mix-and-move estimate for :ﬁf,, :
the radial velocityr, of a prograde vortex in an initially \:Z\ 5—
axisymmetric background. This detailed estimate yields the%‘b ok
same expression far, as our simple estimate, EG3). b 0 2 (4] n o

As in the main text, we assume that the prograde vortex vortex v separatrix
acts to level thecoarse-grainedvorticity distribution in the FIG.21.AP,, vs 6,. Here, AP, is the canonical angular momentum that

ML [the Sha:dEd region in Fig. 1], but has a neg”giple is transferred to the background flow by a prograde vortex, through phase-
effect on fluid outside the ML. Then, a reasonable estimatenixing of vorticity in the shaded region of Fig. 9.

for r, is given by

—AP,, thatAP, ;, increases monotonically with,, due to the fact
'FU~< Tt T> : (F1)  that the area in which the vorticity is phase-mixed increases
vivt iy with 6.

Here,AP,, is the change in the background’s angular mo- The orbital period of a fluid particle is given by

mentum that occurs upon flattening the vorticity distribution 0

in the area between the vortex and a closed strearfsirmg, 7(6,)=4 f

the shaded region in Fig. 2], 7 is the orbital period of a _

fluid particle on that streamline, arid,, denotes an average Here, ¢ is the angular velocity of the fluid particle along the

over the streamlines in the ML. We have used conservatiostreamline. This angular velocity has contributions from the

of P, [Eq. (4)] to relate the change in, to the change in background shear-flow and the vortex field, and can be writ-

P, Note that the orbital period is infinite on the separa- ten as follows:

trix bounding the ML. Therefore, if we used the particle orbit 2 4 14—
: ! . p—Ccosé

on the separatrix to evaluatg, instead of an average, we g=Q/r,- . 5.

would obtain,=0. 1+p 2(1+p)(1-cosf)+p

After the background vorticity is phase-mixed within a For the most partp is O(l/r,) [see Eq(E4)]; therefore, it is

closed streamlingshaded area in Fig. 28], it has a con-  a reasonable approximation to drop the second term in Eq.

stant coarse-grained valug, in that region. The phase- (F6). Then, using Eq(E4d for p, we have

mixing process that bring&,(r) to {,, conserves the integral

of coarse-grained vorticity in the area bounded by the closed ,_ 1 In{

streamline; that is, °

dele. (F5)
_01//

r

pt (F6)

v

1-cosé,
1—cosé

: (F7)

by p+(0) where+ is for p>0 and— is for p<0. The expression for
riJ dej dp (1+p)[¢{y—Lo(r)]=0.  (F2)  7becomes
— by ~(6)

. (F8)

_ 4 vy 1—-cosb,
Here,p=(r—r,)/r,, andp, (p_) is the positive(negative 7(0y)= AL f_awdaln 1—cosf
branch ofp(6) defined by Eq.(E49. The angled, is the . )
maximum angle reached by a fluid particle on the closed igure 22 shows [Eq. (F8)] as a function ofg,,. Note that

streamlingsee Fig. 2(8)]. For the separatrix, which bounds 7 Pe€comes infinite near the separatri, & ). _
the ML, 6,=m. As we approach streamlines closer to the Substituting Eqs(F4) and(F8) into Eq. (F1), we obtain

vortex, 6,, goes to zero. the following expression for,, :
The change inP,, that occurs due to phase-mixing _ 1
within a closed streamline is given by the following integral:  F,~*5—=1%(h(8,)),. (F9
4

Oy pi(0) where +/— is for clumps/holes, and the functidn(6,) is
Ape,b(azp):rﬁJ’ , dé’f ) dp(1+ﬁ)3[§¢,—§o(r)]. defined as P o w)
-4, -

(F3)
To evaluate Eq(F3), we use Eq(E4a for p., Eq.(F2) for _120g ' ' 3
Ly @NALo(r)=o(r,) +o(r,)-(r—r,). Then, to lowest or- == 30 E E
der inl we obtain Q 3 E
4 1—cos N E
4 I - CO E -
Apﬁb(%):——ggrgﬁf" d0|n3’2{—¢, © ok . . =
’ 3 =0y 1= cos 0 w2 @ n
(F4) vortex 1 separatrix

where ¢, is the short-hand fofé(r_u): as usual. Figure 21 Fig. 22, Orbital periodr vs 0, for a fluid particle encircling a prograde
showsAP,,, [Eg. (F4)] as a function off,. Here, we see vortex.
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' ' ' Here we have used E¢=8) for the orbital periodr. Note that

h 2 there is nothing special abodf,= /2, besides the fact that
itis O(1).
1 N In Sec. VI, we gave a rough estimate for the mixing
- . time of a prograde vortex:
| 1 | 1
0 0 2 9 T Aty~4ml Q. (F12
vortex Y separatrix

Equation(F11) gives a value oAt that, for alll/r,,, is 0.68
FIG. 23. The functiorh, appearing in Eq(F9) for the radial velocity of a  times this rough estimate.
prograde vortex. We now calculate the mixing timat, for the ML that
surrounds a retrograde vort¢kig. 11(a)]. As for the pro-
grade case, we require that most of the vorticity in the ML is
6, 32 phase-mixed by the timat,. Therefore, we will estimate
1 f—awdaln [(1—cosb,)/(1~cosh)] that At, is the orbital periodr of a fluid particle, whose
h(6,)= 3% doIn"Y3(1—cosh,)(1—cosh)] radial position atd= 7 is midway betweem, and the sepa-
O g (F10 ratrix. A straightforward calculation shows that the orbit of
this particle intersects, at

The functionh(#,) is plotted in Fig. 23. The values df
range from O to 2. Moreoveh is of order unity everywhere 0,=a
except in a thin layer near the separatriy, € ). Therefore,

it is reasonable to choose an averaging scheme such tf\%hereazélslseflls_
(h),=1. Then, Eq(F9) is equivalent to our simple estimate,
Eq. (43).

| 1/4
r_) , (F13

v

In analogy to Eq(F8), which givesr for particles orbit-
ing a prograde vortex, the following equation givedor

S particles in the ML that surrounds a retrograde vortex:
2. Mixing times

0, 1—cos#

—-1/2
délin 1—cos€¢

We now estimate the timat for a vortex to level the 7(6,)= ij . (F14)
surrounding mixing layetML ). This time was used in Sec. Yl
VII to estimate the critical local shear-rate for the suppres-

sion of radial drift. Recall that radial drift is suppressed WhenUSing Eq.(F13 for 6, gives the mixing timeAt, :

-

At<t|5|/|i’v|. AtrET(a(”rv)lM)

We first determine the mixing time for the ML that sur-
rounds a prograde vortdkig. 11(b)]. This mixing timeAt,, 4 —a(l/rv)lf“omlrrl/2 Ty 1’2_ 1— cos6)
corresponds to a typical orbital period of a fluid particle in Q- | aZ( coSeo) |-

the ML. These orbital periods are shown as a functiod pf (F15
in Fig. 22. Unfortunately, the orbital periods range from zero
to infinity, so that a “typical” value is not obvious. Here, we have used cdg=1—¢’/2. Note that in contrast to

However, a better definition fakt, is the time for most  the prograde casiEq. (F11)], the integral in Eq(F15) de-
of the vorticity in the ML to be phase-mixed. Of course, the pends orl.
entire ML takes infinitely long to mix, since the orbital pe- In Sec. VII, we gave the following estimate for the mix-
riod on the separatrixé(,= ) is infinite. So, rather than set jng time:
At, equal tor(m), we set it equal tar(7/2). That is,

V2

At~ ———
. (F1) [Q1In(r, /1)

By inspection, one can see that the right-hand side of Eq.
(F15 converges to the right-hand side of E§16), asl/r,
—0. Figure 24 shows the rate of this convergence, obtained

(F16

At ET(’JT/Z):LJO déIn—1?2
P KOYA] I 1—cos#

- i e e K K B B e s e o e e e e e e e B B e e B ] h . .
= 11 E E from a numerical solution to the integral in E@:15).

Lle ]
|l - E
XY
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