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Theory and simulations of two-dimensional vortex motion driven
by a background vorticity gradient
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This paper examines two-dimensional vortex motion in a shear-flow with nonuniform vorticity.
Typically, a vortex travels to an extremum in the background vorticity distribution. In general, the
rate of this migration increases with the magnitude of the background vorticity gradient; however,
a retrograde vortex, which rotates against the local shear, movesorders of magnitudefaster than a
prograde vortex of equal strength. Retrograde and prograde vortices travel at different speeds
because they perturb the background vorticity differently. Linearized equations accurately describe
the background vorticity perturbation that is created by a weak retrograde vortex, whereas nonlinear
effects dominate for a prograde vortex of any strength. An analytic theory is developed for the
velocity of a retrograde vortex, based on the linearized equations. The velocity of a prograde vortex
is obtained by a simple ‘‘mix-and-move’’ estimate, which takes into account the nonlinear trapping
of fluid around the vortex. Both velocity predictions are verified by vortex-in-cell simulations. If the
ratio of background shear to background vorticity gradient exceeds a critical level, there is no vortex
motion up or down the background vorticity gradient. Estimates of the critical shear are obtained for
both prograde and retrograde vortices. These estimates compare favorably to vortex-in-cell
simulations. ©2001 American Institute of Physics.@DOI: 10.1063/1.1359763#
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I. INTRODUCTION

Two-dimensional~2D! shear-flows, from laboratory to
atmospheric scales, typically contain long-lived vortic
Such vortices are carried along by the shear-flow, but t
can also drift in the transverse direction. This transverse d
is generally toward an extremum in the vorticity distributio
of the shear-flow, i.e., a peak or trough in the ‘‘backgroun
vorticity.

In this article, we derive simple expressions for the r
at which a vortex drifts transverse to the shear-flow, up
down a background vorticity gradient. These analytic res
are found to agree with vortex-in-cell simulations of the 2
Euler equations. We focus on the regime where the vorte
point-like, and the background flow has strong shear. In
regime, we find that the vortex speed increases with the m
nitude of the local background vorticity gradient, where
the vortex speed decreases as the local background s
intensifies. When the shear-flow is reversed, the vortex sp
changes byorders of magnitude. We also demonstrate tha
there is a critical level of background shear, above which
transverse vortex motion is suppressed. A brief accoun
some of these results has been published in a previous le1

One motivation for this article is a recent electro
plasma experiment2 on the free relaxation of an unstable c
lindrical shear-flow. In this experiment, a Kelvin–Helmhol
instability generates multiple vortices within the shear-flo
These vortices then ‘‘creep’’ radially outward, down a bac
ground vorticity gradient. The outward radial drift causes

a!Present address: Advanced Study Program, National Center
Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307.
1701070-6631/2001/13(6)/1704/20/$18.00
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vortices to lose their intensity, so that they are eventua
sheared apart. As a result, the shear-flow becomes axis
metric. This experiment demonstrates that the rate of a
symmetrization can be controlled by the rate at which vo
ces move along a background vorticity gradient.

Vortex motion on a background gradient also applies
the problem of hurricane motion; here, the background v
ticity gradient includes the north-south variation~b! in plan-
etary vorticity. The prediction of hurricane tracks is a pro
lem of great practical importance, so it is hardly surprisi
that a considerable body of literature has been devoted to
subject.3–12 As mentioned earlier, we focus on the regim
where ~i! the vortex is point-like, and~ii ! the background
flow has strong shear. Perhaps because this regime is n
direct application to hurricane motion, the results describ
in this paper~and the earlier letter1! have not been discusse
previously. Nevertheless, while point-like vortices a
strong background shear may be rare in geophysical setti
they are common in non-neutral plasmas2,13–15and may also
be found on planets like Jupiter that have intense storm
strong zonal winds.16

We assume that viscosity and compressibility are ne
gible; that is, we assume that the flow is governed by the
Euler equations:

]z

]t
1vW •¹z50, ~1a!

vW 5 ẑ3¹c, ~1b!

¹2c5z. ~1c!

Here,vW (rW,t) is the velocity field,z(rW,t)[ ẑ•¹3vW is vorticity
andc(rW,t) is a stream function. The variablerW is a 2D po-

or
4 © 2001 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



e
n

1705Phys. Fluids, Vol. 13, No. 6, June 2001 Theory and simulations of 2D vortex motion
FIG. 1. Both clumps and holes can b
retrograde or prograde, depending o
the sign of the local shear-rateA.
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sition vector (ẑ•rW50), andt is time. For analysis, the vor
ticity is decomposed into vortices (v) and background
(b): z5zb1(zv .

In order to facilitate discussion, we make the followin
definitions:

~i! A vortex is a ‘‘clump’’ if its total circulationGv is
positive, whereas a vortex is a ‘‘hole’’ if its total cir
culation is negative; that is,

Gv.0 for clumps,
~2!Gv,0 for holes,

where Gv[*d2r zv . This terminology2 is motivated
by the fact that a clump is a localized excess of v
ticity, whereas a hole is a localized deficit of vorticit
In a geophysical context, a clump is a ‘‘cyclone’’ i
the northern hemisphere, whereas a hole is
‘‘anticyclone.’’ 17

~ii ! Suppose that there is a background shear-flowvW b

5Ayx̂ superposed on a vortex aty50, wherex andy
are Cartesian coordinates. The quantityA ~with units
of frequency! is called the ‘‘local shear-rate’’ of the
flow. Furthermore, the vortex is termed ‘‘retrograde
if it rotates against the local shear, whereas it
termed ‘‘prograde’’ if it rotates with the local shea
that is,

Gv /A.0 for retrograde vortices,
~3!

Gv /A,0 for prograde vortices.

The clump/hole status of a vortex determines itsdirec-
tion of motion through the background vorticity distributio
zb . On the other hand, thespeedat which a vortex climbs/
descends a background vorticity gradient depends
whether it is retrograde or prograde.

As illustrated in Fig. 1, both clumps and holes can
either retrograde or prograde, depending on the sign of
local shear-rateA. In Secs. III–VII, we will focus on the
motion of a single small vortex in a cylindrical shear-flow
where the initial background vorticity is positive, axisym
metric and decreases monotonically with radiusr . In this
background,A is positive, making a clump retrograde and
hole prograde.

We now briefly discuss the basic physics of vortex m
tion driven by a background vorticity gradient. It is we
known that clumps ascend a background vorticity gradie
Downloaded 03 Jul 2001 to 132.239.69.90. Redistribution subject to A
-

n

s

n

e

-

t,

whereas holes descend the gradient.3,18 Figure 2 illustrates
this phenomenon for the case of cylindrical geometry, po
like vortices and strong background shear. Att50, a clump
~black spot! and a hole~white spot! are placed in a cylindri-
cal shear-flow. The system is evolved with a vortex-in-c
~VIC! simulation that numerically integrates the 2D Eul
equations~see Ref. 15 for a description of the VIC simula
tion!. Eventually, the clump is driven to the peak in bac
ground vorticity, whereas the hole is driven toward the mi
mum.

Figure 3 shows the gradient-driven separation of a clu
and hole in straight zonal flow. The flow is evolved using
VIC simulation in a periodic box. As before~Fig. 2!, the
clump migrates to the peak in background vorticity, where
the hole migrates to the minimum. Thus, clumps and ho
tend to opposite extremes in the background vorticity,
both curved and uncurved geometry.

When the boundary conditions have rotational or tra
lational symmetry, the opposite drifts of clumps and ho
are easily explained using conservation of angular or lin
momentum. Similar arguments have been used to explain
motion of phase-space density clumps and holes in pla
turbulence.19

We first consider a small clump@Fig. 4~a!# or hole@Fig.
4~b!# in an initially axisymmetric backgroundzb(r ,u,t) that
decreases slowly withr . Here, (r ,u) is a polar coordinate
system, with its origin at the center of the backgroud.
time, background vorticity contours tend to wrap around
vortex, or evolve in such a way that a plateau starts to fo
in the u-averaged background vorticity profile. We refer
this process as the local ‘‘phase-mixing’’ of vorticity.

FIG. 2. VIC simulation of the gradient-driven radial separation of a clum
~black dot! and hole~white dot! in a cylindrical shear-flow@Eq. ~39!#. T is a
dimensionless measure of time that is introduced in Sec. II@follow-
ing Eq. ~16!#.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. VIC simulation of the gradient-driven separation of a clump and hole in straight zonal flow. The numbers on each snap-shot indic
in arbitrary units.
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The phase-mixing of background vorticity near the vo
tex causes the vortex to move. If the fluid is contained b
free-slip cylindrical boundary atr 5Rw , the motion is con-
strained by conservation of canonical angular momentum17

Pu[*d2r r 2z(r ,u,t). This canonical angular momentum
a convenient simplification of the actual angular moment
per unit length of the fluid, which is defined by the equati
L[ ẑ•*d2r rW3rvW 5 1

2r(G totRw
22Pu). Here, r is the uniform

mass density of the fluid, andG tot is the total circulation of
the flow.

It is convenient to writePu in terms of a background
contribution and a vortex contribution,

Pu5Gb^r
2&b1Gvr v

2 . ~4!

Here Gb.0 is the total circulation of the background flow
Gv is the vortex circulation,r v is the radial position of the
vortex and^r 2&b denotes thezb-weighted spatial average o
r 2. As shown in Fig. 4, local phase-mixing increases^r 2&b

by flattening the background@sincezb8(r ),0#. To conserve
Pu , the clump (Gv.0) must decreaser v and climb the
background gradient, whereas the hole (Gv,0) must in-
creaser v and descend the gradient, as observed in Fig. 2

If the fluid is bounded by parallel walls aty56Y, the
2D Euler equations conservePx , the canonical linear
momentum:17

Px[E d2x yz~x,y,t !5Gb^y&b1Gvyv . ~5!

Here (x,y) is a rectangular coordinate system in the plane
the flow. The motion of a vortex along they-gradient inzb

can be explained by conservation ofPx , just as motion along
the radial gradient was explained by conservation ofPu in
cylindrical flow. If zb8(y),0, local phase-mixing increase
^y&b . By conservation ofPx a clump must climb the gradi
ent and decreaseyv , whereas a hole must descend the g
dient and increaseyv .

FIG. 4. Local phase-mixing of the background vorticity increases^r 2&b . By
conservation ofPu , clumps and holes react oppositely.
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When there is no local vorticity gradient, local phas
mixing does not affect the background vorticity distributio
Therefore, wherezb850, there is no local mechanism for th
vortex to exchange angular or linear momentum with
background. This suggests that clumps will settle on hills
background vorticity and that holes will settle in trough
where zb850. This relaxation principle is consistent wit
Figs. 2 and 3.

We now turn our discussion to the speed of the vor
motion. We will see in Sec. IV that retrograde vortices mo
toward extrema ofzb orders of magnitude faster than pro
grade vortices of equal strengthuGvu. This is because retro
grade and prograde vortices perturb the background vorti
differently. In the case of a weak retrograde vortex, a lin
model ~Secs. II and III! provides a good approximation fo
the evolution of the background vorticity perturbation. Usi
this linear model, we will obtain an analytic expression f
the vortex velocity that agrees with vortex-in-cell simul
tions. On the other hand, a prograde vortex generally cre
a nonlinear perturbation to the background vorticity, over
time scale of interest. As a result, the motion of a progra
vortex is better described by a simple ‘‘mix-and-move
model, which we will describe in Sec. VI.

A sufficiently large background shear will suppress t
gradient-driven motion of both retrograde and prograde v
tices. For both cases, we will estimate the critical levels
shear that are required to prevent excursions toward extr
of zb . These estimates compare favorably to vortex-in-c
simulations.

We now give an outline of the main text. In Sec. II, w
present a simple linear theory of vortex motion that is driv
by a background vorticity gradient~an abbreviated version o
this simple theory appears in Ref. 1!. In Sec. III, we present
a more detailed linear theory for the case of a weak vorte
a cylindrical shear flow. In Sec. IV, we compare the line
theory of Sec. III to a nonlinear VIC simulation. We find th
linear theory works well only for retrograde vortices, an
fails for prograde vortices. In Sec. V, we discuss why line
theory fails for prograde vortices. In Sec. VI, we obtain
more accurate estimate of the velocity of a prograde vor
in a cylindrical shear-flow, using a simple ‘‘mix-and-move
model. In Sec. VII, we show that gradient-driven vortex m
tion is suppressed when the local shear-rate is sufficie
large. In Sec. VIII, we summarize our results, and disc
some physical systems where they may apply. Many in
mediate results are derived in the appendices.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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II. SIMPLE CALCULATION OF GRADIENT-DRIVEN
DRIFT

In this section, we determine the speed at which a po
vortex in a shear-flow moves up/down a background vor
ity gradient, making a few reasonable approximations t
reduce the algebra. A more detailed analysis is presente
Sec. III, for the case of a point-vortex in a cylindrical she
flow.

For simplicity, we suppose that the initial velocity fie
near the vortex is given approximately by

vW ~x,y,t50!5Ayx̂1
Gv

2p

xŷ2yx̂

x21y2 . ~6!

Here, (x,y) is a rectangular coordinate system, centered
the initial vortex position. The first term on right-hand-sid
of Eq. ~6! is the first nonzero term in a Taylor expansio
~aboutx,y50! of the initial background shear-flow. The se
ond term in Eq.~6! is the vortex velocity field. We also
assume that there is an approximately uniform vorticity g
dient, zo8 ŷ, in the region of interest surrounding the vorte

Figure 5 shows the velocity field that is given by Eq.~6!,
for the case of a clump~a! and a hole~b!. In this figure,
A.0, so the clump is retrograde and the hole is progra
For a retrograde vortex@Fig. 5~a!#, there are stagnation
points at a distancel above and below the vortex, where

l[AuGv/2pAu. ~7!

It is evident that the vortex velocity field dominates the ba
ground shear-flow at distances less thanl from the vortex.
For a prograde vortex, there are no stagnation points, and
will see~Secs. IV–VII! that this fact has a profound effect o
the evolution of the system.

In time, the vortex creates a perturbationdzb(x,y,t) to
the background vorticity, and moves in response. The E
equation for the evolution of vorticity@Eq. ~1a!# can be writ-
ten as a set of two coupled equations: one for the evolu
of dzb , and the other for the point-vortex trajectory,xW v(t).
The equation fordzb near the vortex is given by

]dzb

]t
1FAy2

]dc

]y G• ]dzb

]x
1

]dc

]x
•Fzo81

]dzb

]y G50, ~8!

where dc is the stream function perturbation. The strea
function perturbation satisfies the equation

¹2dc5dzb1Gvd~xW2xW v!, ~9!

FIG. 5. Initial streamlines near a retrograde vortex~a! and a prograde vortex
~b! in a linear shear-flowvW b5Ayx̂, A.0.
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whered(xW2xW v) is the two-dimensional Dirac delta-function
centered at the vortex position. The equation for the vor
trajectory is given by

xẆ v5A yv x̂1 ẑ3¹dcuxWv
, ~10!

wherexv(t) and yv(t) are the vortex coordinates along th
x-axis andy-axis, respectively.

If the vortex is sufficiently weak (Gv→0), it is reason-
able to neglect terms in Eq.~8! that are second order indc
and dzb . Then, we are left with the linearized Euler equ
tion,

]dzb

]t
1Ay

]dzb

]x
1

]dc

]x
zo850. ~11!

This linearized Euler equation clearly breaks down at d
tances less thanl @Eq. ~7!# from the point-vortex, where the
vortex velocity field~incorporated indc! can not be treated
as a perturbation to the background shear-flow. The t
scale for the linearized Euler equation to remain valid
addressed in Sec. V.

We focus our present attention on the initial evolution
dzb . During this ‘‘fast time scale,’’ the vortex is approxi
mately stationary; that is,xW v.0. We also assume that, in th
background, the vortex contribution todc @Eq. ~9!# domi-
nates the contribution fromdzb . This implies that, in the
background,dc.(4p)21Gv ln (x21y2). Using this approxi-
mation, Eq.~11! reduces to

F ]

]t
1Ay

]

]xG•dzb1zo8
Gv

2p

x

x21y2 50. ~12!

Equation~12! can be solved by the method of characteristi
yielding

dzb5
2Gv

4p

zo8

Ay
ln F x21y2

~x2Ayt!21y2G . ~13!

The transverse velocityẏv of the vortex is given by the
y-component of Eq.~10!, which has the following integra
solution:

ẏv5
]dc

]x U
xWv

5
1

2p È`E
2`

`

dy dx
xv2x

~xv2x!21~yv2y!2 dzb~x,y,t !.

~14!

Over the fast time scale, the vortex remains close to
origin; so, we letxW v.0 in Eq. ~14!. If in addition we substi-
tute the linear result@Eq. ~13!# for dzb into Eq. ~14!, we
obtain

ẏv5
Gv

4p2

zo8

A E
l

L dy

y E
2`

1`

du
u

u211
ln F u211

~u2At!211G ,
~15!

whereu[x/y. A small scale (l ) and a large scale (L) cut-off
are introduced in they-integral to keepẏv finite. The small
scale cut-offl is given by Eq.~7!: at distances closer to th
origin ~the vortex!, the linear-result@Eq. ~13!# for dzb is
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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invalid. The large scale cut-offL is ambiguous, without fur-
ther specification of the background shear-flow. Presuma
L is the distance from the vortex where our initial appro
mations of the background shear-flow become inaccurat
the background velocity field is curved, as opposed tovW b

5Ayx̂, thenL is likely the radius of curvature at the vorte
position. If the shear-flow is straight, thenL is likely the
length scale for variations inzo8 . In any case, we have as
sumed that thevortex is sufficiently weak, so thatl is much
less thanL. We have also assumed that the contributio
from dzb at short (& l ) and long (*L) distances from the
vortex have negligible contributions toẏv .

The integrals in Eq.~15! yield

ẏv5
Gv

2p

zo8

uAu
ln ~L/ l !•tan21 ~T/2!

56zo8l
2 ln ~L/ l !•tan21 ~T/2!, ~16!

whereT[uAut and1/- is for clumps/holes. Theu-integral,
which gives the time dependence, is evaluated in Appen
A. For T@1, the inverse-tangent is approximatelyp/2 andẏv
is approximately constant.

Over a slow time scale, the vortex moves a distance
orderL, and the stationary vortex approximation that is us
for Eqs.~12!–~16! is invalid. We propose that over this slo
time scale (T@1), the transverse velocityẏv is given by the
time-asymptotic limit of Eq.~16!, with zo8 and l changing as
the vortex moves. This model of the slow vortex motion
reasonable only if the vortex is sufficiently weak, so that
time for the vortex to move a distancel ~the small scale
cut-off! is much greater thanT51 (t5uAu21).

We note that a similar argument is made in the text-bo
theory of a charged particle that is decelerated by Ceren
radiation.20 In this theory, the asymptotic force on a charg
particle, emitting waves in a plasma, is calculated keep
the particle fixed on its unperturbed trajectory. Th
asymptotic force is then assumed to change parametric
with slow changes in the particle’s position and velocity.

Equation~16! gives a reasonable scaling for the vort
speed:ẏv increases withGv andzo8 , whereas it decreases a
the local shear-rateA intensifies. However, the validity o
Eq. ~16! rests on the accuracy of Eq.~12!, which neglects
~among other things! curvature in the background shea
flow, and the contribution todc from dzb . In the next sec-
tion, we will calculate the the transverse velocity of a vort
in a cylindrical shear-flow, keeping these effects. This cal
lation reproduces Eq.~16! in the time asymptotic limit. It
also provides a precise argument for the logarithm, so
we can compare vortex-in-cell simulations to an analy
theory that has no free parameters.

III. LINEAR THEORY OF GRADIENT-DRIVEN VORTEX
MOTION IN A CYLINDRICAL SHEAR-FLOW

We now calculate the radial velocity of a point-vortex
a cylindrical shear-flow. For this case, it is convenient to u
a polar (r ,u) coordinate system which has its origin at t
center of the background. We denote theinitial vorticity pro-
file and angular rotation frequency of the background she
Downloaded 03 Jul 2001 to 132.239.69.90. Redistribution subject to A
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flow by zo(r ) and Vo(r ), respectively. In addition, we de
note the radial and angular positions of the vortex byr v(t)
anduv(t).

We restrict our attention to weak vortices. To make th
statement quantitative, we introduce the dimensionless
rameter

l /r v5
1

r v
AU Gv

2pr vVo8~r v!
U. ~17!

Here, l is the ‘‘trapping length’’ that is defined by Eq.~7!,
with A[2r vVo8(r v). A vortex is ‘‘weak’’ if l /r v!1. The
initial streamlines near (urW2rWvu!r v) a weak vortex in a cy-
lindrical shear flow closely resemble the streamlines in F
5, provided that the flow is viewed in a rotating frame, whe
the vortex is initially at rest. To convert Fig. 5 to cylindrica
geometry, simply letŷ→ r̂ and x̂→2 û, where r̂ and û are
the radial and azimuthal unit vectors~at the vortex position!.

In time, the vortex creates a perturbationdzb to the
background vorticity distribution. This perturbation is d
fined by the equation

zb~r ,u,t !5zo~r !1dzb~r ,u,t !. ~18!

The stream function can also be written as that of the unp
turbed shear-flow plus a perturbation; i.e.,

c~r ,u,t !52E
r

Rw
dr8 r 8Vo~r 8!1dc~r ,u,t !. ~19!

The perturbationdc consists of a background contributio
and a vortex contribution, that is,

¹2dc5dzb1Gv

d~r 2r v!d~u2uv!

r v
. ~20!

The boundary condition isdc50 at the wall radiusRw .
As in Sec. II, we rewrite the Euler equation for the ev

lution of vorticity @Eq. ~1a!# as a set of two coupled equa
tions: one for the evolution ofdzb , and the other for the
point-vortex trajectory,rWv(t)5r v(t) r̂ (t). The equation for
the evolution ofdzb is

]dzb

]t
1FVo~r !1

1

r

]dc

]r G• ]dzb

]u
2

1

r

]dc

]u

•Fzo8~r !1
]dzb

]r G50. ~21!

The equation for the vortex trajectory is

rẆv5r vVo~r v!û1 ẑ3¹dcurWv
. ~22!

Equations~21! and ~22! are coupled, sincedc @Eq. ~20!#
depends on bothdzb and rWv .

Because the vortex is weak (l /r v!1), it is reasonable to
neglect terms in Eq.~21! that are second order indc and
dzb . We are then left with the linearized Euler equation,

]dzb

]t
1Vo~r !

]dzb

]u
2

1

r

]dc

]u
zo8~r !50. ~23!

We note that Eq.~23! incorporates curvature in the back
ground shear-flow, which was neglected in the linear the
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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of Sec. II. In addition, Eq.~23! keeps the background con
tribution todc @via Eq.~20!#, which was also ignored~even-
tually! in Sec. II.

It is convenient to expand the perturbation, using a F
rier series in the polar angleu:

S dc
dzb

D5 (
m52`

`

eimuS C (m)~r ,t !
Z(m)~r ,t ! D . ~24!

Substituting Eqs.~24! into Eq. ~23!, it is found that each
Fourier coefficient of the vorticity perturbation evolves ind
pendently, according to

F ]

]t
1 imVo~r !G•Z5 im

zo8~r !

r
C. ~25!

Here, we have suppressed the superscript ‘‘(m)’’ on Z and
C. This will be standard, unless it would cause ambiguit

According to Eq.~22!, the radial velocity of the vortex is
ṙ v52 (1/r v)(]dc/]u) urWv

, which can be written

ṙ v5
2

r v
(

m51

`

m•Im@C (m)~r v ,t !eimuv#. ~26!

Here, Im stands for the imaginary part of the quantity
square brackets. We assume that the angular velocity o
vortex u̇v is dominated by the unperturbed background ro
tion. So, we use the following approximation,

u̇v5Vo~r v!. ~27!

Equation ~27! is justified upon comparison to numeric
simulations of the exact vortex motion~e.g., Fig. 7 in Sec.
IV !.

The value ofṙ v is now calculated using anunperturbed
orbit approximation. In this approximation, the backgroun
perturbation is evolved with the vortex moving along an u
perturbed circular orbit, andṙ v is taken to be the radial ve
locity perturbation that develops atrWv . Based on Sec. II, we
expect thatṙ v rapidly (t;uAu215ur vVo8(r v)u21) asymptotes
to a finite value. We will show@Eq. ~38!# that this asymptotic
speed is a function of the vortex strengthl and the local
background vorticity gradientzo8(r v). We propose that ove
a slow time scale (t@uAu21), ṙ v is given by this function,
with zo8(r v) and l changing as the vortex moves through t
background.

According to Eq.~26!, to calculateṙ v , we must calculate
the Fourier coefficients$C (m)% of the stream function. Le
Z̃(r ,s) and C̃(r ,s) denote the temporal Laplace transform
of Z(r ,t) andC(r ,t). Here,s is the Laplace transform vari
able. From Eq.~25!, and the initial conditionZ(r ,0)50, we
have

@s1 imVo~r !#•Z̃5 im
zo8~r !

r
C̃. ~28!

From Eq.~20!,

F ]2

]r 2 1
1

r

]

]r
2

m2

r 2 G•C̃5Z̃1
Gv

2ps

d~r 2r v!

r
. ~29!
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Note that Eq.~29! is written for a frame that rotates with th
the orbital frequency of the vortex. In this frame,u̇v
5Vo(r v)50, and we have setuv equal to zero.

Combining Eq.~28! with Eq. ~29!, we obtain the follow-
ing equation forC̃(r ,s):

C̃~r ,s![
Gv

2ps
G~r ur v ,s!. ~30!

Here, G is the Green’s function of a differential operatorDs ,

Ds@G~r ur v ,s!#5
d~r 2r v!

r
, ~31!

andDs is defined by the equation

Ds[
]2

]r 2 1
1

r

]

]r
2

m2

r 2 2
imzo8~r !

r @s1 imVo~r !#
. ~32!

To obtainC(r ,t), we must invert the Laplace transform@Eq.
~30!#. This yields the following integral expression fo
C(r ,t):

C~r ,t !5
Gv

4p2i Ea2 i`

a1 i`

ds
G~r ur v ,s!

s
est. ~33!

The integral in Eq.~33! is along the vertical lines[a1 iv
in the complex plane, wherea is positive and2`,v,`.

For now, we follow standard procedure, and neglect a
poles ofG(r ur v ,s) that might exist in the right half of the
complexs-plane~including the imaginary axis!. We then use
the Plemelj formula to obtain the following limit of Eq.~33!
asa→01:

C~r ,t !5
Gv

4p2i H PE
2`

`

dv
G~r ur v,011 iv!

v
eivt

1 ipG~r ur v,01!J . ~34!

Here,P denotes the ‘‘principal part’’ of the integral, which
has a singular integrand atv50.

From our simple calculation@Eq. ~16!#, we found thatṙ v
~thereẏv! rapidly asymptotes to a constant value. We assu
that the same is true here, and concern ourselves only
this time-asymptotic limit. In Appendix D, we show that th
time-asymptotic limit of the integral in Eq.~34! is
ipG(r ur v,01). Therefore,

lim
t→`

Im@C~r ,t !#5
Gv

2p
Im@G~r ur v,01!#. ~35!

Substituting Eq.~35! into Eq. ~26!, we find that the time-
asymptotic value of the radial drift is given by the followin
equation:

lim
t→`

ṙ v5
Gv

pr v
(

m51

Aerv / l

m•Im@G(m)~r vur v,01!#

562uVo8~r v!u l 2 (
m51

Aerv / l

m•Im@G(m)~r vur v,01!#, ~36!

where1/2 is for clumps/holes.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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In Eq. ~36!, we have truncated the series atm
5Aerv / l . This value ofm is one over the azimuthal width
~in radians! of the small trapping region~TR! that surrounds
a retrograde vortex@the shaded area in Fig. 5~a!#. Shortly, we
will see that the series in Eq.~36! diverges logarithmically as
the upper limit ofm approaches infinity, so that a largem
cut-off is necessary.

The series divergence in Eq.~36! is an artifact of using
the linearized vorticity equation@Eq. ~23!# to describe the
evolution of dzb in the TR. In the TR, the circular vorte
flow dominates the background shear-flow, contrary to
assumption that led to Eq.~23!. The perturbation in the TR is
represented by wave-numbersm*Aerv / l ; therefore, m
5Aerv / l is the appropriate cut-off.

Of course, neglectingm.Aerv / l amounts to neglecting
the contribution toṙ v from dzb in the TR. This is physically
reasonable asl /r v→0, and the area (; l 2) of the TR be-
comes vanishingly small. Although the TR is defined on
for a retrograde vortex, we will try the same cut-off for
prograde vortex.

For smallm, the Green’s function G(r ur v,01) must ~in
general! be found numerically, as discussed in Appendix
However, for largem, the imaginary part of the Green’
function can be calculated analytically. From this analy
calculation, we obtain

Im@G~r vur v,01!#→
pzo8~r v!

4m2uVo8~r v!u
, m@1. ~37!

Equation~37! is derived in Appendix B.
Because of Eq.~37!, the sum in Eq.~36! diverges loga-

rithmically as them-number cut-off goes to infinity, i.e., a
l /r v→0. Thus, for sufficiently weak vortices, the tim
asymptotic radial drift is approximately given by

ṙ v56
p

2
zo8~r v!l 2 ln ~c•r v / l !. ~38!

Here,1/2 is for clumps/holes, andc is determined by the
low-m values of the Green’s function G(m)(r vur v,01). Note
that Eq. ~38! is equivalent to theT→` limit of our
back-of-the-envelope calculation, Eq.~16!, with ẏv→ ṙ v and
L→c rv .

In practice, we obtain the value ofc by setting Eq.~38!
equal to a numerical solution of Eq.~36! for any large value
of the m-number cut-off,Ae rv / l . The resulting equation is
easily solved forc. As an example, we consider the rad
velocity of a vortex atr v50.4, in the background distribu
tion of Eq. ~39! ~see next section!. For this case, we obtain
c50.43. In Fig. 6, we plot the time asymptotic value ofṙ v ,
given by Eq.~36!, versusAerv / l . Also in this figure, we plot
the time asymptotic value ofṙ v that is given by Eq.~38!,
with c50.43. Clearly, Eq.~38! is an excellent approximation
of ṙ v for all l /r v&0.1. Althoughc in general depends onr v ,
we find that for the vorticity profile of Eq.~39!, c50.43
works for all r v&0.7.

Finally, the linear theory presented in this section n
glects poles ~in the s-plane! of the Green’s function
G(r ur v ,s). This amounts to neglecting the excitation by t
vortex of discrete modes in the background. In the next s
Downloaded 03 Jul 2001 to 132.239.69.90. Redistribution subject to A
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tion we will show that neglecting the excitation of discre
modes is acceptable, for a case where the background
ticity varies slowly with r . However, vortex-mode interac
tions may be important when there are large steps in
radial profile of the background.21

IV. THE SUCCESS AND FAILURE OF LINEAR
THEORY

We now demonstrate that the linear equations of mot
apply only to retrograde vortices, and that nonlinear effe
must be kept to explain the slower drift of prograde vortic
We reach this conclusion first by comparing a~nonlinear!
VIC simulation22 to a numerical integration of the linearize
equations@Eqs. ~25!–~27!#. In both simulations, the fluid is
bounded by a cylindrical wall of radiusRw, at which there is
free slip~c50 atRw). In the following, frequencies are mea
sured in units ofzo(0), andlengths are measured in units o
Rw. Furthermore, the flow is viewed in a rotating fram

where the vortex is initially at rest@rẆv(0)50#.
In the linear simulation, the vortex positionrWv and the

Fourier coefficients$Z(m)% of the background vorticity are
evolved forward in time with third-order Adams–Bashfor
steps (;103 steps per background rotation!. The Fourier co-
efficients $C (m)% of the stream function are each decom
posed into a background contribution (Cb) and a vortex con-
tribution (Cv): C5Cb1Cv . The background contribution
satisfies the equation

F ]2

]r 2 1
1

r

]

]r
2

m2

r 2 G•Cb
(m)~r ,t !5Z(m)~r ,t !,

which is solved to second order accuracy in the radial g
point spacing (;Rw/2000). Form<Ae rv(t)/ l (t), the vor-
tex component ofC is given by

Cv
(m)~r ,t !52

Gv

4pm S r ,

r .
D mF12S r .

Rw
D 2mGe2 imuv(t),

where r . (r ,) is the greater~smaller! of r and r v(t). The
number of~excited! Fourier components is made finite in th
linear simulation by settingCv

(m)50 for m.Ae rv(t)/ l (t).
With this scheme, the vortex never excites wave numb
greater than the maximum value ofAe rv / l over the vortex

FIG. 6. Comparison of Eq.~36! for ṙ v to the largeAerv / l approximation,
Eq. ~38!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 7. Inward spiral of a retrograde clump, computed with a linear simulation and a nonlinear VIC simulation:~a! sequence of contour plots, and~b! (r v ,uv)
vs T[uVo8ur v(0)t.
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trajectory. This cut-off was used~and explained! previously
in deriving an analytic expression for the radial velocity
the vortex@Eq. ~36!#.

We consider the specific case where the initial ba
ground vorticity distribution (zb at t50) is given by

zo~r !5H 121.25•r , r<0.8,

0, r .0.8.
~39!

The rotation frequency of this background in the lab frame
Vo(r )50.520.417•r , for r<0.8. The background chose
here represents a larger class, wherezo decreases monoton
cally with r , and the radial derivativeszo8 and Vo8 vary
slowly with r .

We first examine the motion of clumps, which areret-
rogradein this background. Figure 7 shows the inward spi
of a clump toward the center of the background. The clu
strengthl /r v is initially 0.12.

Figure 7~a! shows a sequence of vorticity contour plo
for both the linear simulation and the VIC simulation. A
though the linear evolution is not identical to the VIC sim
lation, several features appear similar. These include the
at which the clump travels toward the center of the distrib
tion, and the wake that is left behind the clump.

Figure 7~b! provides a more concise comparison of t
clump trajectories. The top graph shows the linear~dashed
line! and the VIC~solid line! computations ofr v(t). There is
good agreement between the linear and VIC results. The
tom graph shows that there is similar agreement foruv(t).

It is apparent from Fig. 7~b! that the clump rapidly ac-
celerates to an approximately constant radial speed. In Fi
we plot the value of this speed as a function of the clu
strengthl /r v . Here, all clumps start atr v50.4 and the back-
ground is always given by Eq.~39!. The clump strengthl /r v
is varied by changingGv only. The value ofṙ v is obtained
from a straight-line fit tor v vs t, asr v decreases from 0.37
to 0.35. In the plot,ṙ v is normalized tozo8r v

2 . Both zo8r v
2 and
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the clump strengthl /r v are evaluated atr v50.363. The dia-
monds correspond to linear simulations and each ‘‘X’’ co
responds to a VIC simulation. The solid curve is Eq.~38!,
with c50.43.

Figure 8 presents several important results. To be
with, the VIC simulations generally agree with the line
simulations. This indicates that the linear equations@Eqs.
~25!–~27!# are valid for retrograde vortices, whenl /r v!1.
Moreover, both simulations are well described by the a
lytic linear theory of Eq.~38!, which relies on the unper
turbed orbit approximation and neglects discrete modes
the background. The accuracy of Eq.~38! appears to improve
as l /r v approaches zero.

Good agreement between the simulations and our lin
analysis@Eq. ~38!# may seem surprising, especially becau
the analysis neglects the interaction of the vortex with
discrete normal modes of the background~that is, the analy-
sis neglects poles in the Green’s function G!. The discrete
modes of a cylindrical background flow vary likeei (mu2vt),
and the vortex motion is resonant with a mode ifu̇v
5v/m. Using Eq.~27!, this resonance condition can also b

FIG. 8. ṙ v vs l /r v for retrograde clumps in a linear simulation~diamonds!
and a VIC simulation~X’s!. The solid line is Eq.~38!, with c50.43.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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written, Vo(r v)5v/m. It has been shown23 that if the back-
ground is monotonic@e.g., Eq.~39!#, the latter equation can
be satisfied for a discrete mode only ifr v is outside the
background vorticity distribution, wherezo8 is zero. There-
fore, a vortex inside the background can not resonate wi
discrete mode.

Nevertheless, discrete modes can still exist, and ther
a question as to how much they influence the vortex mot
Figure 9 demonstrates explicitly that the effect of the discr
modes is negligible. Here, we plot the radial velocity pert
bation that develops atrWv as a function of time, for a vortex
that is fixed on its initial circular orbit. The vortex strength
l /r v50.03, and the background is given by Eq.~39!. To
calculateṙ v , we used the linear simulation, but keptr v arti-
ficially fixed at 0.4.

The value ofṙ v in Fig. 9 rapidly converges to Eq.~38!,
with c50.43. Therefore, in deriving Eq.~38!, we were jus-
tified in neglecting the discrete modes. The only noticea
effect of these modes is small oscillations about

FIG. 9. Radial velocity perturbation that develops atrWv , for a retrograde
clump that is artificially fixed on its initial circular orbit. The solid line is
linear simulation, and the dashed line is the time-asymptotic linear the
neglecting discrete modes.
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asymptotic value ofṙ v . These oscillations have the sam
frequency as them51 discrete mode, viewed in a frame th
rotates with the orbital angular frequency of the vorte
Vo(r v). In the lab frame, the frequencyv1 of the m51
discrete mode is24 Vo(Rw); therefore, in the rotating frame
v15Vo(Rw)2Vo(r v).

We now consider the motion of prograde holes. Figu
10 shows the outward spiral of a prograde hole toward
edge of the background. As before, the background distr
tion is given by Eq.~39!, and the initial vortex strengthl /r v
is 0.12.

Figure 10~a! shows a sequence of contour plots for bo
the linear simulation and the VIC simulation. In contrast
the motion of a retrograde clump, here there is a dram
difference between the linear simulation and the VIC sim
lation: the linear equations give a radial drift that is much t
fast. Figure 10~b! showsr v(t) anduv(t) for both the linear
~dashed line! and VIC ~solid line! simulations. AfterT;1
there is a sharp divergence between the linear and nonli
trajectories. This rapid breakdown of linear theory is e
plained in the next section.

V. NONLINEAR TRAPPING

In this section, we examine the time scale at which line
theory begins to fail in the ‘‘mixing layer’’ that surrounds
vortex in a cylindrical shear-flow. We find that for a pro
grade vortex, like the hole in Sec. IV, this time scale
practically instantaneous. On the other hand, for a retrogr
vortex, the linear time scale becomes infinite asl /r v→0.

Figure 11~a! shows the initial streamlines~in r 2u
space! that are produced by a retrograde vortex in the cyl
drical shear flow that is given by Eq.~39!. Here, the stream-
lines are shown in a rotating frame, where the vortex is i
tially stationary. Figure 11~b! shows the initial streamlines
~in r 2u space! that are produced by a prograde vortex in t
same background shear flow. Both flows have mixing lay

y

FIG. 10. Outward spiral of a prograde hole, computed with a linear simulation and a nonlinear VIC simulation:~a! sequence of contour plots and~b! (r v ,uv)
vs T[uVo8ur v(0)t.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1713Phys. Fluids, Vol. 13, No. 6, June 2001 Theory and simulations of 2D vortex motion
~shaded! centered atr v , in which theu-averaged backgroun
vorticity would flatten with time (d^zb&u /dr →0), if the
vortex remained stationary.

The mixing layer of the retrograde vortex consists of tw
regions: an inner trapping region~ITR! and an outer trapping
region ~OTR!. This differs from the case of a retrograd
vortex in an uncurved shear-flow where there was only
trapping region@shaded region in Fig. 5~a!#, corresponding
to the ITR. The mixing layer of the prograde vortex consi
of only one elongated strip.

The success of linear theory for retrograde vortices
the failure of linear theory for prograde vortices can be u
derstood by considering the streamlines in Fig. 11. In a m
ing layer, the fluid particles have secondary orbits, eit
around the vortex or around a point 180° opposite the vor
In the jargon of plasma physics, such fluid particles are s
to be ‘‘trapped’’ by the vortex. The linearized Euler equati
for the evolution of background vorticity@Eq. ~23!# does not
account for the secondary orbit of a trapped fluid particle,
times greater than or equal to the orbital period.

In developing linear theory, we applied the lineariz
Euler equation@Eq. ~23!# outsidea disc of radius; l , cen-
tered at the vortex. This was done indirectly, by imposing
cut-off m5Ae rv / l in Eq. ~36!. So, we expect linear theor
to fail for times greater than the orbital period of a trapp
fluid particle initially at rW* , whereurW* 2rWvu; l .

Let t* denote the orbital period of a fluid particle th
has the initial polar coordinates (r v ,22l /r v). This initial
position is indicated by a ‘‘* ’’ in Fig. 11. The periodt* is
plotted as a function of vortex strengthl /r v in Fig. 12, for
both the retrograde case and the prograde case.

For retrograde vortices, the fluid particle is in the OT
and t* diverges to infinity as the vortex strength goes
zero. This divergence occurs because the particle velo
tends to zero~in the rotating frame! with the vortex strength,
while the length of the orbit tends to a finite value (4pr v).

FIG. 11. Initial streamlines and mixing layers~shaded! for ~a! a retrograde
vortex and~b! a prograde vortex atr v50.4 in the cylindrical shear-flow tha
is given by Eq.~39!. Both vortices have strengthl /r v50.05. The asterisks
correspond to the fluid particles whose orbital periodst* give the time scale
at which linear theory breaks down.
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Thus, for retrograde vortices, linear theory stays valid in
nitely long asl /r v→0.

For prograde vortices, the fluid particle has an orbit
length; l and a velocity that is proportional tol ; therefore
t* remains constant asl /r v→0. On the other hand, the tim
scale for the prograde vortex to move a distance of ordl
becomes infinite. Thus, the time scale for linear theory to
becomes ‘‘instantaneous’’ relative to the time scale of vor
motion. This explains the sharp contrast between lin
theory and the VIC simulation of the trajectory of a progra
hole ~Fig. 10!.

We emphasizethat linear theory fails for the holes in ou
simulations not because the holes have negative vorticity,
because the holes are prograde with respect to our partic
choice of the background shear-flow@Eq. ~39!#.

VI. MIX-AND-MOVE ESTIMATE FOR PROGRADE
VORTICES

In Sec. IV, we showed@Fig. ~10!# that linear theory fails
to describe the motion of a prograde vortex up/down a ba
ground vorticity gradient. In Sec. V, we explained why:
prograde vortex creates a nonlinear perturbation to the b
ground flow ‘‘instantaneously.’’ However, it is still possibl
to estimate the rate at which a prograde vortex climbs
descends a background vorticity gradient.

In this section, we estimate the radial velocityṙ v of a
prograde vortex in a cylindrical shear-flow, using a ‘‘mix
and-move’’ model of the vortex motion. This model is bas
on conservation of canonical angular momentumPu @Eq.
~4!#. A more detailed estimate, which gives the same res
is carried out in Appendix F.

A prograde vortex tends to phase-mix a thin layer
background vorticity, and move a distanceDr in response.
This mixing layer~ML ! was described in Sec. V, and corr
sponds to the shaded region in Fig. 11~b!. From Fig. 11~b!,
we see that the ML extends fromu52p to p and has an
average radial width of;2l .

Suppose that the prograde vortex levels the entire
(d^zb&u /dr →0) and has a negligible effect on fluid outsid
the ML. This phase-mixing increases the background co
ponent ofPu by an amount

FIG. 12. The time scale (t* ) at which linear theory breaks down, for pro
grade and retrograde vortices.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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DPu,b;2zo8E
2p

p

duE
r v2 l

r v1 l

dr r 3~r 2r v!

524pzo8r v
2l 31O~ l 5!. ~40!

Here, we use the symbol ‘‘; ’’ to indicate that the equation
is an estimate. By conservation ofPu , the radial positionr v
of the vortex must change by an amountDr . Assuming that
Dr /r v!1, we have

Dr 5
2DPu,b

2Gvr v
;6 l

zo8

uVo8u
, ~41!

where1/2 is for clumps/holes.
To obtain the velocity of the prograde vortex also r

quires an estimate of the timeDt for the ML to flatten. Pre-
sumably, this time is given by the orbital period of a flu
particle near the separatrix, which encloses the ML. We
timate that the average angular speed (u̇) of this fluid par-
ticle is ;uVo8u l , in the frame that rotates with the vorte
Since the orbit covers;4p radians~2p in the clockwise
direction, and 2p in the counter-clockwise direction!, we
have

Dt;
4p

uVo8u l
. ~42!

Finally, the velocity of the prograde vortex is given by

ṙ v;
Dr

Dt
;6

1

4p
l 2zo8 , ~43!

where1/2 is for clumps/holes, andzo8 and l are evaluated
at the vortex position.

Note that thel -scaling in linear theory@Eq. ~38!# differs
from thel -scaling in Eq.~43! by a factor of ln (crv /l). There-
fore, our estimate suggests that a retrograde vortex, w
follows linear theory, will move infinitely faster than a pro
grade vortex asl /r v→0.

In Fig. 13, we compare Eq.~43! to the late-time pro-
grade hole velocities that are observed in the VIC simu
tions. As before,zo is given by Eq.~39! and the prograde
holes are located initially atr v50.4. The plotted values ofṙ v

FIG. 13. ṙ v vs l /r v for prograde holes in a VIC simulation~circles! and an
experiment~square!. The solid line is the prediction of the ‘‘mix-and-move’
estimate@Eq. ~43!#, and the dashed line is the prediction of linear theo
@Eq. ~38!#.
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are from straight-line fits tor v vs t, asr v increases from 0.5
to 0.6. The ratiol /r v and the velocity normalizationzo8r v

2 are
evaluated atr v50.55.

The simulation velocities~denoted by O’s! are between
0.6 and 1.1 times the values that are predicted by the m
and-move estimate. Although the estimate is not perfect,
much more accurate than linear theory~dashed line!.

The drift velocity of prograde holes down a vorticit
gradient was recently measured by Huang, Fine a
Driscoll.2 This experiment was performed on a magnetiz
electron column, which behaves like an ideal 2D fluid. T
experiment starts with an unstable flow that rapidly evolv
into an axisymmetric vorticity distribution with two~occa-
sionally three! prograde holes~see Ref. 2!. Typically these
prograde holes are evenly spaced inu and have roughly the
same values forr v . The remainder of the relaxation is con
trolled by the slow drift of the prograde holes down the bac
ground vorticity gradient, and out of the distribution.

There was some concern that the slow radial drift
prograde holes was a ‘‘kitchen effect’’ of the experimen
which has nothing to do with 2D Euler flow. However, th
measured value ofṙ v ~plotted in Fig. 13! is within a factor of
3 of Eq. ~43!, which is at the level of our estimated erro
Although strong conclusions should not be drawn from
single datum, it appears that we have captured the fundam
tal mechanism for the radial motion of prograde holes in
experiments.

A more critical eye might notice, disregarding error ba
that the VIC simulation gives a larger value ofṙ v than the
experiment. This suggests that the presence of an additi
prograde hole, which changes the structure of the ML, mi
slow down the outward radial drift. This has been verified
placing an additional prograde hole in the VIC simulatio
180° opposite the original prograde hole~and at the same
r v). The value ofṙ v decreases by a factor of 2, in clos
agreement with the experiment.

VII. THE SUPPRESSION OF GRADIENT-DRIVEN
DRIFT BY LARGE SHEAR

The mix-and-move estimate of the previous section
sumes that the prograde vortex continuously moves into n
regions where theu-averaged background vorticity is unpe
turbed; that is, whered^zb&u /dr .zo8 . However, if the mix-
ing layer ~ML ! moves with the prograde vortex,d^zb&u /dr
shortly becomes zero atr v , and the radial drift stops.

We propose that most of the ML moves adiabatica
with the prograde vortex, and the radial drift is suppress
when

t l@Dt. ~44!

Here,t l is the predicted time forr v to change byl , which is
the radial length scale of the ML, andDt is the time required
for the ML to be phase-mixed.

In the previous section, we argued that the mixing tim
Dt is approximately 4p/ l uVo8u @Eq. ~42!#. The ‘‘escape
time’’ t l is given byl /u ṙ vu . Here, we assume thatṙ v is given
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 14. VIC simulations of the motion of a prograde hole in different levels of background shear.~a! r v vs T for different shear strengths.~b! ṙ v vs Vo8/zo8 .
Inset: equilibrium obtained forVo8/zo852.67.
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by Eq. ~43!. Putting these estimates into Eq.~44! yields the
following condition for no radial drift~past a displacement o
order l ):

Vo8

zo8
@1. ~45!

Equation~45! indicates that a large shear prevents the p
grade vortex from drifting radially.

Alternatively, one can propose that radial drift is su
pressed whenl @Dr . Here,Dr is the radial displacement o
the prograde vortex due to phase-mixing of the entire M
and is determined by conservation ofPu . In the previous
section, we estimated thatDr; l zo8/Vo8 @Eq. ~41!#. Using this
result, we regain Eq.~45! for the suppression of radial drift

For the simulation data in Fig. 13,Vo8/zo85 1
3, so only a

small fraction of the ML moves with the prograde hole25

However, by artificially increasinguVo8u in the VIC simula-
tion, so thatVo8/zo8 has an order of magnitude that is grea
than or equal to 1, we can examine the motion of a progr
hole when the mix-and-move model breaks down.

Figure 14 shows howṙ v changes withVo8/zo8 for pro-
grade holes of initial strengthl /r v50.2. The background
vorticity is given by Eq.~39!; however, the shearVo8 is gen-
erally not consistent with Poisson’s equation. Instead,
fluid particles in the VIC simulation are given anadditional
angular rotation frequency of the formS•r , where the con-
stantS is an adjustable parameter. The initial vortex stren
l /r v(t50) is kept fixed in this set of simulations by increa
ing the magnitude ofGv in proportion to the total shearVo8 .

Figure 14~a! showsr v as a function of time for differen
shear strengths. Here,T[uVo8ur v(0)t, with Vo8 evaluated for
the case of no additional shear (S50). Figure 14~b! shows
ṙ v vs Vo8/zo8 . The value ofṙ v is obtained by a straight line fi
to r v vs. t, as the prograde hole moves fromr v50.5 to 0.6.
For Vo8/zo8,1, ṙ v is approximately constant, and equal
;0.6 times the simple mix-and-move estimate, Eq.~43!.26

However,ṙ v drops to zero atVo8/zo8.1, as predicted by Eq
~45!. A velocity of zero means that the hole stops driftin
outward before a radial displacement ofl .
Downloaded 03 Jul 2001 to 132.239.69.90. Redistribution subject to A
-

-

,

r
e

e

h

The inset of Fig. 14~b! is a contour plot of the equilib-
rium that forms whenVo8/zo852.67. Note that the ML has
been flattened. The gray levels are the same as in Figs. 7
10. We remark that the equilibration observed here is an
gous to the nonlinear saturation of a growing~or decaying!
plasma wave; i.e., it is akin to the formation of a Bernstei
Greene–Kruskal~BGK! mode.27 A BGK mode forms
through the flattening of the electron distribution function
a resonant layer; here, an asymmetric equilibrium for
through the flattening of theu-averaged vorticity distribution
in the mixing layer.

Equation ~45! suggests that, for prograde vortices, t
shear strength required to suppress outward radial drift d
not depend explicitly onl ~i.e., onuGvu). This result is con-
sistent with the VIC simulation data in Fig. 15. Here, th
radial velocity is plotted as a function of shear streng
Vo8/zo8 , for initial prograde hole strengthsl /r v that range
from 0.08 to 0.4. All cases show the same qualitative beh
ior. WhenVo8/zo8&1, ṙ v is approximately given by the mix
and-move estimate. On the other hand, whenVo8/zo8*1, ṙ v
is zero.

A stronger shear is required to suppress the radial drif
a retrograde vortex. The general criterion is presumably
same as for a prograde vortex,t l@Dt. However, the mixing
time Dt and escape timet l both differ.

FIG. 15. ṙ v vs Vo8/zo8 for prograde holes with initial strengthsl /r v that range
from 0.08 to 0.4. The critical local shear-rate for the suppression of ra
drift seems to be independent ofl , as predicted for prograde holes by E
~45!.
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FIG. 16. VIC simulations of the motion of a retrograde clump in different levels of background shear.~a! r v vs T for different shear strengths.~b! ṙ v vs
Vo8/zo8 . The 3 ’s are data from VIC simulations. The solid line connects points to aid the eye. The dashed line is Eq.~38!, with c a function ofVo8 . Inset:
‘‘equilibrium’’ obtained for Vo8/zo8520.
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We show in Appendix F that, for a retrograde vorte
Dt; 4&p/uVo8u lAln (rv /l). Furthermore, we use the linea
theory for ṙ v @Eq. ~38!, with c51# to estimate the escap
time t l[ l /u ṙ vu . Then, the condition for an equilibrium t
form (t l@Dt) becomes

Vo8

zo8
@A8p2Aln ~r v / l !. ~46!

Equation~46! is more stringent than Eq.~43! for prograde
vortices. According to Eq.~46!, asl /r v→0, an infinite shear
is required to suppress the radial drift of a retrograde vor

Figure 16 illustrates howṙ v changes withVo8/zo8 for ret-
rograde clumps, of initial strengthl /r v50.1. As before, the
background vorticity is given by Eq.~39!, and the shear is
varied artificially. Figure 16~a! shows r v as a function of
time for different shear strengths. Figure 16~b! showsṙ v as a
function of Vo8/zo8 . The value of ṙ v is obtained from a
straight-line fit to r v vs t, as the retrograde clump move
from r v50.375 to 0.35. AsVo8/zo8 increases,ṙ v increases
and then drops to zero atVo8/zo8;10. This transition point
has the same order of magnitude as the critical shear stre
estimate,A8 p2Aln (rv /l), which is indicated on the graph.

The inset of Fig. 16~b! is a contour plot of the ‘‘equilib-
rium’’ that forms whenVo8/zo8520. Here, we put ‘‘equilib-
rium’’ in quotes, because the ML is not fully phase-mixed
the time the simulation was stopped.

It is worth mentioning that linear theory still captures t
initial increase inṙ v with the shear strength. The dash
curve in Fig. 16~b! corresponds to linear theory ofṙ v , Eq.
~38!. In Fig. 16~b!, the shear strength is varied keepingl
fixed; so, ṙ v @Eq. ~38!# varies with the shear strength on
through the variablec in the argument of the logarithm. In
Fig. 16~b!, it is shown thatṙ v ~in linear theory! asymptotes to
a fixed value asVo8/zo8→`. An analytic expression@Eq.
~C2!# for this ‘‘infinite’’ shear limit of ṙ v is derived in Ap-
pendix C.

Note that in Fig. 16~b!, the curve for linear theory wa
calculated withl /r v50.116, which is slightly greater tha
the initial vortex strength,l /r v50.1. The larger vortex
strength is due to the change inl /r v from the initial vortex
position (r v50.4) to the point where the radial velocity
measured (r v50.363).
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VIII. DISCUSSION

Two-dimensional vortex motion driven by a backgrou
vorticity gradient has been examined numerically and a
lytically. As illustrated in Figs. 2 and 3, clumps~vorticity
excesses! move toward peaks in background vorticit
whereas holes~vorticity deficits! move toward minima.3,18

The rate of this migration is determined by whether the v
tex is retrograde or prograde@Eq. ~5!#: a weak retrograde
vortex moves orders of magnitude faster than a progr
vortex of equal strength.

In Sec. II, we presented a simple analytic theory of v
tex motion driven by a background vorticity gradient. Th
theory was based on a reduced linear equation for the e
lution of background vorticity@Eq. ~12!#. In a few steps, we
derived a closed-form expression for the vortex speed@Eq.
~16!#. This expression showed that the vortex speed increa
with the magnitude of the local background vorticity grad
ent, and decreases as the local shear intensifies.

In Sec. III, we carried out a more detailed analysis
gradient-driven vortex motion, for the case of a point-vort
in an axisymmetric background. This theory was also ba
on a linear equation for the evolution of background vortic
@Eq. ~23!#, but kept various terms that were neglected in S
II. Despite the additional terms, we showed that the vor
velocity @Eq. ~36!# reduces to the simple result of Sec.
@Eqs.~16! and~38!#, asl /r v→0. However, upon compariso
to vortex-in-cell simulations, linear theory proved accura
only for retrograde vortices. A prograde vortex always c
ates a nonlinear perturbation to the background flow, a
moves at a much slower rate. Interestingly, a good estim
@Eq. ~43!# of this rate was obtained from a simple ‘‘mix-and
move’’ model of the vortex motion.

Of course, the principal results of Secs. III–VI@Eqs.~38!
and ~43!# have limits of applicability. To begin with, the
vortex must be weak compared to the background sh
flow; for example, if the shear flow is cylindrical, we requi
that l /r v!1. Second, the vortex must not resonate with
discrete normal mode~or quasi-mode! of the background
~see Sec. IV!. In addition, the background shear rate must n
exceed a critical level@Eqs. ~45! and ~46!#, beyond which
gradient-driven vortex motion is suppressed.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Furthermore, the viscosity of the fluid must be neg
gible. In particular, we require that the kinematic viscosityn
satisfy the following:

n! l 2/t, ~47!

wheret is the projected time scale of vortex motion throu
the background. If Eq.~47! is satisfied, then viscosity act
only at length scales! l , over the time period of interest (t
&t). In the theory of vortex motion presented here, t
structure of the background vorticity perturbation is uni
portant at these small scales. However, ifn* l 2/t, viscosity
creates large scale (* l ) changes to the background vorticit
and thereby alters the vortex motion. We note that Eq.~47! is
also required to keep a~retrograde! vortex intact. If n
* l 2/t, then the vortex will diffuse over a separatrix, into
region where the background shear-flow dominates the
cular vortex flow. As a result, the vortex will be shear
apart in a time less than or equal tot.

Our study of gradient-driven vortex motion was in pa
motivated by an electron plasma experiment on the free
laxation of an unstable cylindrical shear-flow.2 In this experi-
ment, the shear-flow developed into a state with multi
vorticity holes in an axisymmetric background. In time, the
prograde holes crept radially outward, toward a minimum
the background vorticity distribution. The measured hole
locity proved to be consistent with Eq.~43!. Recently, a
complementary set of experiments13 measured the relaxatio
rate of a cylindrical shear-flow that contained small-sc
vorticity clumps. In these experiments, the retrograde clum
moved to peaks in the background vorticity at a rate con
tent with Eq.~38!.

We speculate that the results of this article can also se
as a ‘‘zeroth-order’’ model of certain atmospheric flows. F
example, Eqs.~38! and ~43! may provide reasonable ap
proximations for the motion of small retrograde and p
grade vortices~respectively! within a larger tropical cyclone
In addition, Eq.~16! may provide a reasonable estimate f
the north-south drift of a retrograde vortex on a planet w
strongly sheared~east-west! zonal winds. In this case, th
large scale cut-offL, which appears in Eq.~16!, is likely the
width of a zone.

Of course, a planetary vortex is not governed by
Euler flow @Eqs. ~1a!–~1c!#. In the ‘‘shallow-water’’ theory
of planetary flow, potential vorticityq[(z1 f )/h replaces
vorticity z as the conserved quantity along the Lagrang
trajectory. Here,f is the Coriolis parameter andh is the thick-
ness of the atmosphere. The effect of background pote
vorticity ~PV! is similar to the effect of background vorticit
in 2D Euler flow.3–12 So, in a planetary atmosphere, we e
pect to find long-lived clumps~rotating counter-clockwise!
on PV maxima, and long-lived holes~rotating clockwise! on
PV minima.

This equilibrium appears to be consistent with the
rangement of long-lived hurricanes in Jupiter’s atmosphe
Figure 17, adapted from Ref. 28, shows the velocityū of
Jupiter’s east-west zonal winds as a function of latitude. T
graph also shows that the long-lived hurricanes rest appr
mately on zeros ofū.
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According to Dowling’s model,29 the zonal windū is
related to the background potential vorticityq̄ on Jupiter by
the following: ū.g q̄y(q̄)22. Here,y is the local Cartesian
coordinate that increases in the northward direction,g is the
~positive! reduced gravity, andq̄y denotes the derivative ofq̄
with respect toy. If this model is correct, then Fig. 17 im
plies that clumps are on potential vorticity peaks (q̄y

50, q̄yy,0), whereas holes are in potential vortici
troughs~q̄y50, q̄yy.0).

As a final note, the work presented in this article a
sumes that a background vorticity gradient already exi
Also, clumps, holes and background were treated as sep
entities, whereas in fact all contribute to the overall vortici
Our results suggest that a preexisting overall vorticity gra
ent could be amplified as clumps and holes congregate in
peaks and troughs of the background. The motion of clum
and holes through a background vorticity could therefo
provide a mechanism for the spontaneous formation of zo
flows. In order to study this transport process, it is necess
to consider the interaction of many clumps and holes a
their effect on background vorticity. These subjects will
considered in future work.

ACKNOWLEDGMENTS

The authors gratefully acknowledge useful conversati
with Professor T. M. O’Neil, Professor C. F. Driscoll, an
Dr. A. Kabantsev.

This work was supported by National Science Foun
tion Grant No. PHY-9876999 and Office of Naval Resear
Grant No. N00014-96-1-0239.

APPENDIX A: EVALUATION OF THE u-INTEGRAL

In this appendix, we evaluate theu-integral in Eq.~15!,
which gives the time dependence of the vortex’s radial
locity ṙ v .

Let I (t) denote the integral:

I ~ t ![E
2`

1`

du
u

u211
ln F u211

~u2At!211G . ~A1!

To evaluateI (t), we first express the fractionu/(u211) as a
sine transform. Then,

FIG. 17. Location of long-lived storms in Jupiter’s zonal flow~Ref. 28!.
LRS, B, GRS and WO denote Little Red Spot, Barges, Great Red Spot
White Ovals, respectively. ‘‘cl’’ denotes clump and ‘‘hl’’ denotes hole.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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u

u211
5E

0

`

dk e2k sin~ku!. ~A2!

Substituting Eq.~A2! into Eq. ~A1! yields

I ~ t !5E
0

`

dkE
2`

`

dn ln F ~n1 At/2!211

~n2 At/2!211G
3e2k sin~kn! cosS k

At

2 D . ~A3!

Here, we have also made the transformation of variab
u→n, wheren5u2At/2.

The n integral in Eq.~A3! is in Ref. 30:

E
2`

`

dn ln F ~n1 At/2!211

~n2 At/2!211G sin~kn!5
4p

k
e2k sinS k

At

2 D .

~A4!

Substituting Eq.~A4! into Eq. ~A3!, we obtain

I 52pE
0

`

dke22k
sin~kAt!

k
52p tan21~T/2!sgn~A!,

~A5!

whereT5uAut. Equation~A5! is the desired result.

APPENDIX B: THE GREEN’S FUNCTION

In this appendix we describe how to calculate t
Green’s function G(r ur v ,s) of the differential operatorDs

@Eq. ~32!#, in the limit thats goes to zero along the positiv
real axis.

1. General solution

The Green’s function is defined by the equation

Ds@G~r ur v ,s!#[F ]2

]r 2 1
1

r

]

]r
2

m2

r 2 2
imzo8~r !

r @s1 imVo~r !#
G

•G~r ur v ,s!5
d~r 2r v!

r v
, ~B1!

and the boundary conditions G(0ur v ,s)5G(Rwur v ,s)50.
Equation~B1! has the formal solution

G~r ur v ,s!5
f s~r ,!hs~r .!

r vWs~r v!
. ~B2!

Here, r . (r ,) is the greater~smaller! of r and r v . The
functions f s(r ) and hs(r ) are independent solutions to th
homogeneous equation; that is,Ds@ f #5Ds@h#50. They are
distinct in thatf s(r ) vanishes atr 50, whereash(r ) vanishes
at Rw . The Wronskian Ws(r ) is defined by the equation
Ws(r )5 f s(r )hs8(r )2hs(r ) f s8(r ).

For smallm, the functionsf s andhs are found numeri-
cally, using standard methods. To obtain the radial drift
the vortex@Eq. ~36!#, we need G(r ur v ,s) in the limit thats
→01. Therefore, we decreases along the positive real axis
until the Green’s function converges to its limiting form.
Downloaded 03 Jul 2001 to 132.239.69.90. Redistribution subject to A
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2. Analytic solution for large m

We now demonstrate that the imaginary part
G(r vur v,01) is given by Eq.~37! for largem.

For analysis, it is convenient to rewrite the differenti
equation for the Green’s function, Eq.~B1!, as follows:

FL2
imzo8~r !

r @s1 imVo~r !#
G•G~r ur v ,s!5

d~r 2r v!

r v
. ~B3!

Here, L is the Fourier transform of the 2D Laplacian,

L[
]2

]r 2 1
1

r

]

]r
2

m2

r 2 . ~B4!

Note that G in Eq.~B3! has an implicitm-dependence.
We now decompose the Green’s function into two pa

G~r ur v ,s![go~r ur v!1g1~r ur v ,s!. ~B5!

Herego(r ur 8) is the Green’s function of L,

L@go~r ur 8!#5
d~r 2r 8!

r 8
, ~B6!

and accounts for the vortex stream function. The expl
functional form ofgo(r ur v) is given by the following:

go~r ur v![2
1

2m S r ,

r .
D mF12S r .

Rw
D 2mG , ~B7!

wherer . (r ,) is the greater~smaller! of r and r v .
The ‘‘correction’’ g1 accounts for the response of th

background to the vortex. Substituting Eq.~B5! into Eq.~B3!
gives the following differential equation forg1 :

L@g1~r ur v ,s!#5
imzo8~r !

r @s1 imVo~r !#
@go~r ur v!

1g1~r ur v ,s!#. ~B8!

A formal integral solution to Eq.~B8! is as follows:

g1~r ur v ,s!5E
0

Rb
dr8 go~r ur 8!

imzo8~r 8!

@s1 imVo~r 8!#

3@go~r 8ur v!1g1~r 8ur v ,s!#, ~B9!

where Rb is the radial extent of the background vortici
distribution. We can use the Plemelj formula~and some mi-
nor algebra! to evaluate the integral in the limits→01,
yielding

g1~r ur v,01!

5PE
0

Rb
dr8

zo8~r 8!

Vo~r 8!F11
g1~r 8ur v,01!

go~r 8ur v! Ggo~r ur 8!go~r 8ur v!

1
ipzo8~r v!

uVo8~r v!u F11
g1~r vur v,01!

go~r vur v! Ggo~r vur v!go~r ur v!.

~B10!

Note that the Plemelj formula applies atr 5r v , since
Vo(r v)50 in the rotating frame.

So far, we have made no approximations. However,
largem, we will assume that
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 18. Convergence of Im@G# to Eq. ~B13! asm→`.
ur

of

q

g.

is

for
hat

q.
d
s,

.

ug1~r ur v,01!u!ugo~r ur v!u. ~B11!

Then, for largem, the terms involvingg1 /go in Eq. ~B10!
can be neglected, yielding

g1~r ur v,01!.PE
0

Rb
dr8

zo8~r 8!

Vo~r 8!
go~r ur 8!go~r 8ur v!

1go~r ur v!
ipzo8~r v!

uVo8~r v!u
go~r vur v!. ~B12!

Equation~B12! gives a solution that is consistent with o
original assumption, Eq.~B11!, in the limit of largem: From
Eq. ~B7!, we havego;1/m, and by inspection of Eq.~B12!,
we haveg1;1/m2. Therefore,ug1u!ugou for largem.

We are interested primarily in the imaginary part
G(r ur v,01), since it alone contributes toṙ v @Eq. ~36!#. Since
go is real, the imaginary part of G(r ur v,01) is equal to the
imaginary part ofg1(r ur v,01).

In the largem limit, we argued thatg1(r ur v,01) is given
by Eq. ~B12!. The integral in Eq.~B12! is real. So, in the
large m limit, the imaginary part of G(r ur v,01) is given
solely by the second term on the right-hand side of E
~B12!; that is,

Im @G~r ur v,01!#.go~r ur v!
pzo8~r v!

uVo8~r v!u
go~r vur v!. ~B13!

Equation~B13! is compared to a numerical solution in Fi
18. Here, the background is given by Eq.~39!, and r v
50.4. The numerical solution for Im@G(r ur v,01)# is in good
agreement with Eq.~B13!, for m*10.

We now use Eq.~B13! to evaluate Im@G(r vur v,01)#,
which appears in Eq.~36! for ṙ v . Substituting Eq.~B7! for
go into Eq. ~B13!, we find that

Im @G~r vur v,01!#.
pzo8~r v!@12~r v /Rw!2m#2

4m2uVo8~r v!u
. ~B14!

For largem, the quantity (r v /Rw)2m is negligible, and Eq.
~B14! reduces to Eq.~37! of the main text.

APPENDIX C: LINEAR THEORY FOR ṙ v IN THE CASE
OF VERY STRONG BACKGROUND SHEAR

In Sec. VII, we discussed the effect of large shear onṙ v .
Our primary point was that large shear bringsṙ v to zero, by
causing the mixing layer to flatten rapidly. However, th
suppression of radial drift occurs only whenVo8/zo8 exceeds a
critical level @Eqs. ~45! and ~46!#. For weaker shear, we
Downloaded 03 Jul 2001 to 132.239.69.90. Redistribution subject to A
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found that linear theory provides a good approximation
ṙ v , in the case of a retrograde vortex. Moreover, we saw t
in linear theory,ṙ v asymptotes to a finite value asVo8→`,
keepingl , zo8 , r v and Rw fixed @Fig. 16~b!#. We now cal-
culate this ‘‘infinite’’ shear limit ofṙ v .

We first note that Eq.~B12! is valid for all m, as Vo8
→`. In this limit, both terms on the right-hand-side of E
~B12! tend to zero, for allm. Therefore, for large shear an
all m, Eq. ~B12! gives a self-consistent solution; that i
ug1u!ugou.

This means that for allm we can use Eq.~B14!, which
gives an expression for Im@G(r vur v,01)# that is based on Eq
~B12!. Substituting Eq.~B14! into Eq.~36! for ṙ v , we obtain

lim
t→`

ṙ v56
p

2
zo8~r v!l 2 (

m51

Aerv / l
1

m F12S r v

Rw
D 2mG2

. ~C1!

Note that this expression forṙ v depends only onl , zo8 , r v
and Rw . If these quantities are held fixed asVo8 increases,
there will be no change inṙ v .

For smalll /r v , Eq. ~C1! has the following approximate
form:

lim
t→`

ṙ v56
p

2
zo8~r v!l 2 ln ~c* r v / l !, ~C2!

wherec* is defined as

c* 5 lim
l /r v→0

l

r v
expH (

m51

Aerv / l
1

m F12S r v

Rw
D 2mG2J . ~C3!

The dependence ofc* on r v /Rw was obtained numerically
and is plotted in Fig. 19.

FIG. 19. The ‘‘infinite’’ shear limit ofc as a function ofr v /Rw .
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 20. The streamlines in the mixing layers of a prograde vortex~a! and a retrograde vortex~b! can be parametrized by the angleuc (0<uc<p). This
angle is where the streamline passes throughr v .
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Figure 16~b! of the main text demonstrates that Eq.~C2!
gives the correct value for the ‘‘infinite’’ shear limit ofṙ v , in
linear theory.

APPENDIX D: TIME ASYMPTOTIC LIMIT OF THE
v-INTEGRAL

In this appendix, we evaluate thet→` limit of the
v-integral in Eq.~34!, which is required to obtain the late
time limit of ṙ v .

Let J(t) denote this integral:

J~ t ![PE
2`

`

dv
G~r ur v,011 iv!

v
eivt. ~D1!

We now make the change of variablesv→n, where n
[vt. In terms ofn, we have

J~ t !5PE
2`

`

dn
G~r ur v,011 in/t !

n
ein. ~D2!

In the t→` limit, Eq. ~D2! becomes

lim
t→`

J~ t !5G~r ur v,01! PE
2`

`

dn
cosn1 i sinn

n
. ~D3!

The cosine term in Eq.~D3! vanishes, since cosn/n is odd.
The sine term yields

lim
t→`

J~ t !5 ipG~r ur v,01!. ~D4!

Equation~D4! is the desired result.

APPENDIX E: STREAMLINES IN THE MIXING LAYER

In this appendix, we examine the initial stramlin
around a weak vortex in a cylindrical shear-flow. We co
sider both prograde and retrograde vortices@Eq. ~3!#. The
results derived here are used in Appendix F to estimate
radial velocity of a prograde vortex, which can not be calc
lated using linear theory. The results are also used in App
dix F to estimate the critical local shear-rate@Eqs. ~45! and
~46!# for the suppression of radial drift, for both prograd
and retrograde vortices.

Up to an arbitrary constant, the stream function aroun
vortex of circulationGv in a cylindrical shear-flowVo(r ) is
Downloaded 03 Jul 2001 to 132.239.69.90. Redistribution subject to A
-

e
-
n-

a

c5E
0

r

dr8r 8Vo~r 8!1
Gv

4p
ln @r 21r v

222rr v cos~u2uv!#.

~E1!

Here, we have neglected the image of the vortex due to
wall. We now go into a rotating frame whereVo(r v) is zero,
and we setuv equal to zero. Furthermore, we assume thatVo8
is approximately constant. Then, the stream function in
~E1! simplifies to

c5Vo8S r 3

3
2

r vr 2

2 D1
Gv

4p
ln ~r 21r v

222rr v cosu!. ~E2!

The important nonlinear dynamics occurs in the mixi
layer ~ML !. Consequently, we focus on streamlines in th
region. We refer the reader to Sec. V, and in particular F
11, for our definition of the ML.

All streamlines are contours along whichc(r ,u) is con-
stant. A streamline in the ML is parametrized by the an
uc (0<uc<p), where it passes throughr v ~the radial po-
sition of the vortex!. The angleuc is defined pictorially in
Fig. 20. The separatrix which outlines the ML of a we
( l /r v!1) prograde vortex is the streamline for whichuc

5p. The separatrix which outlines the ML of a weak retr
grade vortex is the streamline for whichuc5 l /Ae rv .

The streamline equation isc(r ,u)5c(r v ,uc), or
equivalently

r21
2

3
r36S l

r v
D 2

ln F2~11r!•~12cosu!1r2

2~12cosuc! G50.

~E3!

Here,r[(r 2r v)/r v andl is defined by Eq.~17!. The sign of
the third term is ‘‘1 ’’ for a prograde vortex (Gv /Vo8.0)
and ‘‘2 ’’ for a retrograde vortex (Gv /Vo8,0). For l /r v
!1, and u@ l /r v , we obtain the following approxima
tion for r:

r~u!.5 6
l

r v
Aln F12cosuc

12cosu G prograde

6
l

r v
Aln F 12cosu

12cosuc
G retrograde.

~E4a!

~E4b!

Here,6 indicates thatr has a positive and a negative valu
for any givenu.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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APPENDIX F: ANALYSIS OF NONLINEAR MOTION

1. Detailed mix-and-move estimate for ṙ v

We now carry out a detailed mix-and-move estimate
the radial velocityṙ v of a prograde vortex in an initially
axisymmetric background. This detailed estimate yields
same expression forṙ v as our simple estimate, Eq.~43!.

As in the main text, we assume that the prograde vor
acts to level the~coarse-grained! vorticity distribution in the
ML @the shaded region in Fig. 11~b!#, but has a negligible
effect on fluid outside the ML. Then, a reasonable estim
for ṙ v is given by

ṙ v; K 2DPu,b

2Gvr vt L
c

. ~F1!

Here,DPu,b is the change in the background’s angular m
mentum that occurs upon flattening the vorticity distributi
in the area between the vortex and a closed streamline@e.g.,
the shaded region in Fig. 20~a!#, t is the orbital period of a
fluid particle on that streamline, and^ &c denotes an averag
over the streamlines in the ML. We have used conserva
of Pu @Eq. ~4!# to relate the change inr v to the change in
Pu,b . Note that the orbital periodt is infinite on the separa
trix bounding the ML. Therefore, if we used the particle or
on the separatrix to evaluateṙ v , instead of an average, w
would obtainṙ v50.

After the background vorticity is phase-mixed within
closed streamline@shaded area in Fig. 20~a!#, it has a con-
stant coarse-grained valuezc in that region. The phase
mixing process that bringszo(r ) to zc conserves the integra
of coarse-grained vorticity in the area bounded by the clo
streamline; that is,

r v
2E

2uc

uc
duE

r2(u)

r1(u)

dr̄ ~11 r̄ !•@zc2zo~r !#50. ~F2!

Here,r̄[(r 2r v)/r v , andr1 (r2) is the positive~negative!
branch ofr~u! defined by Eq.~E4a!. The angleuc is the
maximum angle reached by a fluid particle on the clos
streamline@see Fig. 20~a!#. For the separatrix, which bound
the ML, uc5p. As we approach streamlines closer to t
vortex,uc goes to zero.

The change inPu,b that occurs due to phase-mixin
within a closed streamline is given by the following integr

DPu,b~uc!5r v
4E

2uc

uc
duE

r2~u!

r1~u!

dr̄~11 r̄ !3@zc2zo~r !#.

~F3!

To evaluate Eq.~F3!, we use Eq.~E4a! for r6, Eq. ~F2! for
zc, andzo(r ).zo(r v)1zo8(r v)•(r 2r v). Then, to lowest or-
der in l we obtain

DPu,b~uc!52
4

3
zo8r v

2l 3E
2uc

uc
du ln3/2F12cosuc

12cosu G ,
~F4!

wherezo8 is the short-hand forzo8(r v), as usual. Figure 21
showsDPu,b @Eq. ~F4!# as a function ofuc. Here, we see
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that DPu,b increases monotonically withuc, due to the fact
that the area in which the vorticity is phase-mixed increa
with uc.

The orbital period of a fluid particle is given by

t~uc!54E
2uc

0

du/ u̇. ~F5!

Here,u̇ is the angular velocity of the fluid particle along th
streamline. This angular velocity has contributions from t
background shear-flow and the vortex field, and can be w
ten as follows:

u̇5Vo8r v•Fr1S l

r v
D 2 1

11r
•

11r2cosu

2~11r!~12cosu!1r2G . ~F6!

For the most part,r is O( l /r v) @see Eq.~E4!#; therefore, it is
a reasonable approximation to drop the second term in
~F6!. Then, using Eq.~E4a! for r, we have

u̇56Vo8lAln F12cosuc

12cosu G , ~F7!

where1 is for r.0 and2 is for r,0. The expression for
t becomes

t~uc!5
4

uVo8u l
E

2uc

0

du ln21/2F12cosuc

12cosu G . ~F8!

Figure 22 showst @Eq. ~F8!# as a function ofuc . Note that
t becomes infinite near the separatrix (uc5p).

Substituting Eqs.~F4! and~F8! into Eq. ~F1!, we obtain
the following expression forṙ v :

ṙ v;6
1

4p
l 2zo8^h~uc!&c , ~F9!

where 1/2 is for clumps/holes, and the functionh(uc) is
defined as

FIG. 21. DPu,b vs uc . Here,DPu,b is the canonical angular momentum th
is transferred to the background flow by a prograde vortex, through ph
mixing of vorticity in the shaded region of Fig. 20~a!.

FIG. 22. Orbital periodt vs uc , for a fluid particle encircling a prograde
vortex.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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h~uc![
1

3

*
2uc

uc du ln3/2@~12cosuc!/~12cosu!#

*2uc

0 du ln21/2@~12cosuc!~12cosu!#
.

~F10!

The functionh(uc) is plotted in Fig. 23. The values ofh
range from 0 to 2. Moreover,h is of order unity everywhere
except in a thin layer near the separatrix (uc5p). Therefore,
it is reasonable to choose an averaging scheme such
^h&c51. Then, Eq.~F9! is equivalent to our simple estimate
Eq. ~43!.

2. Mixing times

We now estimate the timeDt for a vortex to level the
surrounding mixing layer~ML !. This time was used in Sec
VII to estimate the critical local shear-rate for the suppr
sion of radial drift. Recall that radial drift is suppressed wh
Dt!t l[ l /u ṙ vu .

We first determine the mixing time for the ML that su
rounds a prograde vortex@Fig. 11~b!#. This mixing timeDtp

corresponds to a typical orbital period of a fluid particle
the ML. These orbital periods are shown as a function ofuc

in Fig. 22. Unfortunately, the orbital periods range from ze
to infinity, so that a ‘‘typical’’ value is not obvious.

However, a better definition forDtp is the time for most
of the vorticity in the ML to be phase-mixed. Of course, t
entire ML takes infinitely long to mix, since the orbital pe
riod on the separatrix (uc5p) is infinite. So, rather than se
Dtp equal tot~p!, we set it equal tot(p/2). That is,

Dtp[t~p/2!5
4

uVo8u l
E

2p/2

0

du ln21/2F 1

12cosuG . ~F11!

FIG. 23. The functionh, appearing in Eq.~F9! for the radial velocity of a
prograde vortex.

FIG. 24. The mixing time for the retrograde case.
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Here we have used Eq.~F8! for the orbital periodt. Note that
there is nothing special aboutuc5p/2, besides the fact tha
it is O(1).

In Sec. VII, we gave a rough estimate for the mixin
time of a prograde vortex:

Dtp;4p/uVo8u l . ~F12!

Equation~F11! gives a value ofDtp that, for all l /r v , is 0.68
times this rough estimate.

We now calculate the mixing timeDt r for the ML that
surrounds a retrograde vortex@Fig. 11~a!#. As for the pro-
grade case, we require that most of the vorticity in the ML
phase-mixed by the timeDt r . Therefore, we will estimate
that Dt r is the orbital periodt of a fluid particle, whose
radial position atu5p is midway betweenr v and the sepa-
ratrix. A straightforward calculation shows that the orbit
this particle intersectsr v at

uc5aS l

r v
D 1/4

, ~F13!

wherea[43/8e21/8.
In analogy to Eq.~F8!, which givest for particles orbit-

ing a prograde vortex, the following equation givest for
particles in the ML that surrounds a retrograde vortex:

t~uc!5
4

uVo8u l
E

2p

2uc
du ln21/2F 12cosu

12cosuc
G . ~F14!

Using Eq.~F13! for uc gives the mixing timeDt r :

Dt r[t~a~ l /r v!1/4!

5
4

uVo8u l
E

2p

2a( l /r v)1/4

du ln21/2F S r v

l D 1/2 2

a2 ~12cosu!G .
~F15!

Here, we have used cosuc.12uc
2/2. Note that in contrast to

the prograde case@Eq. ~F11!#, the integral in Eq.~F15! de-
pends onl .

In Sec. VII, we gave the following estimate for the mix
ing time:

Dt r;
4& p

uVo8u lAln ~r v / l !
. ~F16!

By inspection, one can see that the right-hand side of
~F15! converges to the right-hand side of Eq.~F16!, as l /r v
→0. Figure 24 shows the rate of this convergence, obtai
from a numerical solution to the integral in Eq.~F15!.
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