Waves in a cold pure electron plasma of finite length
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A theory for low-frequency electrostatic modes of a finite length pure electron plasma column is
presented. The plasma is modeled as a cold uniform density cylinder with flat ends. An interesting
result is that the diocotron mode can have an axial wavelength that is much larger than the plasma
length. Also, for particular values of the plasma density, the axial magnetic field, and the

dimensions of the plasma, the diocotron mode is degenerate with a plasma mode and this results in

a strong mixing of the modes.

1. INTRODUCTION

An experimental effort’ is underway to cool a pure elec-
tron plasma to very low tempertures (in the range of 1 K), the
goal being to produce a pure electron liquid and a pure elec-
tron crystal.? The confinement geometry for these experi-
ments is shown schematically in Fig. 1. A conducting cylin-
der is divided into three sections, the two end sections being
held at a negative potential relative to the central section.
There is a uniform magnetic field B directed along the axis of
the cylinder. The electron plasma resides in the central sec-
tion, with axial confinement provided by the negatively bi-
ased end sections and radial confinement by the magnetic
field.

It is useful to have a theoretical description of modes in
such a plasma. Here, we consider low-frequency electrosta-
tic modes, paying particular attention to the finite length of
the plasma column.

As a simple model, we assume that the unperturbed
column is of uniform density and has the shape of a right
circular cylinder (see Fig. 2). In accord with the experiments,
we assume that the electron density is well below the Bril-
louin limit,? that is, that w, €@. . @, is the electron plasma
frequency and w, is the electron cyclotron frequency. By
low-frequency modes, we mean that the mode frequency is
well below the plasma frequency; we will treat § ~w/w, asa
small parameter. Also, we will treat a/L as a small param-
eter, where a is the plasma radius and 2L is the length.

Since the mean free path between collisions is short, the
plasma dynamics may be described by fluid theory. For the
long wavelengths under consideration, pressure and viscos-
ity are negligible, and, for the low frequencies under consi-
deration, the dynamics perpendicular to the magnetic field
reduces to the drift approximation. In equilibrium, the elec-
tron column executes a rigid body EXB rotation with the
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FIG. 1. The confinement geometry for electron plasmas.

665 Phys. Fluids 26 (3), March 1983

0031-9171/83/030665-08$01.90

angular frequency @, = a)f,/Zcoc. One finds that the mode
potential satisfies the equation V-e'Vé = 0, where € is the
cold plasma dielectric tensor as seen in the rotating frame.

The mode potential satisfies the boundary condition
¢=0atr=Randatz= + «.Here, (r,0,2) is a cylindrical
coordinate system, and = R is the radius of the surround-
ing conducting cylinder. For the frequencies under consider-
ation, the impedance between the three sections of the con-
ducting wall (see Fig. 1) is negligible, and we can treat the
wall as if it were continuous.

To solve for ¢, we divide the volume of the tube into

three regions i, ii, and iii with the plasma residing in region ii
{see Fig. 2). In regions i and iii, we expand the mode potential
in terms of the solutions of Laplace’s equation, which van-
ishes at = R and at z = + oo. These basis functions are
Ji (K}, rexplil@ + K, 2) in region i and J, (K., 7)
X explil6 — K,,, z)in region ii, with J;(K,, R ) = 0. In region
ii, the mode potential is expanded in terms of the solutions
for an infinitely long column. These basis functions can be
classified into three types: (a) diocotron, (b) plasma, and (c)
vacuum. The diocotron solution in the limit of zero axial
wavelength is well known in non-neutral plasma literature.?
Together with the plasma solutions it makes up the usual
sinusoidal waves in the low-frequency regime supported by
an infinitely long column (i.e., low-frequency Trivelpiece—
Gould waves).>* The vacuum-type solutions, unlike the oth-
er two, have significant amplitude only in the vacuum annu-
lus between the plasma and the wall; they are associated with
a purely imaginary axial wavenumber and hence are usually
omitted in the treatment of infinitely long columns. How-
ever, these solutions must be retained here to have a com-
plete set of basis functions (see Sec. IV).

The equation V-e*V¢ = O implies that ¢ and €,, (3¢ /Jz)
are both continuous at z= + L; here ¢, =1 — wﬁ/
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FIG. 2. Model for the wave theory.
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(@ — lw,)* is the zz component of the cold plasma dielectric
tensor evaluated at the Doppler shifted frequency w-lw,.
These matching conditions and the orthogonality of the var-
ious basis functions when integrated over radii lead to a ma-
trix equation M-4 = 0, where 4 is the vector of the coeffi-
cients of region ii and M is a matrix which depends on the
frequency and on the parameters (w, ,@..,/,a,R,L ). This equa-
tion can be solved only for certain discrete values of w. The
vectors A corresponding to these eigenfrequencies determine
the eigenfunctions of the system. We solve the matrix equa-
tion by expansion in terms of the small parameters a/L and
d~w/w,.

A simple physical explanation of the solution can be
given. From the matching conditions at z = L and from the
fact that d¢;; /9z~ — ¢, /R~ — @,;;/a, we see that

% 1 94y ~ 8¢y I _ 8¢ilL

Jz | €, 0z IL a a

(1

where — 1/€,, ~& 2. As an example, consider amode even in
z. The diocotron and plasma basis functions for such a mode
are of the form cos(kz), where k~O (6/a). Equation (1) is
satisfied if — k tan kL = (1/¢;)(d¢;; /32)|, ~6°/a, or equiv-
alently, if tan kL~ — §. To lowest order in &, the plasma
and diocotron basis functions are eigenfunctions of the finite
length column if kL = n7. The @’s corresponding to these
k’s are the eigenfrequencies. Coupling of these functions to
the vacuum basis functions and to each other (via the basis
functions of regions i and iii) occurs in higher order in the
small parameters  and a/L.

An interesting feature of the solutions is that the col-
umn can support a diocotron-like mode which shows very
little axial variation over the length of the column (kL ~nn
for n = Q); the effective wavelength is much larger than the
length of the plasma. Analogous plasma-like modes showing
little axial variation over the length of the column do not
exist. The long wavelength diocotron-like mode has been
experimentally observed.® Another interesting result is that
for certain values of the plasma parameters, the diocotron-
like mode is degenerate with a plasma-like mode and this
results in a strong mixing of the modes.

Since this work is intended to apply to a highly colli-
sional plasma, fluid theory is used and bounce motion plays
no role. However, due to a fortuitous accident, the lowest
order results should also be applicable to a collisionless plas-
ma, provided v€Lw,, where U is the electron thermal veloc-
ity. Rather than consider electrons which bounce back and
forth between specular reflections at z = + L, we can ima-
gine that the mode potential is periodically replicated on an
infinitely long column (the replication being even about
z= + L, + 2L etc.) and then consider electrons which trav-
el without reflection.® For the lowest-order eigenfunctions,
d¢p /9z =0 at z = + L; so the replication is equivalent to
simply extending the sinusoidal dependence of these eigen-
functions to an infinitely long column. For a sinusoidal
mode in an infinitely long column, the cold fluid equations
and the Vlasov equation give the same electron response,
provided that v«¢|w — lw, |/k. For the wavenumbers and fre-
quencies under consideration here, this reduces to v<w, L.
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The experiment” referred to in the previous paragraph satis-
fies this inequality.

The paper is organized in the following way. In Sec. I,
we derive the differential equation satisfied by the linearized
mode potential. In Sec. I1I, we discuss the basis functions for
the various regions. The orthonormality properties of these
functions are considered in Sec. IV. We expand the wave
potential of the finite length column in terms of these basis
functions and obtain the dispersion equation in Sec. V. In
Sec. VI, we solve the dispersion equation (for the eigenmodes
of a finite length electron column) using a perturbation tech-
nique and discuss the interesting features of the solutions.

Il. DIFFERENTIAL EQUATIONS FOR THE MODES

Since the unperturbed system is homogeneous in 8 and
t, we consider modes of the form ¢ (z,7,6,¢ ) = & (z,7)expl(il6
— iwt ). For the frequency ordering mentioned in the intro-
duction (i.e., », w<€w, €. ), the velocity of an element of the
cold electron fluid is determined by:

%o, _ iﬁ‘ﬁ_, 2)
at m oz

and
v, =rw,0+ %2XV¢, (3)

where ro, 6= c(E /B )# X2 is the zero-order rotation veloc-
ity. The linearized continuity equation takes the form

a a ) d d
— s — )+ — [ng(rzv, 1 +v, — ny(r,z) =0,
(£ 4o, Z)nt £ ndrah, ] +0, o= mlr2)

(4)
where n.(r,z) has the constant value 7, in the region
(r<a,—L<z<L) and is zero outside. Combining these
equations with Poisson’s equation,

V¢ = 4men, (5)
yields the differential equation for the modes
1o, 8 1% af(, e )

r dr or r Jz (@ — lw, ] 0z
7]
2o, ¢ 3 ny(r,z) = 0. (6)
o —lo, rmy or
Equation (6) can be rewritten as:

VeV =0, (7)
where
[~ | — iw), 0 )
(C‘) - la)r )wc
]
e= | 1 0 (8)
((0 - I(L),. )wc
2
)
0 ] — ——2
L 0 (a) - lwr )2 -

is the dielectric tensor for a cold pure electron plasma im-
mersed in a uniform magnetic field. Note that the tensor is
evaluated at the Doppler-shifted frequency w — lw, . This is
to be expected, since the zero-order radial electric field is
transformed out in the rotating frame.® As discussed in the
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introduction, the mode potential satisfies the boundary con-
ditions¢ =0atr=Randatz= + .

lit. BASIS FUNCTIONS

The volume inside the conducting cylinder is divided
into three regions, i, ii, and iii as shown in Fig. 2. The plasma
resides in region ii. Our method is to expand the wave poten-
tial ¢ in terms of the solutions of Eq. (6) in these three regions
and to determine the coefficients (and the corresponding ei-
genfrequencies) by matching ¢ and €,, (3¢ /dz) across the
boundaries z = + L between these regions.

In regions i and iii, Eq. (6) reduces to Laplace’s equa-
tion. So the basis functions in these regions are the solutions
of Laplace’s equation which vanish at » = R and at points far
away from the plasma: J,(K,,, rexpl(il@ + K, z) in region i
and J,(K,,, rlexp(il@ — K,,, 2} in region iii, with K, being the
solutions of J;(K,,,R) = 0.

The basis functions of region ii are just the solutions of
Eq. {6) for the case of an infinitely long column. Assumingaz
dependence of the form ¢ ~e**, Eq. (6) reduces to

19 3¢ 12

r— e ——

ror or r

+ 2lw, dny/or $=0, )
o —lo, rn,

where the quantity €,(w,”) is equal to 1— [wf,(O)/
(@ — lw,*]= — a® inside the plasma (r < a) and is equal to 1
outside (@ <7 < R ); also (3ny/dr)/ny = — 8(r — a). The solu-
tions of Eq. (9) are of the form ¢, = J,(akr) for r<a and
¢, =A[I(kr)K,(kR ) — K,;(kr)I;(kR ))for 7> a.Inobtaining
the form of ¢, we have used the boundary conditions (i)

— €, (w,r)k?d

wp+w,

wr

—wp tuw,

FIG. 3. Qualitative dispersion curves for / = 1. d stands for the diocotron
branch, p for the plasma branch, and v for the vacuum-type solutions; dot-
ted lines indicate that the corresponding & is purely imaginary. The sub-
scripts L and U designate lower and upper branches. The curves for /> 1 are
similar if all the frequencies are shifted down by {/ — 1}, .
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& (r = R) = Oand (ii) ¢ is regular at the origin. Applying the
matching conditions

¢2|r=a _¢l|r=a =01
9| 9| _ e, 1,4, g

or r=a ar r=a a)—lw, a
[the last equation is obtained by integrating Eq. (9) across
r = a] yields the dispersion relation®*

2

2 I,(ka)K(kR) — K (ka)l,(kR) aka J ilaka)
I,(ka)K, (kR ) — K (ka)l, (kR ) Ji{aka)
_ o, (11)

o — lo,

For a given w, only certain discrete values of k can satisfy this
equation. These & ’s constitute the various branches of the
dispersion curve shown qualitatively in Fig. 3. Figure 4 pre-
sents these curves drawn to scale (for typical experimental
parameters) in the region of interest to us.

A discussion of these branches and the corresponding
wavefunctions is given in the Appendix. These wavefunc-
tions @, (w,rexp[ik,,, (@)z] are the basis functions for region
ii, in terms of which the wave potential of the finite length
column is expanded. They are of three types whose charac-
teristics are summarized below (see Fig. 5).

(1) Diocotron-type [denoted by ¢,,(w,r)]: It has a single
maximum at r =a. The corresponding &, (w) is real for
o <, and imaginary for 0>0,4; 0; = o,[l — 1 + (@/R)*]
is the diocotron frequency.

(2} Plasma-type [denoted by ¢,, (w,r)]: They are oscilla-
tory for r < a and fall off monotonically to zero as —R. The
corresponding k,, (w) are real.

(3) Vacuum-type [denoted by ¢,, (@,r)]: They are essen-
tially zero for r < a and are oscillatory for a < » < R. The cor-
responding k,, (w) are imaginary.

IV. ORTHONORMALITY OF THE BASIS FUNCTIONS

The basis functions of region i (or region iii} are mutual-
ly orthogonal because of the orthogonality property of the
Bessel functions. The basis functions are also complete in the
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FIG. 4. Dispersion curves for / = 1 drawn to scale for typical experimental
parameters: ¢/R = 0.5, 0, /0, = 0.02 {w, /0, = 0.01}.
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sense that any solution of Laplace’s equation in region i (or
region iii), satisfying the boundary conditions ¢ = Oatr = R
and at |z| = o« can be expanded uniquely in terms of these
functions.

We now prove that the basis functions ¢,,, (w,?) of re-
gion ii are also mutually orthogonal. We multiply by ¢,, the
equation satisfied by 4,,, [i.e., Eq. (9)] and subtract ¢,,, times
the equation for ¢,, to obtain:

R
(k2, — k%) j rdr € (@b b

fo dr > (r¢,,, a:;”" — P 91, ) (12)

The right-hand side is zero since ¢, and ¢,m vanishatr = R.
Thus we find the result

JR rdr e, (@,Nd,,, (@,7)p), (@,7) =0 for m#n, (13)

i.e., the functions ¢,, are mutually orthogonal with the
weight function re_, (w,7) = r[1 — &} (r)/(@ — lo,)’). We as-
sume that the functions ¢,,, form a complete set of basis
functions.

The normalization for the basis functions ¢,,, is defined
as follows:

R
frdre,,(w e L, (@) =Ny, (14)
0
44
{a)
; R
¢1pi
(b) P,
Py
¢’1vi

« I\,

¥

FIG. 5. Qualitative radial behavior of the basis functions for / = 1. Higher /
functions are similar.  and R are the radius of the plasma and the radius of
the conducting tube, respectively. d, p, and v stand for the diocotron-type,
the plasma-type, and the vacuum-type basis functions.
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where ¥, = — 1 for the diocotron-type and for the plasma-
type functions (i.e., for m =d, p;) and N,, = + 1 for the
vacuum-type functions (m = v, ). The basic reason for choos-
ing differing normalizations is to keep the functions ¢,,, real.
For ¢,; and ¢,,, the large negative value of €., for r<a
makes the integral (14) negative. Since ¢,, ~0 for r <a and
since €,, = 1 for 7> a, the integral for ¢,, is positive. The
amplitudes of the basis functions set by the normalizing con-
dition (14) are as follows:
1
F=) o

o
¢ld ~¢Ip,- ~0 (—a—)’ ¢lu,» ~0

where we have set |€,,| ' ~8 2

V. DISPERSION EQUATION

Since the system is symmetric about the planez = 0, the
odd and the even modes in z can be treated separately. First,
we consider modes of even parity in z [i.e., ¢ ( — 2} = ¢ (2)].
We expand the linearized wave potential in regions ii and iii
in terms of their respective basis functions:

_ coslk,, (®)z]
bq(rz,dw) = ;Am,m (@,7) oslk LT (16)
bulrzlw)= 3 B, J,(Ki,rle “. (17)

We shall not consider ¢; since ¢, is just the mirror image of
¢;:; in the plane z = 0. The matching conditions at z = L are:

@i (r.L,hw) = ¢y (r.L, L), (18)
and
€z (0r) = ¢., (rzbo)l, = — 9 gz, (19)
or
S 4, biml@r)= Y BnJi(Kimrle” Kl (20)
and " i

€ (@,0) D Ak i (@:r)tan &, L

= 3 BrKindi(Kimrle e, (1)

From Eq. (20) we obtain
R
) B j rdrJiK,, 1)
0
R
= S, [ rdrnonKinn 22)
n 0

We substitute this value of B,, in Eq. (21) and use the ortho-
gonality of the function ¢,,, (wr) to obtain:

AnNnkln tan kInL = zAn' zKlm

fo"d"¢1nJ1(K1m’)fo"d"¢1n Jl(Klm’)

(23)
SBrdrJiK,, 1)
We note again that N, = — 1forn=d,p;and N, = + 1
forn =v;.
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Equation (23) can be put into matrix form

M, (wA, =0 or MA=0, (24)
where
Mnn’ ((0) = - 6nn'Nn kln tan klnL
Rrdr ¢, J1\K,,\S8rdr ¢, J (K7
+ szm Sordré, ILI ’)fzo S 1K, ),
= SordrJ (K, 1)
(25)
or
Mnn’ ((l)) = Dnn’ ((0) + Sml’ (&)). (26)

Equation (24) determines the eigenfrequencies @, and the
corresponding eigenfunctions.

VI. SOLUTION OF THE DISPERSION EQUATION

We now proceed with a perturbative solution of Eq.
(23). From the dispersion relations in the Appendix, it fol-
lows that

ki k,, ~0 (8/a),
(27)
k., ~0(1/a),
)
k, tan(k,L) + O (6*/a) 0(6°/a)
0= 0 (6%/a) k,tan(k,L )+ O(5%/a)
0(8/a) 0(5/a)

In lowest order, the solution is 4 =AY =0 and kY
Xtan(k {'L) = 0. This equation has many solutions (i.e.,
kYL = mar), but we focus on the m = 0 solution, since this
corresponds to the usual (i.e., £ = 0) diocotron mode of an
infinitely long column. The zero-order frequency of this
mode (i.e., the D, mode) is given by 0@ = w,.

In the next order, the third row of Eq. (29) implies that
A)'~& and the second row implies that 4 '~ 5%/[6* + ak,
Xtan(k, L )]. Barring accidental degeneracy (see Sec. VID),
k,tan(k, L )is not zero for the same value of the frequency for
which k,tan{k,L) is zero. For k,a~& [see Eq. (27)], the
expression for 4 ) reduces to 4 " ~5%/[8 % + & tan(SL /a)];
sod Visofordera/L for§ <a/L and of order§ for§>a/L.
Using 4 and A4 in the first row yields »"d/
dwlk ,tan(k, L )] ~5*/a which determines the correction o'"
to the frequency.

Returing to the full matrix equation, we obtain in low-
estorder: 0 =D, = k'Y tan(k YL ) or ¥ = w,. The com-
ponents 4 ' are given by

Sypa + ZM A1 =0,
or
A= _

z (Mvu)v:)jl vd s (30)
Y

where the matrix elements on the right-hand side are to be
evaluated at the frequency »'”. The components of 4 ) are
given by
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and from the normalizaiton of the basis functions, it follows
that:

de !Sdp ,S o~ 0 (52/(1),
Sd,, ) ~0 (5/0),
~0(1/al

(28)

Thus, the elements of M,,,,, are of the form [k tan kL + O (§%/
a)}, 0(8°/a), 0 (6/a), and O (1/a). We look for a solution as an
expansion in 8 and a/L.

A. D, modes

There is a class of modes, the D,, modes, for which the
major component is a diocotron-type basis function. For
these modes, we choose 4; = 1 and find that 4, (forn#d )is
first order in 6 or a/L.

Before presenting the formal solution, it is instructive to
consider a schematic representation of the matrix equation
in which the vector 4 has only three components: 4,4, 4,,
and 4, . For the choice 4, = 1, the matrix equation is of the
form

O(6/q)| 1 1
O(b/a)] |4, (29)
O(1/a)] L4,
|
Spa + Dpp Al + zs A‘”—
or
- _'S. (n
A gj) = Spld ZJSP.'U,'A by , (31)
pPipi
and the frequency correction is given by
dD,,
(Gotrat +50) + 0=
or
—S4a ~2,5,A%)
R e (32)

dD,,/dw"
From Egs. (25), (26), and (14) one can easily show that for
8«1, Spp(w°) can be written as (1/a)(w?/w})F,(a/R ), where
F(a/R ) is a function of / and a/R [F; is of order unity and
hence this expession for Sy, (@°) is consistent with Eq. (28)].
A similar expression can be written for the second term in
the numerator in Eq. {(32). Also, from Egs. (25), (26}, and (A6)
it follows that

20+1) L

do® 0, @
Substituting these expressions in Eq. (32) and using Eq. (AS5)
we obtain

' =f(a/R)|0"” — o, |(a/L), (33)
where f;(a/R )is a quantity which depends only on/and a/R.
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FIG. 6. Plot of f,(a/R } vs a/R for | = 1,2,3.

The dependence of f; on a/R is plotted in Fig. 6 for the cases
! =1,2,3 with § = 0.01. The knee in the graphs, which is a
consequence of the finite value of 8, moves to the left and
disappears as §—0.

Sincew'” > 0, the corresponding &, is imaginary. From
the diocotron branch dispersion relation (A6), it follows that

k =i(21(l+1)|1w,—a)dff,(a/R))'/Z (34)
o w.aL )

The fact that the wavenumber is imaginary simply means
that the z dependence of the diocotron basis function goes
over to cos(k,,z) = cosh(|k, |z). The magnitude of the wave-
number is of order |k, | ~ (8L /a)'/*(1/L ). This is in accord
with recent experimental results® where the parameters were
such that a/L ~ 6 and where the measured axial phase vari-
ation of the / = 1 diocotron mode corresponded to an effec-
tive wavelength that was much larger than the plasma length
(ie., |k |<€1/L).

B. P modes

We call the mode which is predominantly the nth plas-
ma-type basis function with axial wavenumber (k = m#/L)
the P,,, mode. The perturbation solution for this mode pro-
ceeds parallel to that for the D,, modes. In zero order, we
find4, =6,, and0=D,, =k, tan(k, L)oro” =w,
(k = mm/L ). The first-order corrections to 4 are given by

Ai)l,)_ 2( v)uv v;p

Sy — S, S Al
4y = LT, (35)
dd
_ (1)
A (1 Pn'Pn zijpn U]A
Pr D ’

where the matrix elements on the right-hand sides are evalu-
ated at »'®. The correction to the frequency is given by
(1
o - Sppn = 205504
w = D a0 . (36)
PnPn/ @

The m = 0 solutions are excluded from our theory. For
these solutions, ©'” — lw, = 0 and all the particles are at
resonance with the field. One expects these modes to be asso-
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ciated with heavy damping and nonlinearity. Also, there is
an infinite degeneracy, with all the P,, modes having the
same frequency o = lo,. The present simple treatment is
not capable of handling these difficuities.

C. Modes with odd parity

For modes which are odd under reflection in the z = 0
plane, the eigenmode expansion in region ii is replaced by
Sln[kln (w)z] (37)

2 Andulon sin[k,, (@)L |’

and the tan(k,, L) terms in matrix M are replaced by
— cot(k,, L ). In zero order, one finds modes that are predo-
minantly made up of a diocotron-type basis function
$ua(r)sin(k,yz), or of a plasma-type basis function ¢, (r)
Xsin(k,, z), where the wavenumber is equal to (m + l)7L.
We call these D, , modes and P, ,, , , modes. One can
calculate the eigenvectors 4 and the eigenfrequencies for
these modes as was done above.

¢ii (r,z,l,a)) =

D. Degeneracy

In the above treatment, it was assumed that D, (w) and
D, , (@) were not simultaneously zero. If this occurs, one
must resort to degenerate perturbation theory. We set
A, = land A, = a, where a is not necessarily small. In first
order in 8, we obtain

S, +asS,, + 3 M,A41=0,

or

AY =~ ¥ (M,),,S,a +aS,,) (38)
where the matrix elements are evaluated at the frequency o
which is such that D, (0®) = D, , (@®) = 0. In second or-
der, we obtain

dD
( od w<“+s,,) +as, + 3 8,40'=0, (39)

d (0)
dDPn Py (1) .
“ dCl)(o) @ + Sp"p" + Spnd + E San,'A sJiJ = O
‘ (40)

The condition that there is a solution for « leads to a
quadratic equation in »'". There are two solutions !’ and
oY, and for these values of w, one obtains ¢, and a, . Since
these values of a tend to be of order unity, the modes are not
diocotron-like or plasma-like, but rather have significant
portions of both components.

The condition for degeneracy of the D, mode and the
P, modeis k,, (wy) = mm/L. For m<L /a, this can be re-

written as

. 2!
paet e L) K v N S
, 2\ mm a R
where use has been made of the fact that the right-hand side

of Eq. (A2)is equal to/ for @ = w,. As a numerical example,
wenotethatfor/=m=n=1,L /a =40,and R /a = 2 the
condition reduces to @, /@, ~25.
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Thus far, we have considered exact degeneracy. In fact,
the modes are mixed over a small range of parameters near
the parameters for exact degeneracy. This occurs when
D, , (@,;)S 8°/a, which can be rewritten as Ado/w, S8 L /
a)(1/mm)?, where Aw is the mismatch between the zero order
frequencies. As an example, suppose that the magnetic field
is the only variable quantity and that »'” is the value of the
cyclotron frequency which produces exact degeneracy.
When the magnetic field is swept, the Doppler-shifted fre-
quency of the plasma mode does not change but that of the
diocotron mode varies asw,; — lo, <@, <. '; so the range
of 4w, over which the modes are mixed is given by 4w, /0
~8 YL /a)(1/mm)2.

The mixing can be detected by measuring the phase
difference between the center and the end of the column. The
phase at the end relative to that at the center is given by

1, for the D, wave,
$=L) _ }(_1y, fortheP,, wave, (42)
dz=0) (k,an = mm).

When the modes are degenerate, the above ratio becomes
[1+(—1)"a)/(1 + a). If the receiver tracks w, as the mag-
netic field w, varies, one would see the relative phase change
from 1 to [1 + ( — 1)"a]/(1 + a) very sharply at w, = .
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APPENDIX: DISPERSION CURVES FOR AN INFINITELY
LONG COLUMN

In this appendix, we shall make a study of the solutions
of Eq. (11) (and the corresponding eigenfunctions) in various
limits. Figure 3 presents a qualitative summary of the results.
Figure 4 presents these curves drawn to scale in the region of
interest to us.

For the sake of easy reference, we shall rewrite Eq. (11):

aI;(ka)K,(kR ) — Ki(ka);(kR) . J [(aka)
I,(ka)K, (kR ) — K,(ka)l,(kR ) J,(aka)
_ 2lw, ’ (A1)
o —lw,

where o’ = 02(0)/(& — lo,)* — 1. From the form of Eq.
(A1), it is clear that the equation is invariant under the trans-
formations (@,/ }>{ — @, — ) and k— — k.

In the limit ka<1, Eq. {A1) reduces to

J ilaka) _la/R P+l 2de, (A2)
J,(aka) @R?¥ -1 o-—lo,

Equation (A2) has two types of solutions. For the plasma-
type solutions, @ — lw, ~0. This means that J,{aka)~0 or

akar~j,,, (A3)

aka

or
o —lo, = + [0,(0)/),, ] ka, (A4)
where j,, is the nth root of J;( x) = 0. The corresponding
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wave potential ~J,(j,, 7/a) for r <a and ~O0 for r>»a. These
plasma-type solutions exist even when the plasma fills the
tube.

For the second type of solution (the diocotron-type so-
lution), » — lw, does not go to zero as ka—0. We can then
use the small argument expansion for J;(aka) and obtain

o=0,[l+ @R} —1]l=0,. (AS5)
If we include terms in k 2, we obtain
o =0, — [o,/2( + 1)](ka? (A6)

The diocotron wave potential has the radial dependence (for
ka<l)

r! r<a

p~1a¥ A _R¥

When |@ — lo, | is much larger than o, , the right-hand
side of Eq. (A1) (which represents the effect of the surface
charge at » = a) can be ignored. Since the left-hand side is an
even function of w — lw,, this implies that the lower
branches of Fig. 3 are reflections of the upper branches about
the line w = lw, . In particular, the diocotron branch (d) is
the reflection of the n = 1 upper plasma branch {p, ). In this
regime, a plot of || vs ka would show a lower branch run-
ning parallel to its corresponding upper branch; experimen-
tally plotted dispersion curves exhibit this feature. The ei-
genfunctions of the two branches would be identical for any
given value of ka.

For ka1, the first term of Eq. (A1) asymptotes to ka.
So J,{aka)—0 or

aka = j,,,

r>a.

@,(0)
[1+//(ka)*]""?

o —lo, ~+

—~+0,0. (A7)

So all the branches of Fig. 3 asymptote to lw, + ®,(0). Com-
parison of Egs. (A3) and (A7) shows that the eigenfunction of
any upper branch is the same for ka = 0and ka = «.On the
other hand, the eigenfunction of any lower branch is com-
pressed in r with increasing ka; at the limit ka = «, the
eigenfunction will have an extra node in the interval (O,R ). In
this limit, the diocotron eigenfunction is J,[ j,, (#/a)] for r<a
and is zero for r> a.

We also note here the effect of varying a/R on the dis-
persion curves of Fig. 3. If we let R—q, the lower branches
move to the right (while the upper branches remain relative-
ly unchanged) until at R = g, the diocotron branch takes the
place of the first plasma branch and starts at w = lw, ; the nth
lower branch takes the place of the (n + 1)th.

In addition to the above solutions which have real %,
Eq. (A1) allows solutions with purely imaginary k. These
solutions are indicated in Fig. 3 by dotted curves. The first of
these extends from w =w, (where |ka| =0) to w = lo,
(where |ka| = 2lw,/w,). Since the eigenfunction for this
branch has the characteristics of the diocotron, we shall clas-
sify it as a ““diocotron-type” solution. The other solutions
with imaginary k (the ‘“vacuum-type” solutions) extend on
either side of = lw,, where |k, |~nw/(R — a); the value of
k.| atw =lo, + ©,(0)is ~(n — }n/(R — a).
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The solutions with imaginary & are ignored in a treat-
ment of an infinite column because they increase without
limit as z approaches + o or — oo . However, this consider-
ation does not apply in the case of a finite length column and
so these solutions have to be retained. As shown in Sec. IV,
they are necessary components of a complete set of basis
functions.
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