Centrifugal separation of a multispecies pure ion plasma
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Consider an unneutralized column of ions (a pure ion plasma) confined by an axial magnetic field. Because of
space charge, there is a large radial electric field and a consequent rotation of the plasma column. For a

multispecies ion plasma, the rotation tends to produce centrifugal separation of the plasma into its component
species. Self-consistent thermal equilibrium states which exhibit various degrees of separation are discussed.

l. INTRODUCTION

Recent experiments have achieved long confinement
times for pure electron plasmas® and similar experi-
ments are underway for pure ion plasmas.? These
plasmas are columns with radial confinement provided
by an axial magnetic field and axial confinement pro-
vided by electrostatic fields. Since the plasmas are
nonneutral, there is a large radial electric field and a
consequent rotation of the plasma. One can imagine
producing a multispecies pure ion plasma, and, for such
a plasma, the rotation will tend to produce centrifugal
separation of the plasma into its component species.

To understand the mechanism which produces the
separation, consider a multispecies ion plasma, which
is in dynamical equilibrium, executing laminar rota-
tional flow. Since the different species are character-
ized by different values of charge and mass, say e; and
m;, the species tend to rotate at different rates, at least
for arbitrary density and pressure profiles. Because
of the different rotation rates, collisional effects and
possibly collective effects produce a momentum trans-
fer in the ¢ direction between the species. Here, (7, 4, 2)
are the usual cylindrical coordinates, The equal and
opposite momentum transfer between two species pro-
duces an inward radial flux of one species and an out-
ward radial flux of the other, that is, the two species
tend to separate. The plasma evolves until the density
and pressure profiles are such that the plasma rotates
as a rigid body. Alternatively, one may say that the
plasma evolves until it comes to thermal equilibrium,
one characteristic of thermal equilibrium being rigid
body rotation.®”® This paper provides a theoretical dis-
cussion of the separation as exhibited in the thermal
equilibrium states.

The degree of separation depends on the relative size
of various scale lengths. A class of scale lengths,

1;;(7), may be defined as
-1 d w?r?
(2 ()] =% [ei (2171‘_)] , (1)

where w is the rotation frequency of the plasma, & is
Boltzmann's constant, and T is the plasma temperature.
For a plasma of radius a, centrifugal separation is a
weak effect provided I;,(a)>a [see Eq. (23)]. This is
simply a requirement that the difference between the
centrifugal potentials for any two species be less than
kT, I the scale lengths l;; are made smaller, say

by reducing &7, the centrifugal separation becomes
more pronounced. For the separation to be complete,

my_m,
€ ej
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that is, for the species to be arranged in separate con-
centric rings, it is necessary that the /;;’s be small
compared with the characteristic Debye length, All of
the analysis assumes that the Debye length is small
compared with the geometrical scale lengths such as
the plasma radius or the thickness of a ring.

In Sec. II, the problem of finding thermal equilibrium
distributions that are consistent with Poisson’s equation
is defined. In Sec. IlI, solutions are presented for the
case of partial separation, and in Sec. IV, solutions are
presented for the case of complete separation.

Before proceeding to the analysis, a word or two
concerning possible applications of this work may be in
order. It has been suggested that a nonneutral ion
plasma might be a useful system in which to study the
fusion of exotic fuels.® Since very long particle and
energy confinement times would be required, the plasma
would approach thermal equilibrium. Of course, cen-
trifugal separation of the reacting species would reduce
the reaction rates. It is unlikely that nonneutral plas-
mas would be useful for isotope separation, since the
density of a nonneutral plasma is limited to rather low
values (the Brillouin limit’). A more promising scheme
for this purpose involves the use of a higher density
nearly neutral plasma, which rotates because of a
slight charge imbalance.?

{l. THERMAL EQUILIBRIUM

The thermal equilibrium ion distribution for the ;"
species is given by®~®

m, /2 -1
f; =n,~(0)(m"f) exP(ﬁ(Hi twp 61)) ’ (2)
where
Hi=mp®/2+e,4(7), 3)
Pg =mper+(e;/c)Aq(r)r (4)

are the energy and canonical angular momentum, re-
spectively, for an ion of species j. These quantities
enter the distribution on equal footing for a cylindrical-
ly symmetric confinement geometry. The quantities
$(r) and A4 (7) are the electric potential and the ¢ com-
ponent of the vector potential, respectively. For sim-
plicity, we neglect the z dependence in these potentials,
that is, we treat the column as if it were infinitely long.
For a uniform axial magnetic field, the vector potential
is given by A¢(7) =B7/2, the diamagnetic field being
negligible for the low ion densities and velocities that
we have in mind here.
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By using Egs. (3) and (4) and the relations A, =B7/2,
distribution (2) can be written as

3/2
f;=nArK§§gf) exp 2kT(v+er), (5)
n;(r) =n;(0) exp[- ¥;(7)], (6)
e m,; W Bwr®
‘P;(7)=Etlz:( (r) - -e‘l"' "2— +T>' (N

From the velocity dependence, one can see that the
plasma rotates as a rigid body with angular frequency
—-w. The density distribution [i.e., n;(v)= | d® f,(7, v)]

is determined by three potentials: the electric potential,

the centrifugal potential, and the potential associated
with the electric field induced by rotation through the
magnetic field [i.e., Bw?®/2c]. For large enough B, this
last term forces the density to zero at large 7, that is,
it provides the radial confinement. Centrifugal separa-
tion comes into play when different species have dif-
ferent values of m,/e;. In the density distribution, the
coefficient #,;(0) represents the density of species j at

r =0, provided we choose the boundary condition

¢=0at r=0.

The electric potential is determined by Poisson’s
equation

(%72%=_Z]:4”61n1(7)’ (8)

NI

and the boundary conditions ¢ =d¢/dr=0 at »=0. The
first of these is an arbitrary choice and the second
follows from cylindrical symmetry. For future refer-
ence, we rewrite Poisson’s equation in the form

d‘P

rdr dr

e m, m\{[wr
wexp - e ‘_‘)(m)] ©
7

where @, = ¢ B/m c and use has been made of Eqs. (6)
and (7). The boundary conditions satisfied by ¥, are
Y, =dy,/dr=0at r=0,

_2m ..o(SZ —-w) E 417e1e,n,(0
i

l1l. PARTIAL SEPARATION

In this section, solutions of Eq. (9) are obtained under
the assumption that the left-hand side of the equation is
small compared with either of the two terms on the
right-hand side, at least within the body of the plasma.
We will see that the two terms on the right-hand side
are each of order 1/A2, where X is the Debye length,
and that ¥,(») changes on the scale of the I;,’s [see Eq.
(1)]. Thus, in this section we assume that the /;;’s are
large compared with A. In the next section, the opposite
assumption is made.

It is convenient to express ¢, as the sum of two terms
$,(r) =n(r) +0(7), where n(7) and o(7) satisfy the dif-
ferential equations
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dn _2m el -w)
T ar

la
7 dr kT

_ Z 4ne e;n,(0)
7 kT

Xexp [ —Ln +e (Z’- —L)G)k:z)] (10)

1ad ____z neen
e; m, m 242
X _ 2 0 LAY w
exp| elme,(ej e,)(——m)]

x[exp(—ﬁo>—1] . (11
el
The sum of these two equations reproduces Eq. (9).

We solve Eq. (10) by a perturbation expansion
n=n +9'Y 4+ -__ treating the second derivative on the
left-hand side as first order in the smallness para-

meter. To zero order, Eq. (10) reduces to

2m W, -w) Z 4ne e m;(0)

0==—"%7 ~ " R’T
W
Xexp[—-z-i'n(°)+ <f:—;'- _L>(ZkT)]' (12)
1

The first order equation is

1 d dn(o)
I% dr

Z 4me e,n,(o
i

xexp[ 11 4 e (-é:l —“‘L) (:k;z )]
X [exp(—%n‘”) - 1] . (13)

This equation may be simplified by setting
exp(— e,n(l)/el) ~1-en'Ve,, (14)

and by using the approximation

1 1
WZ ﬁ ; 4778?)]!(’)’)

1
=TT Z,: 4mein(0)

Xexp[ Cino e, (?f —4)(2:;)] (15)

In Eq. (15), we have anticipated the result that o(7) is
exponentially small over nearly the whole radius of the
plasma. With the aid of Egs. (14) and (15), Eq. (13) re-
duces to the simple form

)\z(r)l —‘—i—rdnm)

(1) ~
) rdv dr °

(16)

Since n(r) satisfies the same differential equation as ,
[i.e., Eq. (10) is the same as Eq. (9)], one might think
that ¥, =qn provides an adequate solution of Eq. (9). How-
ever, the perturbation solution for n(7) does not satisfy
the proper boundary conditions (i.e., ¥, =d¥,/dr=0 at
r=0). The function o(7) (¥, =0 +0) was introduced to
allow the boundary conditions to be satisfied. Since
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a=n(r?), it follows that dn/dr =0 at »=0. Thus, we must
require that 0= —(0) and do/dr =0 at v=0.

If we restrict our attention to plasmas of radius large
compared with the Debye length, o(r) is small compared
with unity over nearly the whole radius of the plasma.
Thus, exp(- e,0/e,) may be approximated by 1 -¢,0/¢,,
and Eq. (11) may be reduced to the simple form

1d _do 1

;d—rrzi—r—xzm(f:o. (17)

Near r =0, the solution is of the form
a(r) = —n(0) [ ,[r/M0)] , (18)

where 1,(x) is a Bessel function of imaginary argu-

ment. For larger 7, one expects a WKB-like solution
of the form
r drl
a(r)~ -n(0) expj; Nk (19)

If parameters are adjusted so that - 7(0) is an ex-
ponentially small (and positive) number, o(¥) becomes
of order unity at a value of 7 that is large compared
with the Debye length. This value of r defines the outer
edge of the plasma, since the z,(r) are forced to zero
as o(7) grows past unity. Although Eq. (17) was derived
under the assumption that 0 <1, inspection of Eq. (11)
shows that ¢ continues to grow past o =1, with the rate
of growth continually increasing. It should be empha-
sized that the details of the solution for o(7) are not
important. The important observations are that the
parameters must be adjusted so that n(0)=~ 0 and that
o(7) may be neglected to within a few Debye lengths of
the edge of the plasma.

As an illustration of these results, let us consider the
case where centrifugal separation is sufficiently weak
so that the exponentials in Eq. (12) may be Taylor ex-
panded. Equations (12) and (16) then reduce to

E Ane,en;(0) - 2m w(@, - w)
S, 41 éin,(0) ’

ynein;(O)e (m /e, —m /e )(w*r/2kT)
eI ij,m égn.(ol) , (20)
) 2 4mein,(0)e (m,/e; — m /e )(2w?) 21)

(225 4mein,(0)*
Thus, the condition 0=7/°(0)+ 7‘*(0) takes the form

, _22,€n(0)2wB/c - 2m,w?/e,)
;‘Me,nj(o 5, &, (0)

In the spirit of the Taylor expansions, the change in
density &n,(v)=n,(7) —n,(0) is given by Az (7)

=~ —2,(0)¥,(7), and in the region where o(7) is negligible
$,(r)= ' (#) +nV (). Thus, the change in density is
given by

Any(r) 20, €5n,(0)e,(m, /e, — m;/e;)(w?*r*/2k 1)
n,(0) Y2 €75(0) '

This is simply a weighted average of a difference in
centrifugal potentials [i.e., e,(m,/e, —m,/e,w?r?/2kT)]
with the weighting function given by €%r,(0). To obtain
Any(r)/n;(0), one need only interchange the subscripts

(22)

(23)
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1 andi in Eq. (23). Of course, the analysis assumes
that |An,(r)/n;(0)| <1 for all i.

The solution is valid out to within a few Debye lengths
of the value of 7, say v =a, where o(7) reaches unity.
As o(r) passes through unity, the densities n;(¥) drop
to zero. Since o(¥) enters the expression for n,(7)
through the factor exp|- ejo(r)/el] , the densities drop
to zero sequentially in order of decreasing charge. The
region where the densities drop to zero is scaled in
terms of the Debye length, which is assumed to be
small compared with the plasma radius (i.e., A<<a).

The parameters #,(0), ¢, and w are determined by
Eq. (22), the number of particles of species  per unit
length

N,=[ 2nrdy n,(v)= f 2nrdr[n,(0)+An,(r)], (24)
o] 0

and the total canonical angular momentum per unit

length

Py Zf 21rrdrfd3vf (7, v)(m ver+_1£l>

zzr;zj(—zl—w>j; 2y dy v* [n,(0) +Any, ()] . (25)
7
The N,’s must be specified for all j.

When the centrifugal separation is sufficiently strong
[i.e., |8n;|/n;(0) = 1 for some i}, the exponentials in
Eq. (12) cannot be Taylor expanded. One is then forced
to solve a transcendental equation to find n(°)(1’). Never-
theless, this an easier task than solving the original
differential equation. For the simple case of a two-
component plasma (say with m,/e,>m /e ), one can
easily construct solutions in which there is a transition
between a region where n, > n, to a region where
n, <n,. Inthe first region, »,(7) is very nearly con-
stant and n,(r) grows exponentially {i.e., n,(7)
~expley(m,/e,—m, /e )w?¥*/2kL)|}. Inthe second re-
gion #n,(7) is very nearly constant and »,(7) decreases
exponentially {i.e., n,(v)~ exple,(m /e, - m,/e,}(w*?))}.
In other words, the density variation associated with
the transition is exponential in nature. Of course, the
function o(7) reaches unity at some value of  and
truncates the density of both species.

IV. COMPLETE SEPARATION

In this section, we obtain solutions in which the
various species are located in concentric rings, the
density in the gap between two rings being exponentially
small. The solutions are based on the assumption that
L;,i €Ay, where [; ; is defined in Eq. (1) and A; is the
Debye length associated with species j{i.e., Ai=
=kl /4ne%n;). The subscript i refers to either of the
two species adjacent to speciesj. If to be specific, we
stipulate the ordering m,,,/e,,, > m,/e,, then i takes the
valuesy-1andj+1.

We will find that #;(7) has the value #; in the region
from 7=a; to r=b; and drops to zero at the boundaries
of this region. The drop in ny(?) occurs on the scale
A;; of course, 2, =0 anday,,>b;. The values of a;, b,
and n; will emerge from the analysis.
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In the region 0<7<b , only the charge density due to
species 1 need be retained, and Eq. (9) reduces to

1 ir%: 2m W —w) 4mein,(0) ex

rdr dr %l »T p(-¥,). (26)

It is convenient to denote the maximum value of
n;(0) exp(- ¥;) by n;. We will see that §,(7) increases
monotonically from the origin, where ¥,(0)=0, so

n, =n,(0). By introducing the Debye length, A,, and the
parameter
71 = [2m1w(321 - w)]/(41m1eﬁ) -1 ’ (27)

Eq. (26) can be written as

1 d _dy
22 @ 4% _q_ -
A‘rdrrdr 1-exp(-¥,)+y,. (28)
In the region where |¢,| <1, the exponential may be
Taylor expanded, and Eq. (28) reduced to

A= —r—t—y =y, (29)

The solution subject to the boundary conditions ¥,
=dy,/dr=0 at »=0 is given by ¥, = y,[I,(¥/A) - 1]. We
are interested in the class of solutions where 0<y, <1.
For these solutions, ¥, remains small for large values
of v/A,, and the asymptotic form of the Bessel function
may be used: ¥, =vy,(2r7/1,) 2 exp(r/A,). We identify
the radius » =6, as the radius where ¢, =1. A few
Debye lengths inside r=b,, ¢, is exponentially small and
n(r)=n,. A few Debye lengths outside »=b,, ¥,(7) is
large compared with unity and #»,(7) is exponentially
small. Although Eq. (29) is valid only for $,<1, in-
spection of Eq. (28) shows that ¥ (#) continues to

grow past ¥, =1. Since X, <b,, we obtain the two rela-
tions

N, =~ n,mb?, (30)
dmein, =~ 2m,w(8, - w) . (31)

An equation for ¥,(r) is obtained by simply inter-
changing the subscripts 1 and 2 in Eq. (9). Let 7, be
the radius where ¥,(r) reaches its minimum value. By
hypothesis this point lies in the range a,<7<b,. Intro-
ducing AY, = $,(¥) — ¥,(7,) and n, =n,(0) exp[ - ¥,(»,)] allows
Eq. (9) (with the subscripts 1 and 2 interchanged) to be
written as

1 d _day
22 Ll 2.1 - ~-A
5 7 1 -exp( ZP2) +7Y;5 . (32)

Here, only the charge density due to species 2 has been
retained. We are interested in the class of solutions
where 0<y, <1 and A¢, remains small over a range
that is large compared with A,. Taylor expanding the
exponential and approximating the » derivatives by
d?/d»? yields the equation
d*a

)‘ZW%Z_A%:YZ: (33)
and using the boundary conditions Ay, =dAy,/dr=0 at
r =7, yields the solution

A, = v coshl(r = 7,)/3,]1- 1} (34)

We identify the points »=a, and =5, as the points
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where Ay, =1. The density n,{7) is very nearly equal to
n, for a,<r<b, and drops to zero on the scale of A, at
the boundaries. Since A, <<b,, we obtain the two rela-
tions

N, =n,m(b} —a3), (35)

4ne*n, = m,w(§2, -~ w). (36)

Next, let us determine the relation between b, and a,.
Over most of the region b, <7r<a,, the charge density is
negligible, and Eq. (9) (with the subscripts 1 and 2
interchanged) reduces to

1d _dp, 2m,w, -w)
Ll 20N 2 T
ydr’ dr kT : (37

Integrating from =0, to 7 =a, yields

ay ay m,w(, — w)
Rzl -p L 2 2 2 _p2
“arl, “hvar|, T e R (38)

and using the relation ¥, =(e,/e )¢ — e,(m,/e, —m /e,)
x{(w?r%/2kT) yields

0 Y| _ey | (my_m )Wl
tdr e, tarfy \e, e/ kT
maw(ﬂa—w) 2 g
+ BT (az "b1) . (39)

The two derivative terms are of order 1/X; whereas,
the other two terms are of order 1/7~1/)%, Since A is
a small parameter, the two derivative terms may be
neglected. The errors involved in neglecting the charge
density at the edges of the region b, <7<a, are also

of order 1/A. Thus, we obtain the relation

2 _ 2o G/ e =) /e)w'b]
a; b].— mz“’(ﬂz _ w) (40)

By continuing this procedure to successive regions,
one obtains the relations

N;=ngm(b5 -a?), (41)
dnein, = 2m w8, — w), (42)
af -bj= €1 My /€ oy = 1/ €) 0] . (43)

My @y, — W)

For completeness, we note that the parameter w is
determined by the total canonical angular momentum

Py =2,: my—w+82,/2)nmb3-al)/2. (44)

The requirement for complete separation is that A,
Ay ¥ay,, —~b;. For the case where this is most re-
strictive (i.e., a;, —b;<<a,,,, b,), Egs. (42) and (43) can
be used to rewrite the inequality as [; ; <A;, where
GYh=d/drey\m;/e; —my/e;|(w?7*/2kT) and 7 is located
in the gap between the species j and the species i. This
is the inequality mentioned in the first paragraph of
this section as the basic approximation for the analysis
to follow.
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