Cooling of a pure electron plasma by cyclotron radiation
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It has been suggested that a magnetically confined pure electron plasma might be cooled to the liquid
and crystal states. Here, cyclotron radiation is considered as a possible cooling mechanism. The plasma
and some cooled resisting medium are assumed to reside inside a conducting cavity. When the cyclotron
motion of the electrons resonantly drives a cavity mode which is damped by the cooled medium, energy
is transferred from the electrons to the medium. Attention is focused on the case where all of the
electrons experience a sharp (i.e., high-Q) resonance with a single cavity mode. An interesting result is
that the rate of energy loss per electron can exceed, by a factor of Q, the radiation rate for an electron
executing cyclotron motion in unbounded space. The maximum value of Q is limited by cyclotron
damping of the mode on the plasma itself and can be large for a non-neutral plasma at a density well
below the Brillouin limit (i.e., for o, < <2, where w, is the plasma frequency and 2 is the cyclotron

frequency).

. INTRODUCTION

Recent experiments have involved the confinement
by static electric and magnetic fields of a collection of
electrons of sufficient density to be called a plasma,
that is, a pure electron plasma.'! It has been suggested
that such a plasma might be cooled to the liquid and
crystal states,? and this paper considers cyclotron
radiation as a possible cooling mechanism.

Motivated by the experiments of Ref. 1, the confine-
ment geometry is assumed to be c¢ylindrically sym-
metrical, with radial confinement of the electrons pro-
vided by an axial magnetic field and axial confinement
provided by negatively biased end structures. For such
a geometry, the electrons can be in thermal equilibrium
with each other and still be confined. The N-electron
thermal distribution is given by

F=Z"'exp[(~1/kRT)H - w,P,)], (1)

where H is the Hamiltonian for the electrons and P, is
the total canonical angular momentum for the elec-
trons.?”® These quantities enter the distribution on
equal footing for a cylindrically symmetric geometry.
For a given number of electrons, the temperature T
and the parameter w,, which will be identified as the
rotation frequency for the system of electrons, are
determined by the total electron energy and canonical
angular momentum (i,e., by (H) and {P;)). We will see
later that the distribution corresponds to a confined set
of electrons. For a sufficiently low temperature,

the distribution predicts that the electrons are in a
liquid state, and for even lower temperature, in a
crystal state.?’™®

We assume that the confinement region is bounded by
a cylindrically symmetric conducting wall and expand
the radiation field in a set of cavity modes. There must
be sections of the wall at either end that are biased
negatively relative to the central section. These are
the negatively biased end structures that provide the
axial confinement. Nevertheless, the wall can appear
continuous to the high frequency field. (This assumes
that there is sufficient capacitance at the junction be-
tween the sections of the wall.)
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A cooled resisting medium is assumed to reside
somewhere inside the cavity. The interaction of the
electrons with the cavity modes and of the cavity modes
with the cooled resisting medium gradually transfers
energy and angular momentum from the electrons to
the medium, Assuming that this occurs slowly com-
pared with the thermalization rate for the electrons,
the electron distribution will remain very nearly of the
thermal equilibrium form, but the parameters T and
w, will evolve slowly in time. To determine d7T /d¢
and dw,/dt, we calculate d{H)/dt and d{P,)/dt,

In Sec. II, the dynamical equations for the electrons
and for the cavity modes are developed, Within the
context of a frequency ordering to be discussed shortly,
the electron velocities and the amplitudes of the cavity
modes satisfy coupled oscillator equations, When the
cyclotron frequency for an electron matches the fre-
quency of a particular mode, the mode amplitude is
enhanced by resonance and a relatively large amount
of energy and angular momentum are dissipated in the
resisting medium, We consider the case where all of
the electrons resonate with the same cavity mode. The
mode amplitude relaxes to become a function of the
electron velocities on a time scale which is the inverse
of the frequency spread characterizing the width of the
resonance. By writing the equation describing the rate
of change of the total energy (i.e., electron energy plus
mode energy), one obtains an expression for dH /dt in
terms of the mode amplitude and the damping rate for
the mode due to the resisting medium. A similar
equation may be obtained for dPy/dt. By substituting
for the mode amplitude as a function of electron ve-
locities, expressions for dH /dt and dPy/dt are ob-
tained in terms of the electron velocities.

In Sec. III, these expressions are averaged over the
particle distribution to obtain d({H)/dt and d(P,)/di
and, by implication, d7/dt and dw,/dt. Under the con-
dition that w, is small compared with the mode fre-
quency, which is part of the frequency ordering, the
change in angular momentum is negligible. The pa-
rameter w, remains essentially constant, and the tem-
perature drops as energy flows to the cooled medium
(i.e., dT/dt <d(H)/dt).
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In Sec. IV, d(H)/dt is maximized. The maximum
occurs when the three frequencies which determine the
width of the resonance are comparable. The first two
of these are the mode damping rate due to the resisting
medium and the damping rate due to the plasma itself,
that is, the cyclotron damping rate, This latter quanti-~
ty arises naturally when solving the coupled oscillator
equations. Matching the resistive and cyclotron damp-
ing rates is essentially matching the impedance of the
cavity and the impedance of the plasma. The third
quantity determining the resonance width is the spread
in cyclotron frequencies due to the inhomogeneity in
the magnetic field. Since the cyclotron damping rate
varies inversely as the spread in cyclotron frequen-
cies, that is, varies as dN/dQ, where N(2) is the
distribution of cyclotron frequencies, the condition that
the spread in eyclotron frequencies be comparable to
the width of the resonance is simply a condition that
the cyclotron damping rate be a minimum subject to
the constraint that all electrons participate in the
resonance. This maximizes the @ for the resonance,
subject to the constraint that all electrons participate
in the resonance. The maximum value for the energy
loss rate is approximately d(H ) /dt ~NET(ne?/mNV )2,
where N is the number of electrons, k is Boltzmann’s
constant, e and m are the electron charge and mass,
and V is the volume of the cavity.

It is interesting to compare this energy loss rate to
that for the case where each electron experiences si-
multaneous resonance with many modes, In general,
an electron can resonate with many modes if the di-
mensions of the cavity are large compared with ¢/Q
and the resistive broadening of the frequency for each
mode is large compared with the frequency separation
between modes. One expects that an electron in such
a cavity will lose energy at the same rate as an electron
executing cyclotron radiation in unbounded space, that
is, at the Larmor radiation rate,® 2¢*@1)Q2%/3¢®. In
Sec. IV, it is shown that the ratio of the two energy loss
rates (i.e., single mode/many mode) can be as large as
the value of @ defining the width of the single mode
resonance, The maximum value of this quantity is
approximately @ ~Q(mV /12Ne?)“2, For a non-neutral
plasma which is magnetically confined at a density that
is well below the Brillouin limit!? (i.e., w, <), the
value of @ can be large compared with unity.

The frequency ordering scheme assumes that the
mode frequencies w, and the characteristic cyclotron
frequency £ are the largest in the problem. Of course,
the equality of 2 with some w, defines the resonance.
Next in size come the frequencies that determine the
width of the resonance: the spread in cyclotron fre-
quencies AQ and the damping rate for the mode v, +v,.
Here, v, is the damping rate due to the resisting medi-
um and v, is the damping rate due to the plasma (i.e.,
eyclotron damping). As mentioned earlier, the single
mode resonance leads to maximum energy loss when
AQ~v,~v,. The mode amplitude relaxes to become a
function of the electron velocities on a time scale
which is the inverse of the frequency width of the res-
onance. Effects such as electron-electron collisions
and the guiding center motion of the electrons, which
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are neglected in the oscillator equation for the elec-
tron velocity, must correspond to frequencies that are
small compared with the resonance width, The fre~
quency associated with collisional effects is the col-
lision frequency v, and the frequencies associated
with the guiding center motion are lw, and
(Q/C)(kT/m)‘/z, where [ is a characteristic azimuthal
mode number and Q/c¢ is a characteristic axial mode
number. For the low order modes considered here,

! is of order unity. Thus, the frequencies are assumed
to satisfy the ordering

Q, W A0, (+v) P, w,, QUET /mc?)V2 (2)

This ordering is reasonable, provided the density is
well below the Brillouin limit (i.e., w, <) and all
electron velocities are small compared with ¢. Recall
that v, S w, and w, =w3/2Q. Finally, the inverse of the
radiation time, 1/7,, is assumed to be small compared
with all of these frequencies. This is reasonable for

a large number of electrons, since we will find that
[see Eq. (50)] 1/7, <v,/N <K,

I1. DYNAMICAL EQUATIONS FOR THE PARTICLES
AND FIELDS

Let us start with a description of the electrons and
the cavity modes in the absence of the cooled resisting
medium. The Hamiltonian for the electrons is given by

He 2 Lo, (e/OMGOF Ly, ... x), 3)

where (x,, p;) are the position and momentum for the
jth electron, U(x,,...,Xy) is the electrostatic energy
of the electrons, and A(x,?) is the vector potential.'!
We have in mind the Coulomb gauge; so, U(x,,...,Xy)
is expressed in terms of the instantaneous electrostatic
potential.

The vector potential can be expressed as A=A,+A,,
where A, represents the static field (i.e., VXA =B)
and A, represents the radiation field, For the low den-
sities (i.e., w,<< ) and low electron velocities (i.e.,

v < ¢) considered here, the diamagnetic field is neg-
ligible. The radiation field can be expressed as'!

A, (x,0) = 2 Ax®)aa(t) +e.c., (4)

where the A,(x) are a complete set of cavity modes and
the g,(t) are complex time dependent amplitudes. The
subscript A represents the various eigennumbers char-
acterizing each mode. The A,(x) must satisfy the
Coulomb gauge condition (i.e., V+A,=0), the Helmholtz
equation [i.e., VA, +(w}/c*)A,=0], the boundary con-
ditions on the conducting wall [i.e., # XA, =0 and
#+VxA,=0, where # is the local normal to the wall],
and they are traditionally normalized so that

[ #Bx A, - A% =47c?5, ,. Under these conditions, the
Hamiltonian for the radiation field is given by

2 2
EDIEPE 3 (%)
Y 2 2
where w, is the frequency for mode A and the canonical

variables (@,, P,) are related to the complex amplitudes
through the relations
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=0 +q¥, Py=tw(g¥-q.). (6)

The total Hamiltonian is the sum of the electron
Hamiltonian and the field Hamiltonian (i.e., Hy=H +H’).
The equation of motion for ¢,(t) is given by

dq, (Q). PA)_laHI 1 2_{1_1'

dat T dt 2w, 20P, @ 2w, 0Q,

(7)

In evaluating the derivatives with respect to @, and P,,
one must be sure to take into account the fact that #
depends on @, and P, through A, The result is-

%_ . e i
i ——lwm+zj: Sciw, " A¥(H), (8)

where v; =[p; +(e/c)A(x,, t)]/(m) is the electron veloc-
ity and the notation A,(j) =A,(x;) has been introduced.
Equation (8) merely states that ¢,(¢) satisfies an oscil-
lator equation which is driven by the projection of the
current on A,(x). Let us assume that A denotes the
particular mode that is driven resonantly to large
amplitude; so, the radiation field is of the form

E, =(=1/c)(8A,/3t) = (fw,/c)A,(x)g, +c.c.

This is a convenient point to introduce the effect of a
cooled resisting medium. Suppose that some of the
current on the right-hand side of Eq. (8) is in the re-
sisting medium. This current is the sum of various
parts. First, there is the driven current. The elec-
tric field E, > ({w,/c)A,(x)q, +c.c. produces terms on
the right-hand side of Eq. (8) of the form?®?
(If the dominant resistance is in what we have been
calling the conducting wall, then the argument is
slightly different but the result is the same.) Since ¢
is not resonant, we can drop this term. The electro-
static field also drives a current in the resisting medi-
um, but we neglect this current, arguing that the elec-
trostatic field is not enhanced by resonance. In addi-
tion to the driven curreat, there is a current due to the
spontaneous thermal fluctuations in the resisting med-
ium. However, this current can be neglected if the
temperature of the resisting medium is much less than
that of the plasma. Thus, including the effect of the
cooled resisting medium modifies Eq. (8) by adding a
damping term

% ==Fwy+ )+ 2

At this point, the Hamlltoman description of the fields
must be abandoned. The ¢,(¢) are simply time depen-
dent amplitudes evolving according to Eq. (9).

gor Vi ARG). (©)

Next, expressions for dH/dt and dP,/dt are obtained.
From Eq. (3), we find

dH BH Aq(J) dg,
€95 8alJ) a9,

@ Td 4 c a &% (10)
Adding this equation to the equation

d

= 268 | anl? =203 20 =7 +e.c. (11)
and using Eq. (9) yields the result

d

7l 20} qa ) ==-20.268] 02 |*. (12)

By recalling that 2w} | ¢, |2 =P%/2 + w3Q%/2, one can see
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=g = igx.

that Eq. (12) merely states that the combined energy
in the electrons and in the field decreases at the rate at
which energy is dissipated in the resisting medium.

Again from Eq. (3), one finds
ap oH e o
d—te=-2'ﬁ=-zj: EVj'AA(])ZlqA“i-C.c. (13)
7 i

Here, use has been made of the fact that the components
of A, in cylindrical geometry have a ¢ dependence of
the form exp(il6). The subscript A contains ! as one of
the eigennumbers. Adding Eq. (13) to the equation

d l dq,

T 2wx|‘11] —‘w_xzwﬂx at 2 je.c. (14)
and using Eq. (9) yields the result

d l l

dat (Pa+ wal‘hlz> =—2V"-<0—A2w§| . (15)

In other words, the combined angular momentum in the
particles and the field decreases at the rate at which
angular momentum is transferred to the resisting
medium.

Once q, is known as a function of the electron veloc-
ities, Egs. (12) and (15) can be averaged over the
particle distribution to obtain d(H)/dt and d(P)/dt.
Within the context of the ordering scheme mentioned in
the introduction, g, relaxes to become a function of the
electron velocities on a time scale which is short com-
pared with times associated with electron-electron
collisions and with the guiding center motion of the
electrons, By neglecting these effects, the equation
for the high frequency component of the electron ve-
locity takes the simple form

%av, ==0,0v, X 2 + = A () (=iw)a, +.c. (16)
where , =eB(z,)/mc is the local cyclotron frequency

in the weakly inhomogeneous magnetic field and 2 is

a unit vector in the z direction. The velocity has been
expressed as the sum of a slowly varying component
(guiding center motion) and a high frequency component
(cyclotron motion). Equation (16) is the equation for
the high frequency component, which is the only part
that can resonate with the cavity modes. In solving Eq.
(16), the guiding center motion is neglected, that is,

2; and A,(j) are treated as time independent. Of
course, Eq. (16) can be derived from the Hamiltonian
in Eq. (3); it is simply easier to write down the Lorentz
force equation directly.

By introducing the quantity u,=(# ~:§),- 6v,, Eq. (16)
takes the form

du . e . .2 "

E:‘i =—iQu; — 7—n—c(r —i8);+ [A(jYwgr+ec.c.]. (A7)
This equation must be complimented by an equation for
dq,/dt. Substituting 6v,=(2 +i8),u,/2 +c.c. into Eq. (9)
yields the desired result

T —'(’“’A+VA)¢IA+Z: -A)- (€ +i0)u, +e.c.].

4cz

(18)
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In each equation, the complex conjugate term appearing
in the bracket may be dropped because it cannot pro-
duce resonance.

To solve these equations, we start by integrating Eq.
(17) forward from some arbitrary time, {=0, up to
time £, The result is

Uy (t) =1,(0) exp(=i§t) ~ Gw,e/me)@ =i8), » Ay(k)
t
x f at'q(t") exp[iQ (7 = 7). (19)

Substituting this expression into Eq. (18) yields the
equation

2

s | @ = i0) AP

dg: )
% +Ewy+)g, + ;

xf dt'q,(t") expliQu(t’ ~1)] = 3 o (@ +i8),
0 j

4ci w,
*AF(j)u;(0) exp(=iQut) . (20)

The third term on the left represents the correction to
the mode frequency and damping rate due to the plasma
loading of the cavity.

The solution for ¢,(f) consists of an initial transient
which is negligible provided ¢ multiplied by the total
damping rate is large compared with unity and of terms
which are driven by the right-hand side. The driven
terms are given by

[
) = Lw,c
@ +i8); *A#(j)u,(0) exp(~iQ,t)
X 2,: [(wr = Q) + va+18,(A, §) +v,(0, §)]’ @y
where
. . . 62 LA 2
10,0+ 50, ) = g 201 @ =10), - Mate)]
t
xf dt’ exp[i(Q, - Q)(t' - 1)].
(22)

Since the number of electrons is assumed to be large,
the sum over k can be expressed as an integral

}: :f dzf 2nrdrn(r,z),
& - 0

where n(r, 2) is the density of electrons. For fAQ>1,
where AQ is the spread in cyclotron frequencies, the
frequency shift and damping rate take the form?'?

_ez ‘o L
——f dzf 2ayr drn(r, 2)
cw o

AP(Aﬁj) = 4m02
P

i 0 3 2——_—-
X l (?—19) A,\(’}’, G,Z)l Q(Z)—Q!’

(23)

.n.eZ -1

4mc?

aQ
dz

VA, 7) = j 2nrdrn(r, z)
a

x| (@ -i8)+4,0, 6,2) ) (24)

D(z)anj

where the symbol P in Eq. (23) indicates that the
principal part is to be taken. As mentioned earlier,
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the radiation turns out to be maximum for v,~ AQ~ v,;
S0 one is not interested in cases where d2/dz van-
ishes. Equations (23) and (24) have a rather obvious
interpretation in terms of the plasma dielectric for
cyclotron waves, and the damping is clearly cyclotron
damping.??

The reaction of g, back on u,(f) is significant after
a time 7,, the radiation time. For {<T,, we can set
#;(0) exp(~i§2,t) =u;(¢t) on the right-hand side of Eq.
(21). Note that the assumptions (AQ)™!, (vy+v,)”
«f<«< 7, are consistent with the frequency ordering
mentioned in the introduction. By re-introducing the
notation u; = (& =i8); - 6v;, Eq. (21) takes the form

e (f+l§)1'Aik(])(f"Za)1'6vJ;
T dwne G {i(wy— ) +18,(, 1Y + v, (L )]

dx

(25)

Effects such as the electron-electron scattering of

ov; and the guiding center motion included in A5
are followed adiabatically by this equation. Of course,
this assumes that (vy +v,), AQ> v,, w,, QET /mc?)2,

as mentioned in the introduction.

1. DETERMINATION OF d7/dt and dw, /dt

Although Egs. (17) and (18) are adequate to determine
the relaxation of g, to become a function of the dv;’s,
the equations are not adequate to predict the evolution
of the ov,’s over a radiation time. The radiation time
is long compared with a collision time, and collisions
have been neglected in Eq. (17). At this point one must
introduce statistical mechanics. By assuming that the
electron distribution remains nearly of the thermal
equilibrium form {i.e., Eq. (1)], the parameters char-
acterizing the distribution (i.e., 7 and w,) can be
projected ahead over a radiation time, even though the
detailed electron dynamics cannot. This is accom-
plished by substituting Eq. (25) into Egs. (12) and (15)
to obtain expressions for dH /dt and dP,/dt in terms of
the electron velocities. Averaging these expressions
over the particle distribution yields d(H)/dt and
d(Pg)/dt, and by implication, dT/dt and dw,/dt. These
expressions are valid on a long time scale, because
Eqgs. (12) and (15) do not involve approximations con-
cerning the electron dynamics. By setting

mw?
H-= E! T‘L+U(Xl,...,XN)
and
m§r3
Py= E, mvojrj——z—-‘,

the thermal distribution can be written as

1 1 m ~
F= Eexp[-— k_T<z,: E(V’ —rw, 8P+ UKy, 0., Xy)
_-’iz%(n-w,)Zri)]. (26)
7

Before carrying out the averages, it is useful to re-
count a few results from studies of the thermal equi-
librium states.®? To understand these results intuitive-
ly, note that the last term in the bracket in Eq. (26) can
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be interpreted as the potential energy of the electrons
in a hypothetical eylinder of uniform positive charge.
This positive charge plus the negatively biased end
cylinders produce a potential well in which the elec-
trons reside. In the limit of weak correlation and
Debye length small compared with the dimensions of
the plasma, the electrons fill the well out to some
surface of revolution where the electron density drops
off on the scale of the Debye length. Inside the surface
of revolution the electric field determined by the one
electron distribution just cancels the electric field due
to the hypothetic positive charge [i.e., 0=E
+V(m/e)w, (2 - w,r?/2]. Taking the divergence yields
the electron density inside the surface of revolution
[i.e., —4mme=V+E==(m/e)w,(Q - w,)2, or i

=2w,(2 -~ w,)]. For the frequency ordering considered
here (i.e., w,<Q), the latter relation reduces to

w,~ w2/2Q =cE/Br. For the case of strong correlation
one expects this picture to be modified significantly
only in the Debye sheath region near the edge of the
plasma (i.e., near the surface of revolution).

In carrying out the averages, f - 06v; should be as-
sociated with £ -v; and 8+ 6v, with 8- (v, - 7;w,6,).
Substituting Eq. (25) into Eq. (12) and averaging over
the distribution yields the result

) (4 e® kT
i _—(dt+2u">4cz m

xf dzf 2mrdrn(r, z)
o

-

| (& —:8) A, 6,2))?

X [wr=8(2) + 8,4, 2)F +[v, +v,(2, 2)F’

(27)

where n(r,z)= [ dv,dx,dv, *+*dxy dvyNF is the elec-
tron density. Use has been made of the relation
d{G)/dt ={dG /dt), which follows from the fact that
d/dt(Fdx,dv, +++dxydvy)=0. Here, the time deriva-
tives are total derivatives, and G is an arbitrary func~
tion of (¢£,Xx,,v,***Xy,Vvy). There is a subtle point
buried here, The actual distribution, which is con-
stant along phase trajectories, is very complicated.
It is the coarse grain average of this distribution that
is given by Eq. (26), with slowly varying 7 and w,.
Also, it is interesting to note that correlation effects
do not enter Eq. (27). This is because the velocities
ov, and 6v, are completely uncorrelated, even if the
positions x; and x, are strongly correlated.

On the right-hand side of Eq. (27), d/d¢ can be
neglected in comparison with v, since d/dt~1/7, and
1/17,<wv,. Also, with the aid of Eq. {24), the integral
over radius can be rewritten in terms of v,, The re-
sult is

2,4, Q)
Wy =2 +8,(A, Q)P +[va+ v, (A, Q)"

d(Hy kT
'%z'z ='_fd9[

i

(28)

Likewise, substituting Eq. (25) into Eq. (15) and
averaging over the distribution yields
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d(Pg kT 1
dt - T Wy
ZVAVD(AJ Q) e
% f as [wa=Q+8,(0, QP +[vi+ (2, Q)F°

(29)
It is easy to understand these results in a particular
limit, By comparing Eq. (28) with Eq. (12) [or Eq. (29)
with Eq. (15)], one can see that the average energy in
the mode is given by

20315 [%

kT (X, 9)
=T f dQ[wl- Q +A,,(A,§2)]2 +[n+ A, )P

(30)

In the limit where v,(A, ) is nearly constant over the
width of the resonance, the integral is easily eval-
uated

203 g |2y =k T[v,/(na +1,)] . (31)

For v,<<y,, the mode should be in thermal equilibrium
with the plasma, and, as expected, Eq. (31) reduces to
2wi(|q, |?) =kT.

Next, d(H)/dt and d{P,)/dt are related to dT /dt and
dw,/dt. Averaging =}, mv3/2+U(%,,...,Xy) over the
distribution yields

<H>=%NkT+<U>+%(mwf)f Fxn(x,tr?, (32)

where (U) is the sum of a Vlasov contribution and a
correlation contribution

(U)=(U)+(U)e, (33)
(U>v="efdaxxn(xut)<‘P(x1)+%fdaxzn(xz’t)go(xuxz));
(34)

(U)c=—gfd“'xlfd“xzn(xl,t)n(xz,t)g(xl,xz, He(x,,X,).

(35)

Here, —e@(x) is the electrostatic energy of a single
electron at position x in the cavity and —eg(x,x’) is the
addition to the energy of that electron due to the ex~
istence of another electron at position x’, The pair
correlation function g(x,, x,,¢) is defined in the usual
fashion

NE f v, v, dPx,dv, < Bxy dPvy F

=n(x,, tn(x,, t)[1 +g(x,, x,, )] (36)

In the limit of weak correlation, the correlation energy
is given by (U ).~ —(BNET /2)[1/{12mm2})].1*

The quantity d(U),/dt is closely related to d(Pg)/dt.
From Eq. (34) and the continuity equation, 9n/9¢
+V e (nu)=0, one finds that
au
Kb - [ axnix, i, 1) Eex, 1), (37)

where

=_Vq;-Vfd”x’n(x’,t)cp(x,x’).
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As mentioned earlier, inside the plasma the electrie
field is given by E==-V(m/e)w, Qr2/2; so Eq. (37)
takes the form

Q%Ut-}l m—mw,ﬂfdsxn(x,t)u,(x,t)'r. (38)

The average of Py=),mv,, v; — mQr3/2 over the
distribution (26) is given by

(Pg)==m(3Q = w,) f Bxn(x, Hr?

(39
(Pg)~=~ mﬂf Pxin(x, t)r?].
Taking the derivative, using the continuity equation,
and comparing to Eq. (38) yields the relation
d
KU o KL} (40)

dt dt

Thus, the time derivative of Eq. (32) can be written
as

Mm.‘i(i ) d(Py)
L= S (SNT +(U).) +o, 552, (41)

where the derivative of zmo? f d*xny? has been neglect-
ed compared with w,d{P,)/dt. In this regard, note

that (1/w,)(dw,/dt) = (1/n)(dn/dt) is the same order as
(1/(Pg)Nd(Py)/dt). From Eqs. (28) and (27) it follows
that d({P,)/dt =1/w,d({H)/dt. Since ! is of order unity
and w, <w,, Eq. (40) reduces to

d d (3
—%’—2 o E(ENT +(U)c>. (42)

In essence, a mode with w,/I> w, removes a large
amount of energy and a relatively small amount of
angular momentum. Because the electron canonical
angular momentum is nearly conserved, the electrons
cannot move out radially and the energy (U ), cannot be
liberated. The plasma cools and becomes more corre-
lated without changing its overall shape. The density
and w, = w3/2Q remain essentially constant. Since the
density remains constant, Eq. (42) can be rewritten as
an equation for the rate of change of the temperature

d(Hy dT 3 (3
T =7d7_87<§NT+<U>°)' (43)

IV. MAXIMUM ENERGY LOSS RATE

In this section, the maximum value of d(H)/d! is
determined for given values of N and 7. It is con-
venient to rewrite A,(A, Q) and v,(A, @) in the form
[see Egs. (23) and (24)]

a0, @) == [ ag Eor@n, (a4)

v(x, Q)=F1(Q), (45)

where

2 +@ ©
F= —"3-_[ dz f 2mrdrn(r,z)| @ -i8)+ A\, 6,2)|%,

dmc? o
(46)
Z—;- f 2mr drnfr, 2)| (& —i8) A\, 6, 2))2
f(ﬂ) = ry 2 % N .
f dzf 2ardrn(r, 2)|(f —i8) A\, 6, 2)|?
-0 0
(41)
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Here, z and Q are related implicitly through @ =Q(z).
Part of the maximization condition turns out to be a
requirement that the v, be finite; so that d2/dz # 0

in the resonant region, and  =(z) is monotonic in
that region. The function f(2) is the distribution of
cyclotron frequencies [i.e., {1/N)dN/dQ)] weighted by
the relative strength of |(f —i8)A,|? at the appropriate
z (or Q). Also, f(f2) is normalized to unity [i.e.,

f dQf(Q)=1]. Interms of 8* and f(R), Eq. (28) takes
the form

a(d)
dt
=== jadq 7 N\ 2 .
n[ (Q—w)ﬁ-é dﬂﬂf){(g )) +[V)‘+)32f(ﬂ)]2

(48)

Using the normalization condition | d®x|A,|? =4nc? to
estimate 3 yields

F=a2e®N/mv, (49)

where V is the volume of cavity. Thus, maximizing
d(H)/dt for a given T and N is equivalent to maximizing
it for a given 7' and 8. The quantities w,, v, and f(f2)
may all be varied. Suppose that f(Q2) is charaeterized
by a width AQ and a height (a48)"! [recall that

f dQ)f () =1]. By considering various limiting cases
(e.g., ARG, 1, etc.), one can convince himself that
the maximum occurs for v,~ AR~ B and that the max-
imum value is of order

igtl-’z =~ ~RTB. . (50)

Essentially, this follows from dimensional analysis,
since 8 is the only frequency being held fixed.

Note that the definition v, = £ (2) allows the maximi-
zation condition v,~ AQ~ 8 to be rewritten as v,~ AR
~v,. The condition v,~ v, is simply a requirement that
the impedance of the cavity be matched to that of the
plasma. Since v, is proportional to 1/a8, the con-
dition that AQ~ v, is a requirement that v, be as small
as possible; that is, that the @ of the resonance be as
large as possible, subject to the constraint that all
electrons participate in the resonance.

The @ of the resonance can be written as
Q=Q/B=QUmV /n2e? N2 . v (51)

Since (n2e*N/mV) < %, the frequency ordering w, <<
corresponds to the case of a high- resonance.

It is interesting to compare the energy loss rate for
single mode resonance to that for many mode res-
onance. One expects that an optically thin plasma in a
cavity which is sufficiently large and lossy so that
each electron can resonate with many modes will lose
energy at the rate d(H)/dt =—N2&*Q*(v3)/3c®, where
@%) =2kT/m. For an optically thick plasma, a large
amount of the radiated energy would be reabsorbed; so
this expression represents the maximum energy loss
rate for a plasma experiencing resonance with many
modes. The ratio of the energy loss rate for the single
mode resonance to that for the many mode is given by

T. M. O'Neil 730

Downloaded 08 Aug 2005 to 132.239.69.90. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



G/, (357 (/) g (52)

(@(H)/dt), \ 4 V

For a cavity with the axial dimension comparable to the
radial dimension and for resonance with the lowest fre-
quency mode that fits in the cavity, the quantity in
parentheses is of order unity and the ratio is of order
@. In principle, a high-@ resonance with a single low-
order mode always leads to faster energy loss than
resonance with many modes in a large low-@ cavity.

In practice, cavities with dimensions of order 2n(c/Q)
would be inconveniently small for a large magnetic
field {e.g., 2n(c/Q)=1 mm for B~100 kG]. For such a
large magnetic field, one would probably employ the
many mode resonance. It is particularly effective at
large magnetic fields, since d(H)/dt is proportional to
Q2. The practical significance of the single mode res-
onance is to extend the range of cyclotron cooling to
lower magnetic fields, where the many mode resonance
is ineffective.

In this regard, note that the volume V in the expres-
sion d(H ) /dt = -NET(m*e?/mNV)/? need not increase
indefinitely as the magnetic field decreases (i.e., as
¢/§ increases). For cyclotron frequencies that are low
enough so that circuits may be used, V may be thought
of as the volume of a capacitor which is part of a res-
onant circuit. The capacitor is connected to an external
inductor and a cooled resistor. An appropriate geom-
etry for the capacitor is two coaxial cylinders with
negatively biased end sections and an axial magnetic
field. Iftheinner cylinder isbiasednegatively relativeto
the outer cylinder, thermal equilibrium solutions are pos-
sible in which the electrons are confined in the region
between the two cylinders. Axial confinement results
from the negatively biased end sections. The high
frequency field can be written as E =(=1/c)A,g, +¢.c.,
where A, =?(1/7)M and M is a normalization constant
chosen so that f a@*x| A,|2 =4nc®. The Hamiltonian for
the circuit (without a resistor) takes the same form as
the Hamiltonian for the cavity modes {i.e., Eq. (5)]

if one makes the identifications
VLQ=P,, VLQ=Q,, «i=1/LC, (53)

where @ is the charge on the capacitor, C is capaci-
tance, and L is the inductance., To include a resistor,
we identify v, with R/2L. Thus, Eq. (9) describes the
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evolution of ¢,=vI /2 - VL @/2iw,, and we may take
over the results for the cavity modes and apply them
to the case of a circuit.

Of course, there are technological advantages in
operating at lower magnetic fields. Also, the lowest
temperature that can be reached by cyclotron cooling
(i.e.,. T ~hQ) is lower for lower magnetic fields.
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