A confinement theorem for nonneutral plasmas
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A plasma consisting solely of particles of a single species is initially in the shape of a long column. It is
confined by an axial magnetic field in a region of space bounded by a perfectly conducting and perfectly
absorbing cylindrical wall. Conservation of angular momentum and conservation of energy are used to place
an upper bound on the fraction of electrons that can ever reach the wall.

Recent experiments have involved the confinement of
a collection of electrons of sufficient density to be
called a plasma, that is, a pure electron plasma.! The
confinement geometry for these experiments consists
of a conducting cylinder which is immersed in a uni-
form axial magnetic field and is divided into three
sections, the two end sections being biased negatively
relative to the central section. The electrons reside
in the central section, with axial confinement provided
by electrostatic fields and radial confinement provided
by the axial magnetic field. In such a geometry one
need not worry about the axial confinement, assuming
that the bias on the end cylinders is sufficiently nega-
tive. It is the radial confinement (i.e., magnetic con-
finement) that is worrisome.

In this paper, an infinitely long version of the geo-
metry is considered (i.e., an infinitely long central
cylinder), and an upper bound is placed on the fraction
of electrons that can ever reach the cylindrical wall.
The wall is assumed to be perfectly conducting and
perfectly absorbing, and the bound relies on conser -
vation of angular momentum and conservation of energy
for the electron and field system. Effects such as
electron collisions with neutral atoms, which transfer
angular momentum to the electrons, are assumed not
to exist. The physics underlying the bound is similar
to that involved in certain stability theorems for non-
neutral plasmas.?3

The z component of the total angular momentum is
given by

L,= Z mijajrﬁfd:‘xr@- (E xB)/4nc, 1)
7

where x=(r,0,2) is a cylindrical coordinate system,
with the z axis coincident with the axis of the cylinder,
v, is the velocity of the jth electron, y,=(1 —v2/c?)™ %,
and E and B are the electric and magnetic fields, re-
spectively. The magnetic field can be expressed as

B =B, +B,, where B, is the uniform axial magnetic field
and B, is the change in the field due to the electrons.

With the aid of Poisson’s equation, one can show that

fdsx 79+ (EX2B,)/4nc = E Qm(R%/2 -v3/2),
7

where R is the radius of the cylinder, Q =eB,/mc is
the electron cyclotron frequency, and the convention
e=|e| is used. Note that the quantity —mQr2/2 is
simply the vector potential contribution to the canon-
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ical angular momentum for the jth electron [i.e.,
—(e/c)Ay(r;)7,, where Ay(r)) =Borj/2]. Conservation
of angular moméntum may be written as

z,: mQve/2 = Z mQr3(0)/2 + E Py Vg ¥,
7 7
- zj: my;(0)v,,(0)r,(0) +f d’xr6- (ExXB,)4nc

—fd3x75- (E(0) xB,(0)]/47c, 2)

where v (0) refers to ¢ =0 and 7, to any later time ¢.
The same convention holds for the other variables.
Conservation of energy may be written as

K=K(0)+ f d°x[E2(0) +B2(0) /87

_f d*x(E? +B%)/81 (3)

where K=chE,.(yj —1) is the electron kinetic energy,
and the fact that a perfectly conducting wall passes no
flux has been used to set

fd3xBl(O)-B°=fd3xBl-Bo.

Before proceeding, we must establish the conven-
tions necessary to insure that Egs. (2) and (3) are valid
even though electrons hit the wall. Of course, the in-
teraction of an electron with a real wall is quite com-
plicated. Even the idealization of a perfectly conduc-
ting wall involves a complication. As an electron ap-
proaches a perfectly conducting wall, the potential
energy of interaction between the electron and its
image in the wall approaches minys infinity, and the
electron kinetic energy approaches plus infinity. In
order to avoid these infinities, we consider an ima-
ginary surface located a distance d out from the wall,
where d is chosen to satisfy the inequality R >d
> e2N/W(0). Here, W(D)/N is the initial energy per
electron minus the self-energy of an electron in un-
bounded space [see Eq. (14)]. For example, if W(0)/N
were in the range of 100 eV, then d could be chosen to
be a few angstroms. For any electron that hits the
wall, we retain, in Egs. (2) and (3), the values of 7,
and v, and the electrostatic and magnetostatic fields
associated with the electron at the moment it crosses
the imaginary surface. The electron is assumed to

© 1980 American Institute of Physics 2216

Downloaded 08 Aug 2005 to 132.239.69.90. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



have negligible ihteraction with the other electrons
after it crosses the surface. In other words, the fields
associated with the electron are assumed to be highly
localized and to involve an interaction between the
electron and its image but not the other electrons. The
energy associated with the electron-image interaction
is of order e?/d, which by hypothesis is negligible com-
pared with W(0)/N. We will make use of this point
shortly. Also, it is assumed that no electron returns
from the wall to the plasma.

A simple heuristic argument leading to a bound on
the fraction of electrons that can reach the wall was
given previously.* This argument assumes that all of
the terms in Eq. (2) are negligible except Z?,m{hﬁ/ 2
and Z)jmﬂrf(o)/Z. In other words, the heuristic argu-
ment approximates the total angular momentum by the
vector potential term in the electron canonical angular
momentum, i.e.,

Ly~ Zj: ~(e/c)Ayrr,=- z,: mQre/2.

If N is the number of electrons initially in the column,
AN is the number that ultimately reach the wall, R is
the radius of the wall, and a? is the mean-square initial
radius of the column, i.e.,

,Z 72(0) =Na?,

then the heuristic argument yields the result

ANR?< ) 72= Y 7%(0) =Na?,
i i
This can be rewritten as the bound AN/N < (@/R)2.

The difficulty with this argument is that the terms
that are assumed to be negligible might not be negli-
gible. Even if the initial conditions are such that
E,m-y,vojr, starts off being negligible compared with

mQr 2/2, it may not remain negligible. As the
electrons move radially outward, the large radial
electric field (required by Gauss’ law) does work on
the electrons, and myw,» can become large for at least
some electrons. This might involve some electrons
becoming relativistic. Also, it is not obvious that the
angular momentum in the field, [d3x 76+ (E x B,)/4nc,
remains negligible. One might worry that the electrons
reach the wall by simply radiating away their angular
momentum. In what follows, conservation of energy
is used to bound the terms that were previously ne-
glected and a corrected bound is obtained for aAN/N.

First, consider the term

, ; MY Ves¥y|< Z Mmyp¥y.
7

We want to choose the v,’s so that the right-hand side
of this inequality is a maximum for given values of the
v,’s and for a given value of XK. In other words, the
v,’s must be chosen so that

] (Z myw;, —aK) =0,
i
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where 6 indicates variation with respect to the v,’s and
a is a Lagrange multiplier. This equation reduces to

E m(r; - av,)y36v,=0.
7

Since the 8v,’s are to be treated as independent of one
another, there is only one extremum and it occurs for
v, ='r,/a. Also, one can check that the extremum is a
maximum; so we obtain the bound

Z myv7, s a 2 mcz(ri/azcz)(l —7’3/0[262)'1/2 , (@)
I i

where the parameter o is determined by the relation

K=mc? E [a —1’§/ozzc2)"/2 -1]. (5)
7

With the aid of Taylor expansions, one can show that
x{1 —x)"2<2[(1 —x)2 1] for D<x<1; 8o, inequality
(4) can be rewritten as

Z myr; < 2aK. (6)
]

Inverting Eq. (5) to find o as a function of K and the
v,’s is difficult; but an upper bound may be obtained
for a easily. First consider the case where o satisfies
the inequality R/ac <e¢. Here, ¢ is any number in the
range O<e€ <1. By taking into account the fact that
7;<R and by using Taylor expansions, one finds that

(1 -7/ 2 ~1]< (2 /a2c?)e P [(1 €)M 2 -1],  (7)

and by summing over j one obtains the bound

as< [(ﬁm/K) z,: 73]

where B=¢2[(1 ~¢?)1” -1] has been introduced for
brevity. For the opposite case (i.e., R/ac>¢), one
trivially obtains the bound a <R/ec. In general, o
must be smaller than the sum of the bounds obtained
separately for the two cases

¥
’

(8)

1/
as< [(Bm/K) Z rj] +R/ec. (9)
7

At this point, ¢ should be chosen to minimize the right-
hand side of this inequality. However, the minimiza-
tion procedure is difficult analytically and little is
gained over a judicious choice for €. To understand
this latter point, note that for 0 <€ <1 the minimum
value of 1/¢ is 1, obtained for € =1, and the minimum
value of B=€2[(1 —€?)"'2 —1] is 1/2, obtained for € =0;
whereas, a choice such as € =3 yields 1/e~1.3 and

B= 0.9, which are both reasonably close to the re-
spective minima. For generality, we leave ¢ un-
specified but bear in mind that 1/¢ and 8 are both close
to unity. Combining inequality (9) with inequality (6)
yields the result

2 my,vr, < 2(BmK E 722 +2RK/(ec) . (10)
7 7

Conservation of energy can be used to bound X. If the
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electric field is expressed as the sum of a longitudinal
and a transverse part (i.e., E=—-v¢ +E;, where v?¢
=—4mp and v - E, =0), the electric field energy can be
written as

dexEZ/sn =% fd3xp(x)¢(x)+fdsx5§/8w, (11)

where the boundary condition ¢ =0 on the'conducting
wall has been used. Thus, Eq. (3) yields the inequality

K<K(0)+ f a°x[ E*(0) +B2(0)]/8n

-3 [ xowet . (12)
The last term can be expressed as
% f d*xp)p(x) = ) % f d°xp,(x)¢,(x)
]
£ % f d°xp, (X)), (%), (13)

124

where p,(x) is the charge density of the ith electron
and ¢,(x) is the instantaneous potential due to that elec-
tron. We have in mind here that the charge for each
electron is distributed over a spherical region of ra-
dius comparable to the classical electron radius. The
last term on the right-hand side of Eq. (13) represents
the interaction energy between the various electrons.
From the fact that ¢ =0 on the cylindrical wall and the
fact that V?¢, > 0 everywhere inside the cylinder, one
can see that ¢, <0 everywhere inside the cylinder.
Thus, the last term on the right-hand side of Eq. (13)
is non-negative and may be neglected when Egq. (13)

is substituted into inequality (12). The first term is the
sum of the self-energies for the electrons. For an in-
dividual electron, the self-energy differs from the
self-energy for an electron in unbounded space by the
interaction energy between the electron and its image
in the wall. By our choice of the distance between the
wall and the imaginary surface where we declare an
electron to be lost, the interaction energy is negligible
[i.e., €/d<W(0)/N]. Thus, inequality (12) can be re-
written as

K< K(0)+f d°x[E%(0) +B3(0) /87 - Ne,=W(0),  (14)

where €, is the self-energy of an electron in unbounded
space.

From inequalities (10) and (14) we find the bound

< Z[BmW(O) ) rg]”z +2RW(0)/c .(15)
5

Zj: MY Veg?y

The same bound holds for the term ‘E,m-y,(o)va,(o)r,(o)[ .

Next, we consider the term [d°x78- (ExB,) /4nc.
The momentum density, (EXB,/47¢, is also 1/¢? times
the energy flux (i.e., Poynting vector). The self-field
for a particle travels with the particle and produces
an energy flux ve, and a momentum v, where m,
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=€,/c®. This momentum is usually thought of as part
of the mechanical momentum, which we have just
bounded. The remaining field energy is bounded by
W(0) and can correspond to a momentum no larger than
¢[W(0)/c?] and to an angular momentum no larger than
(R/c)W(0). The same bound holds for | — [ d®kr§-E(0)
xB,(0)/4nc| .

Using these bounds Eq. (2) can be rewritten as the
inequality

JE mQri/2< z: mQri(0)/2 +4 [BmW(O) ,Z ,,,5]1/2

+(2+4/¢)W(OR/c. (16)

With the aid of the quadratic formula the inequality can
be rewritten as

[Falp T

+{1 +A2(88 + (2 +4/¢)(RQ/c) |} 2, )

where A2 = W(O)/Z,mﬂzr";(o)/z. If AN is the number of
electrons that are lost (i.e., have 7, =R) and a? is the
mean square initial radius of the plasma [i.e., Na®
=2.472(0)], then we find the bound

(aN/N) < (a/R)*D?, (18)

where D is the right-hand side of inequality (17). When
A and (R}/c)A? are both small compared with unity,
the bound reduces to that obtained from the heuristic
argument mentioned earlier [(i.e., AN/N< (@/R)*]. Re-
call from the discussion preceding inequality (10) that
1/€¢ and 8 may be chosen to be near unity. We note
that the conditions for the experiment of Ref. 1 are
such that A and (R§2/c)A? are both small compared
with unity; so, the bound (AN/N)< (a/R)? is appro-
priate for these experiments. However, the correc-
tions obtained here may be important for future ex-
periments.

Of course, in the experiments, essentially all the
electrons ultimately reach the wall even though (a/R)?
<« 1, The utility of the present theorem is that in
searching for the cause of the electron loss one need
only consider those effects that can transfer angular
momentum to the electron and field system, that is,
effects such as electron collisions with neutral atoms,
field errors that are not cylindrically symmetrical,
and finite wall resistance.
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