Transport to thermal equilibrium of a pure electron plasma
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The transport of a pure electron plasma column across an axial magnetic field is considered, the transport
being due to binary electron—electron collisions. The Boltzmann equation is expanded in inverse powers of
the magnetic field, with the radial electric field and density gradient ordered self-consistently. The first

nonvanishing terms in the particle flux involve the third derivative of the density and the second derivative
of the electric field. An H theorem is used to show that this flux drives the plasma to a confined thermal
equilibrium density profile. The electrons can come to thermal equilibrium with each other and still be
confined magnetically, since the total canonical angular momentum is conserved. The final equilibrium can
be predicted from the initial total number of particles, angular momentum, and energy. The approach to

equilibrium is shown in a numerical example.

. INTRODUCTION

This paper considers transport of a nonneutral elec-
tron plasma across a magnetic field, the transport being
caused by electron-electron collisions. The plasma is
assumed to be quiescent, cylindrically symmetric, and
uniform in the axial direction. The axial magnetic field
is assumed to be uniform and sufficiently large so that
the Boltzmann equation may be expanded in inverse pow-
ers of the field,

An interesting property of the transport is that it leads
to a state in which the electrons are in thermal equilib-
rium with each other, and yet are confined by the mag-
netic field. To see this, we note that electron-electron
collisions conserve the total canonical angular momen-
tum for the plasma. Consequently, the canonical angu-
lar momentum enters the expression for the thermal
equilibrium distribution function on an equal footing with
the energy.l'2 The distribution is given by
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where n),, w, and T are parameters determined by the
number of electrons, canonical angular momentum, and
energy in the system, The electric potential ¢(») may
be related to the electron density through Poisson’s
equation, and the vector potential A, is given by A,
=Bv/2. (The diamagnetic field is negligible, assuming
all electron velocities are much less than ¢, and the
density is below the Brillouin limit.) Here, m, -e,
and V are the electron mass, charge, and velocity, and
¢ is the speed of light.

The plasma is confined radially due to the vector po-
tential term in the exponential (i.e., weAyr/c=weBr/
2c); this term forces the distribution to zero as r in-
creases. (Note that for a neutral plasma, this thermal
distribution would correspond to confinement for only
one of the two oppositely charged species.) Ina real
confinement device, the walls of the cylindrical vacuum
vessel would be outside the radius at which the distribu-~
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tion becomes exponentially small, The axial length of
the plasma would be determined by end plates biased
negatively relative to the cylindrical walls, so that the
term e in the exponential would make the distribution
exponentially small near the end plates. Finite length
experiments have been performed, } and the theory of
finite length equilibria is described in the following pa-
per.*

Another interesting property of the transport in a pure
electron plasma is that the diffusive particle flux is not
proportional to the density gradient. The flux is ob-
tained by an expansion in inverse powers of the magnetic
field, or equivalently in powers of the Larmor radius.
The first term in the expansion, which is proportional
to the first derivative of the density with respect to ra-
dius, vanishes identically. This occurs because con-
servation of momentum requires the guiding centers of
two like particles to make equal and opposite steps in a
collision,

The first nonvanishing term in the particle flux is a
rather complicated expression involving the third deriva-
tive of the density. Similar results have been obtained
in slab geometry by Simon, > Longmire and Rosenbluth, ¢
and Braginskii’; these works differed slightly in numeri-
cal transport coefficients, and we resolve this discrep-
ancy. We also find that the expression for the mobility
flux is not simply proportional to the electric field, but
rather involves the second derivative of the electric
field. We shall see that these higher order expressions
for the diffusion and mobility fluxes are just such that
the electron distribution evolves to a thermal distribu-~
tion of the form given by Eq. (1).

The heat flux is proportional to the temperature gra-
dient, since the lowest order term in the expansion for
the heat flux does not vanish. Since the heat flux enters
in lower order than the particle flux, equal gradient
scales for the temperature and density would produce a
much larger heat flux than particle flux. Consequently,
the plasma quickly becomes nearly isothermal, and re-
mains so throughout the particle transport process. Of
course, the temperature of the whole plasma may change
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as the density profile changes, since the electric field
may do work on the plasma.

All this follows from mechanics and gtatistical me-
chanics, without reference to Poisson’s equation. How-
ever, for a pure electiron plasma in eylindrical geome-
try, the radial electric field appearing in the mobility
flux is produced by the electrons themselves. Conse-
quently, we must solve the electron transport equation
self-consistently with Poisson’s equation,

In Sec. II, the transport equations are obtained by ex-
panding the Boltzmann equation in inverse powers of the
magnetic field. We assume that the spatial gradient
scale is no smaller than the Debye length. The condi-
tions for validity of the expansion may then be stated as

W,/ <1 (i.e., the density is well below the Brillouin
limit?), and v,,/Q <1, where w,=(4ne*n,/m)'’* is the
plasma frequency, =eB/mc is the electron gyrofre-
quency, and v,, is the electron-electron collision fre-
quency. In the collision operator, the Rutherford scat-
tering cross section is cut off for impact parameters
less than the distance of closest approach and larger
than the electron gyroradius. 8

In Sec. III, the transport eguations are shown to con-
serve particle number, canonical angular momentum,
and energy. Also, an H theorem is developed to show
that the electron density evolves monotonically toward
an equilibrium. In Sec. IV, the thermal equilibrium
distribution function of Eq. (1) is derived from the con-
dition of zero transport. Equations are developed to
predict the equilibrium parameters {n;, T, w) from the
initial particle number, canonical angular momentum,
and energy. Numerical solutions are obtained for the
coupled transport and Poisson’s equations in Sec. V,
illustrating the approach to equilibrium. In the Appen-
dix, we consider the results of Simon® and of Longmire
and Rosenbluth, ° and resolve the numerical discrepancy
between these two works,

The work presented here is a theoretical description
of a model, the model being based on certain assump-
tions. The assumption that the plasma is cylindrical
and quiescent is the point where the model may differ
significantly from the experimental situation. Under
certain circumstances, wave-induced transport may
dominate the coliisional transport considered here, 1!
Nevertheless, it is worthwhile to calculate the colli-
sional transport as a benchmark, and to develop the in-
teresting and unusual physics involved.

1. DERIVATION OF THE TRANSPORT EQUATIONS

As spatial variables in the Boltzmann equation, we
choose cylindrical coordinates (v, 6, z). The velocity v
used in this section is relative to the electron drift
frame, and may be introduced in two steps, First, we
define

ngé' V-v4dr, 0,

where V is the velocity in the laboratory frame and v,,
is the drlft veloclty to be specified. The variables v i
=v?+vl, vP=0v1+¢}, and v=Iv| are thus also relative
to the drift frame,

v,=2-V, v,=7-V,
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In terms of these variables, the Boltzmann equation
takes the form

3 duv, 8 2 a3 fv,\ @
o Bug o O, 2 (v4) O
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Here, E(7,!) is the radial electric field, C(f,f) is the
Boltzmann collision integral, and we have assumed axial
and azimuthal symmetry {i.e., 8/82=0, 3/86=0), We
choose the drift velocity v,{r, ¢) to be such that

v%/7 ~ eE/m —~ Quy=0 (2)

at each value of . In other words, we work in a local
drift frame in which the electric field is transformed
out.

The second step in transforming velocity variabies is

to rewrite v, and v, as
v,=v,€0883, vy=v,8in8 .

The Boltzmann equation for f(, v,, v, 8, ) then takes
the form

¥_ a—vg(sinﬁg%— 4 o088 2 )f+ v‘cosB-]:
IS

at 8¢ v,
s ) oo 2
2 _ Diging) 2
(2= 2t - eong) I —ctrn 3)

Before proceeding with the analysis of this equation,
it is useful to specify the collision integral more com-
pletely. In our notation, the rate of change of a distri-
bution f(v) due to scattering from particles character-
ized by the distribution g(v,) is given by

C(f,8)= [, [ag,0(@, walfv)gv:) - fnglv)] . ()

Here, o(,, u) is the cross section for scattering angle
Qg, u= |v-v,|, and the prime denotes post-collision ve-
locities. Also, we will have occasion to use the nota-
tion C(f, 2) =C(f, g) +C{g, /).

Returning to Eq. (3), we note that each term has the
dimensions of a frequency times the distribution func-
tion. We assume that Q is the largest of the frequen-
cies, and order the others relative to it. There are two
independent small parameters in the ordering scheme.
The first is associated with the electron-electron colli-
sion frequency: we define C(f,f)/Qf =5, where 6 <1,

The second small parameter enters naturally through
spatial scales. In considering the term v, cospB(3f/8v),
we anticipate that the » derivative will ultimately be ex-
pressed in terms of derivatives of the density and tem-
perature. We assume that the density gradient scale is
no smaller than the Debye length A, (see Sec. IV),
that (v,/Q)(1/n)(8n/37) = rL/)\D_.w,/Q where the Larmor
radius r, =3/0=(T/m@)"?. We denote w,/R=¢, and
assume € <<1. As mentioned in the introduction, the
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temperature gradient is much weaker than the density
gradient: we will see from the analysis that (v,/Q)(1/
T)8T/87) =0(¢®). The terms involving v, may also be
expressed in terms of €. Using the estimate E =4nenyr,
the definition of v,;, and the assumption ¢ <1, we see
that v,/Q7 and (»/QX3/8+)(vs/¥) are both O(e?). From
the analysis, we will see that the time derivatives enter
as (1/Q)(a/8t) =0(¢*6). The ratio v,/ is of order
€7/\p, which we assume is no larger than unity.

In summary, we order the various frequencies as
follows:

C(frf) v, an v,
DI () . g _

or 0(0) ; g ole) , Qraﬁ ole) ;
V4 oty LA (P\_ppery. 13T s,
Yoo, La-(4)=0ed; BTi=0d; )
Llan_ 4 1_1 8T 4 1 1 ov 4
Qn ('), o5 =0l )’Qvlat =0(e") .

We solve Eq. (3) by a perturbation expansion in powers
of ¢ and 5. The expansion =}, f, ., where f, , =0(¢"5"),
is substituted in Eq. (3), and each order is separately
equated to zero. In lowest order, i.e., O(¢"%’), the
equation is

9/ 28=0,

which has the solution foy=Fo(7, v,, v, t). To further
constrain the function f,;, we go to the equation for or-
der ¢°!:

8fu1/28=(1/R)Cfugy foo) - (6)
Since fy; is a periodic function of 8, a constraint on f(,
is

0= f dﬁg&—_ Zﬂc(fomfoo) . (7

This, together with the previous conclusion that f,
=fool?, v, vy, t) implies that!?

foo=n(7, t)(-zn—ﬁmj)m ex (2-1":%?)) (8)

Here, the possibility of a drift in the z direction has
been ignored, because of axial symmetry.

Constraints of the form in Eq. (7) are characteristic
of the present type of perturbation expansion, 12 and they
arise in each order. The transport equations will re-
sult from the constraint in order ¢*6'.

Since the right-hand side of Eq. (6) has been deter-
mined to be zero, the solutionis fy; =fyu(7, v,, v, 1. To
further constrain the function, we go to the equation in
order ¢ "%

3 02/8B={(1/Q)C(Fo0, for) - (9)

The constraint here is C( SousSfo1) =0. Suppress for the
moment the » and ¢ dependence, and define fy(v,, v,)
=folv)P(v,, v,). Then using foo(v)fgolv,) =foolv Woo(vg)s
the constraint takes the form

[@ vty [0, oulPlus, v+ Ploj, v3.)
= P(v,,0,) = P(vggy )] =
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In other words, P(v,,v,) + P(v,,, v,,) must be conserved
during the collision; so P must be of the form P=A
+Buv,+Cv*.'? Since A, B, and C are all small [i.e.,
0(6)], the addition of fy; to f,, corresponds only to a re-
definition of the parameters » and 7, and the possibility
of a v, drift which is ignorable because of axial sym-
metry. Consequently, we may set f,; =0. By extending
the argument to higher order, one may set f;,,=0, for
n=1,

In order €'6°, Eq. (3) is

v, 1an
) coan a,,fOU + = =
Here, the constraint is satisfied automatically, since
/¥ dBcosp=0. The solution for fi, is
on
37 fo0 (10)

T, |
Sio :hio(yf Ugy Uy H- ELSHIBZ
where the function % contains all terms which are inde-
pendent of 3. To determine 7;;,, we go to the equation
in order 5151,
O _
aB

The second term vanishes because of conservation of
momentum. To see this, we simply write out the colli-
sion integral

C(foo, hio) - C(foos v, SINBSg) . (11)

an Br

Jdavsfdgs Oufoo(v)foo(vs)(“é + U;o =Ug— 1'59) =0. (12)

Here, we have recalled that v, sinf=v,. Using the same
arguments as those following Eq. (9), we may further
conclude that #,,=0 and all f;,=0, for n=1.

In order ¢°6%, the equation is

K(r, 8 " fzo
2{2’2 $8in28f,, + =0,
where
1% 1 8n mQ 3 (v,
sz, - Om mu 20 (Zg) 1
K, 1) n 9y? +rn81f+ T TB’V’(’V) (13)

The constraint is satisfied automatically, and the solu-
tion is

Fao=hao(r, v, v, 1) + 492 v} eos2Bfy - (14)
In order ¢°8', the equation is
3 1 ~ K =~
aiél“ = Ec(foo, hag) + Z‘ﬁic(foo, % cos2Bfy)
1 /1 don
+ 93( ) C(U.LSIanOO’ U,_Slnﬁfoo) . (15)

The last collision integral can be simplified by manipu-
lating the integrand. One obtains

Vglgg = Vgllsy = 2(1’39 + U - Usg -y

=502 cos2B! +vitcos2p - %, cos2p,

- v2cos2p) - 5w + 0! 2ot -0,

where we have used conservation of momentum and the

identity v®cos28=12v%—2%. The collision integral is thus
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C(’U‘_ SianM’ vy Sinﬁfoo) erator

[P 2 j 4 2
= —‘C . COSZ ~-3C v .
0l 01 Pfoo) = C{fop VS0 fd3vsfdﬂs o(Q, wuf yo(v)foolvs)
Using this result, Eq. (15) may be rewritten as

¥y _ Mlr, 1)
3~ 408

4;123 (1 an) C(foo, UJ.foo)

_ 1 - must be independent of B; it must take the form it would
C(fyg, v cO828fy0) + ﬁ-C( Soos B20) have for =0, with the variables of integration g,, j’,
B, replaced by AB,, AB’, AB.. The B dependence is thus
(16) limited to the four cosine terms: cos(23+24a8"), cos(28
+2A8)), cos(28), and cos{28+2A8,). Integration with
respect to 8 will give terms such as 3 sin(28+2A8")
=38in(28’), etc. These terms vanish upon integrating
My, )= 3_(_1_ n _mQ ”4) ~— 3_(_1_22 + e_E_) g from 0 to 27, so the constraint in this order is that
dr\mér T v drrnor Tr the second and third terms of Eq. (16) cancel each other.
(17 This will be so if ky, is chosen to be

2. 2T)foo . (18)

order ine¢. hao T4 \n or

with the last expression for M keeping only terms lowest 1 <1 8n> (
v

To carry out the 8 integration in Eq. (16), we note
that all of the § dependence on the right-hand side is in

the first collision integral, When written out, this in-

The term with coefficient 27 /m merely amounts to a
slight perturbation of n(7), and could be deleted; we in-
clude it for notational simplicity in the rigid rotor analy-

tegral is . ; >
sis of Sec. IV. With the constraint satisfied, the solu-
fdsvsfdﬁs (R, Witf og(0)f og(0,) tion for f,; is given by
M = R
x(v/tcos2p’ + v/ cos2p, - v’ cos2B- v}, cos2B,) . fu=gqzClfon v}8in2Bfy) . (19)

Here, B, is a variable of integration through dv,, and
B’ and B, are variables of integration through dQ,. K
we set B,=B+AB,, B'=B+A4p, and B, =B+ApB,, the op- In order 5362, the Boltzmann equation is

The constraint in order ¢26° has allowed us to set ky =0,

)2 3
cosﬁ(rg; - g)f 5T + ———%{;’:B (vl ZT)JE.Q [ (8n> ]+ fé%( osBcos2B:—r +sinBsin2/3%)(nK)

Q T ar n 9r 8y
2v foa®n | 7 3 (v m . foo On )f.
+._J_ 200 4 T —_ .2 z)ﬂ_.g._ﬂl_ .
oy vlcoan Py 9201005381,(1,)(1 Tv*smﬁ w o T aB =0 (20)

The solution to Eq. (20) may be written as

mv* 8T 8 [1/onV v 18 , Pm 8 )\l on
= +_.._£.______ ES -t ey =
oo =ha(r, ve v,y 1) = smﬁfoo{_f 8r  4Q%n oy [n (81’) ]+ 80 2 oy nK T br (r)n 8y

8T T 9 1(811)] 2v08n _ v B <v >8n

| = — d) —

SmeOO{ZT 8r  20%mn 9r [n EY% Qrnor  Qndr ¥

V3

- o sun3ﬁf00[2mz(8 )( nK) + 129T :,,( )Z—Z] (21)

Only the first term after s, will actually contribute to the transport.

In order €%, the equation is

9 X 9 1
:-;_l cosﬁaf—ﬁi - ;; smﬁ‘f[‘;j‘ + —fﬁ‘ = ac(foo,fso) + C(fio,fzo) (22)

We do not need to solve this equation for fy; we will only need two moments of it. Multiplying by v, sinp and inte-
grating over veloc1ty gives

2 M
fdavu,fs, o) 72 ar f d’v v} sin2pfy = 12340 f d*v 20,0,C(fog, 20,05 fo0) - (23)

To obtain this, we have integrated by parts in the g integral (i.e., [ dv=/dv,[ v,dv, [ dp), used [ d®vv, sinpC(f, g)
=0, and substituted from Eq. (19) for f;;. For brevity, we write v »s Ug fOr v,c088, v,sinB. One can recognize the
left-hand side of Eq. (23) as the radial flux of particles.

Multiplying Eq. (22) by 3mv*v,sinB and integrating over velocity gives

fd:’v%mvzv,fa, 0 1,2 P4 fdzv tmv?v} sin2Bf,, - —fd v zmvtv, 8inBIC(fop, F30) + C(fr0r f20)]
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1o , M
7o

1 f1oflfeny¥] 1 1 8 ,
+4Q4{nay[7z(5>]+2_—fa_r"K_

1on
494( ) fds —Uec(vefow vifoo) +

n dv

408 5 By

1607 fd3v%mv22v,vec~(f00, 20,0,/ g0) + QZT 3y fd v emy Uec(foo’ 3T Uefot)

mQ 9 19
T Vor < ) }fd3v_1’ec(f00, V30 fo0)

n 9y

K 13
nfda Uac(vsfoo, v} cos2Bfy,) (24)

To obtain this, we have used C(fy, vsfo0) =0 and [T dBsingC(fy, v*sin3Bf,) =0. One can recognize the left-hand

side of Eq. (24) as the radial heat flux,

We do not need the equation for order ¢%6°. We need
only realize that the average of f;, over 3 contains a
term hy, which is to be adjusted according to the con-
straint on the equation in order ¢*!, This constraint is
given by
¥, 18 “w

9t  ror 4

2 (% ﬂ_?_)  dp
"'ew( )(1+ 2 3v, /) 2ﬂ51n2ﬁf21

rf31

27
= fo g—f—j[é(foo,fm) + é(f10,f30) +C(fap f20)] 5 (25)

where the last two terms on the left-hand side have been
obtained using integration by parts.

As in the Chapman-Enskog theory, 12 we imagine both
sides of Eq. (25) to be expanded in terms of the eigen-
functions ¥,(v,, v,) defined by C{(fyq ¥,f00) =X (1), fope
Writing h,=fyo2 a;¥,;, we see that the coefficients q,
may he adjusted so that Eq. (25) is satisfied, except for
I corresponding to zero eigenvalue (i.e., A, =0). There
are three eigenfunctions which have zero eigenvalue and
are also g independent: ¥ =1, ¥ =v?, and ¥ =v,. Itis
to satisfy the components of Eq. (25) corresponding to
these eigenfunctions that we must introduce the time de-
pendence (i.e., 3f,/81) in this order.

Projecting Eq. (25) on ¥ =1, that is, integrating over
d’v, yields the particle transport equation

an
3 ;a—rfdvv,fm_o (26)
Here, we have integrated by parts to eliminate the third
term in Eq. {25), and have used [ d’vC(f, g) =0. Pro-
jecting Eq. (25) on ¥ =$m? yields the heat transport
equation,

8 (3 19 5 mvt
5—2(2 T) + 8—1;1’ av——uv,f3
+7f-—-< )fd%mv Vefa1 =0, 27

where we used | d®vimv*C(f, g) =0. The projection on
¥ =y, is satisfied trivially, because of the assumption
of axial symmetry.

Finally, we must evaluate the velocity integrals in the
expressions for the radial particle and heat transport
equations [i.e., Eqs. (26) and (27)]. The radial par-
ticle flux of Eq. (26) was given in Eq. (23). To evaluate
the collision integral in Eq. (23), we note that
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J
c(fOOy 20,0410 =fd3vsfoo(v)foo('l’s)

dens ou2(vjvg + Vil = 0,05 ~ Vo)

:fd3vsf00(v)f00(vs)2 fdns ou¥ - (u'n’ —uu) -6,

Here, we have usea the velocities usv—-v, and w=3(v
+v,), and the identity w' =w. The scattering is de-
scribed in terms of a scattering angle 3 and azimuthal
angle ¢, as u’=(cosy + s siny sing + 7 sind cos@)u’,
where i, #, # are mutually orthogonal unit vectors.
Using the Rutherford formula for the cross section o,
the scattering integral is

fdﬂs ou2#- (W'’ -uu)- 6

~fw22ﬂsin¢dw ¢ u
- o mut sin®(y,/2)
. [ﬁﬁ(coszw_ 1) + (ﬂz@ + 2—) sin? d)]

187e* 1 (sind)z

= —-2—— n =
meu sinyy

)?' (- 28+ s +7m) + B

16me!
=73 InA(~ 3u,u,) .

Here, we have used the relation # + i + in= 2z + 7%
+60. The parameter A is the ratio of the maximum to
minimum impact parameters; we take these to be the
Larmor radius and the distance of closest approach,
giving A =vT/e’0.% The two velocity integrals in Eq.
(23) may be simply evaluated in center-of-mass coor-

dinates, as
T 1/2( 6 2)
lnA(ﬂm) -15") -

(28)
The particle transport equation may now be given ex-
plicitly. Substituting Eqs. (28), (23), and (17) into Eq.

fd v 20,06C(Fo0r 20,0 fod) =

(26) gives
on 10 f10 , 4 20 1(18n eE)
o, 28 (Lo L eEM o, (20
Y TSTT[VZBVTBT oy y\ndy T , (29)
where
12, 30" (16V7e >_§LK¢&
AT _894(15m25§ nA 80t n ° (30)

Except for the logarithmic dependence on A(T), gis a
constant determined by physical constants and the mag-
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netic field, The term in the outer-most brackets of Eq.
(29) is the radial particle flux, which may be conve-
niently written

I(r, t) == BT? 12 —?

v 9y (31)

n¥(r, OM(r, t)
using Eq. (17). We have ignored the small variation of
temperature with radius.

Unlike the usual diffusion and mobility results, 13,14 the
particle flux involves the third derivative of the density
and the second derivative of the electric field, A diffu-
sive flux proportional to 8»/3» would normally appear
through fy;; however, conservation of momentum in like
particle collisions implies that this term is zero, as
shown in Eqs. (11) and (12). We see no mobility pro-
portional to the electric field, as would occur with elec-
tron-neutral collisions, because the drift velocity does
not result in momentum being lost from the electrons.

Expressions similar to Eq. (29) have been obtained
for like-particle transport in slab geometry, =7 but dif-
ferent methods have given different numerical coeffi-
cients. We resolve this discrepancy in the Appendix.

The integrals in the heat transport equation may be
evaluated similarly to those in the particle transport
equation. Substituting Eqs. (24) and (19) into Eq. (27)
and evaluating the integrals yields

i(?. T) 1a (EWV B_T.>
at 2" —737729 "5y

10 49 14 4 3_72)
(- JT = 5 BTV TMn o

2 (32)

v 9y
172,98 (vq 2
+ BT v < )Qmn°M .
3r \7v

The heat flux term on the left-hand side would cause a
thermal gradient with scale (v, /T)(8T/97) =¢ to diffuse
at a rate (1/Q7)(3T/3f) ~¢*6. Thus, the plasma relaxes
to a nearly isothermal state before particle transport,
scaling as (1/0Qn)(an/8t) ze“é, can occur., When particle
transport does occur, the driving terms on the right-
hand side w111 maintain a small thermal gradient, (v,/
TY (8T /o) =¢?, as anticipated in Eq. (5).

1Il. CONSERVATION THEOREMS AND # THEOREM

In this section, we consider the general properties of
the transport equations of Sec. II. We show that the
transport equations conserve the number of particles,
the canonical angular momentum, and the energy. Fur-
ther, we derive an H theorem which demonstrates that
the transport progresses monotonically toward an equi-
librium. Since the transport equations give time deriva-
tives only to lowest order in ¢, this section will take
only the lowest order terms of the quantities of interest.

First, the particle transport equation (29) is easily
seen to conserve the number of particles (per unit length
in the z direction):

9 °] e e 13
atN(l‘) v fo 2nrdrn(v, t) =—]; Zﬂrdr;;rJ(r, H=0,
(33)
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Here, we have integrated by parts, observing that the
particle flux vanishes at »=0 and y =<0,

The canonical angular momentum is given by

L(t) = f “2nrar d3Vf(r,V)(mvey._ %mfz)

z_-_f 2mv dr ¥inlr, t) (34)

since (V) is small compared with Q7. The time deriva-

tive is then

oL mﬂf 139
2 2"“1772,,377‘]

_ma 1/2f°° 28 50,
= BT , 27wd1’y ay?’nM__O,

where we have integrated by parts and used Eq. (31).

Conservation of energy can be formulated by integrat-
ing Eq. (32) with respect to »dr. The terms beginning

with the operator (1/7)(8/87) integrate to zero. Neglect-
ing any spatial variation in 7, we obtain
gNa? BT“Z’/:e andrr%(%")ﬂmnzM
=- BT“Zf0 27 dr (rz M)
- fomandr(— eE)J (35)

Here, we have integrated by parts, approximated v, by
~eE/m$, used dN/dt=0 and Eq. (31). It is apparent
that to lowest order in ¢, the change in thermal energy
equals the work done by the electric field. This will be
true even if external charges contribute to the electric
field, as would be the case if a potential were placed on
a thin wire at » =0,

However, we are most interested in the particular
case where the electric field is generated entirely by
the charge density n. Then, we may use the time de-
rivative of Poisson’s equation,

18 B8E on

IS

= me—
r dr ot at’

together with the continuity equation, to obtain
2

9 e E
N—— f 27y dr(- eE)8t<4we> o ), 21r'rdr§.

(36)

The integral on the right-hand side is the total electro-
static energy per unit length of the column of charge;
this energy is logarithmically infinite due to the contri-
butions at large radii. We assume that the column is
surrounded at a large radius R,, by a conducting cylinder
carrying a charge per unit length of + Ne, and define the
total energy to be

R 2
w= gNT+ 0 wznrdr% . (37
This energy is finite, and dW/dt=0. We assume that
R, is much larger than the radial extent of the plasma,
so that n(R,, t) is essentially zero. The particle num-

T. M. O’Neil and C. F. Driscoll 271



ber and angular momentum integrals of Egs. (33) and
(34) are therefore the same whether one integrates to
R, or to ©. We note that W does not include the
kinetic energy associated with the drift velocity (i.e.,
| 277 dr nsmv%); this energy is order e compared with
the electrostatic energy, but may be comparable to the
thermal energy if ev/Ap,=0(1),

We can gain some insight into the evolution implied
by the transport equations by considering the quantity H
given by

H(t)=f 27y drnin(nT™?% . (38)
0
This definition of H is motivated by the fact that the
entropy of a uniform gas would be proportional to — H.
Since R, may be arbitrarily large, we take the limit of
integration to be = in the following discussion. The time
derivative of H is then

h an 3NAT
_J; Zwrdv-a—t- ln(n)—E—T—a—t

.—_-f 21rrdr—-——(rJ)ln(n)+——f 27y dr eEJ

T
[ ,de(la_mfﬁ
0 3y T ’

where we have used Eqs. (29) and (35), and integrated
by parts. Again integrating by parts and using Eq. (17)
for M, we obtain

daH _ 172 =2 (man eE)
i - BT f ZTWdr (7292 M)y +rT

o1 [ 2wy drla)(- M) =0 (39)
0

Thus, H can never increase; it either decreases or re-

mains constant with time.

The function H cannot continue to decrease indefinite-
ly, since it may be shown to remain finite. To estab-
lish this, we expand the logarithm in Eq. (38), and show
that each of the two contributions to H are bounded be-
low. TFirst, suppose that |5 27r dvnln(n) is not bounded.
Then, since — [§ 2rr drny’ =2L/m® is finite, In(n) must
be more negative than — v ag »— =; this implies »
=exp(~+?), in which case [ 27v drnln(n) certainly is
bounded, The integral must therefore be bounded.

Second, we must show that [§ 27y drnIn(T™?%) == (3/
2)NIn(T) is bounded below, which will be the case if T
is bounded above. T will be bounded if the possible
change in the electrostatic energy integral of Eq. (37) is
always finite, even though R,, may be arbitrarily large.
The change in electrostatic energy 68, within a finite
radius R, is certainly finite, since all charge densities
remain finite. For the contribution from large radii,
we may write

@ EZ w©
5 21rrdr—-=bé’0+e2f
0

87 N %Z[ZN(r)éN(r) +ON ()],

where N(7) and 6N(») are the number and change in num-
ber of electrons per unit length within a radius ». Since
6L =0, dn(v) must approach zero faster than »™. Then
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8N(») approaches zero faster than r'z, and the integrals
of 6N are seen to be finite. Thus, the function H is
bounded below.

Since H cannot decrease indefinitely, it must neces-
sarily approach an equilibrium with dH/d¢=0. From
Eq. (39), it is apparent that dH/dt=0 if, and only if,
M(r, )=0. From the particle transport equations, (29)
and (31), one can see that M(v, {) =0 implies 8n/8¢ =0,
The heat transport equation further implies that 87 /87
=8T/5t=0. (Here, one has in mind that the plasma
evolves to an isothermal state on a heat conduction time
scale, which is negligible compared with the particle
transport time scale.) The H theorem thus implies that
the plasma evolves monotonically toward an isothermal
equilibrium with the density and temperature indepen-
dent of time,

IV. EQUILIBRIUM STATES

We now characterize the equilibria determined by
M7, {) =0 and T(r, ) =const. Using Eq. (17) for M, the
density profile must vary as

(40)

where ¢ is an arbitrary constant,
grated to give

n(¥) =ngexplle/T) (¥} = a?] ,

This may be inte-

(41)

with n, also arbitrary. An equilibrium density profile
in the presence of an arbitrary electrostatic potential
o(7) must necessarily be of this form. This density
profile may also be obtained by noting that the equilib-
rium must be a Gibbs distribution. 2

Further, the Boltzmann equation results of Sec. II
enable us to directly calculate the equilibrium velocity
distribution. For clarity, we work only to order el
Using Eq. (40) for 8¢/87, the local drift velocity of Eq.
(2) may be written

7_on
mQn 9y’

vg=wy+

where the angular frequency w is determined by
a =(m/2T)(Qw - w?) . (42)

Equations (8), (10), (14), (18), and (19) then give the
velocity distribution

flr,v) =foo +fi0+fao

- Ypom 1 L")Z 2 _ Z.)

=foo [1 Y oner 20 (av T
2

_ _ Vg Om _ _1_(8_n) T

_f00 exp[ Qn 57 292’12 8')’ m M

Expressed in terms of the laboratory velocity V=v
+v,0, this is

372
Ar, V) =nly) (%f) exp{ 5T V4 VE+(V, - wr)z]}

(43)
The distribution is seen to be a Maxwellian rotating as
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a rigid rotor, that is, with average angular velocity
(Vo) =wr.

Using Eq. (41) for n(7), the distribution function may
be written as

m 3/2
f(?’, V) = nl)(m‘-)

X exp {— }T-,[%V2 —egp-w (ng'V - 7—;—9%’)]} ; (44)

this is the thermal equilibrium distribution anticipated
in Eq. (1). The argument of the exponential is seen to
be — ()¢ — wp,)/T, where ¥ is the energy of a single par-
ticle, and p,=mV¥ ~ eA,v/c is the canonical angular
momentum of the particle. The equilibrium Ay, V) is
thus seen to be a Gibbs distribution. The energy and
momentum enter the distribution on an equal basis,
since both are conserved quantities.

The combination 3 - wp, may be written

3= wpy= %[VE+ VEH(Vy—wr)?]

m m
—ep+ —wQr - —wh .

3 3 (45)

The first term on the right-hand side constitutes the ki-
netic energy in the rigid rotor frame. The remaining
terms may be thought of as the electrostatic, magnetic,
and centrifugal potentials. The magnetic potential
arigses from the wy X B magnetic force which appears as
an induced electric field in the rotating frame. Simi-
larly, the fictitious centrifugal force gives rise to a po-
tential which is small (order ¢2) compared with the mag-
netic potential.

The equilibrium density profile of Eq. (41) is valid
for arbitrary potential ¢(r), even if external charges
contribute to it. For the particular case in which ¢
arises solely from the charge density n, we use Pois-
son’s equation,

1 —a—ra— o(r) =4nen(r) , (46)

with @(0)=8¢/871,,=0,.

The two equations, (41) and (46), contain three pa-
rameters: ny,, 7, and @. The temperature T merely
sets the scale for the density and potentials, so we may
write Eqs. {41) and ( 46) as

1a _a_ﬁe—ﬂ_ezﬂlexp(eﬁ_aﬁ)

vor ar T T T (47)

Further, n,/T may be incorporated into the spatial scale
by considering the radius measured in units of the cen-
tral Debye length, as

p=v/Ap, A =T/4ne'n, . (48)
We define
Wp) = [ep(p)/T] - aph}, (49)

giving n(p) =n,exply(p)]. Then, Eq. (47) may be written

12 2
——p—yp=e’~dar’=e' - (1+y),

pap 8p (50)
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with

= 2 _m(Qw—wZ) -1
y=dar,-1= 2me’n, ’
3y
lP(O)—O ’ 'a—p p=0___0 A

Equation (50) is completely solved by the family of
solutions parameterized by the single variable y. Thus,
all possible thermal equilibrium profiles are described
by nlv/\p) =n,exp[¥(r/Apy)]. Bounded solutions for
which n(»)—~ 0 as ¥~ = exist only for y>0. Representa-
tive profiles of y{(p) and n(p) are shown in Fig. 1, for
10‘55y$1; these curves were obtained by numerical in-
tegration, For y <1, the density is quite constant out
to a certain radius, then falls toward zero in several
Debye lengths; the parameter y merely determines the
radial extent of the plasma in Debye lengths.

We may interpret the density profile as follows. The
magnetic and centrifugal potentials appearing in Eq.
(45) may be thought of as arising from a hypothetical

cylinder of uniform positive charge density

n, =m{Qw - wh) /27 =(1 +¥)n, .

IELY)

75
nl(p)
nfo]

25

0

p= 7/)\0

FIG. 1. The family of self-consistent thermal equilibrium
density profiles n(p)=nyexpl¥(p;y)], for several values of the
parameter y. The radius is scaled as p=»/\p.
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For y <1, the electron density almost exactly “neutral-
izes” the hypothetical positive charge out to some ra-
dius at which the supply of electrons is exhausted., At
that radius the electron density falls off on a scale set
by the Debye length.

Some analytic insight into these profiles may be ob-
tained for y <1 and p <1, Expanding exp(¢) =1 +3, Eq.
(50) becomes

with the same boundary conditions, This has the solu-
tion

¢=7[1 —-Io(p)}z'y[l _(2.”p)“1/2 eg] ,

where I, is the modified Bessel function, and the second
expression is valid for p> 1. The density is thus con-
stant in the region where § grows exponentially from a
(negative) small value. The density has fallen to 1/2 its
central value when ¢ =-1n(2), this occurring at a radius
R, given approximately by

In(2)(27R,/Ap)!"? exp(= R,/Ap) =¥ . (51)

The physical quantities N, L, and W may be parame-
trized by the single variable y, with the temperature T
and Debye length X, as scalings. Using Eqs. (33), (34),
and (37), we may write

__T_f‘” oo T
N.ze2 A pdpe -zezF(y),
L=-mQx’ T fmpdppze"’z_mﬂ)\z_T_G( )
D4e§ o Dg? Y,
3 R 2 R 2
W= <=NT +lim [f medrg-—j medv-l—-(zN—e>
2 R~ 0 87 R, 87 v
T R/Ap dp 4 2
= 77 {3F() +1im | [ _f "o’ &
Lo sgal (o

- FXy)1n(R/ 7\,,)] + FYy) In(R, /X D)}

(52)

'00 TS Bt |11134 Ll

N A 10 60
Y

FIG. 2. The functions F(y), G(y), I(y), and D,(y) vs the equili-
brium parameter y. Here, D (y)=D{y)— (-3 In2).
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T
4ot

[3F(y) +1(y) + F(») In(R,,/Ap)] .

The functions F, G, and I are displayed in Fig. 2.

The quantities N, L, and W are conserved as the
plasma evolves from an arbitrary initial condition to an
equilibrium state. Thus, we can uniquely predict the
final equilibrium if Egs. (52) can be inverted; that is, if
we can obtainy, T, and A as functions of N, L, and W.
This may be accomplished as follows: From the first
and second of Eqs. (52), A\}/R% =~ 2LF/mQRLNG.
Then, the combination of physical parameters given by

w1 -2L \ 3 Iy) 1. TF(»]_
vty ln(ngi,N)' 76y T FG) T 2 “‘[c(y)} biy)

(53)
is a function of v alone. Since D(y) may be seen from
Fig. 2 to be one-to-one, y is uniquely determined by N,
L, and W. The first and second of Egs. (52) then give
T and A, in terms of F(y) and G(v). Of course, the
three parameters y, 7, and A, uniquely determine the
original parameters n,, T, and w, from Eqs. (50) and
(48). Knowledge of the total density, angular momen-
tum, and energy for arbitrary initial conditions thus
uniquely determines the final equilibrium state. Fur-
thermore, the equilibrium state can be varied in a pre-
dictable way by external perturbations which change the
total density, angular momentum, or energ’y.15

V. NUMERICAL SOLUTIONS

We now illustrate the ideas of the previous sections by
numerical computation of the plasma evolution, from
specified initial conditions to the corresponding thermal
equilibrium, First, we use the equilibrium parametri-
zation equations of Sec. IV to predict the expected equi-
librium, then we numerically integrate the coupled par-
ticle transport, energy, and Poisson’s equations. We
see that n(r, f) and T(¢) asymptotically approach the pre-
dicted equilibrium density profile and temperature.

We take initial conditions which approximate those
which may be obtained experimentally.® Consider a
cylindrical tube with radius R, =2.5 cm filled with an
electron gas of temperature T(0) =1 eV, with a density
profile given by

nlr, 0) = 5x10% exp(~ ') cm™ |

Then, the number of particles and (lowest order) angu-
lar momentum per unit length may be obtained analyti-
cally from Egs. (33) and (34) as N=1.39x10" cm™ and
L/mQ=—-3.93x10% cm. The energy integral of Eq.
(37) must be evaluated numericaily, and is W =5.20
%107 eV-em™, TFor perspective, we note that in this
example, the thermal energy (3NT) is about 2/5 of the
total energy W.

The particular thermal equilibrium corresponding to
these values of N, L/m®, and W may now be obtained
from Eqs. (52) and (563). Interestingly, the equilibrium
is (to lowest order in ¢) essentially independent of the
magnetic field parameter mQ =eB/c. Equation (53)
gives D(y)=0.661, using e’=1.44x10" eV-cm. This
implies y =0.282, F(y)=4.06, G(y)=25.7, and I(y)
=-16.5, as shown in Fig. 2. The first and second of
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FIG. 3. Density profiles n(», T) as the plasma evolves from an
initial condition to the corresponding equilibrium (only part of
the 7=0. 2 profile is drawn). Insert shows the temperature
T(7).

Eqs. (52) then give the equilibrium values 7(~)= 0,987
eV and A;=0.299 cm, The equilibrium central density
is given by Eq. (48) as n,=6.11x10° ¢cm™3; and the rigid
rotor angular velocity w is given by Eqs. (50) and (42)
as mwQ=1.13x10"" g-sec™

The analysis of Sec. II showed that the particle trans-
port occurs on the time scale (1/Q)(8/8¢) ~0(e*5); this
is easily seen from Eq. (29) by approximating 8/9+ by
1/x,. We therefore define a scaled time

7= 3w,/ ¢,

so that /87 =0O(1). Here, the plasma frequency w, and
collision frequency v,, are both evaluated in terms of the
initial central density #(0, 0).

The partial differential transport equation (29) is in-
tegrated forward in time from n(r, 0), using an iterative
implicit scheme for the time step. The electric field
is determined at each time step by Poisson’s equation
(46), and the temperature is computed every few steps
from conservation of energy in Eq. (37). At »=0, the
various derivatives are evaluated using cylindrical sym-
metry, The wall is at a radius where n(v, t) =0, to the
accuracy of computation.

The computational results are shown in Fig. 3. The
central density increases due to inward radial particle
fluxes; momentum is conserved by outward fluxes in the
low density tail. As these fluxes do net work on the
electric field, the temperature decreases slightly, The
density profile and temperature are asymptotically ap-
proaching their equilibrium values, to the accuracy of
computation.

The plasma density in this example is relaxing toward
equilibrium on a 7 =1 time scale because most of the
transport occurs in regions where n(r, {) =n,. However,
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this would not be the case if the initial plasma had a sig-
nificant amount of angular momentum or energy in a low
density tail. Since the collision frequency is propor-
tional to the density, the relaxation time could be the
longer time required for transport at low density.
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APPENDIX

The diffusion of like particles across a magnetic field
has been treated in slab geometry by Simon, 5 Longmire
and Rosenbluth, ¢ and Braginskii.” These authors, using
differing methods, obtained particle flux results which
agreed in form, but differed in numerical coefficients.
In this appendix, we reduce our transport results to slab
geometry, and obtain results which agree with Ref. 5.
We are able to see that the coefficient obtained in Ref.

6 is too large by a factor of 4/3 due to a subtle error in
the assumed distribution function.

We first reduce our distribution function results to
slab geometry with no electric field and constant tem-
perature. This is accomplished by letting » =, v,~0,
89T /3r~ 0, and relabeling » by x, and 8 by y. We use a
prime to denote differentiation with respect to x, that is,
n' =on(x, {)/8x. Equations (8), (10), (14), (18), and (19)
then become

m \3? ! -
foo=n(x,t)(2—ﬂ?) exp( ) = ?zy'z’foo,

1 r\?2
= gr 0= - (2ot - Z) N, an

1
for=—~ 893( ) Clfaor 2020y fo0) -

For comparison with Ref, 6, we now express this dis-
tribution function, without the collisional term f,;, in
terms of the coordinate of the guiding center of a par-
ticle. A particle with phase space coordinates x, v will
have guiding center X=x - v,/Q. The density may then
be expressed

n(x) =n(X + Uy/ﬂ) =n(X) + %Y.n’()() + _L II(X)

207"

(A2)
To order ez, the (collisionless) distribution function is
then

F=foo+S10+f 20
= ;"(X) <1 - 2st22 2,22(%))
x(%)s/zexp (_ Z.;%’E)
= [N (x) +N,,(X)—-(v +v )] (E%)s,zexp( 2T2) (A3)

The full distribution f may be thought of as consisting
of two classes of particles, a and b, The class a dis-

(02 +0?) [ n(x)
4Q? n(X)
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tribution is separable as a density of guiding centers
N,(X) times a Maxwellian velocity distribution, as as-
sumed in Ref, 6. The class b distribution is not of this
form and, although only of order ez, will be seen to de-
crease the particle flux by the required factor of 1/4.

We now carry through the flux calculation of Ref. 6,
generalized to include the two classes a and b, The flux
results from steps A X in the guiding center position,
due to collisions. The net result of these steps is ob-
tained from the stochastic expression for the flux,

F = N,(XN8X)00~ 5 o NGO X,
FNXNB XDy~ 5 aX[N (XA X)) (A4)
XA By, - 3 o V(B3]

Here, for example, (AX), is the average step of a class
a particle due to scattering from all class b particles.
To calculate this, we note that a particle whose guiding
center is at X will have actual position x=X +v,/Q; a
scattering particle at this same position will have guid-
ing center coordinate X, =X +(v, -v,,)/Q. Further, the
step A X may be seen to be AX =~ Av,/Q. The average
step is then

(AX) = (ZL:T)S f d*v exp (— —rg—;,j)

x fd3vs Nb(X + 9”—;1}ﬂ> Zm—T(vﬁ,, +0%)

2

xexp(— Lg%‘)fdﬂso\v—vsl(— Av,/9)
(16\/_e

4 o

15m? (a5)

lnA) N(X) .
Here, the velocity and angular integrals have been eval-
uated similarly to those for Eq. (23), as described in
detail in Ref. 6. The derivative N, arises from the
Taylor expansion of N,[X + (v, = v,,)/]. The final con-
stant in parentheses was identified in Eq. (30) as the
collision rate divided by the density, i.e., v,/n.

Evaluating the other averages analogously, the guid-
ing center flux of Eq. (A4) may be written

502 v\
2V Ve
(2(2z n) F

v? 12 7?
—N( '+5—€?N;”) - Eg)? Na Na+5-527N;’)]
+

9 12 (8 9 ., 13 (8 )
10NN° 28X (10NN> 10N~ 3 5% \1o ™
= -

592(NN"' ~N/N}) - 2092(NN"’ -NINIY . (AB)

Here, we have used N,N,= 52/292)(N;2 - N,N."), from
the definition of N, in Eq. (A3). The lowest order flux
terms N,N, are seen to cancel identically due to con-
servation of momentum. This leaves only the 0(62)
terms from the Taylor expansion of N,, and the N, terms
which are inherently O(¢?). The small “non-Maxwell-
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ian” class of guiding centers is thus seen to reduce the

flux by 1/4. To lowest order in ¢, N,(X)=n{x), so we
may write
374w, 8 [ 9 13n>]
_ oY e 2l (2
F St . xnax(nax . (AT)

This is the flux we obtained in Eq. (29), reduced to slab
geomeiry,

The same flux was obtained in Ref. 5 from an analy-
sis of the single fluid equations, including off-diagonal
terms in the pressure tensor. The pressure tensor for
a simple gas in a magnetic field had been derived by
Chapman and Cowling!? from their expansion of the
Boltzmann equation. We can easily see that our results
give the same pressure tensor and flux.

The steady-state velocity « of the fluid is determined
by the momentum balance,

v+P=-(ne/cluxBz (A8)
where the pressure tensor is
P(x)= mfdav (v-u)(v—-u)fx,v) . (A9)

By assumption, only the x derivative in Eq. (A8) is non-
zero, 80 we need the pressure components P,, and P, ;
P,, is zero by symmetry. We see from Eqs. (Al) that
the lowest order fluid velocity comes from fy,, as u

= - (7*/9n)(dn/3x)y. The largest pressure component
is then P_ =nT, from fy. The first contribution to P,
is from fy, giving

b 38ty 2 (110
= 893nm 8x\n dx/ °

We note that v,, is defined™!? such that the viscosity in
the absence of a magnetic field is y =2nT/3v,,.

(A10)

The x component of Eq. (A8) then expresses the con-
sistency between P,, and u,,

T2 2 (Al1)

The particle flux »u, is obtained from the y component

of Eg. (A8), as
3yt ﬁa_[nz_a_(li’zﬂ.
80% n ax L ox\nox

This is the flux of Ref, 5, since the collision time 7

Vl

c 9

£2p,- (A12)

nu, = —
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