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Transport of a nonneutral electron plasma across a magnetic field is caused by electron scattering from
ambient neutral atoms. A theoretical model of such tramsport is presented, assuming the plasma is
quiescent and the scattering is elastic scattering from infinite mass scattering centers of constant
momentum transfer cross section. This model is motivated by recent experiments. A reduced transport
equation is obtained by expanding the Boltzmann equation for the electron distribution in inverse powers
of the magnetic field. The equation together with Poisson’s equation for the radial electric field, which
must exist in a nonneutral column, determine the evolution of the system. When these two equations are
properly scaled, they contain only a single parameter: the ratio of initial Debye length to initial column
radius. For cases where this parameter is either large or small, analytical solutions, or at least partial
solutions, are obtained. For intermediate values of the parameter, numerical solutions are obtained.

I. INTRODUCTION

The transport of anonneutral electron plasma across
a magnetic field hasbeen studied in recent experiments.!
The experiments show that the transport time scales in-
versely with the pressure of the ambient gas. The sim-
plest model consistent with this observation assumes
that the transport is classical and results from electron-
neutral collisions in a quiescent plasma. We provide a
theoretical description of such transport.

The plasma in the experiments’ is in the shape of a
cylindrical column with a cylindrical absorbing wall as
its outside boundary. Confinement in the radial direc-
tion is provided by a large axial magnetic field, and con-
finement at the ends is provided by cylinders, or similar
structures, biased negatively relative to the walls. For
our model, we assume perfect cylindrical symmetry and
infinite length. The ambient gas in the experiment may
be varied.! For the case of helium, the electron kinetic
energy remains below, the lowest excited state of the
atom. With this case in mind, we assume the electrons
scatter elastically off stationary infinite mass scattering
centers. An electron does not make enough collisions
during the course of an experiment for corrections due
to the finite mass of the helium to be important. Since
the momentum transfer cross section for electraon-helium
collisions is nearly independent of energy in the relevant
energy range, we treat it as a constant.? Also, the elec-
tron-electron collision time is longer than the duration
of the experiment, so we neglect these collisions.

QOur model, then, assumes a quiescent, cylindrical,
infinitely long, electron column immersed in a large axial
magnetic field, with the electrons scattering elastically
off stationary infinite mass scatterers. The part of this
model which is most likely to be in serious conflict with
the experimental is the assumption that the plasma is
quiescent. There is evidence® that inacertainparameter
range the transport is anomalous. Nevertheless, it seems
worthwhile to calculate the classical transport as a bench-
mark in any case. Also, the physics of the quiescent
transport is interesting and rather unusual, and it is that
physics we wish to discuss here.
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In general, electron neutral transport cannot be de-
scribed adequately in terms of coupled fluid equations
for the electron density and temperature profiles.*” The
electron distribution becomes non- Maxwellian and a de-
scription in terms of the Boltzmann equation is reguired.
When an electron scatters elastically from a stationary
infinite mass scatterer, there is no change in the elec-
tron kinetic energy. The collisions cannot redistribute
electron kinetic energy and make the distribution Max-
wellian; of course, the collisions do make the distribu-
tion directionally isotropic.

Although a description in terms of the Boltzmann equa-
tion is necessary, one need not keep all of the informa-
tion content in that equation. For example, the phase of
an electron in its gyromotion around the magnetic field
is unimportant, for a large enough field. In Sec. II, we
expand the Boltzmann equation in inverse powers of the
field and obtain a reduced transport equation for the low-
est order, or phase averaged, part of the distribution.
The magnetic field in the experiment of Ref. 1 is large
enough to justify the expansion.

The reduced transport equation obtained here is related
to that used to describe the evolution of the electron dis-
tribution in a partially ionized gas, or swarm. 45 For
example, the reduced transport equation obtained by
Bernstein® reduces to ours when his is specialized to the
large magnetic field limit. However, his derivation is
based on an expansion in large collision frequency, rath-
er than large magnetic field, or large gyrofrequency.
Probably the most important difference between our work
and the work on partially ionized gases lies in our treat-
ment of the electric field, which appears as a driving
term in the reduced transport equation. For a nonneutral
plasma the radial electric field is produced by the elec-
trons themselves and is seli-consistently related to the
distribution through Poisson’s equation. We solve the
reduced transport equation simultaneously with Poisson’s
equation.

In Sec, III, the reduced transport equation and Pois-
son’s equation are scaled and sclutions are obtained. The
scaled equations contain only a single parameter: the
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ratio of initial Debye length to initial column radius.
When this ratio is large, the radial electric field is un-
important and diffusion dominates the transport. Since
collisions do not change the energy of an electron, the
diffusion occurs separately for each energy class, and
the higher energy (i.e., faster) electrons diffuse out of
the column first; this is called diffusion cooling (Ref. 4,
pP. 75). An analytic solution may be obtained in this limit.
In the opposite limit of small Debye length, the solution
is characterized by rapid Joule heating followed by trans-
port due to mobility and diffusion. The initial heating
may be described analytically. In this limit the velocity
distribution near the edge of the column ultimately de-
velops into a spherical shell in velocity space. This is
what one expects for electrons that have fallen through a
potential energy drop large compared with their initial
thermal energy. Recall that the electron-neutral colli-
sions do not change the energy of an electron as the elec-
tron wanders out,

For arbitrary values of the ratio, the equations are
solved numerically. An interesting feature of the num-
erical solutions concerns the number of particles remain-
ing in the column as a function of time. The inverse of this
number is asymptotically proportional to the time £, for
arbitrary values of the ratio of Debye length-to-column
radius. This should be useful in comparisons with ex-
periment.

(l. DERIVATION OF THE REDUCED TRANSPORT
EQUATION

In this section, we expand the Boltzmann equationinin-
verse powers of the magnetic field and obtain a simpli-
fied, or reduced transport equation. As spatialvariables,
we use cylindrical coordinates (7, 0,2). As velocity vari-
ables we also use cylindrical coordinates (v,, ¥, v,),
where (v,,v,,v,) = (v, cosy, v, sing,v,). The symmetry as-
sumptions in our model imply that the electron distribu-
tion is independent of z and that 6 and § enter only as
B=y¢-06. The electron density and electric potential de-
pend only on 7, and the electric field is in the 7 direc-
tion. In terms of the variables (v, 8,v,,v,,f) the Boltz-
mann equation can be written as

Z—{+cosﬁ<vlg;——7% E—v) f
—sm,B(—* f}i} )8f+ o =C(f) , (1)

where 2 =eB/mc. For elastic collisions with stationary
infinite mass scatterers, the collision operator takes the
form

c(f) =n,.vfd90(oz, N fr, o), 8,0~ flr,v, v, 8,0],
(2)

where 7, is the density of scatterers, o{a, v) is the dif-
ferential scattering cross section, « is the scattering
angle, v=(v2+v3)'2 and v'=v. A quantity that will
emerge in the derivation that follows is the momentum
transfer cross section

om(v)=21rj:doz sina(l - cosa)o(a,v) . (3)
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Of course, the electric field is related self-consistently
to the distribution through Poisson’s equation.

The various terms in the Boltzmann equation all have
the dimensions of a frequency times the distributionfunc-
tion. In accord with the experiment of Ref. 1, we as-
sume that the largest of these frequencies is § and that
the others are ordered relative to  in the following man-
ner:

eEl

me

1 C(f)

of ~ofe), ~0(5) ,

(4)

where 65 € «<1. It may be instructive to rewrite the or-
dering as 7, /7, v,/7~O(€) and v/Q~0(6), where 7, is
the Larmor radius, v,=cE/B is the drift velocity, v is
the thermal velocity, and v is the collision frequency.
For time dependence due to transport alone {i.e., no
waves), the time derivative enters in the order

119f
Q7F ot

12,
7o ~0fe) ,

~0(€%) ; (5)

this will emerge from the derivation.
a power series in € and 9,

f:z fn,m ’

where f, ,~0(€"6"), Eq. (1) generates a series of equa-
tions for the various f, .

By expanding f in

(6)

In order €%°

9 fo.0
9B

which has the solution f, o=fo.0(%, v, v,, 8).
the equation is

3fo 1

, the equation is

Q =0, (™

In order €%!,

=C(fo,0) - (8)

Since the f, ,, are single valued functions of 8, the inte-
gral of both sides of this equation over a complete cycle
in 8 must be zero. This yields the constraint equation
27

0= o dBC(fo.o) =21I'C(f0'0) , (9)
which implies that f, o=f,.0(7,v,%). Then, by Eq. (8), we
see that f, , =f,,,(*,v,.v,. ). Constraint equations ob-
tained in this manner are characteristic of this type of
expansion. ® They occur in each order, with the reduced
trz'ansport equation arising from the constraint in order
€°5.

In order €'6%, the equation is

e
toar m

9 2
cosp (v EzZ)f""’JrQ?fé&:O . (10)

The constraint equation here is satisfied automatically,
since [F'dBcosB=0. The solution is

3

3'UJ_ ) fO 0

(11)

where k, o(7,v,,v,,t) is a solution of the homogeneous

fl 0= hl.o(y Vg Uy, t)

smB (v 93 e E

‘o T m
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equation (i.e., 3k, o/38=0). Integrating vf, , over veloc-
ity yields the first-order flux in the 8 direction

~1(8 (v} e
1"‘”=—65('a7 "ffo.odsV+;n—Effo.od3">

_E(E+E> B .

B2\ne (12)

One can check that all terms which are zero order in o

(i.e., f,,0) produce a flux limited to the 8 direction. For
a radial flux, one must go to first order in 5.
In order €d, the equation is
d e 9 81,
cosﬁ(vlg—ﬁ E— )f[,,l+$2 Li=C(f,,0 » (13
where
sinf ] e 3
C(f1,0=Clh1,9) - C [—5‘ <U;§,’ 'EEg"qz)fo.o]
sing 9 e E 3
=C(h 1.o)+ 0 n(OIN,00, (a,r‘ﬁ;%)fo.o

Here, ¢,,(v) is the momentum transfer cross section de-
tined in Eq. (3). Integrating both sides of Eq. (13) with
respect to 8 yields the constraint equation

2r
- ), apct, 9 =2nCih,y (19)

which has the solution %, o=k, (v, v,f). With the con-
straint equation satisfied, Eq. (14) may be solved for

sinf 3 e 3
fia=h (0, 0,7, 0) - 9 (Ux'g;‘ m 5‘1Z>fo.1
cosf 5 e E 3
- o (V00 (51—, o av) fouo - (15)

Integrating vf,,, over velocity yields the lowest-order flux
in the » direction

~ n,,41r e E a)
I,= Ldvvo(v)(ay muv 9 foo -

By noting that I, must satisfy the continuity equation, one
can anticipate that 3/af enters in order €25.

(16)

In order €25, we need only the constraint equation, that
is, the full equation for this order integrated over a com-

plete cycle in §,
0.0 1[ 19 e (1 ] )](r,,l(v)n,,vvl
0.0 -—E(=+— ) | 24

m- \v, = 8v, Q
eEd

3 "7 "
X 2 ) C(h, o) .
87’ mv EY) nyO 240

at 2
Integrating over all angles in velocity space removes the
collision operator on the right-hand side and yields the
reduced transport equation

8f0,0_ "n

19 e ) ]
3 - _= 2 7
at 392[0 7 or mE(4v+v av)

X0 (v)(ar_m vav) Jouo -

Of course, E is given by the solution to Poisson’s equa-
tion

(1

(18)
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rdr' ("
E0)=-tne [ 2o [ amtdvg, ofr0,0 . (19)
For the boundary condition, we assume that a perfectly
absorbing wall exists at =R and take f, o(R,v,{)=0.°

By integrating Eq. {19) over all velocity and over the
volume of the tube, one can check that the rate of de-
crease of particles in the tube is accounted for by the
flux of particles {i.e., Eq. (16)] at the wall. One can al-
so check that the rate of decrease of kinetic and electro-
static energy in the tube is accounted for by the kinetic
energy flux at the wall. The kinetic energy flux is ob-
tained by inserting 1/2 mu? in the integrand of Eq. (16).
These conservation relations are useful in monitoring the
numerical algorithm,

11ll. SOLUTION OF THE REDUCED TRANSPORT
EQUATION

Since we ultimately solve Eqs. (18) and (19) numeri-
cally, it is useful to scale them properly. The solutions
to a variety of problems with different physical param-
eters are thereby related to the same solutions of the
scaled equation. For instance, inspection of Eq. (18) re-
veals that the evolution of systems that differ only in the
value of n, /B% is identical to within a scaling of the time.
The experimentally observed scaling' with neutral pres-
sure (i.e., effectively with n,) is what led us to consider
electron-neutral transport in the first place. Scaling the
equations is particularly useful if we treat the momentum
transfer cross section as a constant. This is a reason-
able approximation for electron-helium collisions in the
experimentally relevant energy range.? The cross sec-
tion can then be factored out of the operator on the right-
hand side of Eq. (18) and absorbed, along with the factor
n,,/Bz, in a scaled time. Some of the parameters which
are useful in the scaling enter through the initial condi-
tions. For simplicity, we model the initial distribution
by a four-parameter function

i aen ok )G A
(20)

where the parameter a measures the initial radius of the
column and the factor [1 - (#/R)*] simply insures that f
=0 at the absorbing wall. Except where explicitly men-
tioned, our results are relatively insensitive to this choice

for the functional form of the initial distribution. The
scaling is effected by introducing the variables
v v 3,
== == =—20:0
p=—y E=%, &= ,
(21)

t 1 (82 (n,,az?wf)

T 7,,,'(3«/’1?) o2 ’
where w?=4me?/m is the square of the plasma frequency.
The time 7,, characterizes transport due to mobility in a
uniform Maxwellian plasma. This may be checked by
setting f, =7 exp[- v2/202]/(219%%/2 and E= - 4mer/2 in
Eq. (16) and then observing that an/8¢t=~ 1/v8/av(vT,)
=-n/7,. Note that 1/7, can also be written as 1/7,,
= vwi/Q2, where v=(8v2/3V7 )n,00 is the momentum
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Evolution of density profile for (Ap/a)’=5

transfer collision frequency. In terms of the scaled var-
iables, Eqgs. (18) and (19) can be rewritten as

5g_Jm 53—~p &(p, 7) |4& + £2 ag)]

T 8\/2{( ) p 8p
X[:—p (:))z (p,7)£:§]g,

5(40,1')=-f:ppﬂ J:41r£2d£g(p,£,‘r) ,

(22)

(23

where A3 = mv?/4me? is the square of the Debye length.
The solutions depend on the parameters A,/a anda/R.

Typically, a/R is fixed by the experimental geometry,

but A,,/a varies over a large range. Motivated by Ref.
1, we choose R/a= 3.4 and study the dependence of the
solutions on A /a.

To this end, we multiply out the operator in Eq. (22)
and group terms according to the power of A ,/a they con-
tain. Note that this is equivalent to grouping terms ac-
cording to the power of § they contain. There are three
types of terms, and they may be associated with the time
scales

(Fm ) =@ ()]
Ty Ty TV E T P sl’_
Ty Tm Ta Tm a <7LD)

Here, the time scale 7, is included explicitly simply to
remind us that 7=¢/7, in Eq. (22). We will see that the
three time scales are associated with diffusion, mobility,
and Joule heating, respectively.

(24)

In the limit A, /a > 1, 7, is the shortest time scale.
The associated term in Eq. (22) is independent of § and
proportional to the spatial gradients of the distribution.
This term produces cross field diffusion on the usual time
scale 1/74=1/7,(2,/a)?~v(r,/a)?, where v, =v/Q. When
Ap/a is large enough, only this term need be retained,
and Eq. (22) reduces to

Eam) es

The solution of this equation subject to the boundary con-
dition g=0 at p=R/a can be written as

2

P 3p (25)
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gl&,p,7)= (——)'§7—EAWJ0( Xtm)

o GG ] oo

where X, , is the nth zero of J, and the A, are given by

R/a 4
a 2 a
J; dppJo(pﬁ xo'n) e’ [1_ p‘(ﬁ) ]
R/a a
j; dppJd} (pﬁ xo,,,)

Later in this section, we obtain a numerical solution
of the full equations [i.e., Eqs. (22) and (23)]. Here,
we anticipate those results and compare the numerical
solution of the full equations to the analytic solution just
obtained for the equation with diffusion alone. For the
case (A,/a)2=5, Fig. 1 shows the density profile at three
successive times; and, for the same three times, Fig.

2 shows the velocity distribution at two radii, p=0 and
p=2. The points are from the analytic solution and the
solid curves from the numerical solution. The interest-
ing physics can be seen from the velocity distributions.
Near £=0, the distributions at both p=0 and p=2 remain
unchanged; whereas, for larger £, the distribution at p
=0 becomes depressed, and the distribution at p=2 be-
comes enhanced. This occurs because the diffusion co-
efficient is proportional to £3, and the high £ electrons
are the first to diffuse from the center of the column to
the outer edges of the column,

A, = . (27

For A,/a <1, the time scale 7, is shortest. The as-
sociated term in Eq. (22) is proportional to 2 and de-
scribes Joule heating. Note that 1/7, can be rewritten
as 1/7,=(1/7,a/r,)%~ eEV, /mv?, where V,~a/7, is the
radial velocity associated with mobility and we have set
E~4mea. Although the Joule heating term has the short-
est time scale, it does not contribute to electron trans-
port. This can be seen by integrating Eq. (22) over £24d¢
and noting that the term proportional to &2 goes out upon
integration by parts, that is. it makes no contribution to
the radial flux in the continuity equation. The time 7,
characterizes radial transport in the limit A, /a<<1. The
associated terms in Eq. (22) are proportional to § and

FIG. 2,
p=0,2,

Evolution of velocity distribution for (}\D/a)2= 5 and
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0.5
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0

FIG. 3. Evolution of velocity distribution for (Ap/a)%=0.005
and p=1,3.

describes the mobility flux. It may seem paradoxical
that 7, <« 7, since the particles gain energy only by mov-
ing out radially. However, 7, measures the time for a
particle to double its energy and 7, the time for a parti-
cle to traverse the column; and, in the limit A,/a<1, a
particle can double its energy in moving only a small
fraction of the column radius.

To describe the local heating that occurs before trans-
port significantly modifies the spatial distribution, in
Eq. (22) we retain only the term associated with 7,

g _Vr_(a\? z( z:".)(li)
o7 8V2 <’\D> e\ \gee)s -
Here, §=6(p) may be evaluated using the initial distribu-

tion. As may be checked by direct substitution, the
Green’s function solution of Eq. (28) is given by

(28)

glo, &, 1= [ dEant’glo, ", 0G(E, &' an) ,  (20)
where

’ ! 2 r 1/2 , .

Gle, ¢, a7]=exp'(— (£a+7§ )) Ia( (Eiz )(417&& ar)™?

(30)

where I, is the Bessel function of imaginary argument,

and a=(V71/8V2) gz(a/xp)z.

A comparison of this solution with the numerical solu-
tion of the full equations is shown in Fig. 3, for the case
where ()\D/a)2=0. 005. The upper graph shows the dis-
tribution at p=1 at three successive times, and the lower
graph shows the distribution at p=3 at the same three
times. The solid curves are from the numerical solution
and the points from the analytic solution. One can see
that agreement is still good at 7=0.2. For somewhat
later times mobility has caused sufficient transport so
that the analytic solution has broken down. We include
the numerical solution for r=1, to illustrate the distri-
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bution after significant transport has occurred. The in-
teresting physics here is the development of the high £
tails on the distribution. This can also be seen analyti-
cally. For sufficiently large o7, the small argument ex-
pansion may be used for I, in Eq. (30), and the £ depen-
dence of the distribution becomes exp(- £ /a71). After the
analytic solution has broken down, the high £ tailbecomes
even more pronounced. For example, at v=1 and p=3,
the distribution is nearly a shell in velocity space. Of
course, this is what one expects for electrons that move
through a potential difference large compared with the
initial thermal energy.

To find the solution for arbitrary values of (A,/a)? we
resort to numerical computation. As a finite difference
scheme, we have adapted the method of Dufort and Frank-
el.” This scheme is explicit and stable independent of
the magnitude of coefficients of second derivatives; in
the reduced transport equation these coefficients can be-
come large because they contain powers of £. At this
point we could exhibit a series of density profiles and ve-
locity distributions for various times and various values
of (\,/a)?. However, they appear similar to those al-
ready exhibited, and we have found them to be interesting.
only in the limits already discussed.

What we have found interesting are plots of N{0)/N(+)
versus 7, where

R/a -
N('r):nazfo Zﬂpdp_[] antdt g(, 7)

is the number of particles remaining in the column, Fig-
ure 4 shows a series of such plots, for values of (x,/a)?
ranging from 0. 0025 to 10. The plots apparently tend
asymptotically to straight lines, for any value of (A, /a)?.
We repeated this for values of a/R ranging from 0.1 to 1
and obtained straight lines in all cases. Of course, we
can testify to the linearity only for the duration of the
computer run, and numerical considerations limited this
to drops in N(7) of only a factor of five in some cases.
In the limit where (A, /a)? is large, the straight lines are
associated with our choice of initial distribution. In this
limit, one can integrate Eq. (26) to obtain

T

FIG. 4. Number of particles remaining in column as a func-
tion of time.
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a

R Xo.n)J; “4mEdde

exp|- £2 VT (2,\%/ a\?
XTXEET)SEZ/Z] exp [_58 o5 (FD) (1—2) Xﬁ,n'f]
(31)

For sufficiently large 7, the second exponential cuts the
integral off at small values of £, and the Maxwellian may
be evaluated at £=0. The integral is then proportional
to 1/7, so that N(0)/N(7) is proportional to 7. This re-
sult depends on the assumption that the initial distribu-
tion (i.e., the Maxwellian) is non-zero for £=0. If the
initial distribution were cut off below some particular
value of £, the density would exhibit exponential decay as
a function of 7. In the limit where (A,/a)? is small, the
straight line result must be independent of the initial dis-
tribution. The plasma is heated before significant trans-
port occurs, and the initial distribution is quickly re-
placed by the Green’s function solution to the heating
equation [i.e., Eq. (30) evaluated for £’ ~0].

J:' antrdtg(t, D= AJ, (p
h

The straight lines should be useful for comparison with
experiment. In this regard we note that for large (A, /a)?
the slope of the lines scale like (A;/a)?. This is appar-
ent from Eq. (31). Also. in Fig. 4 one can check that
the line for (A,/a)? =10 has about twice the slope as the
line for (A\,/a)?=5. In the limit of small (A, /2)2, the ini-
tial temperature should not matter. However, the scaled
time 7=¢/7, is proportional to v through the factor 1/7,.
To cancel the v, the slope must scale as (a/A;) o 1/7.
One can check, in Fig. 4, that the slope for (x,/a)?
=0. 0025 is about V2 times larger than the slope for (A, /
a)?=0. 005.

The straight lines depend on the assumption that the
momentum transfer cross section is constant, For an
ambient neutral gas such as krypton, for which the cross
section is an increasing function in the relevant energy
range, a plot of N(0)/N(7) versus T curves down away
from a straight line. Since the electrons gradually cool
late in the evolution, they sample a smaller cross sec-
tion and are transported to the walls more slowly. The
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opposite effect is observed for the case where the cross
section is a decreasing function in the relevant energy
range.

Although it is tempting to believe there is a simple gen-
eral explanation for the straight lines obtained for the
case of constant cross section, we have not found such
an explanation and are not certain that one exists. As
we have seen, the existence of the straight lines depends
on the choice of initial distribution, for the case of large
(xp/a)?. Also, the straight lines are sensitive to the de-
tails of the velocity dependence in the reduced transport
equation, that is, they do not occur for a velocity depen-
dent cross section. Whether or not there is a simple
general explanation for the lines, they should be useful
for comparison with experiment. ®
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