Hollow electron column from an equipotential cathode
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An unneutralized, magnetically confined electron column thermally emitted from an equipotential cathode
is considered. An analytic, scaled solution of the radial Poisson’s equation indicates that the column is

hollow and less than /8 central Debye lengths in radius.

The possibility of using nonneutral plasmas as an ex-
perimentally accessible means of studying general
plasma properties has been suggested and pursued. 2
Davidson® has given dynamic equilibrium distribution
functions for plasma columns, independent of source
considerations. Here, we consider an unneutralized
thermal column formed by an equipotential cathode and
derive the radial density and potential profiles. We
find that the space charge potential limits the central
density which can be obtained, resulting in a column
which is at most a few central Debye lengths in radius.

Consider the physical configuration shown in Fig. 1.
A uniform Maxwellian distribution of electrons is emit-
ted from a grounded thermionic disc cathode at tem-
perature T. The electrons drift along an essentially
infinite magnetic field ByZ coaxial with a grounded con-
ducting cylinder centered around the cathode. The far
end plate (anode) of the cylinder is biased substantially
more negative than any interior potential. After a z-
dependent region near the cathode, the axially sym-
metric, z-independent potential V() is given by Pois-
son’s equation
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where n(r) is the density of electrons as a function of
radius, - e is the electron charge, and R, is the radius
of the conducting cylindrical wall. The charge density
is in turn determined by the potential. We assume a
steady-state potential which decreases monotonically

in z from the grounded cathode to the negative end
plate, In this case, the distribution of electron veloc-
ities is everywhere a Maxwellian, symmetric in the

t v, directions (each electron with +v, is eventually re-
flected to the same position with —v,). Those emitted
electrons energetically able to reach a potential V form
a density proportional to exp(eV/kT), where % is Boltz-
mann’s constant, The density as a function of radius in
the z-independent region can then be expressed as

n(»)=n(0) exp{k% (v - V(o)]}. (1)

This configuration differs from thermal beam studies
such as Langmuir’s® in that the axial potential is not
fixed, and electrons do not move radially.

Combining the Poisson and density equations, using
a scaled potential ®, and scaling the radius in terms of
the central Debye length gives
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%-g;(pg) =exp[®(p)], (2)

where
¥(p) =2 V(o) - V), p=7/N0),

A =[RT /4nein(r) |V 2,

A solution can be given which satisfies the boundary

condition of zero electric field (93¢/8p=0) at p=0, as
well as the identity ®(0)=0, The potential inside the
plasma boundary p, is

®(p)=-21In(1 - p?/8), p<p,. (3

Note that the parameter 7(0) appears only indirectly
through the scaled radius p; solutions for different
central densities follow the same solution with different
radius scales. The corresponding solution for the den-
sity is

n(p) =n(0) (1 - p*/8)%. (@

These solutions are displayed in Fig, 2. If the cathode
does not fill the cylinder radially, the potential solution
can be extended outside the plasma by integrating La-
place’s equation and matching the solutions at the plasma
boundary. This gives
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The unscaled potential V can be recovered as V(7)
=(kT/e){®[r/2(0)] - ®[R,/A(0)]}. In the limit of very
low cathode emission, n(0)—=0, X(0)—~*=, and p,— 0 for
any given cathode radius R,. The potential ®(p) is then
approximately zero, and the density is approximately
n(0) for all radii p<p,. As the cathode emission is in-
creased, p, will become significant compared with V8
and some of the structure of Eqs. (3) and (4) will be
seen in the potential and density.

Some simple conclusions follow from this solution.
It is apparent that the plasma must be less than V8
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FIG. 1. Cross section of the cylindrical configuration.
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FIG. 2. Scaled potential and normalized density vs scaled
radius,

central Debye lengths in radial extent; a column with
0p= V8 would have an infinite potential difference
between its center and edge. This condition can be re-
stated as a limit to the attainable central density for
any given cathode (and plasma) temperature and radius.
Since R,[#T/476®n(0)]'Y/?< V8, numeric substitution
gives
¢ kT(eV) -3

7(0)=<4.42x10 W cm™.,
As more electrons aré emitted by the cathode, the cen-
tral potential becomes more negative, and »#(0) asymp-
totes to the above value; the edge density, however,
increases without bound as the cathode emission in-~
creases, The central density limit is independent of
the radius of the conducting cylinder; the required
cathode emission for a given density 7n(0) depends on
the exterior potential drop of Eq. (5), but the interior
solution is independently given by Eq. (3). Similarly,
we note that even near the higher density edge (p ~2),
the density changes completely on the scale of a local
Debye length

1 on(r)
n(r) or

A(Y) =§ .

Davidson® has demonstrated that a specific class of
nonneutral rigid-rotor equilibria exhibit test charge
shielding on the scale of a Debye length., Here, the
small radial extent of the column would limit the
“plasma” property of shielding. [It must be noted that
this result is only true for an equipotential cathode.
Reference 2 describes a nonneutral plasma with R,
>>A(0) obtained from a cathode with a bias which is a
function of radius. ]

An interesting, and experimentally relevant, varia-
tion of the case we have considered would be to acceler-
ate the cathode electrons into the tube, instead of re-
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lying on thermal velocities.® This could be accom-
plished by placing a grounded grid immediately in front
of the cathode, and biasing the cathode negatively. The
injected distribution of electrons is then an accelerated
half-Maxwellian, each thermal electron being boosted
equally in energy by the accelerating bias potential.
For small injection currents, the space charge is neg-
ligible; whereas, for large enough injection current,
the resulting space charge potential will reflect some
of the injected beam. At any radius, a monotonically
decreasing (in z) space charge potential would slow the
beam until it became a half-Maxwellian distribution
again, at precisely the cathode potential, A further
decrease in potential would result in decreased density
by reflecting the slowest particles, again giving n
OCexp(eV/IeT). Since all particles are reflected by the
negative anode, the full distribution is symmetric in
+v,. For large enough injected current, the (z-inde-
pendent) potential at all radii would be sufficiently neg-
ative to slow the beam to thermal velocities, and the
previously obtained radial solution would be applicable.
An estimate of the required injection current density j
for any acceleration voltage V, can be obtained by solv-
ing for j=n(p,) ve and ®(p,) - ¥(p,) =eV,/kT, with ¥
being the mean thermal velocity. For example, with
the parameters R, =2 cm, R,=1cm, V=2V, kT =geV,
an injection current of 51 pA/cm? would be required.

It should be noted that the possibility of unbounded
potential and density would be limited by physical ef-
fects outside the scope of this analysis. These include
limited cathode emission density and uniformity, finite
B, effects, ® and velocity-space microinstabilities.

The radial solutions presented here have assumed
the existence (and stability) of a potential everywhere
monotonic in z. We have investigated this assumption
using a computer model of a thir axial tube of “thermal
charge fluid” with self-consistent density and potential,
Preliminary results are as follows. If the anode bias
is not more negative than any interior potential, we see
self-consistency problems which may be modeling
space-charge relaxation oscillations.” For sufficiently
negative anode, however, a stationary monotonic po-
tential is found for injection of either a half-Maxwellian
or an accelerated half-Maxwellian. These results sug-
gest that the postulated potential configurations are
physically realizable,
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