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Pure electron plasma columns are contained inside hollow conducting cylinders in an axial magnetic
field. In the 2DE3B drift approximation, an electron column is a vortex evolving in (r ,u)
according to the Euler equation. First the center-of-mass orbits of two vortices sufficiently
well-separated to be stable to merger are characterized. Equilibria are observed in which the vortices
orbit about the center of the cylinder, with either oscillations about stable equilibria or exponential
divergence away from unstable equilibria. The equilibrium positions, oscillation frequencies, and
instability rates for these spatially extended vortices agree well with the predictions of point vortex
theory, apparently because surface waves and shape distortions do not couple significantly to the
center-of-mass motion. Next, the merger of two vortices with unequal radii is quantified. Merger is
accompanied by the formation of filamentary arms, and results ultimately in an axisymmetric central
core surrounded by a lower density halo. The self-energy of the merged core is found to be roughly
the sum of the self-energy of the merging vortices. The fraction of the total circulation entrained into
the core varies from 70% to 90% as the ratio of the initial vortex radii is varied from 1:1 to 2:1. The
point-like vortex dynamics and the circulation loss with merger are both consistent with the
‘‘punctuated Hamiltonian’’ models of decaying turbulence. ©1996 American Institute of Physics.
@S1070-6631~96!00307-8#

I. INTRODUCTION

This work presents the results of experiments on electron
vortices, which are electron plasma columns contained inside
a trap consisting of hollow conducting cylinders in a uniform
axial magnetic field. In the operating regime of the experi-
ments, where fast electron motions in the axial direction av-
erage over axial variations and the 2DE3B drift approxi-
mation is valid, the columns evolve according to the 2D
Euler equation. The columns therefore evolve as would 2D
columns of vorticity in an incompressible and inviscid fluid
contained in a circular tank. The vorticity of the flow is pro-
portional to the electron density, with the sign of the vorticity
given by the sign of the charge.1,2

There are several advantages to using electron plasmas,
rather than conventional fluids, to study vortex dynamics.
For example, in the electron system there is no boundary
layer at the wall to complicate the dynamics, and the dissi-
pation is very low: An electron vortex centered within the
trap will rotate about its axis over 105 times before its radius
doubles due to ‘‘viscous’’ effects. Additionally, the vorticity
is easily manipulated, accurately measured and directly
imaged.2

The dynamics of 2D vortices has been studied for over
100 years, due to the central role of vorticity in fluid dynam-
ics and turbulence. Experiments and simulations have estab-
lished that vortices can emerge from both laminar flows3 and
structureless initial conditions.4 The subsequent evolution of
these systems can be dominated by the dynamics of the vor-

tices, which includes merger of like-signed vortices, mutual
advection, and vortex symmetrization.

Recent studies of this many-vortex state, using direct
numerical simulations of the Navier-Stokes equations, have
supported the hypothesis that the essential features of the
evolution are contained in a simple ‘‘punctuated Hamil-
tonian’’ model.5,6 In the punctuated Hamiltonian model, the
motions of the spatially extended vortices are calculated by
the point vortex approximation, and simple rules are used to
replace two vortices with one bigger vortex when they ap-
proach close enough to merge. These models have resulted
in predictions for timescales which are in qualitative agree-
ment with the results of simulations.5–7 However, the as-
sumptions of the punctuated Hamiltonian model have not
previously been tested by detailed studies~experimental or
theoretical! of the dynamics of spatially extended vortices, or
of asymmetric vortex merger. On the contrary, recent con-
tour dynamics simulations of asymmetric vortex merger8

found that the conditions for and the results of merger are
substantially different than has been assumed in the punctu-
ated Hamiltonian models.

This paper presents the results of experiments on elec-
tron vortices, with a focus on the punctuated Hamiltonian
model. Because charge of only one sign can be contained by
the trap at a given time, the experiments are necessarily of
single-signed vortices. We first present studies of the (r ,u)
drift motions of the ‘‘center-of-vorticity’’ of two vortices
sufficiently well-separated so as to be stable to merger. Equi-
libria are observed in which the vortices orbit about the cen-
ter of the cylinder, with either oscillations about stable equi-
libria or exponential divergence away from unstable
equilibria.9,10 The equilibrium positions, oscillation frequen-
cies, and instability rates are obtained with high accuracy.
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We find that these results agree closely with predictions of
point vortex theory, where the spatially extended vortices are
replaced with point vortices of the same circulation. The
wide-ranging agreement between experiments and point vor-
tex theory suggests that surface waves and shape distortions
do not couple significantly to these center-of-vorticity mo-
tions, at least at the precision of the current measurements.

Merger of two identical vortices has been previously
studied in these electron traps.11 The vortices do not merge
in 104 orbits when they are initially separated by more than
1.6 diameters, but merge in 1 orbit time when separated by
slightly less. Here, we study the merger of two vortices with
different radii, but equal peak vorticity. The two vortices
merge rapidly when they are closer than a critical separation,
but stay separated for many orbits when the separation is
slightly larger.9 Merger is accompanied by the formation of
filamentary arms, and results ultimately in an axisymmetric
central core surrounded by a low density halo. The peak
vorticity of the merged core is observed to be roughly the
same as that of the merging vortices. The vorticity profile of
the core and halo, and the lifetimes of the two-vortex state,
are observed to be dependent on the initial placement of the
two vortices.

The halo is defined to be that part of the merged profile
sufficiently far away from the core that it is not bound, i.e.,
far enough that subsequent encounters with other vortices
can advect it away. This suggests an operational definition
for the halo as that part of an extended vortex which is more
than 1.6 radii away from its center. Here, the vortex radius is
defined by a radially-weighted integral out to the radius of
the halo. Using this definition, we find that the fraction of the
total circulation entrained into the central core after a merger
varies from 70% to 90%, as the initial vortex radii are varied
from 1:1 to 2:1. Additionally, the self-energy of the merged
core is found to be roughly the same as the sum of the self-
energy of the merging vortices. The quantitative picture of
asymmetric merger which emerges from the experiments is
consistent with ‘‘punctuated Hamiltonian’’ models of decay-
ing turbulence, supported by direct numerical simulations of
the Euler equations,5,6 but differs substantially with results
obtained from contour dynamics simulations.8

II. APPARATUS AND EXPERIMENTAL TECHNIQUES

The pure electron plasmas are contained in grounded
conducting cylinders, as shown in Fig. 1. A uniform axial

magnetic field~nominalBz5470 G) provides radial confine-
ment, and negative voltages applied to end cylinders provide
axial confinement. Because Malmberg pioneered use of these
traps to study plasma processes,12 whereas Penning used a
similar geometry to make a cold cathode ionization gauge,13

we refer to the containment device as a ‘‘Malmberg–
Penning’’ trap.

The apparatus is operated in an inject/manipulate/dump
cycle. For injection, the left-most cylinder is briefly
grounded, allowing electrons to enter from the negatively
biased tungsten filament source. The filament bias deter-
mines the radius of the injected column, whereas the voltage
drop across the filament determines the injected plasma
density.12 The trapped electrons can be contained for hun-
dreds of seconds~about 106 turnover times!, and can be ma-
nipulated in a variety of ways. Typically, we manipulate the
plasma to create the desired initial condition, and then study
the resulting evolution.

At any time t during this evolution, we can obtain the
plasma density by grounding the right-most cylinder, thereby
dumping the plasma. We measure the chargeQ(r ,u,t) that
flows alongBz through a collimator hole of areaAh5p ~1.6
mm!2, giving thez-averaged densityn(r ,u,t) of a column of
axial lengthLp :

n~r ,u,t ![E dz
ñ~r ,u,z,t !

Lp
5
Q~r ,u,t !

2eAhLp
. ~1!

Only one density measurement is obtained from each ma-
chine cycle, and the evolution ofn(r ,u,t) is obtained from
multiple measurements. We obtain the temporal dependence
by varying the evolution timet, and the spatial dependence
by varying the positionr of the radially scanning collimator
hole and the phaseu of the initial condition. This imaging
process relies on a high cycle-to-cycle reproducibility in the
plasma initial conditions; typically we have less than 0.1%
variations in the measured charge at a given point and time.

The plasma columns~‘‘electron vortices’’! considered
here have densitiesn'2–53106 cm23 out to a radius
Rv'0.4–2 cm over a lengthLp'20 cm, and are contained
within a wall of radiusRw53.81 cm. The electrons have a
characteristic thermal energykT'1 eV, and create a space
charge potential of about 5 V.

The plasma column can also be diagnosed and manipu-
lated using isolated 60° sectors of the wall as antennas. Any
azimuthal or axial variations in the electron density will in-
duce variations in the image charges in the wall sectors, and
thus waves can be detected with high sensitivity. Conversely,
voltages applied to the wall sectors induceE3B drifts in the
electrons, thereby launching waves or moving the center-of-
mass. Applied voltages of>1 V can induce significant
~i.e., readily detected! density waves in about 1ms. Alter-
nately, smaller voltages may be applied phase coherent with
an internal wave using standard feedback techniques over
larger times.

The electron column is easily manipulated in the axial
direction by varying the containment voltages on various cy-
lindrical electrodes. There are actually eight containment
cylinders, as opposed to the five shown schematically in Fig.
1. A symmetric two-vortex initial condition is created by

FIG. 1. Schematic of the cylindrical confinement geometry.
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drifting a trapped column a distanceR1 off center, cutting it
in half axially with a negative voltage on cylinderB, drifting
one column to a new radial distanceR2 , adjusting the rela-
tive u-positions of the two columns, and then re-expanding
the two columns axially. Alternately, an asymmetric two-
vortex initial condition can be created by injecting a new
column with a different radius after the first column is cut.

III. ELECTRON DYNAMICS

A. 2D guiding center fluid

The motion of the electrons in the magnetic field is well
approximated by 2D guiding center theory. A thermal elec-
tron bounces axially along the magnetic field at a rate
f b[(kT/m)1/2/2Lp'106 Hz. This rapid axial motion aver-
ages over anyz-variations, allowing a 2D approximation of
the system. Of course, averaged over all the electrons, there
is no net motion inz. The thermal velocities perpendicular to
Bz result in small orbits around the magnetic field lines, with
cyclotron frequencyf c[eB/2pmc51.33109 Hz and typi-
cal cyclotron radiiRc[(kT/m)1/2/2p f c550 mm. ~In this
paper, upper caseR will refer to radii in cm, and lower case
r will refer to scaled radii, e.g.,r c5Rc /Rw .) Small r c and
large f c allow the (r ,u) motion of an electron to be approxi-
mated by the position and velocity of its ‘‘guiding center’’
andn(r ,u) represents the density of guiding centers.

In the presence of an electric field perpendicular toBz ,
the guiding centers drift with a velocityv5cE3B/B2.
These electric fields arise from the unneutralized electron
charges, and the electrostatic potential is readily obtained
from Poisson’s equation,

¹2f54pen, ~2!

together with the boundary conditionf(Rw ,u)50. Thus, the
electrons drift with velocity

v~r ,u,t !52c¹f3ẑ/Bz . ~3!

This velocity field is well defined even where there are no
electrons. Taking the curl of the velocity gives the vorticity
z:

z[¹3v5¹2f
c

B
5n

4pec

B
. ~4!

The vorticity of the velocity field is thus proportional to the
electron density. Using this fact, the continuity equation is
also a statement that the convective derivative of the vortic-
ity is zero, which is the evolution equation for the system:

]z

]t
1v–¹z50 . ~5!

The evolution of this 2D drift system is constrained by
three ‘‘robust’’ conserved quantities.2,14 These are the total
number~line density! of particles,

NL[Rw
2 E E durdrn~r ,u,t !; ~6!

the angular momentum,

Pu[Rw
4 E E dur dr S 2eB

2c
r 2Dn~r ,u,t !; ~7!

and the electrostatic energy,

Hf[Rw
2 E E dur dr S 2

1

2
ef~r ,u,t ! Dn~r ,u,t !. ~8!

These quantities are all per unit axial length in a 3D system.
Additionally, infinitely many ‘‘ideal’’ invariants, such as the
integral of any power ofn, exist; but these are not well
conserved experimentally.

The 2D drift-Poisson equations~2!–~5! are isomorphic
to the 2D Euler equations for an inviscid fluid of uniform
densityr. The electric potentialf is analogous to the stream
function c, and the guiding center drift velocityv corre-
sponds to the fluid velocity. The momentum equation for
fluids gives an evolution equation~the vorticity equation15!
for the system which is the same as Eq.~5!. The boundary
conditions are also equivalent, namelyf5const and
c5const on the walls. The wall boundary condition for elec-
trons is truly free-slip:vu Þ 0 at R5Rw , since the radial
electric field is non-zero at the wall. In contrast, many liquids
would require vu50 at R5Rw , resulting in a turbulent
boundary layer and a net viscous drag on the system. Thus,
neglecting wall interactions, an initial distribution of elec-
tronsn(r ,u) in a cylinder, having vorticityz } n, will evolve
the same as an identical initial distribution of vorticity
z(r ,u) in a uniform inviscid 2D fluid. The same quantities
will be conserved, withNL , Pu and Hf known in fluids
terminology as the total circulation, the total angular im-
pulse, and the excess kinetic energy.16

B. Non-fluid effects

There are, of course, aspects of the 3D plasma system
which are not within the framework of the 2D fluid analogy,
and plasma parameters where the analogy does not hold.
These can result in discrepancies between the observations
and the predictions of 2D fluid theory. Two of the most
important plasma effects are temperature-dependent finite
length drifts and ‘‘rotational pumping.’’

1. Finite length effects

One well-known plasma effect with no fluid analogy is
the drift which arises due to the confinement fields at the
ends of the columns.17–19 In some regimes, these drifts can
be as large as those caused by space charge potential from
the electron column. In the plasma parameter regime of this
study, however, we find that these drifts result only in a
dynamically unimportant shift of the rotational frame.

The shifts in frequency of a single vortex orbiting
around the center of the trap~the m51 ‘‘diocotron’’
mode17,18! provides a good demonstration of finite length
effects. Consider az-independent column of line density
NL and radiusRv displaced a distanceR from the axis of the
containment walls. When the column remains circular, its
field outside is that of a line charge~i.e., 2D point vortex! of
circulation G5(4pec/B)NL at radial positionR, and the
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image field is that of a line charge of opposite sign and the
sameNL at radial positionRW

2 /R. The electric field at the
column center is then

E5
22NLe

~Rw
2 /R!2R

. ~9!

The force arising from the image field isF52eNLE, and
the resultant drift velocity is

v5
cF3B

NLeB
2 . ~10!

This gives the infinite lengthm51 orbit frequency

f m51
`• 5

c

2pR

F3B

NLeB
2 5

cNLe

pB F 1

Rw
22R2G . ~11!

Often, the prediction of Eq.~11! for f m51
` differs substan-

tially from the measuredm51 frequencyf m51 , because the
end-confinement forces are substantial relative to the forces
from the image field. A first-order model for the finite-length
effects has been developed by Fine.18 The important effect is
a radial ‘‘magnetron’’ force which the electrostatic confine-
ment fields exert in addition to, and proportional to, the axial
confinement force. This radial force produces drifts in the
u-direction which, like the axial force needed to contain the
column, will have a component proportional to the parallel
temperatureTi .

The magnetron force is, to first order in displacement,
proportional to displacement. This is found to be true both of
the model and of experimental results.18 This proportionality
suggests that finite-length effects will only produce an addi-
tional rotation of the column about the containment axis, at a
constant frequency independent ofR. Therefore the predic-
tion of Fine’s model is that the configuration will evolve as
2D vorticity would, only within a rotating frame produced by
the magnetron motion.

We have experimentally tested whether this result, that
finite-length effects produce only a constant frequency orbit
in û, breaks down at large displacements. We find it to be
valid for all the experimentally relevant displacements, i.e.,
r[R/Rw,0.73. We moved a narrow (r v50.15) and cold
(Ti;0.25 eV) column with an on-axis line density
NL54.83106 cm21 to various displacementsR, and mea-
suredf m51 and the off-axis line densityNL . The measured
R andNL were then used in Eq.~11! to calculate the infinite
length frequencyf m51

` , and the frequency shift from finite
length effects was thenD f m515 f m512 f m51

` '1.2 kHz.
We then repeated these measurements on a hotter

(Ti;2.0 eV) and less dense (NL52.43106 cm21) col-
umn. We plotD f m51 versusR/Rw , for both the hot and cold
column, in Fig. 2. No strong dependence of the frequency
shifts on displacement in the region 0.36,r,0.73 was
found, and our conclusion is that to first order the fluid anal-
ogy is valid when all of the electron columns have the same
Ti . In the experiments of this paper, the initial conditions
were adjusted so that this condition was met as well as pos-
sible (DTi /Ti<10%).

It is possible to change the plasma parameters such that
temperature-dependent drifts become as large as the column

self-rotation fluid drift. One would expect temperature drifts
to shear a plasma column apart on a rotation timescale when
the magnitude of the temperature-dependent velocity,ve , is
significantly larger than that of the fluid-like drift velocity,
v f . Peurrung and Fajans19 have made a systematic experi-
mental study of this effect. They defined a dimensionless
parameterL equal to the ratio of the velocities,

L[
ve
v f

5k
lD
2

RvLp
, ~12!

wherelD[(kT/4pe2n)1/2 is the plasma Debye length and
k is a parameter near unity. Deviations from fluid-like be-
havior was observed forL*1. They observed a fast smear-
ing of the electron column whenL was large, with the onset
of smearing occurring in the regime 0.75,L,3.0. We note
that for the experiments discussed in this paper,L,0.1 in all
cases.

2. Rotational and orbital pumping

Electron columns in a Malmberg-Penning trap are sub-
ject to radial transport from asymmetries in the basically cy-
lindrical trap,20 but this occurs at rates too slow to impact the
experiments of this paper. A faster transport process arises
from theapparentasymmetry of the trap from the perspec-
tive of an off-axis vortex. For example, an off-axis column at
r50.4 will expand at a rate about 10 times that of an on-axis
column.9 The effect responsible for this is ‘‘rotational pump-
ing,’’ which has been extensively investigated experimen-
tally by Cluggish and Driscoll21 and theoretically by Crooks
and O’Neil.22

The cause of rotational pumping is heating from interac-
tions between the electrons and the confinement fields at the
ends of the trap. In essence, the length of a ‘‘flux tube’’ of
electrons depends on radial position. When a centered col-
umn rotates about the column center, all flux tubes remain at
the same radius. However, if the column is not centered in
the trap, column rotation will cause variations in the radial
position of any flux tube, and the electrons experience small
changes in their confinement lengths. This pumping, occur-
ring at the rotation frequency of the column, serves to in-
crease the plasma temperature.23 This heating is at the ex-
pense of the column’s electrostatic energyHf , and the
column expands. Angular momentum is conserved in this
process, so the column’s center-of-mass moves towards the
axis as the column expands, keepingPu constant.

FIG. 2. Finite length frequency shiftD f m51 versus vortex positionR for hot
and cold electron columns.
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If there are other columns present in the trap, the column
will also experience drifts due to their fields. Since excur-
sions inR greater than 2Rv are possible from the orbits that
the columns execute, column expansion can then occur at
rates greater than those of rotational pumping. This phenom-
ena has been termed ‘‘orbital pumping,’’ and its effects have
been seen in measurements of two-vortex lifetimes,9 as will
be discussed below.

IV. ORBITS OF 2 EXTENDED VORTICES

In this section, we discuss the dynamics of nearly iden-
tical and well-separated~i.e., not merging! vortices. The
electron vortices used here were relatively narrow~radius
r v;0.15) hot (Ti;1.8 eV), and long (Lp.5Rw). Their
dynamics were investigated with two complementary diag-
nostics, wall sector signals and time series ofn(r ,u) electron
density plots. The density plots give direct measurements of
vortex motions, but become too noisy to be useful about
500 ms after injection of the vortices~several orbit periods!.
The wall sector signals become interpretable about 400ms
after injection~the delay is due to a voltage spike caused by
injection!, but are limited in what they reveal of the motions.

We find that there exist equilibrium orbits in which each
vortex orbits about the center of the cylinder at constant ra-
dius. Some of these equilibria are linearly stable, and others
are unstable. We have measured both oscillations about
stable equilibria and exponential divergence from unstable
equilibria.10 The measured equilibrium positions, oscillation
frequencies, and instability rates are well predicted by treat-
ing the spatially extended vortices as if they were point vor-
tices. The symmetric equilibria of 2 point vortices within a
cylindrical boundary were first analyzed by Havelock;24 we
have extended this analysis to consider asymmetric
equilibria.9 Point vortex theory and the experiments both pre-
dict that the equilibrium orbits are unstable when the orbit
radius is more than 0.46 times the wall radius. Moreover, the
observed global orbital motions are well predicted from con-
servation of point vortex energy and angular momentum.

Departures from the predictions of the point vortex
model occur when the separation between vortices is less
than 1.6 times their diameter and merger is observed to
occur;9,14 and when the vortices ‘‘scrape’’ the cylindrical
wall and circulation~charge! is lost. Also, the axial confine-
ment fields cause a dynamically unimportant shift in the orbit
frequencies compared to point vortex theory,16 as has been
discussed in Sec. III B 1.

Figure 3 is a typicaln(r ,u) contour map of the electron

density of the two vortices, showing bell-shaped profiles ex-
tending over a radiusRv'0.5 cm, with central density
n(R50)'33106 cm23. The cylinder axis is marked by a
small ‘‘x’’ symbol; the total center of mass is marked by a
larger ‘‘x.’’ We characterize the positions of the two identi-
cal, spatially extended vortices by the coordinates (r 1 ,u1),
(r 2 ,u2) of the two centers-of-mass. From contour plots at
various times we obtain motions of the centers of mass.

We observe equilibria in which the two vortices steadily
orbit about the center of the cylinder, with eitherr 15r 2 or
r 1 Þ r 2 but always withu25u11p. In these equilibria, each
vortex orbits at a constant radius and with the same fre-
quency f orb, so the two vortices remain diametrically op-
posed. Forr 15r 2 , both stable and unstable equilibria are
observed. That is, if the vortices are initially displaced from
the equilibrium positions, they either oscillate around the
equilibrium points with frequencyf osc, or diverge from the
equilibrium points with an exponential rateg.

In Fig. 4, the measured orbit radii of the stable equilibria
are plotted as circles, and the orbit radii of the unstable equi-
libria as diamonds. No equilibria are observed for
r 15r 2,0.22, since the vortices merge together for
(r 11r 2)/2r v<1.6. For larger separations, ther 15r 2 equi-
libria are observed to be stable for radiir,rH50.462 and
unstable forr.rH . All r 1 Þ r 2 equilibria are observed to be
stable; in Fig. 4, these equilibria are shown as circles, with
the arbitrary convention ofr 1.r 2 .

Figure 5 shows three examples of observed center-of-
vorticity positions, relative to a frame rotating about the axis.
The three classes of equilibria, two stable and one unstable,
are each represented. The two vortices were injected with
small initial displacements from equilibrium points. The vor-
tex positions subsequently measured are indicated with
square and plus symbols, and the directions~i.e., time order-
ing! of the oscillations about, or exponentiation away from,
equilibrium points are indicated with arrows. The solid lines
show fits9 to the oscillations or exponentiation predicted by
point vortex theory, discussed below. As predicted by Have-
lock, the orbits are unstable forr.rH .

In Fig. 6, we plot the observed rates of oscillation about

FIG. 3. Measured contours ofz-integrated vorticity~or density! showing
two vortices near the stable equilibrium orbit atr 15r 250.36. The outer
arcs represent the wall atr51.

FIG. 4. Measured radial positions of stable~O! and unstable~diamond!
equilibrium points, whereu25u11p for all points. The size of the symbol
indicates the estimated uncertainty. The predictions of point vortex theory
are also plotted for stable~dashes, dots! and unstable~solid line! equilibrium
positions.
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stable equilibria,f osc, and the observed exponentiation rate
from unstable equilibria,g. These rates, measured in the
rotating frame of the orbit, are normalized by the infinite
length orbit frequencyf orb

` , defined below@Eq. ~14!#. For
r 15r 2 , f osc varies from approximatelyf orb

` down to zero as
r 1 is increased from 0.23 to 0.46. For smallr , f osc is ap-
proximately f orb

` because the vortices orbit about the center
of ~total! mass, independent of where this center is relative to
the cylindrical wall. Asr approaches 0.46,f osc approaches
zero, since the restoring forces go to zero as the influence of
the image charges in the wall becomes important. For

r 15r 2.0.46, initial displacementsDx[(Dr ,rDu) from an
equilibrium point are observed to grow exponentially as

Dx5Ax1exp~gt !1Bx2exp~2gt !, ~13!

wherex1 (x2) is the growing~decaying! eigenvector. Over
the accessible range of unstable equilibria, we observe
growth ratesg/2p f orb

` '0.2 to 0.4, as shown by the diamonds
in Fig. 6.

The observed motion of these spatially extended vortices
is well-described by point vortex theory. This approximation
neglects the effects of surface waves and shape distortions,
since the fields outside an extended vortex are the same as
the fields outside a point vortex only if the extended vortex is
circular. In this approximation, we first consider our 3D con-
fined columns as 2D extended vortices ofz-averaged density
n(r ,u,t). We characterize the strength of the extended vor-
tices by their line densityNL'23106 cm21, and then treat
the two extended patches as 2 point vortices of circulation
G[(2pce/Bz)2NL'106 cm2 s21 at the centers of mass.

A point vortex generates an azimuthal velocity field with
a magnitude inversely proportional to the distanceD from
the vortex:25 uvu5G/2pD. For an equilibrium characterized
by (r 1 ,r 2 ,u25u11p), therefore, point vortex 1 is predicted
to orbit about the cylinder axis at a frequency

f orb
` ~r 1 ,r 2!5

G

2p

1

2pr 1

1

Rw
2 F 1

r 11r 2
2

1

r 111/r 2

1
1

r 121/r 1
G . ~14!

The three terms in brackets are the inverse distances from
vortex 1 to vortex 2, image 2, and image 1, respectively. The
orbit frequency of vortex 2 is given by interchanging the
subscripts 1 and 2, so the equilibrium positions are given by
the solutions tof orb

` (r 1 ,r 2)5 f orb
` (r 2 ,r 1). In addition to the

symmetric solution withr 15r 2 , asymmetric solutions exist
with r 1.rH.r 2 , as shown by the dotted curve in Fig. 4.

The stability of circular orbits of two or more point vor-
tices within a circular boundary was first analyzed by
Havelock.24 This linear stability analysis predicts oscillation
frequencies f osc around stable equilibria with
r 15r 2,rH[0.462 and predicts exponentiation rates6g for
unstable equilibria withr 15r 2.rH , as shown by the dashed
and solid curves in Fig. 6. We have extended the linear sta-
bility analysis9 to equilibria withr 1 Þ r 2 , and find oscillation
frequencies as shown by the dotted curve in Fig. 6. Experi-
mentally, both the stable and unstable dynamics of the 3D
electron columns are well-described by the 2D point vortex
approximation.

Interestingly, the fully nonlinear motion of 2 point vor-
tices within a cylindrical boundary can be understood from
phase space maps, since the system is integrable. There are 4
variables and 2 constants of the motion, the angular momen-
tum per unit lengthPu

pv , and the interaction energy per unit
lengthHpv.25,26These are written in scaled variablesP̄u and
H̄ as

P̄[
Pu
pv

P0
5 (

i51,2
~12r i

2! ~15!

FIG. 5. Observed center-of-vorticity positions, in a rotating frame, of vor-
tices orbiting about three classes of equilibria. The arrows show the direc-
tions of motions, and the dashed line isrH50.462.

FIG. 6. Normalized measured oscillation frequenciesf osc ~O! and exponen-
tial growth ratesg ~diamond!. The curves show predictions from an analytic
point vortex model, where the solid lines indicate exponential growth and
the dashed and dotted lines are oscillation frequencies. The motions corre-
sponding to the three marked rates a,b,c are shown in Fig. 5.
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and

H̄[
Hpv

H0
5 (

i51,2
ln~12r i

2!1 lnF11
~12r 1

2!~12r 2
2!

d12
2 G .

~16!

Here, P0[(eB/2c)Rw
2NL is the angular momentum of an

on-axis line charge, and we chooseP̄u50 at r5r w51.
H0[e2NL

2 is a characteristic energy, andd12 is the normal-
ized separation between the two vortices:

d12
2 [ur 12r 2u25r 1

21r 2
222r 1r 2cos~u12u2!. ~17!

The motion of the point vortices can be visualized from
contour maps ofH̄(r 1 ,u12u2 ,Pu). For any givenP̄u , the
vortices move along a contour of constantH̄. Given r 1 , the
second vortex must be atr 2

2522r 1
22 P̄u .

There are three distinct map topologies over the acces-
sible range of 0, P̄u,2, and examples of these are shown in
Fig. 7. ForP̄u.2(12rH

2)51.57, there is a minimum energy
stable equilibrium~an O-point! with the two vortices sym-
metrically opposite each other, i.e.,u12u25p and r 15r 2 ,
as shown in Fig. 7~a!. For 1, P̄u,2(12rH

2), the symmetric
equilibrium is an unstable saddle point~an X-point!, and two

new O-points exist atr 1 Þ r 2 values@Fig. 7~b!#. As P̄u de-
creases, these O-points move further from the X-point.
For P̄u,1.0 the O-points disappear, and there are no stable
equilibria @Fig. 7~c!#.

Also shown by the square and plus symbols in Fig. 7 are
the measured center-of-mass coordinates of two vortices, for
evolutions with the correspondingP̄u . In Fig. 7~a!, the
center-of-mass of each vortex is observed to oscillate once
around the stable equilibrium while the vortices orbit 2.7
times around the center of the trap. The uncertainty in the
measured positions corresponds to an uncertainty in energy
of dH̄<0.01, i.e., 1/5 of a contour level. In Fig. 7~b!, 3/4 of
an oscillation about an asymmetric stable equilibrium is ob-
served, with a larger measurement error corresponding to
dH̄[0.02 due to additional uncertainties introduced while
creating ther 1 Þ r 2 equilibria. In Fig. 7~c!, the vortices ex-
ponentiate away from the unstable equilibrium, with the dis-
placements being largely in theû-direction. The large mea-
surement errors at long times reflect the difficulty in
repeatably following the exponentially unstable trajectories.

Spatially extended~non-point! vortices may change
shape, and the energy of the system may vary from that
given by Eq.~16! when the vortices deviate from circularity.
Experimentally, we observe elongations away from circular-
ity of <10% in general, and up to 30% forr 15r 2;0.2 ~near
merger!. These time-varying eccentricities have not, how-
ever, been observed to cause experimentally noticeable de-
partures from the predictions of the point vortex model. This
result is perhaps because the energies involved in elongation
are relatively small: using a moment model,16 we estimate
dH̄;0.002 and 0.02 for elongations of 10% and 30%, re-
spectively.

The double vortex state can be manipulated by external
control of the overall energy and angular momentum of the
system. Previous work on the dynamics of a single vortex
has established that resistive destabilization27 and active
feedback,28 which changePu andH, cause the observed mo-
tions to evolve accordingly. We have found similar effects
for the 2 vortex state.

For example, a resistance between azimuthal sections of
the wall will dissipate the energy, and lower the angular
momentum, of the system. If a resistance is switched on
when two vortices are near stable equilibrium points, the
vortices will remain near stable equilibria while the equilib-
rium orbit radii increase with time. During an evolution with
initial vortex positions ofr 15r 2'0.3, the radii were ob-
served to increase tor 15r 25rH , after whichr 1 increased
until vortex 1 was pressed against the wall, whiler 2 had
decreased tor 2'0.1. This technique was occasionally used
in the investigation of 2 vortex dynamics to shift the vortices
from one stable equilibrium to another.

In Sec. VI, we describe merger experiments on vortices
with equal peak vorticity, but different radii. We note here
that the orbital dynamics of these asymmetric vortices was
also compared with the predictions of point vortex theory,
and close agreement with point vortex theory was observed.

FIG. 7. Energy contours in configuration space for three values of scaled
angular momentumP̄u . Minima ~O! and saddle points~X! are shown, as are
the measured center-of-mass positions of two vortices~square and plus! at a
sequence of times. The energy difference between contours isDH50.05
except inb, where an additional energy contour~dots! at the value of the
saddle point is included.
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V. SYMMETRIC VORTEX MERGER MEASUREMENTS

Merger is a fundamental vortex property. When two
like-signed spatially extended vortices approach close
enough, they are susceptible to a pairing instability which
causes them to wrap into a single larger core, accompanied
by the ejection of filaments. Prior work has used analytic
theory, moment models and numerical simulations to inves-
tigate merger.16,29–31These have established that for suffi-
ciently large vortex separation, elongated vortex equilibria
exist with the two vortices orbiting about each other. As the
separation between the vortices is decreased, the elongation
becomes more pronounced until ultimately a separation is
reached where there is no stable equilibrium. At this point,
the two vortices drift towards and wrap around each other,
ejecting narrow filaments of vorticity in the process. Merger
of inviscid vortices is, in theory, predicted to conserve the
energy, angular momentum, and all moments of the density.
The enstrophyZ2 , is the second moment, given by

Z2[
*dr*r dun2~r ,u!

@*dr*r dun~r ,u!#2
. ~18!

Figure 8 is a series of density plots showing the merger
of two electron vortices initially placed close together. From
such time sequences, we observe the evolution of the total
electron number, angular momentum, electrostatic energy,
and enstrophy. During merger, the total density, angular mo-
mentum, and energy are all conserved within the scatter
(61%) of the experimental measurements. The enstrophy,
however, decreases to 82% of its initial value. Some, but
likely not all,32 of this decrease is due to the ‘‘coarse-
graining’’ of the increasingly fine spatial scales by the colli-
mator hole. The relative size of the collimator is indicated by
the solid dot in Fig. 8; its size sets the minimum spatial
scales resolved.

Two simulations of vortex merger, with very similar ini-
tial conditions to those of Fig. 8, have been published in the
literature. They are Fig. 1 of Melanderet al.16 from a high-

resolution direct numerical simulation, and Fig. 1 of
Waugh,33 from a contour dynamics simulation with 8 con-
tour levels. Both of these simulations closely resemble Fig.
8.

While vortex pairing has been often observed in conven-
tional fluids experiments, with perhaps the first clear evi-
dence for it from Freymuth,3 viscous and boundary effects
have usually resulted in non-ideal behavior being observed.
One example of this is the experiments of Cardoso, Marteau
and Tabeling,34 who used thin layers of electrolyte to study
decaying quasi-2D turbulent flows and found strong dissipa-
tion of energy and peak vorticity. Another example is the
rotating water tank experiment of Griffiths and Hopfinger,35

where for one sign of vorticity merger was observed to occur
for all initial separations. In contrast, merger experiments
with electron vortices typically show close agreement with
the predictions of near-inviscid theory.

In these bounded systems, vortex merger can occur ei-
ther because the vortices are initially close together, or be-
cause the orbits are unstable in the point vortex sense. The
first electron vortex merger experiments studied the onset of
merger for electron vortices injected onto Havelock-stable
~i.e., r 15r 2,0.46 and u22u15p) equilibrium points.24

The time until merger,tmerge, versus vortex separation
shows an abrupt increase atr 150.3351.6r v , as seen in Fig.
9. The electron vortices merge immediately for initial sepa-
rationsd12[2r 150.6453.1r v , and orbit for more than 104

orbits for separationsd12.3.4r v . This result is in good
agreement with theory, which has predicted critical separa-
tions for this instability in the range of 2.86 to 3.4 vortex
radii.30,36 It has also been established that the vortex size is
the relevant length scale for separation, since the merger
curves for vortices with different radii overlay each other
when the separation between them was scaled by their
radius.11

Figure 9 also shows that asr 1 is increased pastrH , the
lifetime begins to drop sharply. This decrease in lifetime is
believed to be due to enhanced column expansion from ‘‘or-
bital pumping.’’ The columns are increasing in radius during
thousands of orbits, and merger occurs when the radii finally
become large enough to satisfy the merger criterion of
r v*d12/3.2. This orbital pumping expansion occurs because
the vortices are injected onto unstable equilibrium points,
and their subsequent motion includes large radial excursions
away from their initial points as the vortices orbit about the

FIG. 8. n(r ,u,t) density~vorticity! plots of two symmetric vortices unstable
to merger, at times 0, 16, 41 and 76ms. The density between solid contours
is 2.93105 cm23. Here, the vortices have radiir v25r v150.25 and radial
positionsr 25r 150.30.

FIG. 9. Merger time versus separation for two vortices with radii
r v50.21 injected at diametrically opposite positionsr 15r 2 , showing
merger instability and orbit instability.
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stable points. The radial excursions cause variations in the
axial length of the vortices, and these excursions are dissi-
pated by compressional~or ‘‘second’’! viscosity.21 Finally,
at the very largest separations shown, lifetimes become ex-
tremely short~several orbits! because the trajectories of the
vortices after injection cause them to essentially drift into
each other, and merge.

Here, the vortex radius is calculated from the 2D distri-
bution by

r v[
3

2

1

NL
E
0

r cut
dAr8z~r ,u!, ~19!

where the (r ,u) integral is over the area of the vortex and
r 8[ur2r cmu is centered on the center-of-vorticity of the vor-
tex. This is simply a density-weighted radial integral from
the center of the vortex, ending atr cut, defined to be the
vortex edge. This integral was found to accurately character-
ize the effective radius with respect to merger for a range of
vorticity profiles.11 The factor of 3/2 is included to ensure
that a top hat profile with radiusR hasRv5R. With the
sharp-edged profiles of the prior experiment, the cut-off at
r cut is naturally taken to be the point where the density goes
to zero.

For less sharp vorticity profiles, the calculation ofRv
from Eq. ~19! depends on the cut-off radiusr cut beyond
which vorticity is not part of the given vortex. We take
r cut51.6r v , and find this to be a workable and self-
consistent definition. Essentially this says that vorticity past
r cut could be advected away or captured by a second vortex
even if the second vortex were not within 1.6r v as required
for merger.

Figure 10 illustrates the self-consistency of the definition
r cut51.6r v (r cut). The vorticity profilez(r ) is that resulting
from the merger of 2 symmetric vortices, and has an ex-
tended halo. The integralr v(r cut) increases from zero as
r cut increases from zero, initially with unity slope. The point
where r v(r cut)5r cut/1.6, marked by the dashes at
r cut50.30, defines the end of the vortex core and the begin-
ning of the halo. It givesr v50.188, as shown by the arrows.

As a test of the vortex radius definition, we have mea-
suredtmerge versus separation for two haloed vortices with
the profile of Fig. 10. This profile has a radius of
r v50.188 forr cut51.6r v50.30, and would have a radius of
r v50.23 for r cut50.5. In Fig. 11 we plot the measured
merger times versus separationd12 scaled by both of these
values ofr v . In addition, we include data from merger of

sharp-edged profiles.11 It can be seen that the vortex radius
algorithm leads to an accurate prediction of when a haloed
vortex will be susceptible to the pairing instability, as the
merger curve overlays the other data for shorttmergevalues
when the cut-offr cut51.6r v is imposed.

VI. ASYMMETRIC VORTEX MERGER
MEASUREMENTS

In this section we describe merger experiments with two
vortices which have different radii but equal central vorticity,
to obtain insight into more complicated systems of many
interacting vortices. The peak vorticity of the final merged
core is observed to be roughly the same as that of the merg-
ing vortices. The fraction of the total circulation entrained
into the central core varies from 70% to 90% as the initial
vortex radii are varied from 1:1 to 2:1. This fraction, as well
as the time required to merge,tmerge, depends on the initial
placement of the two vortices. We also find that the self-
energy of the central core is roughly equal to the sum of the
self-energies of the merging vortices. These results are in
reasonable agreement with the premises of the punctuated
Hamiltonian models.

In Fig. 12 we show fourn(r ,u) plots of the merger of
two vortices asymmetric in radius but with the same peak
vorticity zpeak. The initial injection points are well away
from equilibrium positions, and the ratio of radii is 2:1. The
final plot has small points which indicate where the collima-
tor hole~with size shown by the solid dot! was centered; the
n(r ,u) plots are generated by interpolation between the data
grid. The smaller vortex is observed to be strained out into a
filament. The observed filament width is the result of convo-
lution, by the collimator hole, of a substantially narrower
filament. Although the actual structure of the filament is not
resolved, when deconvolution is done on the 2D plots, it is
found that the data is consistent with filaments having near-
zero width. These plots appear qualitatively similar to those
of Fig. 7 of McWilliams,4 which shows a numerical simula-
tion of an asymmetric merger event where thezpeak of the
two vortices is not the same. Here, we also measure the final
merged vortex profile at late times.

Our data set for quantifying asymmetric merger consist
of many plots like Fig. 12, as well as information from wall

FIG. 10. Vorticity profilez(r ) and r v(r cut) from Eq. ~19!. The core/halo
boundary occurs atr cut50.3, wherer cut /1.65r v(r cut).

FIG. 11. Measured merger time versus separation for vortices with the
haloed profile of Fig. 10. The diamonds are the separations scaled to
r v50.23 with r cut50.5. Use ofr cut51.6r v gives a smaller vortex radius
which shifts the merger curve, as indicated by the arrow. All other data
points are for sharp-edged profiles.
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probe signals on when merger took place. The profile and
peak vorticity of the initial vortices was kept as constant as
possible, while the radii and initial separation were varied.
Note that this also varied the positions of the equilibrium
points, given byG1r 1'G2r 2 from Eq. ~14!. Some initial
conditions had the vortices at the equilibrium points, whereas
some hadr 150, as tabulated in Table I. The initial condi-
tions are indicated by symbols used in later plots.

A. Merger times

Figure 13 showstmergeversus separationd12 for the five
different initial conditions of Table I. In the figure,d12 has
been scaled by the sum of the radii of the two vortices. As
was seen in the symmetric merger case, the initial separation
of the vortices has an important impact ontmerge. Addition-
ally, vortices injected onto stable equilibrium positions have
significantly longer lifetimes than those injected onto un-
stable equilibrium positions. Two of the initial conditions
have the same radius asymmetry ofr v2 /r v1;0.66, but differ
in the initial placement, permitting this effect to be isolated.
As previously discussed, orbital pumping of compressional
viscosity21 is believed responsible for the observed differ-
ences in lifetime.

In two papers on the punctuated Hamiltonian model,
the critical separationdc for immediate merger has been
taken to be dc51.7(r v11r v2) by Benzi et al.6 and
dc51.65(r v11r v2) by Carnevaleet al.

5 A more recent paper
by Weiss and McWilliams7 has used an elliptical moment

model to determine the critical separationdc for merger, and
found a good fit to the results of the numerical integrations
with

dc
r v11r v2

51.6S 11
r v12r v2
r v11r v2

D . ~20!

Experimentally, we consider the critical distance to be
that which results in merger in about 1 orbit. In Fig. 14 we
plot the measured separations, as a function of relative radii,
which bracket the critical distance. The smaller distances~at
eachr v2 /r v1 value! resulted in merger in less than one orbit
period, while the larger distances resulted in at least one orbit
before merger. The merger predictions of Weiss and
McWilliams,7 Carnevaleet al.5 and Benziet al.6 are also
shown. The data, while not fully conclusive, supports the
predictions of Eq.~20!.

B. Completeness of asymmetric merger

The question of whether there are significant differences
between merger of symmetric vortices and merger of vorti-
ces asymmetric in radius is an important and controversial
one. The picture of asymmetric merger expected from the
symmetric studies was that either two vortices would stably
orbit about each other~elastic interaction! or merge, forming
a merged core larger than either vortex~complete merger!.
However, Dritschel and Waugh8 have used contour dynam-
ics simulations of two isolated top hat profile vortices to
investigate this, and found that many unexpected interactions
were seen. Specifically, they found that for some separations,

TABLE I. Initial conditions for the data of Figs. 13–15.

r v2 /r v1 r v1 Initial placement Symbol

1.0 0.147 r 15r 2 h

0.92 0.188 G1r 1'G2r 2 x
0.65 0.228 G1r 1'G2r 2 1

0.85 0.176 r 150 ¹
0.67 0.181 r 150 D
0.54 0.237 r 150 0

FIG. 13. Asymmetric vortex merger times versus separation, withd12 nor-
malized to (r v11r v2). The radius ratior v2 /r v1 is indicated for each curve.

FIG. 14. Separationsd12 giving merger in less than 1 orbit period~small
symbols! and in more than an orbit period~large symbols!, for various
radius ratiosr v2 /r v1 . Various merger criteria are also shown.

FIG. 12. Density plots of two asymmetric vortices merging, at times 0, 15,
30 and 60ms. Density between solid contours: 4.93105 cm23. The posi-
tions where the data have been taken, and the collimator hole size, are
indicated on the final plot. Herer v250.50r v150.13, r 150 andr 250.62.
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partial mergers took place where vorticity would be ex-
changed, but both vortices would survive and elastically in-
teract after the partial merger event. They also found that
there could be both partial and complete straining out events,
where the vorticity ejected by the smaller vortex does not
become associated with the larger vortex. They thus found
that smaller vortices were often produced by asymmetric
merger, and concluded that it is misleading to expect simple
merger of unequal vortices.

In contrast, the confined asymmetric electron vortices
typically exhibit simple merger: We find little evidence for
partial merger events resulting in two altered and stable vor-
tices. The density plots can follow merger for several orbit
periods before they become too noisy to be useful, and these
always show merging vortices to join, and any filaments to
rapidly become strained and reduced inzpeak. Occasionally,
small coherent patches of vorticity become ejected: An ex-
ample of this in symmetric merger can be seen in Fig. 8~d!,
where the filaments show maxima. These maxima, however,
are observed not to persist as the filaments wind about the
merged core.

If persistent vortex cores were common stable structures
of the post-merger electron plasma system, one would expect
to detect them on the non-phase-locked radial profiles, where
they would show up as higher values of density seen inter-
mittently in the halo. Such anomalously higher values have
not been seen, either in the many profiles taken to character-
ize the final state of merger~i.e., after;20 ms!, or profiles
taken just after merger specifically to look for this effect.
One would also expect the presence of persistent cores after
a partial merger to show up on the sector probe signals. What
is actually seen is the complicated 2 vortex orbital signature,
followed by a single orbital frequency after merger. The tran-
sition between the orbit waveform and the single frequency
waveform occurs in about one orbit period, and the wave-
form after merger only rarely shows frequencies in addition
to the single orbital frequency.

For perspective, we compare our results to those of
Dritschel and Waugh8 in Fig. 15. Here the data of Fig. 14 is
plotted with the ordinate indicating relative radiir v2 /r v1 .
The small symbols indicate complete merger observed
within 1 orbit period, and the larger symbols indicate com-
plete merger in more than 1 orbit. The labelled regions are

from Fig. 5 of Ref. 7, transformed to our variables, and in-
dicate the results from contour dynamics simulations. Many
of the experimental points are in regions where partial
merger or partial straining out is predicted, yet only complete
mergers were observed with the confined electron vortices.

Several effects make the electron vortex dynamics sig-
nificantly different from the contour dynamics simulations.
First, the electron dynamics is significantly affected by invis-
cid symmetrization of vortices by beat-wave damping,37

which tends to prevent extreme distortions and filamentation.
This effect has recently been observed in contour dynamics
simulations with 11 contour levels;38 presumably it requires
contour spacings close enough to represent the trapped fluid
resonance. Similar inviscid damping would be expected in
other fluid systems such as atmospheric flows, protostellar
and galactic disks,39 or drift waves in rotating plasmas.40

Second, the vortices never separate from each other: The
largest merger times in Fig. 13 represent over 104 orbits, and
the characteristics of these 2 vortex orbits are influenced by
the cylindrical boundary. Finally, the dynamics after hun-
dreds of orbit times may be affected by 3D diffusion or dis-
sipative effects such as compressional viscosity and orbital
pumping, which are specific to electron plasmas.

These experiments and recent computer simulations38,41

suggest that even small viscous dissipation can significantly
affect vortex interactions. In the simulations, comparisons
are made between pseudospectral simulations with normal
and hyper viscosity and contour surgery simulations with
essentially no viscosity. Particularly relevant is Ref. 38,
treating asymmetric merger in the ‘‘partial straining out’’
regime of Dritschel and Waugh.8 The smaller vortex per-
sisted in the contour surgery simulations, but always merged
into the larger one in the normal viscosity simulations; this
ultimately produced a central core surrounded by a lower
density halo, as observed in the electron vortex experiments.

Several effects contribute to diffusion and dissipation in
the electron vortex system. Most significant is the dissipation
and transport arising from compressional viscosity acting on
axial length changes; here, the (r ,u) flows cause axial com-
pressions or elongations21,22due to the (r ,z) curvature of the
end confinement potentials.19 A single off-axis vortex thus
slowly increases in diameter and moves back towards the
trap axis due to ‘‘rotational pumping.’’22 Similarly, this ef-
fect causes two vortices to slowly increase in diameter~and
subtly alters their orbits! due to ‘‘orbital pumping.’’ Vortex
lifetimes greater than 0.1 s (104 orbits! in Fig. 13 are defi-
nitely affected by compressional viscosity.

Surprisingly, viscosity acting directly on shears in the
(r ,u) flows42 is typically negligible on the time scales con-
sidered here, even when non-local plasma effects43 are in-
cluded. Similarly, diffusive effects due to ‘‘anomalous trans-
port’’ from construction asymmetries in the magnetic field or
in the cylindrical wall occur on much longer time scales at
the high fields used here.20

In comparison to Navier Stokes simulations with normal
viscosity, however, the total dissipation in the electron sys-
tem is quite low. For example, Yao and Zabusky38 find that
the electron system dissipates surface waves less rapidly than
their least dissipative run, which hadn251.283104. We

FIG. 15. Asymmetric vortex merger data showing complete merger in less
than 1 orbit ~small symbols! and in more than 1 orbit~larger symbols!.
Regions characterizing the contour dynamics simulations of Dritschel and
Waugh are also shown.
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must emphasize, however, that the plasma evolution equa-
tion including viscosity isnot the Navier Stokes equation, so
no simple comparison between plasma and fluid viscous ef-
fects can be made. Two fundamental differences from fluid
viscosity are that plasma viscosity gives rise to compressibil-
ity in the otherwise incompressible (r ,u) flow, and the
plasma viscosity is necessarily proportional to the vorticity
~i.e., the electron density!.

C. Conserved quantities: core and halo

The images of vorticity taken during asymmetric vortex
merger, such as Figs. 8 and 12, show that the detailed evo-
lution sensitively depends on the initial conditions, but al-
ways results in a central core surrounded by filaments wind-
ing about it. This distribution then axisymmetrizes, on a
timescale of tens to hundreds of rotations~several millisec-
onds!, into a core surrounded by a halo.

In order to quantify the evolution of the system during
merger, for each initial condition detailed in Table I we have
taken radial profiles of the vortices both before and;20
msec after the merger. This particular time after merger was
selected because it is long (;1000 self-rotations! on the time
scale of filament windings about the core, but short on the
time scale of plasma confinement.

The final state vorticity profile depends on the sizes and
separations of the two vortices. In Fig. 16 we show the radial
profiles resulting from merger withr v2 /r v150.67 and three
different initial separations. The initial radial profiles of the 2
vortices before merger are also shown by the dashed lines.
One can readily see the effect of the initial separation: The
smallerd12 is, the more compact the merged profile.

In Fig. 17 we plot the ratio of the measuredzpeak
m after

merger to its valuezpeak
i before merger. Before merger, the

two vortices had the samezpeak. While there is a fair amount
of scatter,zpeak appears to be conserved during merger, as
the average of the measured ratio is 0.99460.026. This re-
sult is in agreement with simulations, at least for asymmetric
merger. In a merger study, Melanderet al.31 found that for
asymmetric merger the larger vortex becomes the central re-
gion of the core, resulting in its originalzpeakbeing the final
zpeakof the core.

For the final merged core, we designate the circulation
within r51.6r v by Gcore

m , and the total circulation byG tot
m . In

Fig. 18 we plot the ratio of the measured circulations after
merger with the valuesG1 andG2 before merger. The data
marked by~X! indicateG tot

m /(G11G2), and are thus expected
to be equal to 1, since total circulation~charge! is well con-
served in this system. The variations inG tot

m reflect the accu-
racy of the radial integrals of the measured profiles. The
average of the data isG tot

m /(G11G2) 51.0060.02.
The data marked by circles isGcore

m /(G11G2), and thus
indicate the fraction of the initial circulation bound in the
core after merger. We find that between 70% and 90% of the
circulation remains bound in the core after merger, with
some indication that this percentage increases asr v2 /r v1 de-
creases. The variation at eachr v2 /r v1 value is systematic,
and depends on the initial separation of the vortices in the
manner one would expect from Fig. 16: The greater the ini-
tial separation, the more extended the merged profile and the

FIG. 16. Radial profiles after merger~lines!, and for the large and small
vortices before merger~dashed!. The radius ratio wasr v2 /r v150.67, and
the initial separationd12 is indicated.

FIG. 17. Ratio of peak vorticity of merged and initial profiles.

FIG. 18. Core and total circulations of the merged state, normalized to total
initial circulation, versusr v1 /r v2 . Line is prediction for top hat profile
vortices, and dashed line includes effect of circular boundary.
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less circulation from the smaller vortex in the merged core.
These results can be compared with the merger rules used by
Carnevaleet al.5 and Benziet al.6 Using arguments involv-
ing conservation of kinetic energy per unit area,5 or involv-
ing enstrophy dissipation,6 these authors independently came
up with a simple merger rule of

r vm
4 5r v1

4 1r v2
4 . ~21!

This gives the ratio of circulation bound in the core as
r vm
2 /(r v1

2 1r v2
2 ). We plot this prediction~solid line! in Fig.

19, as well as a prediction~dashed line! based on a merger
rule of

r vm
4 F142 lnr vmG5r v1

4 F142 lnr v1G1r v2
4 F142 lnr v2G . ~22!

This latter rule takes into account the effect of the wall on the
energies of top hat vortices.9 While the data shows a large
amount of scatter, it is apparent that the measured values are
systematically somewhat higher than those predicted by the
merger rules for top hat vortices, possibly because of the
continuous vorticity distribution of the electron vortices.

Merger is observed~and predicted! to conserve the total
energyHf of the system. Before merger, the energy can be
conceptually broken into ‘‘self-energies’’ of the vortices,
H1s andH2s , and terms due to their interaction with each
other and with the image charges,H int . After merger, there
are no interaction energy terms between vortices, but we can
consider both a total electrostatic energy of the final merged
systemH tot

m , and a core self-energyHcore
m wherer cut is used

to discard the halo. Energy conservation is then
H tot
m5Hcore

m 1Hhalo
m 5H1s1H2s1H int . Carnevaleet al.,5 in

order to derive Eq.~22!, used as a conserved quantity the
self-energy of the merging vortices, i.e.,H1s1H2s5Hcore

m .
This is equivalent to asserting that the interaction energy
between the merging vortices gets dispersed into the halo.
We have compared Carnevale’s conjecture with our data, by
measuring the self energies of the merging vortices, and of
the merged profile with and without usingr cut to discard the
halo. The energies here were calculated from the 3D quanti-
ties for maximum accuracy. We first calculated the self-

consistent 3D potentialf(r ,u,z,t) and densityñ(r ,u,z,t)
distributions from the measured on-axis density profiles,9

and then used the 3D version of Eq.~7!.
In Fig. 19 we plot the quantitiesH tot

m /H1s1H2s and
Hcore
m /H1s1H2s . As in the bound circulation data, the varia-

tion at each value is systematic. As expected, the initial in-
teraction energy is missing: Averaging all the points,
H tot
m /H1s1H2s51.2060.07. We find, however, that the

mean of theHcore
m /H1s1H2s points is 1.0260.07. While this

measurement is of course dependent on our particular defi-
nition for the core and halo, this result seems to indicate that
Carnevale’s conjecture is not an unreasonable one.

Returning now to the question of the amount of circula-
tion bound in the halo, we note that the merger rules of Eqs.
~21! and ~22! were derived from the principle that the self-
energy of top hat vortices is conserved during merger. Since
self-energy is found experimentally to be roughly conserved,
this suggests that the discrepancy seen in Fig. 19, between
the measurements and predictions based on these merger
rules, might be due to the non-top hat profile of the electron
vortices.
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