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The equilibration of spin temperature Tspin with kinetic temperature T is examined in a 
weakly correlated pure electron plasma in the strongly magnetized limit, where the distance of 
closest approach is large compared to the Larmor radius. In this limit, the spin precession 
frequency ,rZ,===g&./2 is large so the component of spin along the magnetic field is 
an adiabatic invariant that is broken only by resonant magnetic fluctuations of frequency flP 
(Here CX, is the electron cyclotron frequency and gY2.002.) In this case, the most 
important spin flip mechanism stems from electron-electron collisions in a spatially 
inhomogeneous magnetic field. Such collisions cause an exchange of spin and cyclotron quanta, 
and consequently the conventional many-electron adiabatic invariant (i.e., the total 
number of cyclotron quanta) is broken and is replaced by a new adiabatic invariant, equal to 
the sum of the spin and cyclotron actions. A quantum Boltzmann equation is derived to 
describe the equilibration of unpin toward T. 

I. INTRODUCTION 

Recent experiments have confined and cooled a pure- 
electron plasma to cryogenic temperatures; T- l-10’ K, in 
a strong solenoidal magnetic field, B-10-60 kG.i This 
range of temperatures and magnetic fields places the 
plasma in the novel regime of strong magnetization, in 
which the average distance of closest approach 
&r2e2/kTll is large compared to the average Larmor 
radius Yz= dkTI /m/R, (where e is the electron charge, 
T,l and Tl are the kinetic temperatures associated with 
the distributions of velocities parallel and perpendicular to 
the magnetic field, m the electron mass, and f&=eB/mc is 
the electron cyclotron frequency). 

In this paper we consider a strongly magnetized pure 
electron plasma that initially has a temperature associated 
with the distribution of electron spins, T,, which is differ- 
ent from the kinetic temperatures TII and TI . We calcu- 
late the rate at which. T, TiI , and TL should relax to a 
common value. We assume throughout that the plasma is 
weakly correlated (i.e., that &, > 1, where n is the density 
and /zo = $?%&% is the Debye length). 

After examining several mechanisms that couple the 
spin and kinetic degrees of freedom, we conclude that the 
dominant spin-flip process is an electron-electron collision 
in a spatially inhomogeneous magnetic field. In the exper- 
iments, the confining magnetic field is inhomogeneous due, 
among other things, to the finite length of the solenoid. The 
degree of-field nonuniformity can be controlled by confln- 
ing the plasma at different distances from the end of the 
solenoid. The ability to control the rate of spin temperature 
relaxation may be useful in future experiments which rely 
on measurements of the degree of electron spin polariza- 
tion. Two such experiments are briefly discussed in the 
conclusion of the paper. 

In order to understand the spin-flip process intuitively, 
it is useful to consider a classical model of the spin dynam- 
ics in which the spin is regarded as a classical magnetic 

moment. (It is well known that this -classical picture is 
rigorously correct if one considers the dynamics of the 
quantum expectation value of the spin operator.) The di- 
rection of the moment precesses around the magnetic field 
at the spin precession frequency $=g&/2, where g is the 
Land6 g factor;equal to 2.002... for electrons. In the re- 
gime of strong magnetization s1, is large and hence the 
component of the magnetic moment along the magnetic 
field is an adiabatic invariant. -In order to flip the spin this 
adiabatic invariant must be broken. If collisions with neu- 
trals are neglected (and we will see that this effect is un- 
important in Sec. II), the only way to break the invariant 
is through a resonant fluctuation in the magnetic field- 
that is, a fluctuation at frequency R, in the electrons’ rest 
frame.. Electron cyclotron motion in a spatially nonuni- 
form (but time-independent) magnetic field is almost of 
the right frequency to cause such a fluctuation in the elec- 
tron’s rest frame, since the electron g factor is nearly equal 
to 2. However, ~;2,-~2,~0.001~2, is still a large frequency, 
and so cyclotron motion by itself is not enough to break the 
invariant, and a perturbation of the cyclotron motion must 
occur which is of sufficiently high frequency to make up 
the difference and cause a resonance between the spin and 
orbital dynamics. In the regime of strong magnetization 
the only perturbation of such high frequency is- an 
electron-electron collision, which induces orbital perturba- 
tions with frequencies of order F/b, where U is the thermal 
speed. 

In order to estimate the magnitude of the spin depo- 
larization rate due to electron-electron collisions in a spa- 
tially nonuniform B field, -consider a strong static magnetic 
field Bz^ along with a small time varying magnetic field 
SB(t) in the electron’s rest frame. This time-dependent 
field is due-to electron motion through the spatially inho- 
mogeneous but time-independent external magnetic field. 
We will estimate SB presently, but for now all we need to 
assume is that for a time At--b/v; the time scale of an 
electron-electron collision, 6B (t) has a right-circularly po- 
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larized component rotating at frequency o = QP This com- 
ponent resonates with the spin precession and drives a spin 
flip. The magnitude of this resonant component, SB,, will 
be given approximately by a sum over all temporal Fourier 
components of the right-polarized part of SB( t) with fre- 
quencies o satisfying 1 o - fiP 1 5 2?r/At: 

SBR- 
s lc-flpl <2dAt 

where S%(w) is the Fourier transform of SB( t). The prob- 
ability amplitude AC of the spin flip is then given, in per- 
turbation theory, by the angle through which the spin pre- 
cesses in time At due to this resonant field: 

IAC] -5 jGB,lAt. 

Now, SB( t) can be estimated for an electron executing 
cyclotron motion in a slightly nonuniform magnetic field: 
SB( t) -p(t) l VB, where p is a vector describing the cy- 
clotron motion: p(t) =T;,[cos(&t+6)~+sin(~~+f3)fl, 
where 8 is the constant gyrophase. If one further assumes 
that the electron suffers a collision for which the impact 
parameter is large compared to the Larmor radius, we will 
see in Sec. III that the most important effect is that 13 
becomes a function of time, adding Fourier components 
that bring SB(t) into resonance with the spin precession: 
6= Q,+Se( t). Since Se(t) is small in such a collision, one 
can expand to first order in MJ to find that the resonant 
magnetic field is approximately 

SB,--B; 

where 88 is the Fourier transform of &9(t) and L is the 
scale length of variation of B. Since 66(t) varies on a time 
scale of order At = g/E, if one assumes that ( fzP - 0,) At 6 1 
this integral can be estimated as approximately 

SBR- B-& &2,-0,). 

Furthermore, the magnitude of S&a,-a,) can be esti- 
mated using dimensional analysis of the integral expression 
for the Fourier transform: 

I@(sl,-n,) I= 1 s” 
--co 

dt &3( t)e-i(%-n~)rl - (~ ?a 
P c 

), 

where A0 is the total change in 60(t) during the collision, 
and again we have assumed ( fi2,-- a,) At 6 1. In this regime 
we show in Sec. III that A0 is roughly on order of the small 
parameter Z= V;/&X c,,, where VZ is the parallel relative ther- 
mal speed. This parameter is the ratio of the frequency 
associated with a collision compared to the cyclotron fre- 
quency. When c<l the plasma is in the strongly magne- 
tized regime. Using this estimate for A0, the spin-flip am- 
plitude is approximately 

FL he 1-12, Fq n, 
(ACI------ ~ 

L ap-a, -7 ~p-f-l,’ (1) 

Finally, over many uncorrelated collisions the spin direc- 
tion gradually diffuses in a random walk and the rate of 
spin depolarization is given by ~spin- ~~1 AC1 ‘, where 
~,=rrnI@ is the electron-electron collision frequency. 

This estimate for the depolarization rate gives the 
proper scaling of the spin depolarization rate, provided 
that lap-&l 55//b; or GZg/2- l=O.OOl. For 5<0.001 
we will see that ~~Vspin becomes exponentially small. This is 
because (S1,-C&)At becomes greater than unity in this 
regime, so that AB becomes exponentially small. 

Although there has been considerable previous work, 
both theoretical and experimental, on the spin relaxation in 
neutral gases and solids, spin relaxation in plasmas has not 
received as much attention. However, the problem has 
been considered theoretically for plasma parameters of fu- 
sion interest. In this interesting work* it was noted that the 
fusion cross section for D-T reactions is enhanced when 
the reacting nuclei’s spins are aligned, and so an increase of 
the fusion power output is achieved if the plasma ions are 
spin polarized. A calculation of the rate at which the nu- 
clear spins are depolarized by various effects was then car- 
ried out, 

It was found that, except for the effect of plasma 
waves, collisional depolarization in an inhomogeneous 
magnetic field is also the dominant depolarization effect in 
fusion plasmas. However, although collisions give rise to 
spin relaxation effects for both fusion plasmas and pure 
electron plasmas, the relaxation rates are quite different in 
the two cases. For collisions in a fusion plasma, the time 
scale on which the orbit changes, or the effective duration 
time of collision, is much shorter than the gyroperiod and 
so the detailed dynamics of an individual collision, which 
may be termed an “impulsive” random kick, is expected to 
be unimportant. In this case it suffices to take A$-2n in 
Eq. (l), and then the relaxation rate given by Eq. (36) of 
Ref. 2 is recovered. On the other hand, during the effective 
duration time of collision in a strongly magnetized plasma, 
the electron gyrates over many cycles. In this case, there is 
only a small change of the gyrophase due to the Coulomb 
interaction. Evidently, the detailed collisional gyrodynam- 
its is important for the determination of this change during 
a given collision. 

The collisional process considered here causes an ex- 
change of spin and cyclotron energy, and consequently the 
many electron adiabatic invariant of O’Neil and Hjorth,’ 
equal to the sum of the perpendicular kinetic energies 
SiE, h is broken. However, as we will see this adiabatic 
invariant is replaced by a new N-electron invariant equal to 
the sum of the spin and cyclotron actions: 

p(N)= c s. + i ( ,t &)=coM 

where siZ is the component of the spin along the magnetic 
field for electron i and E, i/n,( Xi) is the cyclotron action, 
The conservation of p(N) implies that this collisional pro- 
cess cannot by itself drive the system to complete thermal 
equilibrium and, in general, T,#T, #TIl will be the re- 
sult. Rather, in Sec. V we obtain the relation 
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@/2-l) g/2 
&+ -7=o, 

TII 
(3) 

s 
which holds for the state of partial thermal equilibrium 
that is achieved after many collisions, which conserve pcN). 
Of course, since P(N) is not an exact invariant, electron- 
electron collisions occur, which cause exponentially small 
changes in its value. Because the spatial variation of the 
magnetic field is slow compared to the Larmor radius of 
the strongly magnetized electrons, almost all these colli- 
sions are of the type described by O’Neil and Hjorth in 
which the spin plays no role, and these collisions cause T, 
to approach T,, according to the equations described in 
Ref. 3. In turn, collisions considered in this paper that 
conserve p (N) cause T, to approach the common value of 
T, and TII [see Eq. (3) for T, = T/I 1, and hence a state 
of complete thermal equilibrium is achieved. This is the 
qualitative picture of spin relaxation that emerges from our 
analysis. 

In Sec. II we make order-of-magnitude estimates of 
various spin-flip processes, including spin flip due to the 
mutually generated magnetic field, radiative transitions, 
and interactions with background waves, Thomas preces- 
sion, electron-neutral collisions, and single particle elec- 
tron motion through the inhomogeneous B field. We find 
that all processes except for electron-electron collisions in 
an inhomogeneous B field produce depolarization time 
scales that are longer than the plasma confinement time of 
approximately lo5 set, provided that neutrals with par- 
tially filled valence shells, such as N2, are kept at pressures 
below - lo-l4 Torr (this is a reasonable upper bound in 
the cryogenic environment of the present experiments). In 
the regime +iiR, < kTl and Z> 0.001, we find that spin de- 
polarization rate is ‘Vspin = 1.5 X lo4 vc ( ZL/L)2. For a typ- 
ical plasma density of 10’ cmB3 and B= 10 kG, this implies 
that the B-field inhomogeneity scale length L must satisfy 
L (cm) < 7. 1516’4 (K) in order for Y Z/n to be less than 
the plasma confinement time. In Sec. III we present a cal- 
culation of the spin-flip transition rate due to electron- 
electron collisions in a weakly inhomogeneous magnetic 
field, assuming that the orbital motion can be treated clas- 
sically (that is, assuming that the electron’s kinetic energy 
is large compared to 4X&). This calculation improves the 
estimate for v spin given by E?q. ( 1)) extending it to cover the 
range Z 5 0.1. In Sec. IV, the calculation is repeated using 
a quantum description of the orbital motion, since, in fact, 
TL and TII can be of order fiiR, in the experiments. In the 
classical limit this rate agrees with that calculated in Sec. 
III. In Sec. V we present a derivation of a Boltzmann 
collision operator for spin relaxation that conserves ,u(~) 
and drives the system to a partial thermal equilibrium de- 
scribed by Eq. (3). We summarize our results in the con- 
clusion and discuss two possible experiments that rely on 
measurements of spin polarization. 

II. ORDER OF MAGNITUDE ESTIMATES FOR SPIN 
DEPOLARIZATION PROCESSES 

As pointed out in our discussion, spin depolarization is 
caused by a resonant perturbing magnetic field of fre- 

c 
B 

FIG. 1. Schematic picture for an electron-electron collision in a uniform 
magnetic field in the strongly magnetized limit. 

quency slP due to an electron-electron collision in a non- 
uniform magnetic field. Such resonant fields can also be 
induced by other mechanisms. We will consider four such 
processes, as well as a fifth process due to spin exchange in 
electron-neutral collisions. In order to simplify results we 
assume that T, and T,, are of the same order of magni- 
tude. 

A. Spin flip due to mutually generated magnetic field 

Consider two electrons, 1 and 2, immersed in a uni- 
form external field B, separated by relative distance r, and 
passing by one another with impact parameter p on the 
order of 6>FL (see Fig. 1). Then electron 1 sees a time 
varying magnetic field induced by the relative motion of 
electron 2 as well as electron 2’s intrinsic magnetic mo- 
ment. In the former case the field is SB= (e/c) (kxr)/g, 
and the component of this field that is resonant with the 
spin precession is approximately S BR - (e/c) vL z/g, 
to lowest order in i; /g.~ Taking vI equal to the thermal 
velocity i7 E d kT/m and the effective interaction time of 
the electrons equal to &/iY, we find the change. in direction 
of spin is AC- eg 6 BR/2mc * @iF- (V/c) 2 .- lo- I’?;, where 
T is the temperature in K. This gives rise to an extremely 
small dtpolarization rate v,( AC)2- 10-12T1’2E(secs ‘), 
where ~,~n@nE is the electron-electron collision fre- 
quency and E is the electron density (n) in units of 10’ 
cme3. 

The intrinsic magnetic dipole moment of electron 2 
also- induces a time varying magnetic field at electron 1. 
However, this magnetic field is so weak that the spin de- 
polarization effect is negligible, even compared to the 
above estimate. 

5. Radiative transitions and interactions with 
background waves 

As an electron’s spin precesses, its related intrinsic 
magnetic moment will radiate spontaneously through mag- 
netic dipole transition. The rate for the spontaneous radi- 
ation is4 

2g 
0 

’ e2fi 
3 2 z fl~-;lX lo-“B3(sec :‘), 

where B is the magnitude of the magnetic field in Tesla. 
In addition, as pointed out by, for example, Kulsrud et 

al. ,2 in a uniform magnetic field, the right-circularly polar- 
ized component of an electromagnetic wave with harmon- 
ics near fi2, will cause an electron spin depolarization. It is 
easy to show that a thermal level of electromagnetic waves 
produces negligible depolarization, provided that the 
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plasma is optically thin. When the plasma is optically 
thick, the problem is more complicated due to the dielec- 
tric behavior of the magnetized plasma, but we believe that 
for a thermal equilibrium plasma at cryogenic temperature, 
the electric current fluctuation is negligibly small and there 
is not appreciable excitation of magnetic fluctuations. 
However, waves that are unstable in the range of electron 
spin precession frequency could cause appreciable spin de- 
polarization. Although electromagnetic instabilities could 
be driven when T, and TII differ, if the temperature dif- 
ference 1 T, - TII 1 is not too large and no external heating 
is assumed, then, unlike the spin polarized fusion plasma, 
the presence of strong cyclotron damping should make the 
existence of unstable waves at the spin precession fre- 
quency unlikely [since the electron spin precession fre- 
quency $= (g/2)f12, is close to the cyclotron frequency 
f&l. 

Another possible depolarization effect is due to the 
electron position shift driven by electrostatic waves at the 
spin precession frequency fL$. In a spatially nonuniform 
magnetic field the magnetic field seen in the electron’s rest 
frame is perturbed at frequency flp and the electron spin is 
flipped by the resonant magnetic field perturbation. How- 
ever, one may show that compared with the collisional 
effect, this effect is also negligible for a thermal level of 
waves in the strongly magnetized cryogenic plasma. Phys- 
ically this is due to the relatively few degrees of freedom 
involved in these collective electrostatic modes compared 
with the perturbing electrostatic field due to collisions. 

C. Thomas precession 

Due to this pure relativistic effect, the electron sees an 
additional perturbing magnetic field corresponding to a 
precession frequency, or ( t ) ~13 $ x?/2c2. The magnitude of 
this frequency does not equal a,, except during an 
electron-electron collision. During the collision, a compo- 
nent of the Thomas precession frequency given by 
w,(t) = V L X U”II /2c2 varies at the resonant frequency and 
so leads to a spin direction change 
AC-(&v; E,, /2c2)~(~4 )-(&~L).(u;/c)2. Here, 
again, we have kept only the lowest-order component of wT 
in an expansion in FL/F. The depolarization rate is then 
vJAC)‘- 10e7fi~2~T~3 (set-I). As before, B is in 
units of Tesla and Z, T, , and TII are again in units as 
defined in Sec. II A. 

D. Electron-neutral collisions 

In the cryogenic environment of the experiment it is 
likely that the residual neutrals are almost entirely helium 
since most of the neutral gas freezes on the wall. Never- 
theless, there may be traces of other gases, and here we also 
consider collisions with nitrogen molecules as a represen- 
tative example. To calculate the spin depolarization rate 
due to electron-neutral collision, we note that the spin-flip 
cross section due to spin exchange between the free elec- 
tron and atomic electron is several orders of magnitude 
larger than that due to other effects,5 such as the spin-orbit 
interaction. For electron-helium collisions the spin ex- 

change is inhibited by the Pauli exclusive principle, and so 
the depolarization effect is effectively negligible for them. 
For an electron-nitrogen collision, the spin-flip cross 
section is Usspin flip Z U$;pin exchange L5 (Tkinetic Z? 3 A2, and 
thus the depolarization rate is approximately O,pin flip f ZNZ 
17~5 10-5T-“2Z~2 (set-’ ), where kNZ is the density of ni- 
trogen molecules in units of 104/cm3 and T is again the 
temperature in units of Kelvin. 

In addition, electron-neutral collisions change the 
electron’s orbit randomly, resulting in a fluctuating mag- 
netic field in the electron’s rest frame due to the nonuni- 
form external magnetic field. This perturbing field causes a 
spin flip at the rate2 Y,,i,“.9.57~ 10-*3~‘2B-TL-2@.+ 
where the scale length of magnetic field inhomogeneity L is 
in units of cm and & is the neutral density in units of 
1 04/cm3. 

E. Single-particle motion 

Single-particle motion consists of cyclotron motion to- 
gether with a slow ExB rotation of the plasma column 
and parallel streaming along the slightly curved magnetic 
field lines. Neither of these drifts cause sufficiently high- 
frequency perturbations to the magnetic field observed in 
the electron rest frame, and so these effects cause negligible 
spin depolarization. However, as an electron approaches 
the end of the plasma along a field line, the electron feels an 
electric potential with a scale length of gradient of order of 
/zD, the Debye length. Due to the electric potential, the 
electron gyro-orbit is disturbed, and thus, in the slightIy 
nonuniform B field, as in an electron-electron collision, a 
secular spin depolarization results. However, since il,$b, 
the “collision” with the end of the plasma is much slower 
than an electron-electron collision, and the resonant field 
SBR is much smaller. The size of this effect can be esti- 
mated by substitution of /2, for b in Eq. ( 1) and use of the 
axial bounce frequency vb=ii/Lp rather than Ye, where Lp 
is the length of the plasma. This implies a depolarization 
rate smaller than that given by Eq. (1) by the factor 
(V~VJ ’ G&F- 10p3/Tt,, where Ep are lengths in 
units of centimeters. This result is further reduced if the 
electron mean-free path is less than L,,, and so should be 
regarded as an upper bound. 

The depolarization rate V,pin for various spin relaxation 
processes are plotted as a function of small parameter 
F=&/6= 10-3?;3”/B in Fig. 2, where the other parame- 
ters B, E, &,, and izN are set to be unity and L is set to be 
10 cm. The conclusion we draw from the figure is that the 
spin relaxation time vs$, due to all effects considered other 
than that of collisional depolarization ‘in a nonuniform 
magnetic field is longer than the maximum plasma confine- 
ment time of approximately lo5 set, provided that 
n;U 5 1. Therefore, we conclude that the dominant depo- 
lartzation effect is due to collisional depolarization in an 
inhomogeneous magnetic field. 
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FIG. 2. Plot of the spin depolarization rate as a function of 
P=q,/&= 10-3F3’z/B for different processes. Curve 1: collisional depo- 
larization in a nonuniform magnetic field. Curve 2: spin exchange erect 
during electron-neutral collisions. Curve 3: Thomas precession. Curve 4: 
spontaneous magnetic dipole radiation. Curve 5: spin flip due to mutually 
generated magnetic field. Curve 6: spin flip due to electron-neutral colli- 
sion in a nonuniform magnetic field. The electron density n, is assumed to 
be lo7 cm ‘, the neutral density is taken to be lo4 cme3, the magnetic 
field is 1 T and the scale length of magnetic field inhomogeneity is taken 
to be 10 cm. 

III. COLLISIONAL SPIN DEPOLARIZATION IN AN 
INHOMOGENEOUS MAGNETIC FIELD 

In this section we consider in detail the problem of spin 
depolarization due to electron-electron collisions in a 
weakly inhomogeneous magnetic field. The velocities of the 
colliding electrons are taken to be sufficiently large so that 
we can treat the orbital dynamics classically. We will even- 
tually expand in the small parameters rL/b and r,/L, but 
in order to set up the problem we consider the spin dy- 
namics of a spin-$ particle moving on a general classical 
trajectory through an inhomogeneous magnetic field.2 In a 
fixed laboratory frame of reference the spin part of the 
wave function I+) evolves according to 

d 
ifi;iil~>=s*fqJl$>, 

where $(t) = (g/2) [eB(x( t))/mc], x(t) is the position of 
the electron, s=fi/2 (~~,a,a,) is the spin operator for 
spin-$ particles, and a,, r+, .and a, are the Pauli matrices, 
with respect to some fixed coordinate axes. The classical 
approximation employed throughout this section implies 
that x(t) is unaffected by the spin state and so is a given 
function of time. 

Now, because the spin component along the field is an 
adiabatic invariant we consider the evolution of the spin in 
a noninertial frame of reference, which follows the electron 
and which keeps the z axis directed along the magnetic 
field. Since these coordinate axes rotate in time as the field 
varies in direction in the electrons’ rest frame, the spin 
Hamiltonian s. K$, transforms into the noninertial frame 

‘ according to the usual relation 2 =s l fip--s l o, where 
w = 6xdhdt - c& is the rate of rotation of the coordinate 

frame, o, represents an arbitrary rotation of the coordi- 
nates around B, and i=B/B.Thus, in the rotating frame, 
Eq. (4) becomes” 

$.pl) ~=(+co) *s]$>. 

Writing I$) as I$)=C+(t)I+)+C-(t)I-), where 
I + ) and I - ) are states polarized parallel and antiparallel 
to b^ (i.e., they are eigenstates of a, in the coordinates 
moving with the electron), linearized solutions can be 
found for the transition amplitudes as a function of time 
assuming that at the initial time t= tl the spin is in either 
the + or - state only, so that Cc:, ( tl) = 1. The probabil- 

ity amplitude of transition to the opposite state follows 
after some simple algebra: 

* t c l + z- s C-J 2 t, dt’ y’,(i) 

[i-$(t”) -w,(t”)]dt” 

where w(f) = w, A im,,. This expression clearly shows that 

Ic+12=1c-12, so we consider only C, from now on. 
In order to make further progress we choose to set 

w,=O and further specialize to the regime of strong mag- 
netization in which one may write w(t) in a guiding center 
expansion: 

w(t)= c 
n 

o’“)(t)exp( in l Cl,(t’)dr’), (5) 

where the tifn)‘s are relatively slowly varying functions 
compared to the oscillatory factor; w (‘) is the term stem- 
ming from guiding center motion, and the other terms in 
the series are associated with harmonics of the cyclotron 
motion. The largest terms are w(‘) and w( * ‘). These are of 
magnitude v/L, as can be seen from the expression w= b 
xv. Vb”. Before we evaluate the ~(~~3 explicitly in terms of 
the strongly magnetized electron trajectory, it proves use- 
ful to integrate by parts in order to separate out a small 
oscillatory contribution due to the limits of integration: 

c+(t)=; T i 

w(“)(t’) 
&2+;2)a,(t’) 

.exp[ ic (n+~)&(t”)dt’.] l/I=’ 
I’ = t, 

s 

t 
- dt, (d/dt’)&?(t’) 

tl i(n+g/2)f&(f> 

Xexp[iJl (n+~)IL,odi”] ). (6) 

We neglect the first term because it is small and non- 
secular. By this. we mean that even after many collisions, 
the velocity of the electron remains on the order of the 
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thermal speed, and so w ‘“‘/a, also remains small. Further- 
more, although there is a nearly resonant denominator for 
the n = - I term in the series, the term is still only of order 
rr/(g-2) L(1. It is also true that after any single collision 
the change of the second term of Eq. (6) is small [in fact, 
it is smaller than the first term by O(Z), as we will see]. 
However, over the course of many collisions this second 
term grows secularly in a random walk and hence domi- 
nates the expression for C, over time. Physically, the first 
term represents the effect of fast spin precession in a slowly 
varying magnetic field, which causes small oscillations in 
the z component of the spin as B changes direction in the 
electron rest frame. To make an analogy with the classical 
theory of adiabatic invariants, the exact adiabatic invariant 
is not s, but is instead an infinite asymptotic expansion 
with s, as the lowest-order term. The small oscillations in s, 
represented by the first term of Eq. (6) are due to higher- 
order nonsecular terms in the invariant, and are not im- 
portant in determining the secular change of the invariant. 

We further simplify the expression for C, by neglect- 
ing terms of order ( rL/L)’ and higher. Since w is already 
of O(rL/L) we can therefore neglect the magnetic field 
gradient in the dynamics of the electron orbits and evaluate 
the collisional dynamics in a constant field Bs= B( x0), 
where we choose x, as the center of mass position at the 
instant of closest approach of the colliding electrons (see 
Fig. 1). Furthermore, to lowest order in r,/L, w itself can 
be written as 

w=&,xv- (V&, 

where &=b”(xe) and (Vi),=V&x,) are constant, and the 
velocity v has a guiding center expansion of the same form 
as Eq. (6). Then, keeping only the near-resonant n= - 1 
term in the series over n in Eq. (6)) the expression becomes 

-1 t 
C+(t)= 

J-C bew-4To I, &x-g e-l). (Vi), 1 
rL 

2 
Xe”t’-‘,)(g/2-lL)R,~dtr+0 I( )I z ’ (7) 

where fincO = a,( x0). All other terms in the series give con- 
tributions that are exponentially small because of the fast 
variation of the phase factor in the integrand. 

Finally, (dv (- “/dt) (t) is evaluated in a guiding cen- 
ter expansion in the small parameter E= u,( t,)/bflo, where 
b= 2e2/,u$( tl) is the distance of closest approach, v,( tt ) is 
the initial relative parallel velocity, and p=mm/2 is the re- 
duced mass. Again we consider two electrons, labeled 1 
and 2, colliding in a uniform magnetic field B. In the 
strongly magnetized regime the collision may be pictured 
schematically, as shown in Fig. 1. The electrons spiral in 
tight Larmor orbits toward one another along the magnetic 
field lines, and their mutual Coulomb repulsion perturbs 
the orbits. This perturbation shifts the cyclotron frequency, 
bringing it into resonance with the spin precession, and 
inducing a spin-flip transition. We will determine the tra- 
jectories of the electrons and use them to calculate C, for 
electron 1. The equations of motion for two electrons are 

a 
mji I =e 

(2) 7jg $(x1 -x2)-f it;,XBo, 
(2) 

where 4 = -e/ 1 xt -x2 1 is the interaction potential. The 
center of mass motion can be separated out by transform- 
ing to center of mass coordinates through R= (x, +x2)/2, 
r = x1 -x2, leading to 

mii=-~ftxJfjo, (8) 

mf=2e $ c#(r) -:rxB,. 

Equation ( 8) describes center of mass motion, which is 
just a combination of constant amplitude Larmor gyrations 
and parallel streaming. Since dv’-“/dt is zero for this 
motion, the center of mass motion makes no contribution 
to c,. 

Turning to the equation for relative motion, we solve 
for r by expanding in E using standard asymptotic tech- 
niques. To O(E) the result is6 

i=v,(t) +u, o Re[e ~tn,~(t-r,~+Bo+~e(t)l(~-~~)]+O(~), 
(10) 

where 0, is the initial relative gyrophase, v,(t) is the slowly 
varying guiding center relative velocity, uL o= uI ( tl ) is the 
initial perpendicular relative velocity, and 80 is a O(E) 
slow variation of the relative gyrophase, given by6 

&?(t+-$J’dt’ 
22(f) -;pg 

=o t1 [at’) +pp* ’ (111 

where the function z(t) is the lowest-order z position of the 
guiding center, determined by the solution of the equation 

and p. = x( tt)2fy(t1)2 is the initial impact parameter. 
The time tl is chosen so that the electrons are initially far 
apart, i.e., Ize(t=O) 1 %p@ 

A further simplification can be made by noting that 
dv’ - *‘/dt appears in Eq. (7) only in the combination 

Using the fact that V l B = VXB = 0, this expression can be 
rewritten as 

where uf =u,~iu,,. However, Eq. ( IO) implies that only 
the term involving do- ( - ’ ‘/dt provides a resonant contribu- 
tion at O(E), so to this order we fmd 
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Here an extra factor of 4 appears because electron l’s ve- 
locity equals B+ ff. Thus, to O(E) only the slow time vari- 
ation of the gyrophase contributes to C,. 

Substitution of this expression into Eq. (7)) together 
with Eq. ( 1 l), leads to a simple form for the secular 
change in C, during a single collision, 

1 rL 3BZemie’ e2 zqt’) -4p; 
AC =~--~- 

+ 4(g--2) Bo 320 f12, P [z”(f)+p:15’2 

XeinhW2-l)t’ &‘+()(&+O 2 
1 

Ii )I , (13) 

where 8’ = 6, + flQ(g/2 - l)tl and rL=vl ,/Q, is the 
initial relative Larmor radius. Here we have taken the lim- 
its of integration to P CO in order to determine the total 
change in C, after a single collision. Of course, this as- 
sumes that the plasma is weakly correlated so that two 
particle collisions are well separated in time. 

It is also useful to work with dimensionless distances 
and times, defining ?=tvJ t,)/b, p=po/b, and Z=zo/b. 
Then Eq. ( 13) becomes, after some simple algebra, 

AC, = 

where the function I(x,p) is defined by 

s 
m 

IL&p) = &-‘XI iT2 - j&2 

--SW tp2+z2P2 (15) 

and Z(t) satisfies the differential equation [see Eq. ( 12)], 

with initial conditions z(t== - CO ) = - CO, p(t= - CO ) = 1. 
We note that Eq. ( 16) can be analytically integrated and t 
can be expressed in terms of Z through elliptic integrals 
(see Appendix B) . 

In a few special cases analytical forms for I can be 
obtained: For example, 

I(x,p) = -x2Ko(xp), for p$l, 

I(x,$ =h(x,$e-xg(P), for x)1, 
(17 

where 

g(P)=1 s,id~p==$$-rl, 
and h (x,$ is a function that is neither exponentially small 
nor exponentially large. For head-on collisions, 

I(x,O) ti~xewcTi2)*, for x%1, 

I(x,O) =t+x2 In x+0(x2), for x(1. (19) 

However, for general values of x and p, 1(x,@ must be 
determined numerically. The integral over tin the defini- 

3.0 ,“,““,““,““,““J 

2.0 

1.0 

E 0.0 
-is 
- -1 .o 

-2.0 - x=1.0 
------ 

-3.0 
x=0.01 

-4.0 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

P 

FIG. 3. Plot of I(x,p) as a function of p for different values of x. The 
behavior of I(n,y) becomes singular at p=l, the separatrix point be- 
tween passage and reflection of the two electrons. For x=0.01, 1(x,0) 
C= $ coincides with Eq. ( 19). 

tion of I was performed by transformation of the integra- 
tion variable from t to Z via elliptic integral expressions of 
the guiding center orbit i(Z) derived in Appendix B, and 
then the Zintegral was calculated using the SLATEC7 sub- 
routine DQAGSE. The function 1(x,@ is plotted in Fig. 3 as 
a function of j? for x=0.01 and x= 1. The singular behav- 
ior at p = 1 is due to the effectively infinite collision time at 
the separatrix for the electrons to pass by or reflect from 
each other. The behavior of I(x,p) for large x is also plot- 
ted as a function of x for different impact parameters ;ii in 
Fig. 4, where the numerical results are compared to the 
analytic expressions. 

Equation ( 14) gives the probability amplitude for spin 
flip due to the classical electrostatic collision of two 
strongly magnetized electrons in a weakly inhomogeneous 
magnetic field. By averaging over a Maxwellian distribu- 

-2.0 

-g 
-25 -4.0 
- 
E -6.0 

-8.0 

2.0 4.0 6.0. 8.0 10.0 
FIG. 4. Numerical test of the asymptotic form of jl(x,p) 1 for large x. 
The curves represent asymptotic values given by Eq. (17) and Eq. (18), 
where the function h(x,p) is approximated by h(x,O) = (8rr/9)x.’ This 
form works reasonably well, even for values of p where I is negative. This 
is because the exponential dependence of 2 on x dominates the behavior 
for large x. The numerical results are denoted by +: p=O; 0: p=O.S and 
x:p=2. 
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tion of electrons the average rate of spin flip can be ob- 
tained. This calculation is carried out in Sec. V. 

IV. QUANTUM ANALYSIS 

In this section, the previous assumption of classical 
orbital motion is relaxed. For the strong magnetic fields 
and low temperatures of the experiments on cryogenic elec- 
tron plasmas, the perpendicular mean thermal energy kT, 
can be as low as the spacing of the Landau levels fiQ, so 
quantum mechanics is necessary to describe the orbital 
motion. Moreover, since kT, is then also comparable with 
the energy difference fi$ between spin up and down, a 
spin flip changes the orbital state of the electron apprecia- 
bly. This spin-orbit energy exchange process is important 
for the plasma thermal equilibration, as will be seen in Sec. 
V. Since the electron thermal de Broglie wavelength is 
small compared to the classical distance of closest ap- 
proach, the antisymmetry of the two-electron wave func- 
tion will be ignored, as this approximation will only cause 
an exponentially small relative correction. 

As in Sec. III, we calculate the probability amplitude 
of a spin-flip transition during the collision of two electrons 
in a spatially inhomogeneous magnetic field. The collision 
is described by the two-electron Hamiltonian, 

ri= h+ (e/c)At12 
2m 

+s, .QJx*) + [P2+5+4zl* 

e2 
+s2'.np(x2)+,x,4. 

We also follow Sec. III in assuming that B(x) varies 
slowly compared to the scale lengths associated with the 
electron-electron collision, and so we expand B to linear 
order about an arbitrary point: B = B&+x l VB, where x is 
measured with respect to this point. Although the eigen- 
functions of H are not localized, through a judicious choice 
of the initial states of the colliding electrons, this arbitrary 
point will become the collision center x0 in the classical 
limit, so this expansion is justified on physical grounds. We 
will see that the expansion is justified mathematically by 
the convergence of the overlap integrals that couple the 
initial and final states through the magnetic perturbation. 

In terms of the center of mass position R= f(xi+x2) 
and the relative position r = x r -x2, to the first order in VB, 
the Hamiltonian- expands out to the form k=&, 
+ fire, +&spin + SHorbit + & where 

2 
, 

~~or~it=&(xl) l ~i-$tXBe 

Here,fiPOE (g/2)sZCO= (g/2)(e&,/mc),P,= -i+i(a/aR), 
and p= -ifi(d/dr) are the momentum operators of the 
center of mass and relative motion, respectively. The func- 
tion SA(x) =A(x) - ;Bexx is the correction to the vector 
potential due to the spatial variation in B(x). 

Since the spi; and orbital dynamics decouple in &.,.,, 
are,, Hspin, and SHorbit, these Hamiltonians are not respon- 
sible for the spin-flip transition. The spin-flip transition is 
due only to Hsf. According to Fermi’s “golden rule”, the 
probability per unit time of a transition from state fi} to 
state 1 f} is given by 

a/=$ (fffJ,fII’) 12. (20) 

Here, * 1 i) and If) are the eigenstates of 
Hc, +H,el +ItiT,,i,+ SaTorbit, pf is the density of the final 
states, and the transition conserves the total spin and or- 
bital energy. 

Before beginning the calculation ofJhe transition rate, 
we note that the spin-flip Hamiltonian H,, can be rewritten 
as 

+Zd~~~.(sl+S2)+5a~~~~ . 

+$ppo. (sl-s2)+&fipo* ( 

where W,Y,Z) and (n,y,z) are center ( ,f 

h-s2) 

SI -sz), 

’ mass and relative 
coordinates, respectively. To calculate the transition rate to 
the leading order of VB, we use for the states ( i) and 1 f) 
the states of colliding electrons in a uniform field Be, i.e., 
th: eigenstates of H,, +J?rel+fispin (in the absence of 
&ZZorbit), since SHorbit is of order VB. 

Several simplifications of H,, can now be made. First, 
we note that the operators 3, and L?~ are linearly combined 
in asr, so only one spin can be flipped in the transition. 
This implies that a spin-flip transition always involves a 
spin energy change of magnitude fiC&. Now, the first two 
terms of&couple the spin and the center of mass motion. 
However, this motion is described by kCm, which has well- 
known harmonic-oscillator eigenstates with energies sepa- 
rated by fist, for the X-Y motion, and free streaming for 
the Z motion. Since Fi$,O#fi~, and the parallei electron 
states are unchanged, energy conservation forbids a spin- 
flip transition so the first two terms of I’$, may be ne- 
glected. 
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The third and sixth terms in & can be neglected for a 
similar reason. These terms couple the spin and parallel 
dynamics, so during a spin-flip transition energy conserva- 
tion requires a parallel energy change of magnitude fifipO. 
However, in the strongly magnetized regime this is a large 
change; the initial and final parallel states would have ex- 
tremely disparate wave numbers, leading to an exponen- 
tially small contribution to the overlap integrals appearing 
in the golden rule, Fq. (20). There then remains only the 
resonant interaction between the relative (x,y) dynamics- 
and the spin, which involves the fourth and fifth terms in 
& 

( 2.apo+f aflpo 1 l 6% -sz> 

eg P z-- --e 
2mc 8 I[ 

aBz -io aB, aB, .qJ 
azo 

+ 
( 

a~,-3721 a~, *e” ) 1 
+ (Hermitian conjugate). 

On the right-hand side we have written (x,y) in terms of 
polar coordinates (p&J) and we have introduced the spin 
creation and annihilation operators s^+ and .?-, where 
S(*)=3,,-3,,ays^ 1,-.?2Y>. The term involving 3tZ-& 
cannot induce transitions between different spin states, and 
so can be neglected. Thus, the effective spin-flip Hamil- 
tonian is 

&sfE$Cg -ze-fQ+ 
I 0 ( 

!?!$-aBy-2~~ ,ie $+I 
o a0 0 1 1 

+ Hermitian conjugate. (21) 

It can easily be verified that the term proportional to 
aBJ&, commutes with the operator fz-im/llo, so this 
term conserves total angular momentum in the z direction. 
However, the other term is proportional to field gradients 
expressing the cylindrical asymmetry of the external field; 
and so it is not surprising that this term does not conserve 
total angular momentum. This difference will have impor- 
tant ramifications when we employ Eq. (2 1) in the calcu- 
lation of Fermi’s “golden rule,” Eq. (20). 

However, before we can apply the golden rule to Eq. 
(21) we will require expressions for th: init@ and final 
states that are the eigenstates of H,,-/-H,,i+H,,i,. These 
states can be expressed as the product r,&,(R) 
Xilrdr) I+Qt whzre +L, Clph $relW, and (.q,+J are 
eigenstates of Hem, H,,, and Hspin, respectively. Since the 
center of mass dynamics does not appear and the spin 
eigenstates are trivial, it remains only to find fClr,+ We there- 
fore calculate & for two colliding electrons using a quan- 
tum version of the classical guiding center expansion.3 The 
expansion is most easily derived by first expressing the 
relative Hamiltonian in terms of cylindrical coordinates: 

Since firer is 0 independent, the z component of the angular 
momentum L,=M is conserved, and we look for eigen- 
states of the form (.e!**/ &) $la( p,z)/ &I; where a denotes 
the two quantum.numbers associat_ed with dynamics in p 
and z. Replacing a/&3 by il in HreT yields the reduced 
Hamiltonian for $& ( p,z) : 

-& a2 fi2 a2 pfizo 
~&=---- 

fi2 1 
2pS2 2pap 8p ---+*(p2-p;)2---z 

8P P 

e2. 

where P; = - 2+iV,~0,. 
We will see that the main contribution to the integral 

expression for the spin-flip rate comes from wave functions 
with pi, such that rqL ( pl 5 b, where rpL I J-0 is 
the quantum Larmor radius, Y is the quantum number of 
cyclotron motion, and b is the classical distance of closest 
approach. Physically, p = pl corresponds to the impact pa- 
rameter of the guiding center of a reduced mass electron 
incident on the force center. The wave function $J[~( p,z) is 
peaked near p-e pI, at the minimum point of the centrifugal 
potential of Hrel,[, and &(p,z) falls off rapidly in a dis- 
tance of order the cyclotron radius rq,<pl. Its is therefore 
useful to introduce the variable xl=p-pz in the relative 
Hamiltonian. Expansion of fire1 to second order in rqL/pI 
then yields 

firel=HI(o) +I;T(‘) +$2, +(J 

where 

(22) 

-+3 a2 e2 fi2 a2 1 AjO’ (X/,Z) =- 2p g2+$yYz7--2, gy$@2:~ 

: 91) (X[,Z) = -&2;o -i+gcz)x/, 

fi’qxIz)2p~2x2 : 

2 ?i2 
> 

8 co 1 Pl 0 
+fwx;-- 3 

@PI 

and the functions f and g.arise from Taylor expansion of 
the Coulomb potential, and are defined by 

f(z)= 
e2( pf-2/2) ’ 

(p:+&5’2 

and 

g(z) EE - e2Pl 
(p:+2)3’2 * 

Each term $“’ in this expansion has magnitude of 
order fiiSlco(rqL/p~)n, since xl is of order r4,. Furthermore, 
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it is clear that eigenfunctions of fire, are, in the position 
representation, functions of p through the variable xi: 

hAp,4 =$&A (23) 

where $,, is the eigenfunction of the Hamiltonian of ECq, 
(22), and CY denotes the two quantum numbers, which, 
along with Z, parametrize the state. In this form, fir,, is a 
perturbed harmonic oscillator Hamiltonian in the variable 
xl, so &(x,z) is highly peaked around x =O. 

The unperturbed Hamiltonian @“) (xgz) has eigen- 
states 1 Z,a) (O), which we write in the position representa- 
tion as IZ,o) (O’=Gy(x~)F,K(z). Here, G,(x) is a harmonic 
oscillator eigenfunction with eigenenergy (v+~)+XI,, and 
F&z) is the eigenfunction of the parallel dynamics, with 
energy K. Thus, CL can be represented by the values of v and 
K. The total energy of an eigenstate of Hf”’ is denoted by 
E, and is given by E,= (Y+ $)#iin, + K. (Although E, is 
also a function of I through the dependence of K on 1, we 
drop this subscript in order to save space.) 

Taking 1 &a) (‘) as the base vector and using second- 
order perturbation theory, we obtain a perturbation expan- 
sion for 1 I,a): 

(24) 

where 

anar=Hr,!/(Ea--Ear), 

C,,t = ~~~!h,~~:h/(E,-E,,,(E,--E,,), 
ai 

da= c 
I H(a)t: I 2 

a, Wa--Ea, 1’ 
and where we employ the notation Harat to denote the ma- 
trix element co)(ZolHIZcr’)(o). 

However, to calculate the transition matrix element of 
Eq. (20)) we will also require an expression for I Z* 1,a). 
Although this expression can, in principle, be obtained 
from Eq. (23) by substitution of I& 1 for Z, it is more 
convenient to determine IZ+ 1,a) in terms of IZ,o)(‘) 
rather than 1 I& I,c~)‘~‘. The ket IZ& l,a)“’ is the eigen- 
state of @)t, which is related to *Lo) through a Taylor 
expansion of pi: 

K3w) =I;rlO?x,z) F-&- (pf;;)3,2+o(5$ 
CO 

Taking the term =F (fi/CLSLQ) [e2/( pf + g)3’2] as the 
perturbation, we find that in the position representation the 
kets are related by 

?Q,,JX,Z) =@)(x,z) r g &dg%7)~ (25) 

where 

h _ t (-fi/pf&J [e2/(pf+2)3’21 laac 
aa’ - Wa--Ea~) ’ (26) 

Substituting Eq. (25) in Eq. (24) with I replaced by II 1 
yields 

~~i,,&z)=i&a(x,z) r $ bi$;!(xA +0(x)‘. (27) 

We now evaluate the transition matrix element 
(flHsFI i). Without loss of generality, we take the initial 
state to be 

Ii> =.g + ih&l,Z) / -q , 

and the final state to be 

I.0 =$g $ $+‘r’2) If,;), 

(28) 

(29) 

so that during the transition spin 1 is flipped from down to 
up. Energy conservation at zero order in r,,/p[ requires 
that 

fi 
-$&,o+K= 

Then the zeroth-order parallel energy change is 
~~-~=(~-v~)fi~~~-fi~~~= (Y-VIVA-g/2)fiQ,.Asdis- 
cussed at the beginning of this section, since the z motion is 
very slow compared with spin precession at frequency 
QPo, by far the largest contribution to the transition 
comes from v~=v- 1; then [ (of - K),MI = fipo - St, 

= (g/2 - 1 )fizco ( Qcz,. That is, while the spin is excited 
from down to up, the orbital perpendicular motion pro- 
vides one quantum of energy fiQCo to the spin, and since 
fi$,,O#ti~, the spin also absorbs energy fi( R, - fin,) from 
the parallel motion. Thus, the orbital state jumps to a 
lower energy state with new quantum numbers ( v~,K~,Z~). 

Since a spin ilip from down to up is induced by the spin 
creation operator s^ +) in H,, from Eq. (2 1) we have 

(.f l&If) 

=;g[ -2-1 dz[ dp 

x~:_,,~/(p,z~p~l,(p,z~+ 
c?B, aB,, t?B, 
z---2+ 

o aYo 8YO 

d&T+ I,~~(PJ~MJJ) 9 1 (30) 

where Z,=Zrt 1 is a result of the integral over 8 and the 
matrix element (N2,fi/2IP)f -+V2,fi/2) =fi has been 
used. 
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The inner products appearing here can be evaluated in 
the quantum guiding center approximation by changing 
integration variables from p to xfi The required integrals 
are 

dp $;“, ~,a+ PA P+M PJ) 
= f+m& f”” da i& 1;cr.h IJ) (~r+~dih,(w), 

J--m J --00 

where the integration range in xl is extended to f CO be- 
cause &Jx,z> is highly peaked around x-0. The first ar- 
gument of the barred wave functions appearing in M, are 
evaluated at different positions, xl&, and xP However, 
these positions are related through the equation 

ii 

In order to simplify the evaluation of the integrals, we then 
Taylor expand rj~,I,af(x~+l,z) around xl: 

~,&+q*l,d = 1 1 f-- igl 2 8 - PQJr WcoPz) 

3 

-to ( 2 )I ~~&+Z)9 

where i!= -ik%3/ax, is the momentum operator. Then, to 
second order in rgL/p6 M, is given by 

M, =pl(Z+ l,afl l- 
8 

WIlcoPP’ Ia) 
A 

-I- (Zh Laflxlf -$-lZa)+6(~)3, 
CO 

(31) 

where the inner products denote integrals with respect to z 
and xl of barred wave functions evaluated at the same 
point; for example, 

(Z’a’ I Za) G Jim dz dx $lt(Lt (x,z) &,(x,z>. 

Equation (3 1) can be further simplified since some of the 
terms are negligible. For example, 

(z-lI,aflza>=(ZaflZa)+ $hapt(Za’lZcY)+O z 3 i 1 

where Eq. (25) has been employed, and in the second line 
we have used the orthogonality of I Za) and I la’) together 
with the selection rule v~=Y-~. However, Eq. (26) im- 
plies that h,,t is proportional to S,I so 
(I- l,afl Za) - O( rqL/pI) 3 and may be neglected. Simi- 
larly, one can also show that 

U- Lafl 8 
2(pfi,pr)2 IZa)-O 2 39 i 1 

so we neglect this term’s contribution to Eq. (31) as well. 
Combining Eq. (30) and Eq. (3 1) then yields a simple 
result for the spin-flip transition matrix element: 

f 
~<Zft,jdlZa), 1,=1-l, 

w~fl~~=-~~~ (ii ;; 2i9&) . 

1 X Upfl”+ J&4, lf=Z+ 1, 
(32) 

where a^+ and & are the creation and annihilation operators 
for cyclotron quanta: a^= d-(x1 + i>l/&o). This 
form for ( f 1 J&l i) has a clear physical interpretation. The 
case Zf=Z-- 1 corresponds to the transition dynamics we 
have already described. As one of the electron spin flips 
from down to up, a relative cyclotron quantum is annihi- 
lated by a^, and the z component of the relative orbital 
angular momentum, kl, is reduced by one unit; conserving 
the sum of the spin and orbital angular momentum. How- 
ever, in the second case, Zf=Z+ 1, and the sum of the spin 
and orbital angular momentum is increased by two units 
because the transition occurs in a nonuniform external 
magnetic field with a cylindrical asymmetry described by 
the combination of gradients preceding the matrix element. 
In this case a quantum of cyclotron action is created by (2+, 
but does not go into cyclotron dynamics; since V~ must 
equal v- 1 in order to conserve energy. Instead, two cy- 
clotron quanta are distributed into energy and canonical 
angular momentum associated with a change in the relative 
radial guiding center position, so that the final state still 
has one fewer quantum in the cyclotron motion. This in- 
terpretation follows from the fact that the radial guiding 
center position, i.e., the position of the peak of qra in p, is 
characterized by the combination v- 1;’ so the guiding cen- 
ters end up farther apart by a distance of order rqL. How- 
ever, since the guiding center motion is relatively slowly 
varying compared to the cyclotron dynamics, we would 
expect that such a process is off resonance, and so it should 
give a negligible contribution to the tra_nsition probability. 

The guiding center expansion for &(x,z), Eq. (24), 
can now be employed in order to explicitly calculate the 
matrix elements up to Cl(~~~/p~)~. This lengthy algebraic 
exercise is left to Appendix A. We find that the case 
Zef=Z+ 1 does not contribute, as expected. The other case, 
Z,=Z-1, is given by Eq. (A3), and leads to a relatively 
simple form for the transition matrix element: 

(flHfli> =% 
e3firqL 

2 azo 8p2cfico(8-- 2) 

x (s dz 
F;;*(z) (22-p;/2)Fy)(z) 

(pf+g)5/2 * (33) 
As discussed in Appendix A, this expression neglects terms 
of order (r,dpl) 3 and higher. 

Equation (33) is the transition matrix element for the 
spin of electron 1 to flip from down to up, which upon 
substitution into Eq. (20) yields the transition probability 
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per unit time u{. However, in the Boltzmann analysis of 
the next section, rather than Q{ we need @, the transition 
probability per collision given by a{JK- ‘, where J, is the 
incident flux associated with the initial relative wave func- 
tion of parallel energy K. To calculate J, and the density of 
final states pf of Eq. (20), we impose periodic boundary 
conditions at z= =t L (Lgp~).~ One finds that 
,cI~=L/B-&J,(K~) and J,=u,(K)/& where (@)u~(K) 

= K, and the incident (initial) state and outgoing (final) 
state are taken to be Ii) of Eq. (28) and If) of Eq. (29). 
Finally, we have H= ] AC+ f ‘, where ‘- 

, lt3Bz/c3zol e3rqL 2L 
I AC+ I= g ~P2Ck-2~ -JiGGzq 

X IJ dz 
~~:*(z)(3-p:/2)Fli)(z) 

(p:+w’* 
. (34) 

Since the parallel thermal de Broglie wavelength is 
much smaller than the distance of closest approach a WKB 
solution for F:“(z) is valid. Then, if we further assume 
that K - kril % (g/2 - 1 >fisZ, = 10-3fifi26, a quasiclassical 
expansion of the WKB wavefunction can be carried out, 
and the z integral can be transformed into a time-history 
integral over the classical orbit:3 

J&Ii-l& JLdz F;:‘*(z) (.&pp:/2)F5z) (p:+w2 
= dt z%p:/2 J (p:+w2 

e--i(g/2-l)ixco’~ (35) 

In Eq. (35) the limit f L has been extended to f CC since 
L>p[, and z(t) is given by Eq. (16). 

Substitution of Eq. (35) into Eq. (34) then yields the 
final form for the transition amplitude in the quantum re- 
gime: 

, AC , = I aW~z0 I e3rqL 
f 2 

“co 8~z4g-2) 

X IS & e-ilg/* - 1) cl,@’ 2 - p:/2 

(p:+w* * I 
(36) 

For large quantum number V, Eq. (36) returns to the clas- 
sical result of Eq. ( 13) because rqL approaches the classical 
Larmor radius rL, as may be seen by the energy correspon- 
dence 

V. BOLTZMANN ANALYSIS FOR THE SPIN 
TEMPERATURE EQUILIBRATION RATE 

In this section a collision operator is derived for spin 
relaxation due to electron-electron collisions in an inho- 
mogeneous magnetic field. The plasma is assumed to be 
weakly correlated and the effective spin-flip interaction 
only occurs over a short range of order 6, so only two- 
particle interactions are important, and these collisions can 
be regarded as point collisions. We therefore use the Boltz- 

mann equation to describe the spin relaxation process. 
Since the electron de Broglie wavelength is small compared 
to the average interparticle distance, classical Boltzmann 
statistics rather than the quantum Fermi statistics will be 
used throughout the calculation. 

We first focus on the spin temperature relaxation prob- 
lem for the classical electron motion discussed in Sec. III. 
In this case, the kinetic temperatures TI and Ti, are large 
compared to +X$, and so the kinetic energy of the electrons 
behaves like an infinite temperature heat reservoir supply- 
ing energy to excite the spin motion. For this classical case 
the orbital state of the electron is not affected by the spin 
flip though the spin-flip probability is determined by the 
orbital motion, so the spin-flip transitions from [ +} to 
] - ) and from ] - ) to I+ ) have equal probability. There- 
fore, we may immediately write down the time rate of 
change of the spin population due to collisions: 

where x, is the concentration of electrons with spin state 
] + ) or f - ) in a volume element at position x, where the 
size of the mathematically infinitesimal volume is physi- 
cally large compared with the average interparticle dis- 
tance, but small compared with the scale length of the 
magnetic field inhomogeneity. The spin depolarization rate 
is given by 

vspin= J d3v f(ul JJ~) J 277~0 dpo n f u~I [ AC1 2. (38) 

Here f AC] is given by Eq. (14) and f(u, ,u,) is the two- 
temperature Maxwellian distribution function. A two- 
temperature Maxwellian distribution is employed since the 
perpendicular kinetic energy is an adiabatic invariant, and 
so electron-electron collisions drive the velocity distribu- 
tion to the two-temperature Maxwellian form on a fast 
time scale on the order of the electron-electron collision 
frequency.6 

Directly substituting Eq. (14) for [AC] in Eq. (38) 
and performing the integrals over vl , one obtains 

. Jdu,enp[$) lu,I 

4.J 2wodpo I][ (;-+-‘.p‘Jl’ 

where I is the integral given by Eq. ( 15), and where 
FL(x)= dzkT,&,(x) is the Larmor radius and 
L(x) =[( I/Bc)(~B,/dzc)]-’ is the scale length of the 
magnetic field inhomogeneity. 

Furthermore, Eq. (37) implies a simple form for the 
time evolution equation for the local spin temperature 
T,(x), which is defined by l/T,= (&S/Z)N= (l/%&l) 
x ln(xJx+ ), where S, E are the entropy and energy of 
the spin system: 
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‘?Jx> 2kT,. fiQpo 
- T, =vh kT, “‘spin, 

k--1 
(39) 

where 
- 2 

Y s&=2.5X lO*Y, 2 r](a. 
( 1 

(40) 

Here v,=?r&zi& is the electron-electron collision fre- 
quency, (g-2) is taken to be approximately 0.00231 and 
q(Z) is given by 

(41) 

where we have transformed the integral over velocities 
by introducing the parameter U-=E/& (f&/ig3, 
where Z=i?-J&fico is the mean adiabaticity parameter, 
i& = JikTlr is the relative thermal speed, and 
b=e’/-$$=2e2/kTll is the mean distance of closest ap- 
proach. 

To evaluate the numerical value of q(Z), two integrals 
over p and U, respectively, were performed after the nu- 
merical integration of I. The p integral was calculated nu- 
merically using the IMSLY subroutine DQDAGP with the 
upper integration limit cut off at iJ = 8, which introduces an 
error of less than *0.6%. For the u integral, the integrand 
is a smoothly varying function of u, and so a cubic spline 
interpolation method was then applied by using subrou- 
tines SPLINE and SPLINT in Ref. 10 to obtain the interpo- 
lated integrand. Finally, the u integration was completed 
by IMSL subroutine DQAGS. A careful estimate of the er- 
rors involved in the cubic spline interpolation along with 
the cutoff in the p integral implies an error of less than 
* 2% for the value of r](Z) . 

It is useful to note that for + (g/2- 1) -0.001, 
I[ (g/2 - 1 )/Eu,~ can be approximated by I( O,?) since the 
distribution u1’3 exp( - iuU3 ) is peaked near u = 1. In this 
case a numerical integration yields 

X 
s 

Oc) dF2rrj5II(O,p) 12~61, +O.OOl. (42) 
0 

We then recover the simple scaling of Eq. ( 1); the numer- 
ical coefficients of the two results are within an order of 
magnitude of one another. The function q(Z) is plotted in 
Fig. 5. 

The spin depolarization effect is appreciable in a large 
variety of parameter regimes. As an example, we take 
TI -T/I -20 K, E- 102, B- 10 kG, and L- 10 cm. In 
this case F-8.4X IOU2 and Vspin-9.1X lo-’ (see-‘), cor- 
responding relaxation time v$- 11 sec. However, if B is 
sufficiently uniform or strong so that spins are tightly 
bound to the magnetic field line the depolarization effect is 
negligible. 

FIG. 5. Plot of V(E). For Z20.01, q(Z) is almost a constant [see Eq. 
(Q.)]. For 550.01, v(Z) decreases exponentially since spin and orbital 
motion are out of resonance as Z decreases. This r](Z) curve is valid only 
for 760.1 due to our assumption of guiding center dynamics during the 
electron-electron collision. 

Now, the spin temperature equilibration determined by 
Eq. (39) implies that a thermal equilibrium state is 
reached only when n, =n-, i.e., T,-P CO. Physically, this 
conclusion is the direct’result of the assumption of classical 
orbital motion. The kinetic energy of the orbital dynamics 
is assumed large compared to fiC$,, and serves as an infinite 
heat reservoir for the spin motion. In order to observe true 
thermal equilibrium one must therefore treat the orbital 
motion quantum mechanically. 

Denote the occupation number-of state 1 s,I’) in a vol- 
ume element at position x by f(s,r,x),=x,(x)f(r,x), 
where s represents the spin state and r stands for the local 
single-particle orbital state with respect to the local mag- 
netic field B(x), which is virtually constant inside the vol- 
ume element. The orbital distribution function j’(r) is 
normalized by B,j’( l?) =N, where N is the total number 
of electrons in the volume element. Obviously, x8, the con- 
centration of electrons with spin state s( = =t ) in the vol- 
ume element, is normalizes by &xX,=x+ +x_ = 1. 

The rate of change off due to collisions is governed by 
the following master equation: 

(43) 

- - 
where fib f (S,r,X), etc., and a?! is the transition rate for 
electron 1 scattered from state 1 S$k) to state JsilYi) and 
electron 2 scattered from 1 sJ?J to 1 SjI’j). In Eq. (43)) the 
time derivative is a partial derivative at a fixed position x; 
it denotes the rate of change of the distribution function 
due to collisions. 

Making use of the normalization condition HriFi 
= NXi together with the “detailed balance” symmetry 
relation” I; &&= Bk&,! in Eq. (43), we find a general 
expression for the rate of change of the spin distribution 
due to collisions: 
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Id \ 1-d: d 
;Ti”+ 

=fF (~d!fL?ki,-S,i,)) 
I 

=k C ( C 4Jxk x$( rdf(rf) 
l-i jkf 

-xixjf(ri)f(~j)l 1 
1 

We now assume that si= + and consider the form of this 
rate equation when the golden rule, Eq. (20), is used to 
determine the a’s. As noted previously, the form of Hsr 
implies that in any given two-particle interaction, at most, 
one spin can be flipped, so transition rates like atz,Lf: 
vanish. Furthermore, the form of as, also implies that the 
transition rate for electron 1 is independent of the spin 
state of electron 2. Also, if neither spin is flipped in the 
interaction, another detailed balance symmetry relation 
holds $r$ ,rtransitions involving only orbital changes: 

1 “I J = Zrk+rP+r~~ir, 2 aSirkPsjr/ This follows from the fact rkvrl Siri,Sjrj' 

that the wave functions of the initial and final states sepa- 
rate into a product of a spin wave function and an orbital 
wave function, both of which are members of complete sets 
over the spin and orbital vector spaces. 

Using these relations in the rate equation, several can- 
cellations occur, and we are left with 

x kf(rk)fm -xifmf(rj) I, 

(4.4) 

If, as before, we assume that f(r) is an anisotropic 
Maxwellian distribution function of the form 
exp([--E; (r)/T, ]--[I$ (lY/T,, 11, then we may re- 
write the two-particle distribution function f( r,)f( rl) as 
the product of center of mass (C) and relative (R) distri- 
bution function f,( lY$)fR( l$) with normalization condi- 
tion Zr,cSc( rg) = N and &-;jR( l?&) = N. As we dis- 
cussed in Sec. IV, the center of mass variables do not 
participate in the spin-flip transition. In other words, the 
transition rate is only a function of I?$ and rip Then sum- 
ming over the CM states in Eq. (44) and applying the 
normalization condition, we have 

Further, taking I?$ to be the quantum numbers (I,v,K) 
associated with state 1 i) of Eq. (28) and I$ to be the 
quantum numbers of state If) of Eq. (29) with values 
(ff,v,-,~f) =[1- l,~-- I+--fi(g/2- 1 )st,J, we obtain 

-X+f~[l- l,V- i,K--(g/2- 1 )a,]} 

=&* ,=j 5Y 2 IAC12uz(d. 
m t-1 K=fi(g/2-1)Rco 

x (X-fR(I,V,K) -X+fR[Z- f,v- 1, 

K-%&2- 1 )fi,] 1, (45) 

where the equation a 
+I-I,v-1,K-~(g/2-ll)ng 
- /vu . . . . 

= 1 ACJ 2[u,(~)/2L] has been used [see Eq. (34)]. The sum 
over v begins at one rather than zero because 1 AC] ’ =0 for 
v=O. Furthermore, the sum over K begins at fi(g/2- 1) 
a,.. rather than zero, because, in a transition from -to-t, 
this is the minimum relative parallel energy required to 
conserve energy in the transition. Finally, the sum over I is 
cut off at 0 rather than Y because we consider only guiding 
center dynamics for which pi>rqL. This introduces a neg- 
ligible relative error of order (r&b)’ to the total transi- 
tion probability. 

The sums can be performed when the explicit form for 
the relative Maxwellian distribution is employed: 

- b+fmo K 
fR(hv,K) =A exp -- kT 

i ) k=ll ’ 

where the constant A is determined by normalization con- 
dition X0- i- _ m&?zO~~.OfR(/,v,~) = N. Making the substi- 
tutions 

c -t srp;cr; I ; -+ s,” p(K)dK li 
where P(K) = L/rrrtiv,( K) is the density of states and 
K=-$.$(K), we find that 

A= 
2Nh2 sinh ( fiQ’2kTI ) 

M-&oV,/2wk=,, ’ 

where V~LS2n;o~dp~ is the volume of the volume ele- 
ment. Substituting this expression for fR(I,v,~) in Eq. 
(45 ) yields 

x (x- -x+&,jkT~ +a(g/2-‘%o~~~ll ) , (46) 

where n EN/Y is the electron number density. Finally, the 
sum over Y can also be performed, and with the aid of Eq. 
(36) for f ACj, Eq. (46) can be rewritten in terms of the 
spin temperature as 
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~$kT,(x)=~(l+e~n~~~T~)(l 
5 4 

-,iin,/kT, +A(g/2-l)ilg/kTg -fiilh/kT,y y > (Q) 
SPIW 

(47) 

where the quantum spin depolarization rate v:$ is given 

by “:j:=( ~~)2n~;2sinh(fil:J2~~~ ) 

*I 

-pFLu; 

w21p”$xg/24)n~ 
du,(v,l eexp ___ 

( 1 2kTll 

* E- 2np, dpr I ‘s / [ ($-l)~~,p] j2: (48) 

When we again normalize the integrals as in Eq. (40), we 
obtain 

iiinco/2kT, 

sinh( tiQco/2kTl ) 

‘?+Q)(zJl CO’ 

where q(o) ( QI,) is 

(49) 

co ?fQ)(gn,) = s urn 
du u1’3 exp -iu213 

( 1 

x J‘do 2++[ (;-l)w4[2, 

and the lower cutoff u, is 

u,= (g/2- 1)3’2( P&Jf#. 

Note that ~,~<l, provided that kTll >(g/2-l)fiin,, 
a condition well satisfied in the experiments. In this case, 
q(e) (E,fl,) approaches the classical result n (-i) . However, 
even when u,& 1, Eq. (49) implies that the spin relaxation 
rate is notably suppressed by quantum effects when 
kTI &X&. This is because almost all the electrons will stay 
at the ground Landau level in this case, and they are for- 
bidden to further give up energies to excite the spin flip. 
Aside from the quantum suppression factor in Eq. (49), 
the equilibration rate is also strongly modified by the factor 

( 1 -efi”co/kTl +fi(g/Z- IW@TII -fifipo/kTs 
1 

in Eq. (47), which arises from the self-consistent consid- 
eration for the energy transfer between spin and kinetic 
degrees of freedom. However, if kTI >fifi, and 
kTl, s (g/2- l)fiisz,, one may verify that the spin temper- 
ature equilibration equation (47 ) returns to the form of the 
classical equation, Eq. (39). 

As discussed in connection with Eq. (3), we see from 
Eq. (47) that the spin-flip collisions just calculated cannot 
drive T,, TL and TII toward a common equilibrium tem- 

perature. Instead, they can only drive the plasma to a par- 
tial equilibrium between T, T, and TII such that 

+Qo fikm- lW2, fifipo 
-+ 
Tl TII 

-----~0, 
TX 

(50) 

from which Eq. (3) immediately follows. This is a conse- 
quence of the fact that these collisions conserve an 
N-particle adiabatic invariant, which equals the sum of the 
cyclotron action and the spin component along the mag- 
netic field for each particle. For each binary collision, this 
invariant reduces to the two-particle invariant, 
P ‘2’=~lZ+~2Z+E~ /Q,+Ec, /a,, where Ef and Ef are the 
relative and center of mass perpendicular (cyclotron) en- 
ergies. The invariance of p(2) is evident because for the 
spin-flip collisions discussed in this paper, f$ and one of 
the two spins, say, sti are not changed before and after 
collision, and the remaining part in the invariant, 
s,,+@/~~=s~,+ (~+i)?i, is also conserved, since 
Av= -As,/& For a weakly correlated plasma in which 
the collisions are predominantly binary, one may general- 
ize pc2) to a many-electron adiabatic invariant pcN): 

where the sum is over all the particles. This expression is 
an extension of the many-electron adiabatic invariant 
ZiEil /& derived previously for a system in which the spin 
orbital dynamics is decoupled.3 In such a system the spin 
and cyclotron actions are conserved separately. However, 
an inhomogeneous magnetic field couples the spin and cy- 
clotron dynamics causing an exchange of spin and cyclo- 
tron quanta, which leads to the generalized many-electron 
invariant of Eq. (51). 

Equation (3) follows directly from the statistical 
mechanics of ,ucN) -conserving collisions. As a conse- 
quence of the invariance of p, the equilibrium distribution 
has the form p=Z-’ exp( -fiH+crp’N’), where 
H=Zi(~&+Eil +Eill ) is the total energy and 2, a, fi 
are constants. By rearranging terms, p can be put in the 
form 

p=Z-’ exp C -s~~!&~Z!&), 
i ( s 

where TjI , T, , and T, are related to a and fi through the 
equations /3= l/kTII ; fl-a/flp= l/kT,; fi--a/Q2, 
= l/kT, . These relations are equivalent to Eq. (3 ) . 

Equation (3) leads us to conclude that T, will ap- 
proach TL in this partial equilibrium if 
TII >W2--1TTL z 10v3T, . The fact that Eq. (3) does 
not result in the thermal equilibrium condition 
TI = TII = T, implies that we cannot rely on these spin- 
flip collisions to drive the system to complete thermal equi- 
librium. Complete thermal equilibrium requires that action 
invariants such as p(N) must be broken. One of the most 
important p ‘N’-breaking collisions is that involving colli- 
sional perpendicular and parallel energy exchange without 
spin flip, which has been discussed by another paper.3 For 
a weakly inhomogeneous field, this kind of pcN)-breaking 
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collision is the dominant mechanism and these 
P ‘N)-breaking collisions cause equilibration between T, 
and T,, on a relatively fast time scale. If one assumes that 
T, = T,, during the spin-kinetic temperature equilibration 
process the condition T, = TII = T, follows directly from 
Eq. (50). 

VI. DISCUSSION 

We have seen that in a cryogenic strongly magnetized 
pure electron plasma the equilibration rate between the 
spin temperature and the kinetic temperature is dominated 
by a single process-electron-electron collisions in a non- 
uniform magnetic field. We have calculated this rate for 
the case of a weakly correlated plasma in which the colli- 
sions are uncorrelated binary events, taking into account 
the possibility that the cyclotron motion may be quantized. 
Although many other processes can also cause spin-flip 
transitions, we have estimated the rates for these processes 
to be longer than the typical loss rate of the plasma, which 
is on the order of low5 set-‘. 

We find that the equilibration rate is proportional to 
Lb2, where L is the scale length of the magnetic field 
inhomogeneity. In the experiments the uniformity of the 
magnetic field can be varied over several orders of magni- 
tude simply by confining the plasma at different distances 
from the end of the solenoid, which produces the magnetic 
field. Inhomogeneity scale lengths from L- 10 cm to 
L- lo3 cm can easily be achieved through this technique. 
This suggests that the rate at which the electron spin tem- 
perature approaches the kinetic temperature can be rela- 
tively easily controlled. If this rate is reasonably fast, it 
might be possible to use a measurement of the plasma spin 
polarization as a thermometer for the kinetic degrees of 
freedom. Since the electron spin distribution becomes po- 
larized as kT, falls below +is1,, measurement of the degree 
of polarization of the electron spins could indirectly pro- 
vide the kinetic temperature in a range of temperatures on 
the order of M&/k. For B- 10-60 kG, this temperature is 
on the order of 1 K, which is over an order of magnitude 
below the minimum temperatures which have been mea- 
sured using current techniques. I2 

On the other hand, if the plasma is confined in the 
central region of the solenoid where the field is very uni- 
form, the electron spin distribution is effectively time inde- 
pendent. This suggests a second experiment, in which one 
uses the spin of an electron as a tag in order to perform 
various test-particle measurements. For example, one 
might place a small subpopulation of the plasma in the 
opposite spin state from the bulk of the plasma, and follow 
this population’s subsequent dynamics in order to evaluate 
test-particle spatial and velocity diffusion coefficients. 

Of course, both of these experiments rely on some 
scheme for detection of the polarization state of the elec- 
trons, and in the test-particle experiment a technique to set 
up an initial spin distribution is also required. Fortunately, 
several methods for manipulation and measurement of 
electron spins have been perfected. For example, the phe- 
nomenon known as Mott scattering” has been employed 
for many years in order to both produce polarized elec- 

trons and accurately measure their spin state. A novel 
technique has also recently been proposed12 in order to 
produce large quantities of cryogenic spin polarized elec- 
trons by using the magnetic inhomogeneity due to finite 
solenoid length in a trap of the type discussed in this paper. 
The proposed technique makes use of the idea that the spin 
Hamiltonian s*tip(x) acts as an effective potential in the 
orbital energy, and this potential is of opposite sign for 
electrons of opposite spin. As the spatial distribution of 
electrons thermalizes along each magnetic field line, the 
-spins collect in regions of large Qzp( x) and +spins col- 
lect in the regions of Iow n,(x), provided that the parallel 
kinetic temperature kTll is less than filAfi,l, where hap 
is the difference between the spin precession frequency in 
the strong field and weak field regions. This proposed tech- 
nique could be used to provide copious quantities of cryo- 
genic spin polarized electrons for the spin tagging experi- 
ment, as well as other experiments involving polarized 
electrons. 

Finally, we briefly discuss the effect of plasma rotation 
on the spin depolarization rate. The plasma is confined 
against radial expansion by the vXB force induced by ro- 
tation through the strong applied magnetic field. Through- 
out the paper we have assumed that the plasma rotation 
frequency w, is small compared to R,- ft,, so that we may 
neglect the effect of rotation on the dynamics. This is the 
usual operating regime for the experiments, which gener- 
ally involve low-density plasmas. For a uniform density 
plasma column the density is related to the rotation fre- 
quency through the expression r$= 2w,( fi2, - w,) .I4 How- 
ever, the rotation frequency can at least theoretically be as 
large as R, (although this can be difficult to achieve in 
practice), so it is useful to consider this situation. 

In a frame rotating with the plasma the Coriolis force, 
which acts like a magnetic field, shifts the cyclotron fre- 
quency to the vortex frequency R,--2w, I5 Furthermore, 
the spin precession frequency is Doppler shifted to tip--w, 
Thus, if w, is not too close to GP or to f&/2, our results 
remain valid, provided that one substitutes for Q,--fi, the 
expression 0(2p-,.r2,+w, and substitutes for 7L the effective 
Larmor radius in the rotating frame, rt&/( R,- 20,). For 
o, near fiJ2 the guiding center approximation for the or- 
bital dynamics breaks down, although S, remains an adia- 
batic invariant. For w, near St, the spin precession fre- 
quency is no longer large and S, is no longer an adiabatic 
invariant. This introduces a rather novel density depen- 
dence in the spin depolarization rate, which can be sum- 
marized as follows. Starting at low densities, as the density 
increases the collision frequency increases and the rate of 
spin relaxation increases linearly with density. As density 
increases further, w, increases to O( QP-- 0,) and the eIec- 
tron spin precession (as seen in the rotating frame) goes 
out of resonance with the cyclotron motion, exponentially 
reducing the rate of spin relaxation. However, as w, ap- 
proaches fl, the effective spin precession frequency in the 
rotating frame, tip-w, can become as small as 
(g/2 - 1) R,. Thus, for a narrow range of rotation frequen- 
cies near a2, the rate of spin relaxation should increase 
dramatically due to resonances between the spin precession 
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and any orbital motions having frequencies on the order of 
(g/2- l)Q, such as collisional dynamics parallel to B. 
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APPENDIX A: CALCULATION OF THE TRANSITION 
MATRIX ELEMENTS 

In this appendix we calculate the transition matrix el- 
ements in Eq. (32) for a spin flip from down to up. We will 
evaluate (I-l,a,(&]Za) first. The initial value of a is de- 
fined by quantum numbers (Y,K) describing the cyclotron 
quantum state and the parallel energy, respectively. The 
final value af = [Y - 1,~ - fi(g/2 - l)] is in accordance 
with energy conservation in a resonant transition from spin 
down to spin up. According to Eqs. (23)) (24)) and (27), 
we have, to the second order of rL/pII 

where 

I 

M2= 1 (a~~,+b~~,+c~~,+h~~,)(0)(Za’Ia^Il;r)(o), 
a’ 

M3= c (%n' +b,,,+c,,,)(")(lafIa^IZa')(0) 3 
a' 

M4= C CZ~,~,CZ~~,,~~)(~~' Ia^lZa")("). 
da" 

We now compute M,, lI!f*, M,, and Mb Since K+K, 

the orthogonality of kets I Za) (‘I and I Zaf) (‘I implies that 
M,=O. In order to calculate M,, we note that 
Co’(Za’]a^lZa)‘o)= l&,,y-16~r~ for a’=(v’K’), and 
therefore we only need to calculate the perturbation coef- 
ficients a,/&, bay’, Cap+ /&+, for a’= (Y- 1,K). HOW- 

ever, Eqs. (22) and (23) imply that, in this case a , 
= 0 because (~~vf~~~~--l)=(~~~x~~-l)=O, “t!Cr 
yf = Y - 1. Furthermore, 

b 
5 @to ‘“)(V,K~lX41’V- &K)(O) 

aF ‘=iqf- Kf- K  

+(“‘(K/I f(z) 1 K) co~y,f~x2~y-1)(o) 

Kf-K 

(‘) and we have made 
CO){ YfX Y ) 21 -1)'o' 

= (2 - 1/~)4~/4 and Co’(v,Kf ]x41y - ~,K)(O) = 0 since 
K~#K. Continuing next term in M,, we have 

cqpt = -2 
a1 (Kf--K) h’f-V~)fifiZco.tK~-K,] 

We observe that the numerator of each term vanishes un- 
less ~t=~~fl or ~~vff3 for a,=(v,,K,). But ~r=~~-5t3 
can be excluded, since then the numerator equals 

which is zero for offs. Then, using the matrix elements 
(Y]x~]Y-~)= iy”,, and (YIxIY--I)= $,,, we find that 
the numerator equals 

~~‘Q&&+~KK, +4cfc,) +f 1;2gL&,K,&,” 

for y1 = vf + 1. The result is identical for Y, = v~-- 1, except 
that v is replaced by v- 1. Adding the expressions for 
v=vf f 1 together, we obtain 
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CaP’ = 
-w~co~L’2&/4c y’ y2 

32P/(Kf-K)%? 
-- 

~fiflco+~f-~ mz, 

(v- 1)2 
-I- 

(v-112 y2pL 
fiflL, + Kf- K +---%ii 

1 
+4(Kf-K)V K, 

c &Lfr,%qK 

( 

v v-l 
x 

-~~,+K~-K~+~=“+K~-K, ’ 
) 

Finally, hapa, = <&/2pi( Kf - K) Y by definition. Now, 
combining the above results, we obtain the following ex- 
pression for M2: 

r’ qL 
M2=wV 

2gKj4c 
(2+- “fK/K+3y- l+(Q&j.L~2 

1 

y2 y2 
_I___-_- __. 

+%I, fi!f&+ -fi~co+~f-~ 
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+*f&y1,)] +4 5 gKfK1gKP 

i 
V Y-l 

X 
-fifiR,o+~f-KI +fif&+Kf--K1 ’ 

1 

where Kf--~= - fi( a,-- a,) .Turning to M3, a similar cal- 
culation yields 

&<L 

M3=4(K--KI) 
(2vt l,“f, 

3 gy 
-- -p(f&orqL)2 

y ~P(V 

(v+ 1P (u+lP y2 yz 
X -- 

-fi&o+K--Kf fifico +fif&o+K-K~+fi~co 

efifi”;:--i(lifi~ +“K K ’ 
CO co -1 )I 

Turning to M4, we notice that (Ia’ I&] W) 
= m&,,,,(,,, + , ~6K~~K~. Then 

=CJGi 
a’ 

(a’[li”‘~a~)(a[~“‘~Y’~1,K’~ 

’ [ (Vf--‘)fifico+Kf -K’] [ (Y--V’- l)fif&+~-~‘1’ 

From Eq. (22) the numerator is nonzero only when 
v’- vf = f 1 or f 3. In these cases, the denominator is of 
order 0(+X&)’ because IK/--K’/ and IK-~‘1 must be 
much smaller than fifiR,; otherwise, the inner products in- 
volving the dynamics in z would result in exponentially 
small results. Recalling that H(‘) is of order O(rqLpl), we 
see that M4 is of order O(rqL/pl)4, which is negligible com- 
pared with M2 and M3. 

Finally, combining these results, we have 

fifico+(2%‘--)(K~--,) 
X 

(fif&,,)2-K,-K, 

fifho+ W-l- 1) (K-K,) 
- 

(fifi,)2- (K-K,j2 )I ’ 
(A21 

This expression may be further simplified as follows. As 
shown in the Appendix of Ref. 3, the matrix element gKY 
can be evaluated to the lowest order in (of - K)/K 

= (g/2 - l)#iin,..~ by integration along the classical Z(t) 

orbit: gKp = J & g[F( t)]e-W-K)~~fi [see Eq. (35 )]. In order 
to avoid an exponentially small result, we require that 
W(KJ-K) 2 0( p/u), where p/v is the time scale during 
which the function g[Y( t)] changes and u = m. Then 
we obtain the ordering (~~--~K)/fif&~~ O(rqL/pl) 
x $&?%&, and therefore 

fifl,+~+l)(Kf--K) 
+iin,-- (K,-K)2/fif&o 

Using the same argument, we find that 

and 

fi%o+(2V+1)(K-~r) 

(+%o)2- (K-KI)~ 
=&[ 1+0(Z)], 

so the difference between these two expressions is of order 
( i/fiflcJQ(rq~/pr). This implies that the term in Eq. 
(A2) involving the sum over K~ is approximately equal to 
B,,gKY, (g,,,/fi&,) * O( r,,/~f), which is higher order in 
rqL/p, than the other terms in Eq. (A2). Combining the 
above results yields 

? 3 

(I- l,affa^tI,a) = 
4(K/.I:) $y 

=4ffi&?;J &( ~~~;;~:),. tA3) 
We may easily calculate the other matrix element 

(I+ l,afj a^+ / La) following the same procedure as for 
(I- l,afl a^ 1 I,a). This matrix element can be written as 
M; +Mi-t-M;+Mi+ O( r,J~f)~, where M; to Mi have 
the same form as Ml to M4, except that a^ is changed to a^+ 
and h* nPr is changed to - hzP,. We determine the order of 
magnitude of the matrix elements M; to Mi in order to 
show that they are negligible. First, M; =0 since K&K. 
For M& the term (Za’ I&+ 1 la) yields the selection rule: 
u’=u+ 1, K’=K. Then a apt=O since (IJ~IX~IY+ 1) 
=(v,fxfv+l)=O for v~=Y--1, and 

5 pnfo (Uflf/X4tY+ 1,K) 

bup’=ii-pj- K~-K-2fif&~ + 

f~/x(~/I~~l~+ 1) 

K,-- K - 2fiin, 

( 1 
3 

-0% ) 

since (vf[x’ly + 1) - O(G,). Similarly, we have 
cap - hapI - Q(r,,/pr)3? and therefore Mi 
- O(~,,/P,)~. One may also check that M; 
- O(rqL/pI)3. Turning to M& the term (Za’ ]a^’ [la”) im- 
plies the selection rule Y’ = v” + 1, K’ = K”, and therefore in 
analogy to M4 we have Mi - 0( rqL/pi)4. In conch&on, we 
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find that the matrix element (I+ l,cr,la^+ IZ,cr) is of 
m/pb3, which is negligible compared to 
+Lc+qLd. 

APPENDIX B: EVALUATION OF THE ELLIPTIC 
INTEGRAL EXPRESSION FOR f(z,p) 

In this appendix we obtain a closed-form analytic ex- 
pression in terms of elliptic integrals for the parallel guid- 
ing center motion t(z,p) given by Eq. ( 16). This simplifies 
numerical evaluation of the function 1(x,$. Although al- 
ternative expressions for t(z,p) are possible, the one de- 
rived in this appendix has the advantage that it avoids 
(removable) singularities and is then useful for numerical 
calculations. From Eq. ( 16), 7 can be expressed as 

I f dT 
i(z,p> = 2 _ 

%I 
(B1) 

where Z, is the Zvalue at the distance of closest approach: 

%z= J&, 
I 

for j5>1, 

for p-Cl. 

For ij -0, the integral in Eq. (Bl ) can be easily cal- 
culated, and the result is that F(!ZO) = m 
+ln( &Z+ $5. 

For ;ij#O, we introduce the new variable u= 
$rctan(U/p); then Eq. (Bl) becomes 

du 
9 

032) 

where 

u,,&arctan(.?&/j5). 

We now proceed to evaluate i(u) separately for the p> 1 
and p < 1 cases. 

l.p>l case 

We rewrite i(u) as 

where we define 

s 

u du( - 1/2+sin2 u)” 
PA@)= Q 

A, 
, 

Al= &j%?--i, 

p=2/@-1). 

Notice that Pa2 can be expressed in terms of P, t through 
the identityI 

s 

- 1/2+sin2 u 
PI= 

Al 
du 

=-($+$) j- g+;, 4du 

( 1 1 
=- ‘+A Fl 

2Pqz7 

1 

+7 

mEI -p2 sin u cos u 

4 
, 

where ,?I$, PI denote the first and second kind elliptic inte- 
grals: E,=E(fl,k,); F1=F(P,kl) and 

Barcsin( T “), 

kl =p/ ,,h?$? 

For PAI we use the identity 

1 -,4 hl 2p2 
( - 1/2+sin2 u)A,=p2+2 l-2 sin2 U-(712+2)At’ 

and obtain 

-4 1 
P-1=p2t2 -Jq 

P2 1 
nl+pz$ FI, 

where II1 denotes the third kind elliptic integral: 

Finally, substituting the elliptic integral expression for P, 1 
in Eq. (B3) yields 

25(u) 
P-,(q) =-=&- 

+ 

MT7 4p” 1 
- 

2+p2 E1+ (2+p’)” ITI, CB4) 

where Z(u) =j? tan 2~. 

2.~~1 case 

We rewrite Eq. (B2) as 

where 

s 

udv(-l/2+sin2u)” 
Q,AQ> = 7 

cl A2 

A2- dw, 

2 

-p2P1=-A, tan2u+%P-r+: Pvp (B3) 

Now we relate P, I to elliptic functions. First, we note that 
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1 
ama5--u,=~-~rctan 

i 
1 

q-- 1. 
P 

In analogy to Eq. (B3), we have, for Q,, 

; 
k$Ql= -AZ tan 2v--:Q-,+i (B5) 

where 

-++sin2 u 

‘I= j- A, i2’ (L2 :) 
dv=TE,+ 7-- I;i. 

Here E2 and F2 denote elliptical integrals of the first and 
second kind: E,sE(v,k,); F2sF(v,kz). For 

dv 
Q-,=4 (1-2sin2v)A2=-2n(v,2,k2), 

we have17 

Q-,=2&-2F2- -Sn 
I 
PI tan v+A2 

Pl p1 tan v-A2 ’ 

where II, denotes the elliptic integral of the third kind: 

Ik=+&k’), 

and 

J 
P PI= p+1 

Finally, substituting the elliptic integral expression of Q, 1 
in Eq. (B5) yields 

Q-2W)=2( 1-+2( 1 +;)4+It 

-2 
PI tan v+Az 
PI tan v---h:, ’ 

where Z(v) = - ,C tan 2v. 
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