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A simple perturbation theory of the frequencies and density distortions of the I= 1 diocotron 
mode on pure electron plasma columns is presented. This mode is the dynamical state 
of an off-axis electron column which is orbiting around the containment axis at the ExB drift 
velocity. The theory predicts shifts in the orbit frequency and quadrupole distortions of 
the plasma surface, both varying as the offset squared, in good agreement with experiments. 
The results also apply to a two-dimensional vortex patch in an inviscid fluid with 
circular boundaries. 

I. INTRODUCTION 

Electron columns contained inside conducting cylin- 
ders in an axial magnetic field support electrostatic modes 
varying as exp ( il9 - iwt - ikg) , known as diocotron modes. 
In this paper the diocotron mode with 1= 1 and k,=O will 
be discussed. This mode is simply a displacement of the 
entire column off the cylindrical axis. In this case, the col- 
umn orbits around the cylindrical axis as well as rotating 
about its own center. The I= 1 mode has proven to be 
fundamental to the understanding and manipulation of 
magnetized charged-particle systems, including electron 
beams,* magnetrons,’ Penning traps,3 and cylindrical elec- 
tron plasma traps.’ 

For the experiments considered here,5 the individual 
electron bounce time along the magnetic field is typically 
much shorter (TV- 1 psec) than the wave period (27r/ 
o-20 ,us), and the cyclotron orbit period is much shorter 
than either (r,-0.01 psec). The axial bouncing of the 
individual electrons averages over any z variations at a rate 
fast compared to r-8 motions, and the density is uniform in 
z except for a small Debye sheath at the ends. Further- 
more, the electron gyroradius is negligible compared to the 
radius of the column, and modes with k#O are damped 
and not normally observed unless externally launched. 
Therefore, to a good approximation, an electron can be 
approximated as a point in the r-8 plane governed by the 
two-dimensional (2-D) drift-Poisson equation-s. The veloc- 
ity in the r-8 plane is given by ii= (c/B)EXz? and an 
electron column spins around its axis due to the self- 
electric field. This gives rise to a vorticity Z= (4rec/B)n, 
where n is the density of electrons (in cmp3> and B is the 
magnetic field. 

The analysis presented here also applies to the 2-D 
motion of a vortex patch in an inviscid fluid contained 
within a cylindrical tank. This is due to the isomorphism 
between the 2-D drift-Poisson equations and the 2-D Euler 
equations governing a constant density inviscid fluid.6 
Thus, an initial distribution of fluid vorticity %( r&t = 0) in 
a cylinder will evolve the same as the same vorticity dis- 
tribution in the electron column. 

If a circular electron column is offset from the cylin- 
drical wall axis by an amount D, the electric field from 

redistributed wall charges causes the column to drift 
around the cylindrical axis in addition to the faster rotation 
of the column around its own axis. To order D/R,, where 
R, is the wall radius, a circular column remains circular as 
it orbits. 

This paper presents a simple water-bag (constant den- 
sity) theory of the shape and frequency of the column to 
order (D/R,).2 At this order, the wall charges produce a 
straining field in the column that cause the column to dis- 
tort into an oval shape; this in turn induces more wall 
charges that act to reduce the strain. The distortion is 
calculated using an equilibrium equation for constant vor- 
ticity patches,7 and the distortion and orbit frequency are 
expressed as functions of D and R,, where R, is the patch 
radius. The theory predicts quadrupole density distortions 
and frequency shifts proportional to ( D/R,)2, in good 
agreement with a previous experiment.5 

II. BASIC GEOMETRY AND EQUATIONS 

The geometry is shown in Fig. 1, which depicts a con- 
stant density, offset column orbiting the cylinder axis with 
frequency w. The coordinate system (XC, Y,) has the cylin- 
drical wall axis as its origin, while the (X, Y) system has its 
origin at the column center, so that X,=X+0. The direc- 
tion of Y has been chosen so that it points along the long 
axis of the distorted column. For convenience we use 
scaled coordinates x=X/R, and y= Y/R,, with a similar 
definition for (x, ,v,). In addition, we define the normal- 
ized radius rp= R/Rw and displacement d= D/R, 

For a circular column, the wall charges are equivalent 
to a point image charge at a radius RJd in the direction of 
the offset, with charge per unit axial length of + Ne, where 
the column has charge per length - Ne, and N=n?rRi. 
The electric potential inside the circular column is given by 

+=Ne[ -ln(62+?-2x6)+2 In rp-- l+?/$,], (1) 

where b= I/d-d and ?=x2+y2. The first term in Eq. (1) 
is the potential of the positive image charge, and the last 
terms are the self-potential of the column. Differentiating 
Eq. ( l), and expanding in powers of d, the electric field in 
the circular column is found to be 
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FIG. 1. Geometry of the I= 1 diocotron mode at large amplitude. Here an 
orbiting electron column is shown distorted into an oval cross section. 

E+-~(d+xd’+(l+~~-y2)d3+Y-; 
w P 

-yd2-2xyd’+**.+$ . 
P 

(2) 

Again, the last term is the self-field, which causes the col- 
umn to spin about its own axis, The other terms are from 
the image, which to order d’ are constant over the column. 
These fields cause the column to orbit around the cylinder 
axis while maintaining a circular shape. In order d2, the 
image field produces a “straining” field at the column, and 
a circular column is not in equilibrium. 

To be in equilibrium the boundary shape must not 
change with time in the rotating frame. Since electrons 
drift around potential contours, this implies that the 
boundary shape must mat.ch a potential contour in the 
rotating frame. The second-order image field distorts these 
potential contours from being circular, and therefore dis- 
torts the column shape. We model this distortion as a 
quadrupole charge distribution on the surface of the col- 
umn, as 

SN( e) de 
-= -q2 cos 28 G. N (3) 

Here, 6N is the number of surface charges in angular ex- 
tent de. Note that the distortion is described in the frame 
(x,y) centered on the electron column. This is an improve- 
ment over a previous nonlinear perturbation theory of this 
diocotron modeT8 which uses the cylinder axis as the coor- 
dinate center. In the (x,yC) frame, large perturbations 
would be needed just to model t.he column offset. 

The quadrupole surface charge on the column causes a 
redistribution of wall charges. The calculation of the field 
due to the quadrupole image is somewhat tedious, but can 
be simplified using the method of inversion.9 This tech- 
nique implies that in 2-D, the image potential (pi due to 
wall charges can be calculated from the potential 4 with no 

wall at all by 4i(rC,e,) = -+( l/r,e,) -Q In & where the 
subsc.ript c refers to a coordinate system centered on the 
conducting cylinder, and the net charge per length in the 
cylinder is Q. Assuming the surface charge of Eq. (3) lies 
on a circle of radius rp, the field outside the column due to 
the quadrupole surface charge with no wall is 

=i q2Ner$ 
< cos 20,-2dr, cos O,+& 

r (e+d’--2dr, cos OJ2 1 ’ “) 

where (r,(9) are centered on the column. The method of 
inversion gives 

@‘(r,e,) =-i qzNer”, 
( 

cos 28,-2dr, cos e&d”< 
(1 +a$--2dr, cos 0,)’ e f 

) 
(5) 

since Q=O for the quadrupole surface c.harge. From Eqs. 
(4) and (5 ) , the electric field due to the quadrupole charge 
and its image is 

1 
--(x2--y’)~q~d~+...+Iq?~ 

P 

1 y 
y~q2jp+2xy~q~d~+...-2q27 

(6) 
. 

P 

These equations are to order &, since we will find q2 is 
order d2 in the next section. The first terms in Eq. (6) are 
from the quadrupole image charges, which act. to reduce 
the strain from the point image, and the last term is from 
the self-field. The total electric field [the sum of Eqs. (2) 
and (6)] describes the velocity field in the column, since 
uX=cE,JB and Us= -cEJB. 

Ill. EQUILIBRIUM SHAPE AND FREQUENCY 

The column must have a shape that is in equilibrium in 
this velocity field. Moore and Saffman’ found that a con- 
stant vorticity patch with an elliptical boundary is an exac.t 
equilibrium solution in an external velocity field 
U= (~,,a,) of the form 

u,=sY, u), = sx, (7) 
where s is the straining rate. (This result is a generalization 
of Kirchhoffs rotating elliptical vortex.“) Furthermore, 
they derived a relationship between the boundary shape 
and the strain rate and vorticity of the patch. The bound- 
ary is parametrized by y=cr/h, the ratio of the major to 
minor axes of the ellipse, which is related to the quadru- 
pole moment by I>Z 1 +q2, to first order in q2. In terms of 
the symbols used in this paper, the equilibrium of Ref. 7 is 
specified by 

s(y+l)/(y-l)+fw=(ii-20)y/(~+l). (81 

3982 Phys. Fluids B, Vol. 4, No. 12, December 1992 K, S. Fine 3982 

Downloaded 08 Aug 2005 to 132.239.69.90. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Here, the vorticity patch is stationary in a frame rotating at 
a rate w around the cylinder axis, and the straining field is 
also stationary in this frame. The vorticity, i, is measured 
in the lab frame. Expressing this relation in terms of the 
quadrupole moment and linearizing in q2, the equilibrium 
equation becomes 

2s= ($z-2w)q2. (9) 

The frequency w and straining rate s can be calculated 
from the velocity field. The orbit frequency is 

UY c&z 
6j=-= -m=“, 

D 
(10) 

where the nonconstant terms in the velocity average to 
zero over the column. Here, 0,=22Nec/BR$ and is iden- 
tical to the frequency found in linear theory.” The orbit 
frequency is different from wt due to two effects: an in- 
crease in frequency by w,d2 due to the point image being 
closer to the column than linear theory assumes, and a 
decrease in frequency by -&q2$ due to a reduction in 
the electric field from the spreading of charges in the 8 
direction as the column distorts. 

The external straining rate can be found from the im- 
age velocity field, that is, eliminating the self-field in Eqs. 
(2) and (6). The strain is 

au, 

'=dx=-BR, ax 
-q(d2fq2e), (11) 

where higher-order terms are neglected. If Eqs. ( 10) and 
( 11) are substituted into Eq. (9), the quadrupole moment 
can be expressed in terms of d and rY If q2 were order d’, 
then the only solution is q2=0. Assuming q2 is order d2, we 
find 

(12) 

If Eq. ( 12) is substituted into Eq. (IO), the frequency shift 
is found to be 

W--w1 l-26 
ol=wd2, I (13) 

where higher-order terms have been neglected in both Eqs. 
(12) and (13). 

IV. COMPARISON TO EXPERIMENT 

In a previous experiment,5 the quadrupole moment of 
an electron column was measured for a range of column 
radii and offsets. The experiments were with approximately 
constant density columns, so the results of the water-bag 
approximation used here should be relevant. The normal- 
ized quadrupole moment q2, for a 2-D charge distribution 
p ( XJ) , can be calculated from 

J(y2-x2)p(x,ddx dv 
q2=.r(x2+y2)pLw)dx dv ’ 

where the (x,y) coordinate system is as shown in Fig. 1, 
with they axis lying along the major axis of the column. If 
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FIG. 2. Measured quadrupole distortion over d* versus column radius 
compared to Eq. (12) (solid line). 

an initially circular column of radius R, is elongated by a 
small amount A along they axis, and shortened by A along 
the x axis, then q2 =: A/RP 

In the experiment, q2 was measured as a function of the 
offset d. The measured q2 was found to vary approximately 
as d2 up to the largest measured offsets (d-0.3). In addi- 
tion, each measured q2 was divided by the measured d2 and 
averaged together for each radius column. The average 
value of q2/d2 is plotted versus column radius in Fig. 2. 
The prediction of Eq. ( 12) is plotted as a solid line. It can 
be seen that there is good agreement, so that Eq. (12) is a 
good fit to the data over the entire experimental range. 

The experiments also measured the mode frequency 
versus column offset, w(d), which defined a small- 
amplitude limit wo=a(d=O). In all cases, we found 
Aw=:w(d) --000cd2, as predicted by Eq. (13). In Fig. 3, 
we plot the experimental data of Fig. 5 of Ref. 5 as 
(w-wc)/~&~. The curve in Fig. 3 is (w-ol)/old2 from 
Eq. ( 13). Note that the theory predicts a negative fre- 
quency change for rp > l/ @, and this was observed for the 
largest radii of d=0.76. 

It should be pointed out that in the experiment, oc is 
the measured small-amplitude limit, which is about 10% 
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FIG. 3. Measured fractional frequency shift over d* versus column radius 
compared to Eq. ( 13) (solid line). 
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higher than the predicted linear frequency wl. This is due 
to the effect of the finite length of the column. Essentially, 
the electric containment fields at the ends have a radial 
component which gives an increase in the column-averaged 
angular drift frequency w. At present, there is no theory of 
this effect at large amplitude. Presumably, the finite length 
frequency shift oo-o1 also varies with d, so the compari- 
son of Fig. 3 may be inaccurate by about 10%. 

V. SUMMARY 

In summary, a simple perturbation theory of the non- 
linear I= 1 diocotron mode for electron columns was de- 
scribed that is in good agreement with measured distor- 
tions and frequency shifts. The theory also applies to a 
vortex patch in an inviscid fluid interacting with a circular 
wall. 
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