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A technique is presented for measuring the parallel energy distribution of magnetically 
confined electrons in a cylindrically symmetric pure electron plasma. In essence, the technique 
measures how many electrons are energetic enough to escape past applied confinement 
potentials. The technique does not require any secondary magnetic fields. Simplified variations 
of the technique are also presented which can be used at the expense of some loss of 
information. These techniques have been successfully used in three experimental contexts. 

I. INTRODUCTION 
Single species plasmas have been studied for some 

time, both experimentally and theoretically.’ Much of the 
recent experimental work has been performed on pure elec- 
tron plasma devices with cylindrical geometry.2*3 Radial 
confinement of the plasma is provided by an axial magnetic 
field, and axial confinement is provided by electrostatic end 
potentials. The devices are typically run in cycles, with the 
electrons being axially dumped at the end of each cycle. By 
measuring the dumped electrons with a radially movable 
collector, one can determine the density profile of the 
plasma. This density data provided the basis for much of 
the early work on these devices. 

However, a detailed understanding of these plasmas 
often requires a knowledge of the temperature or distribu- 
tion function of electrons moving parallel to the axial mag- 
netic field. Two major problems arise when developing a 
diagnostic for these quantities: First, the analysis of the 
dumped electrons is complicated by the fact that the elec- 
trostatic potential energy in a pure electron plasma is al- 
ways much greater than the average electron kinetic energy 
kT. This means that when the electrons are dumped their 
energy is largely determined by the plasma potential, 
rather than by the details of the original distribution func- 
tion. Additionally, the diagnostic development is con- 
strained by the need to maintain cylindrical symmetry to 
avoid degrading plasma confinement. 

In this paper we present a technique for measuring the 
parallel energy distribution function, giving TII (r) . Essen- 
tially, we measure how many electrons can escape past 
various applied confinement potentials. A computer- 
assisted analysis of collected charge taken as a function of 
both radius and confinement potential allows us to remove 
plasma potential effects and extract the desired distribution 
function. Cylindrical symmetry is maintained by employ- 
ing existing cylindrical electrodes to apply the analyzer 
potentials. We also present simplified variations of the 
technique for special applications. These techniques have 
been successfully used on three different experiments. 

II. EXPERIMENTAL DEVICE 
The cylindrical electrodes of a typical pure electron 

plasma device are shown schematically in Fig. 1 (a). The 

electrodes are immersed in a uniform axial magnetic field B 
and a vacuum of lo-” Torr. The cylindrical conducting 
wall is divided into rings of various lengths. The injection 
and containment rings Gl and G3 are normally held at 
large negative voltages, and the remaining rings are usually 
grounded. The machine operation normally follows an 
inject-hold-dump cycle, shown in Fig. 1 (b). To start a 
cycle, ring Gl is switched to ground potential, allowing 
electrons from a negatively biased spiral filament to fill the 
region between the filament and G3. Ring Gl is then re- 
turned to a negative potential, trapping the electron col- 
umn. While the plasma is confined, the various rings be- 
tween Gl and G3 can be used to monitor wave activity in 
the plasma or to apply electric fields to the plasma. 

After a variable time, the electrons are dumped by 
grounding ring G3. The electrons move along magnetic 
field lines and are collected either by a radially movable 
probe (giving the z-integrated density at a particular ra- 
dius) or by a plate (giving the total number of electrons in 
the device). Typical parameters are electron density 
n ‘y 10’ cmM3, electron thermal energy kT= 1 eV, plasma 
radius R,- 1 cm, and axial magnetic field B=40-675 G. 
However, these parameters can vary significantly in differ- 
ent devices. For example,4P5 in a device with a supercon- 
ducting 80 kG magnet, n 6 10” cmm3, 0.001 eV<kT<200 
eV, and Rp-0. 1 cm. 

Much of the utility of these devices stems from their 
extremely long confinement times.6 This feature makes 
these devices especially suitable for controlled studies of 
cross-field transport, since the background transport is 
small. The confinement of electrons in currently operating 
devices (with neutral pressure P, < lo-’ Torr) appears to 
be limited by small electric or magnetic field asymmetries 
associated with construction imperfections. These back- 
ground field errors cause electrons to drift radially and be 
lost to the wall. When care is taken to avoid construction 
asymmetries, the confinement improves.6 When additional 
asymmetries are deliberately applied to the plasma, addi- 
tional radial transport is observed.’ Field asymmetries and 
asymmetric resistive walls have also been shown to affect 
the stability of these plasmas.8P9 It is thus highly desirable 
to maintain cylindrical symmetry in the design of these 
devices. 
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FIG. 1. Experimental device and timing sequence. (a) Schematic of con- 
tainment electrodes. The plasma is confined between cylinders Gl and 
G3. (b) Experimental timing sequence for Vo, (t) and Vo,( t). The volt- 
age applied to G3 has both an analysis pulse and a dump pulse. 

The desire to maintain cylindrical symmetry and avoid 
perturbing fields has, in practice, limited the diagnostics on 
these machines. As mentioned above, the plasma density 
can be obtained by collecting electrons dumped at the end 
of each machine cycle. One may also pass the dumped 
electrons through a spatially varying magnetic field prior 
to collection, to obtain information on the average energy 
kT, of the electron motion perpendicular to the magnetic 
field. This is sometimes referred to as a magnetic beach 
analyzer.3”0*11 While this technique is useful, it does re- 
quire the addition of an analyzing magnetic field to the 
device. Since the energy distributions of electrons moving 
perpendicular and parallel to the magnetic field lines are 
not necessarily the same, the T, measurement is comple- 
mentary to the TII measurement described here. 

The rings within the confinement volume may be used 
to launch and detect plasma waves and also to measure the 
total charge per unit length of the plasma column.293P7-9 
Typically, some of the rings [e.g., ring Sl in Fig. 1 (a)] are 
divided azimuthally into sectors, to enable launching and 
detecting waves with nonzero azimuthal mode number. 
This wave data can give some indication of the parallel 
electron temperature via parameter fits to the electron 
plasma wave dispersion curves.8’12 However, this technique 
gives a weighted radial average of T,l which is not generally 
sufficient for detailed comparisons between theory and ex- 
periment. 

Attempts to obtain information about the parallel ve- 
locity distribution from the dumped electrons are compli- 
cated by the large plasma potential 4Jr) characteristic of 
non-neutral plasmas. For example, it is easy to show that 
for a pure electron plasma column of radius R, bounded by 
a grounded cylinder of radius R, 
kT= (Rp4Ab) [ 1 + 2 ln(R/2Rf?], 

4&m/ 
where q is the electron 

charge and ;1, E (k T/4Pnq ) is the Debye length. Since 
experimentally interesting plasmas have R/AD) 1, they 
also have q&,( 0) )kT. When an electron is dumped, it will 
increase its parallel energy by approximately q&. Since this 

energy is large compared to kT, varies with radius and 
time, and depends on the radial density profile, one might 
expect that extracting information about the electron’s 
original parallel energy would be a hopeless task. However, 
with the data collection and analysis techniques presented 
here, one can in fact obtain most of the original parallel 
electron energy distribution at all radii. Further, the tech- 
nique does not require modification of typical machine ge- 
ometries. 

III. DESCRIPTION OF THE DIAGNOSTIC AND 
ANALYSIS MODEL 

To measure the electron density, all of the electrons in 
the machine are dumped and collected at the end of a 
machine cycle, by switching the confinement voltage on 
ring G3 to ground. To measure the parallel energy distri- 
bution, we measure the number of electrons which escape 
past a lowered, but nonzero, confinement potential. In 
practice, this requires a two-step dump, as shown in Fig. 
1 (b). First, the confining voltage on G3 is switched to a 
selected value V,. This allows electrons with parallel ki- 
netic energy exceeding some value to escape and be col- 
lected on the radially movable collector, giving a measured 
charge Q,. The remaining electrons are dumped shortly 
afterwards to prepare for a new machine cycle. The value 
of V, is changed slightly on subsequent machine cycles, 
giving Q,,( V,). This procedure is repeated with the col- 
lector at several radial positions from r=O to the cylinder 
wall at r= R. A complete raw data set thus gives us the 
function Q,,, ( r, V,) . 

We note that applying a voltage V, to G3 gives a con- 
finement potential 4, which is somewhat less than V, due 
to the finite length of G3. The raw data needs to be cor- 
rected to account for this. For a given applied voltage V, 
the confinement potential 4, will vary with radius r. The 
map from the set of V, values to a set of 4, values will also 
therefore depend on radius. However, later on in the data 
analysis we will need to know how Q,,, varies with r for a 
constant value of 4,. Thus after the radially dependent map 
V,+, has been applied to the data, we interpolate be- 
tween the Q,, and 4, values so that, at each radius, we 
have Q,,, values at the same set of confinement potentials 
#,. With these corrections, we obtain our basic data set of 
Q,,Cr94da 

We now discuss how the parallel energy distribution 
function F( r,E) can be obtained from the Q,,( r,&) data. 
A discussion of the assumptions inherent in this analysis is 
given in Sec. VI. Consider a cylindrically symmetric elec- 
tron column of length L and electron density n(r) before 
any charge escapes. With the radial collector centered at 
radius r, the charge it collects for a given 4, is 

Qe,,Cr,dd =qL s dA’n(r’) Jm ~W’,E’), (1) 

where S dA’ is an integral over the collector area which is 
centered at r. Here, F(r,E) is the parallel velocity distri- 
bution function J; written in terms of energy; i.e., 
F(r,imui) = f(r,vll) J2/m. The number of particles be- 
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tween E and E+dE is therefore E-lnF(E)dE, and 
I’,” (dE/@) F( E) = 1. For the second integral in Eq. ( 1) , 
the lower integration limit E( r,4,) is the minimal electron 
kinetic energy required to escape over the confining poten- 
tial 4, and is given by 

E(r,#,) =dh--~p(r,4c) I, (2) 

where &p(r,#J is the plasma potential produced by the 
electrons that remain confined. The plasma potential r&, 
and thus the electron kinetic energy E are evaluated at a 
plane midway along the axis, away from the end regions 
where the potential is varying with z. 

When the collector size is sufficiently small Eq. ( 1) can 
be approximated as 

Q.&,+c)=QW J; +J’l, (3) 

where Q(r) = qALn (r) and A = JdA’ is the area of the col- 
lector. We shall assume a small collector size and employ 
Rq. (3) from here on. The plasma potential in Eq. (2) may 
be obtained from Poisson’s equation: 

(4) 
with boundary conditions #JR&,) =0 and (d&i 
dr) UM,) =O. 

By differentiating Eq. (3) with respect to E, we obtain 
the distribution function: 

F(r,E)=-@-& 

=-JE(l-$)-‘-&J+). (5) 

To use the first form of Eq. (5), we need to know Q, as a 
function of E. The data set, however, gives us Q,, as a 
function of the confining potential 4, We thus require a 
map of 4, onto E=q(4,-+J. Finding this map is the 
central difficulty in doing energy analysis for non-neutral 
plasmas. The necessity of this map stems from the fact that 
the analyzing potential in this situation is #e-&,, whereas 
the experimentally controlled potential is +c The map can 
be obtained from the data set which gives us Q, as a 
function of r for each value of +c These data allow us to 
numerically integrate Eq. (4) to obtain &p(r) for each 4, 
This in turn allows us to construct the required map of 
(P,+E for each r. The same information is required to use 
the second form of Eq. (5)) which requires knowledge of 
4@A- 

IV. RESULTS 

The results of the analysis of some typical data are 
shown in Fig. 2. The data set consists of Q, measurements 
for 125 values of 4, at each of 35 radial positions. Figure 
2(a) shows Q, as a function of the experimentally varied 
potential energy q& for three of the radial positions. Here, 
Q,(~,c$,) is normalized to Q,=Q(r=O)=Q,,(r 

=O,+,=O) and the radius r is normalized to the wall ra- 
dius R. At the highest values of qc$n all the electrons are 
confined. As 4, approaches zero, more and more of the 
electrons have sufficient energy to escape and be collected. 

This data set also gives Q, as a function of radius for 
any value of 4,. With these data we can determine the 
amount of charge left in the machine, QleR(r,4J 
E Q( r) - Q,( r,+,), as a function of radius, and thus we 
can calculate & from Eq. (4). Figure 2(b) shows plots of 
Q&/e0 for three representative values of q#c When the 
data for a particular value of 4, is integrated radially, we 
obtain the plasma potential & as a function of radius pig. 
2(c)]. If this procedure is carried out for all values of 4, 
we obtain &,( r,+,). This determines the required map of 
#,+ E. In Fig. 2(d), we plot & vs 4, for three radii. 

At this point we may plot Q, as a function of E. This 
is shown in Fig. 2(e). The parallel energy distribution 
function, F(E), is then obtained by employing Eq. (5). 
For display purposes (i.e., to keep the normalization con- 
sistent with the other figures) we multiply F by Q/Q, and 
plot ln( Fe/Q,,) vs E in Fig. 2(f) . For energies E > 1 eV, 
the curves are roughly straight lines, indicating a near- 
Maxwellian distribution of energies; i.e., F c exp( -E/ 
kTII). Fitting straight lines to these curves then gives 
T,,(r). The reasons for the failure of the technique at low 
energies are discussed in Sec. VI. 

An example of T,,(r) obtained in this way is shown in 
Fig. 3, along with the measured density profile n(r). As is 
typical for these electron plasmas, the temperature is seen 
to be low in the center and to rise near the edge. We have 
normalized the curves by their maximum values. Central 
(r=O) values are n,=5.66~ lo6 cmm3 and r,=O.46 eV. 

These normalization values agree closely with values 
obtained from wave dispersion data. The dispersion curve 
of the azimuthally symmetric electron plasma wave (i.e., 
Trivelpiece-Gould13 wave) is obtained by observing the 
frequencies of standing waves in the plasma column. A 
short tone burst is applied to ring Rl and a receiver is 
connected to ring R2. As the tone-burst frequency is slowly 
swept, peaks in the received signal indicate the standing 
wave frequencies. For a column of length L, the standing 
waves occur at wave numbers k=nv/L, where n= 1,2,3... . 
From this information, we can construct the dispersion 
curve. 

The standing wave frequencies for a Maxwellian 
plasma column with arbitrary density and parallel temper- 
ature profiles can be obtained theoretically by numerically 
solving an eigenvalue equation.14 If the normalized density 
and temperature profiles are known, the absolute density 
and temperature may be adjusted to obtain a best fit to the 
experimental dispersion curve. When the normalized den- 
sity and temperature profiles of Fig. 3 are used, this 
method gives an absolute central density and temperature 
of no=5.84x106 crne3 and T,,, =0.45 eV, respectively. 
These values agree well (within 3%) with the directly 
measured values. In contrast, if the same relative density 
profile were used but a flat temperature profile were as- 
sumed (i.e., one with no radial variation), a best fit to the 
dispersion data would give n,,=7.68~ IO6 cmm3 and 
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FIG. 2. Measured density data, and derived potentials and energies. (a) Measured escaping charge Q, versus applied confinement potential 4, at several 
radii. a is normalized to Qa=Q& r=O,#,=O). (b) Remaining charge versus the normalized radius, for several confinement potentials 4,. (c) Plasma 
potential dp versus radius. dp is calculated from the data of (b), using Eq. (4). (d) Calculated plasma potential dp versus confinement potential 4, (e) 
Measured & as a function of calculated E=q(t$,-&,). (f) Resulting energy distribution function F(E), normalized by Q/Q,. 

T,=O.58. In this case, the agreement with the directly 
measured values would be poor. Thus the dispersion data 
corroborate the directly measured temperature profile. 

V. VARIATIONS OF THE TECHNIQUE 

As we stated above, the central difficulty in using this 
technique is obtaining the map 4,-E, i.e., the relation 
between the (corrected) applied potential and the effective 
confinement barrier. We experimentally control the poten- 
tial 4, but the data are understood in terms of the confine- 
ment barrier I$,-#~ Obtaining the map requires a large 

data set and generally necessitates the use of a computer. 
In many cases, it is desirable to have a simpler approach, 
even at the expense of some loss of information. 

The simplified techniques we present here analyze only 
the first particles which escape from the center of the 
plasma. The plasma potential &p(r) is not changed signif- 
icantly by the escape of these first particles, so d$/d$czO. 
Then, Eq. (5) gives the tail of F(r=O,E) from a measure- 
ment of Q,(r=o,~$,) vs 4, with only the constant 
&p( r= 0) needed to relate E to 4, 

Even more simply, if we assume that the parallel en- 
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FIG. 3. Experimentally obtained density and parallel temperature pro- 
files, normalized to their maximum values. The dashed portion of the 
temperature curve is unobtainable, but is specified to be flat for the pa- 
rameter fit. 

ergy distribution is Maxwellian; i.e., 

F(r,E) = (s-kTII >-“2 exp( -E/kT,,), (6) 

then the second integral in Eq. ( 1) can be evaluated, and 
one obtains 

Q&r,&) =qL I dA’ n(r’)erfc - f (7) 

where erfc is the complementary error function. When 
E/kT,, R 2, one flnds from Eq. (7) that 

dln(Q=) -1.05 

d(q+c) =7q (8) 

to about 5% accuracy. Equation (8) does not assume a 
small collector size, except that the length scale for radial 
temperature variations must be small compared to the col- 
lector size.4 

In addition to simplifying the data analysis, this tech- 
nique also allows for a simplification in the way the data 
are obtained. Before we switched the confinement voltage 
on G3 to a value V, and then measured Q, for that value. 
Here, we slowly ramp the confinement voltage toward 
ground and measure both Q, and V, versus time with a 
transient digitizer. The required & vs V, data can thus be 
obtained from a single machine cycle. Note that this 
method can only be used to obtain data on the first parti- 
cles to escape from the plasma. The restrictions on ramp 
time discussed in Sec. VI prevent us from using the method 
with the bulk of the escaping particles. 

Data obtained with this technique are shown in Fig. 4. 
We plot Q,,Cr=W,)/Qtot vs V, for E/kT,,> 1, where 
Q,, = 2?rqLS$rn (r)dr is the total charge initially trapped. 
For this experiment, the confinement ring is long enough 
so that 4,= V, to good approximation (i.e., the confine- 

; 
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FIG. 4. Escaping charge QJQtOt versus confinement voltage V, on 
linear and logarithmic scales. Q,, is the total charge initially trapped. 

ment potential 4, does not vary with radius as it does for 
shorter rings). The solid curve shows Q,/Qt,, increasing 
from zero as V, approaches the plasma potential less a few 
kT,,. The dotted curve shows the logarithm of Q&Q,,,. 
The logarithmic data are essentially straight over about 2 
decades, until so many charges have escaped that $, begins 
to change. The slope of the straight-line region gives 
T,, ~7.9 eV from Eq. (8). At these high temperatures, it is 
relatively easy to obtain 2 or 3 decades of exponential sig- 
nal. At temperatures below low2 eV, less than 1 decade 
may be obtained due to amplifier noise, and more sophis- 
ticated fitting techniques4 are required to utilize the data 
inherent in the nonexponential region to obtain TII. 

This simplified technique avoids the task of finding & 
as a function of 4,. However, since 4 varies as electrons 
escape, only the tail of the distributitn can be obtained 
before the change in & becomes significant. Furthermore, 
the electrons which first escape come mostly from the re- 
gion rs 6;1, since the parallel kinetic energy required to 
escape [see Eq. (2)] is smallest near the axis. Thus, the 
simplified technique can only measure the tail of the dis- 
tribution near the axis (i.e., uII>U and rS 6d,). For some 
applications only F(ull) near the axis is required, and the 
simplification in the technique more than outweighs the 
loss of information. Also, the data are obtained from a 
single machine cycle. This single-shot temperature analysis 
is particularly useful when the “hold” portion of a machine 
cycle is very long, as it sometimes is in these experiments. 

These simplified techniques have been employed suc- 
cessfully on two pure electron plasma apparatuses. The 
experiments involved the measurement of the equilibration 
of TII and Tl in a plasma after they were intentionally 
made unequal.4”‘1 ‘,I5 In addition to the T,, analysis, a mag- 
netic “beach analyzer” was used to obtain Tl in one of the 
experiments. The data show that the two temperatures re- 
lax toward a common value, corroborating both measure- 
ment techniques. Measurements of TI, were made over the 
6 decade range of 3~ 10e3 < TII < 300 eV, with about 
f 5% accuracy at high temperatures, and f 30% accuracy 
at low temperatures. At high temperatures the temperature 
equilibration is as expected from conventional scattering 
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theory,” whereas at low temperatures the equilibration is 
governed by a many-particle adiabatic invariant.16 

Vi. DISCUSSION 

In this section, we consider the limitations of the ex- 
perimental technique and analysis presented in Sec. III. 
We conclude that our diagnostic procedure is expected to 
work best for moderately long plasma columns and for the 
portion of the distribution function with the highest en- 
ergy. 

The model represented by Eqs. (l)-(3) is based on 
several assumptions which we here make explicit. In writ- 
ing Eq. (3)) we have ignored the effect of radial variations 
over the size of the collector. Since the density, plasma 
potential, confinement potential, and distribution function 
vary with radius, we should actually perform an integra- 
tion over the area of the collector. These corrections may 
be implemented, but they tend to complicate the data anal- 
ysis. The corrections are of magnitude RJp where R, is the 
collector radius and p is a typical scale length for radial 
variations in n, &,, 4, and F. The collector used for Fig. 2 
has radius RJR=0.065, so the variations in Fig. 2 show 
RJp<l. 

Equation ( 1 ), and thus Eq. (3), also reflects a simpli- 
fied model of the axial plasma variation. We assume that 
the plasma column has flat ends and that the implicit axial 
integration may be replaced by the column length L. The 
fall-off of the plasma at the ends of the column actually 
occurs over some finite distance AL, and this distance may 
vary with radiusI However, this leads to corrections in 
Q,, of the order AL/L, which is typically of order&,/L or 
R/L, and is generally small. 

Another length-related correction occurs even in the 
context of the flat-ended column model. The plasma length 
is the distance between the points where the electrons are 
reflected by the confining end potentials. This length, how- 
ever, will increase as the confinement potential approaches 
zero. While this does not affect the axially integrated 
charge, it does change the charge per unit length, and thus 
changes & A separate effect associated with this increase 
in length is the cooling of TII due to adiabatic expansion.” 
If we again denote this change in length AL., then both of 
these effects are of order AL/L, but in this case AL is 
roughly the same as the scale length of axial variations in 
4, and this scale length is set by the wall radius R (i.e., 
AL/L= R/L). This correction may be important for the 
very short plasmas used in some experiments, but is small 
for the data shown in Fig. 2 (R/L=2.5%). 

A more fundamental limitation of our analysis model 
is the presumption of no time dependence. It is assumed, 
for example, that all electrons with the same energy will 
share the same fate, regardless of the fact that they may be 
at opposite ends of the plasma column when the dump 
begins and that some will escape before others. This as- 
sumption is justified if the analyzing potential does not 
change appreciably on the time scale of an electron transit 
(L/v,,) or of an electron plasma wave. Also, the entire 
measurement must be fast compared to the electron- 

electron collision time ye;; ‘, which is about 5 msec for these 
plasmas. These conditions can be written 

(+-‘) < q (q-‘-4 G’. (9) 

Note that the first condition is easier to satisfy in a short 
plasma column than in a long one. However, there are 
always some particles (the slowest ones) that will not sat- 
isfy this condition. 

In principle one may satisfy condition (9) by decreas- 
ing the rate at which the analysis potential is varied [i.e., by 
increasing the ramp-up time of the analysis pulse in Fig. 
1 (b)]. In practice this strategy is limited by the onset of the 
diocotron instability. As noted above, the electrons at the 
center of the plasma column (i.e., rr0) are first to escape 
as the confining potential is made less negative. This leaves 
the column of confined electrons depleted in the center [see 
Fig. 2(b)]. It is well known that such hollow electron col- 
umns are unstable to diocotron modes.‘*” As this instabil- 
ity grows, it produces radial transport of electrons.18 Elec- 
trons that move radially inward are then able to escape 
from the machine. Unless one can dump and measure the 
escaping charge before the instability grows, the measure- 
ment will be confused by transport-related effects. 

The problem of diocotron-induced transport is illus- 
trated in Fig. 5. Escaping electrons are collected with the 
circuit shown in Fig. 5(a). The RC time of the circuit is 
chosen to be long compared to the time for electrons to 
escape, but short compared to the machine cycle time. The 
escaping electrons produce an output voltage change that 
is proportional to Q,. Figure 5(b) shows the voltage ver- 
sus time for several cycles of a typical case. At the first 
vertical grid line, the confinement potential is ramped to a 
less negative value and then held at that value. The ramp 
time is 100 psec. Electrons having sufficient energy escape 
and produce the repeatable initial signal, which then begins 
to decay away with time as charges leak off the collection 
capacitor. The diocotron instability grows on the remain- 
ing hollowed electron column, and moves some electrons 
radially inward where they can escape from the machine. 
These electrons produce the voltage changes occurring 
about 2 divisions (200 psec) after the first electrons escape. 
Since the instability grows from noise, these curves are 
different for each machine cycle. 

Figure 5 shows that it is possible in practice to dump 
and measure the escaping charge before the diocotron in- 
stability grows. However, this requires a fast ramp on the 
analysis pulse and thus a large value of dE/dt, and this 
requirement conflicts with condition (9). With the mini- 
mum value of dE/dt restricted by the instability growth 
time, and the value of L constrained by the desire to avoid 
end corrections, condition (9) reduces to a limit on elec- 
tron velocity. For a given plasma there will always be some 
electrons that are too slow to satisfy this condition. This 
explains the failure of the analysis at low energies, as is 
apparent in Fig. 2(e). 

The effects discussed in this section impose some limits 
on the applicability of this diagnostic, but these limits are 
not severe. For moderately long plasma columns and typ- 
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=x (SQ-SQ,,). 

(b) t 

FIG. 5. Dumped electron measurement circuit and typical signal. (a) 
Circuit used to collect escaping electrons. The initial voltage due to the 
charge collected on the capacitor is proportional to Q,, and it decays on 
a time scale of R,C. (b) The induced voltage versus time for several 
plasma dump cycles. The second, nonrepeatable voltage change is due to 
electrons transported radially by the diocotron instability. Time scale 
= 100 psec/div. 

ical collector sizes, the errors encountered are on the order 
of a few percent, and this is acceptable in most cases. The 
failure of the technique at low particle energies does not 
impose a severe restriction, since departures from a Max- 
wellian distribution usually occur only at higher particle 
energies. 

VII. COMMENTS ON OBTAINING SF IN 
PERTURBATION EXPERIMENTS 

As we have shown, the dependence of Q, on &, com- 
plicates the interpretation of the Q, data. However, with 
proper analysis of these data, one can obtain the parallel 
electron energy distribution, F(r,E). In many experiments 
one wishes to find the change in F due to some externally 
applied perturbation which may cause both particle trans- 
port and energy transport (i.e., changes in the distribution 
function). A typical approach would be to apply the per- 
turbation on alternate machine cycles and then measure 
the change in Q,(r,4,) from cycle to cycle, i.e., 
SQ,(r+jJ. We point out here that the analysis of these 
data requires special care. 

Taking the variation of Eq. ( 3 ) , we obtain 

SQ,(r,+,) =sQ(r) j-f ~F(r,Et) 

+Q(r> j-i $GF(r,E’) 

-Q(r) FF6E. (10) 

The first term on the right-hand side of Eq. ( 10) represents 
the change in Q, produced by radial transport [i.e., 
changes in n(r)]. The second term is produced by changes 
in the electron kinetic energies (velocity space transport). 
The third term is due to changes in the effective analyzer 
potential, c$,--#~ The confinement potential 6, is not af- 
fected by an applied perturbation, but the plasma potential 
rjP will change. Thus SE= -qhjp where Sr& is obtained 
from the variation of Eq. (4): 

(11) 

Here, we have used the relation Q=nqAL. Equation ( 11) 
may be radially integrated to obtain 64, but note that this 
requires a knowledge of the radial dependence of SQ and 
SQ,. In addition, the third term on the right-hand side of 
Eq. ( 10) involves F, which is obtained from Q,,. Thus, the 
data set required to obtain 6F in perturbation experiments 
must include both Q, and SQ, as a function of r and 4,. 

In some cases one of the terms in Eq. ( 10) may vanish. 
For example, if the applied perturbation produces no radial 
transport, the first term will be zero. Further simplifica- 
tions, however, are not possible. Either type of transport 
(configuration space or velocity space) will produce a non- 
zero value of S4p and thus give a nonvanishing third term. 
Furthermore, the magnitude of this term is typically com- 
parable to the other nonzero term(s), so it cannot be ne- 
glected. We conclude that, although perturbation data can 
be analyzed following Eqs. ( 10) and ( 11)) there is no sim- 
ple relation between the measured quantity SQ, and the 
change in the distribution function SF. 

VIII. CONCLUSIONS 

We have presented a technique to measure the parallel 
energy distribution of particles in a cylindrical pure elec- 
tron plasma. This technique does not require modification 
of typical machine geometries, but only a modification of 
the way the electrons are dumped and analyzed. While a 
full analysis of the data requires the use of a computer, 
some information can be obtained using a simplified ver- 
sion of the technique. Both the full and simplified versions 
of the technique work best for moderately long plasma 
columns, in which case the uncertainties resulting from the 
limitations of the analysis model are on the order of a few 
percent. We have successfully used these techniques in 
three different experimental contexts. 
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