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A sufficient condition is given for the stability of a long non-neutral plasma column that 
obeys two-dimensional EXB dynamics. The column is confined by a uniform magnetic field 
and bounded by a conducting cylinder aligned with the field. The variational approach 
used here generalizes the well-known stability of a centered, axisymmetric column, whose 
density is a monotonically decreasing function of radius. Displacement of such a 
column away from the axis by excitation of an Z= 1 diocotron mode yields a dynamical 
equilibrium stationary in a frame rotating with the mode. This new equilibrium is shown to be 
stable if the column is not too large. The analysis may explain, in part, the remarkable 
longevity observed for I= 1 diocotron modes in experiments. 

I. INTRODUCTION 

Consider a long non-neutral plasma column that is 
confined by a uniform magnetic field, B, in a region of 
space that is bounded by a conducting cylindrical wall. 
Suppose that the plasma column is centered on the axis of 
the cylinder (which is parallel to the magnetic field), is 
cylindrically symmetrical, and has a density profile that is 
a monotonically decreasing function of radius. As has been 
known for many years, such a column is stable under two- 
dimensional ( 2-D ) E X B drift perturbations. r 

When a diocotron mode with azimuthal harmonic 
number I= 1 is excited on such a column, the column is 
effectively displaced off the axis of the cylinder and then 
rotates about the axis at the frequency of the diocotron 
mode.2*3 We may consider this state to be an off-axis dy- 
namical equilibrium, since the plasma is stationary in a 
frame that rotates with the mode frequency. In this paper, 
we show that this off-axis equilibrium is also stable to all 
two-dimensional (2-D) EXB drift perturbations, provided 
that the radius of the column is sufficiently small. Our 
stability analysis may explain, in part, the remarkable lon- 
gevity observed experimentally for I= 1 diocotron modes 
(more than lo5 cycles) .4 

The discussion is carried out with a sign convention 
corresponding to a plasma of negative charges (e.g., a pure 
electron plasma), but the stability results are valid for non- 
neutral plasmas with either sign of charge. For a negatively 
charged plasma, the ExB drift rotation of the column and 
the diocotron mode rotation are in a positive sense (rela- 
tive to B), and it is easier to talk about (and think about) 
positive frequencies than negative frequencies. 

The 2-D ExB drift dynamics is governed by the con- 
tinuity equation, 

and Poisson’s equation, 

V2d,=4ren. (2) 

Here, d( rJ3) is the electric potential, n (~$3) is the density, 
and a minus sign has been introduced explicitly on the 

right-hand side of Poisson’s equation (e > 0). Also, we 
have introduced a cylindrical coordinate system (r,@,z), 
dropped any dependence on z, and made use of the fact 
that EXB drift flow in a uniform B field is incompressible 
[i.e., V*(&V#) =O]. The electric potential must be con- 
stant, say zero, on the conducting wall [i.e., ~$(r=R,e) 
=O]. These equations also describe the 2-D incompressible 
and inviscid flow of a neutral fluid, where (c/B)+ is the 
streamfunction and -43ren (c/B) is the z component of the 
vorticity. Nowever, one should note that the boundary 
condition r$(R,@) =0 corresponds to a slip condition at the 
wall for the case of a neutral fluid. 

Here 2-D EXB drift dynamics conserves the electro- 
static energy, 

WE- 
s 

n4 
T d’r, (31 

and the canonical angular momentum, 

f 

e 
PO” - ; A@( r)m d=r, (4) 

where the 8 component of the vector potential is given by 
A,(r) =Br/2 for a uniformsxial magnetic field. It is useful 
to introduce the quantity W= W-COP, which is the elec- 
trostatic energy in a frame that rotates with frequency w; 
this quantity also is conserved. 

The log& of the stability argument is to show that the 
functional W is a maximum for a particular state, n(r,e), 
as compared to all other states that are accessible under 
incompressible flow. Since @ is conserved and the EXE 
drift flow is incompressible, no further change in state is 
possible, that is, the particular state is a stable equilibrium 
that is stationary in the rotating frame o,If there is a 
degeneracy so that the maximum value of W is shared by 
many contiguous states, then the plasma may occupy any 
one of these states. For the off-axis equilibria, there is such 
a degeneracy associated with the azimuthal symmetry of 
the geometry; the stability argument fixes the shape and 
radial location of the off-axis column but not the azimuthal 
location. (Of course, the rotation frequency w is fixed.) 

There are many examples of this kind of stability the- 
orem in the literature, and the review article by Helm et al. 
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has an extensive bibliography.’ From the reasoning in the 
previous pzragraph it is clear that stability is implied 
whenever W is either a maximum or a minimumLand for 
most examples in the literature the criterion for W to be a 
minimum is established. Formally, it is muc& easier to 
establish this criterion than the criterion that W be a max- 
imum. Nevertheless, both cases were discussed in pioneer- 
ing work by Kelvin and Arnold.6 For the case at hand, we 
will see that the criterion that @be a minimum cannot be 
satisfied by the off-axis states, although there is a sugges- 
tion to the contrary in the literature.7 Consequently, for 
these states we are forced to undertake the more difficult 
task of establishing the criterion that w be a maximum. 
(We are concerned here with what Holm et al. call formal 
stability. We do not obtain bounds on perturbation 
norms-i.e., nonlinear stability-and do not know whether 
the distinction has any practical importance for EXB dy- 
namics. ) 

This paper can be thought of as an extension of our 
recent work on the statistical mechanics of a system of long 
charged rods (or point vortices) confined in cylindrical 
geometry.* For certain values of the total electrostatic en- 
ergy and canonical angular momentum, the maximum en- 
tropy state is an off-axis dynamical equilibrium of the kind 
considered here. We know that this state is stable to all 2-D 
E X B drift perturbations (the kind of dynamics underlying 
the statistical mechanics), since it is a state of maximum 
entropy. However, the density profile is of a special form- 
the thermal equilibrium form. Here, we argue that a 
plasma column of sufficiently small radius and any mono- 
tonically decreasing density profile is stable when displaced 
off axis. The situation is similar to that for velocity space 
instabilities. One knows from statistical mechanics that a 
homogeneous plasma with a Maxwellian velocity distribu- 
tion is stable, but one can argue, more generally, that any 
distribution that is a monotonically decreasing function of 
kinetic energy is stable under Vlasov dynamics (incom- 
pressible flow in phase space).’ 

Section II contains a stability proof for the case where 
the radius of the column is very small but the displacement 
of the column off the axis is not necessarily small. This 
proof has a simple physical interpretation. Section III con- 
tains a more formal analysis based on variational theory 
and bifurcation theory. This analysis does not assume that 
the column radius is small, but is limited to small displace- 
ments off the axis. In general, when a column is displaced 
off the axis it rotates about the axis with a frequency that is 
shifted slightly from the diocotron mode frequency, as 
given by linear theory. One may think of this as the non- 
linear frequency shift of the diocotron mode. The analysis 
in Sec. II shows that the off-axis column is stable when the 
nonlinear frequency shift is positive. Of course, in all this 
discussion we assume that the density profile for the col- 
umn is a monotonically decreasing function of radius be- 
fore the column is shifted off the axis. In Sec. IV, we argue 
that the nonlinear frequency shift is positive for a column 
of sufficiently small radius (i.e., rp 5 R/G). Section V con- 
tains a discussion of the results and some speculations 
about further implications of the stability theorem. In par- 

titular, we argue that cylindrical symmetry of the confine- 
ment apparatus is not necessary for stable confinement 
within the context of 2-D EXB drift dynamics. 

II. PLASMA COLUMN OF SMALL RADIUS 

It is instructive to start with the case of a column with 
very small radius, since the analysis is easy to interpret 
physically. In general, the electric potential can be written 
as (P=4f+#b where 

#f(r)=+ J 2en(r’)lnIr-r’Id*r’, 

is the free-space potential that is produced by the plasma 
column in the absence of any conductors, and 

#i(r) = - I len(r’)lnl (r-r’ f$) qid2rt, (6) 

is the potential due to the charges on the conducting cyl- 
inder. In a frame that rotates with frequency o, the elec- 
trostatic energy is given by the two terms 

WE- 
s 

@f 2 Tdr+ 1 d*r. (7) 

For @ to be a maximum, it is necessary to maximize 
each integral separately. The first integral depends on the 
plasma shape, but is not changed by a shift in the plasma 
location. For a very small column, the second integral de- 
pends on the plasma location, but is insensitive to the 
plasma shape. To understand this, note that the bracket in 
the second integral varies only slightly over the region oc- 
cupied by a small column. Thus, maximizing the first in- 
tegral determines the shape of the column, and maximizing 
the second integral determines the location of the column. 

The first integral is a maximum, relative to other states 
that are accessible under incompressible flow, provided 
that the column is cylindrically symmetrical about an axis 
through its center of mass and has a density profile that 
decreases monotonically outward from this axis. For a 
small cylindrical column that is displaced from the axis by 
a distance D, the value of the second integral is approxi- 
mately 

F2=e2N2 ln[ (1-$)R] +eNzDz, (8) 

where N=Sd*r n(r). This expression is an extremum 
when 

d@, 
O=dD= (9) 

where we have introduced the frequency of the I= 1 dio- 
cotron mode,273 md= (2eNc/BR*). For w <wd, there is 
only one root (D=O), and at this root 

d2w2 eNB 
-m-=-T- ( 

1 --p-&z+0 <o. 
1 

(10) 

Thus, I?, is a maximum, and we may conclude that the 
on-axis state (D=O) is a stable equilibrium. 
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For w > ad, there are two roots. At the D=O root, w2 
is not a maximum, since the large parenthesis in Eq. ( 10) 
iLpositive. At the second root [i.e., wd/( 1 -p/R’) =o], 
W, is maximum since 

(11) 

is negative. This root corresponds to a stable off-axis equi- 
librium that is stationary in a frame that rotates with the 
frequency w’@,+/( 1 -@/R2). Since W, is independent of 
azimuth, the azimuthal location of the column is not fixed 
by the stability argument. 

Note that one may not concl_ude that the on-axis state 
is unstable from the fact that W2 is not a maximum at 
D=O for w > CQ. This negative result has no implication for 
either stability or instability. In fact, we know from the 
analysis for w <@d that the on-axis state is stable. 

From Eq. (9) one can see that the rotation frequency, 
w=wJ( 1-9/R*), is determined by a balance between 
an inward force due to rotation in the magnetic field and an 
outward force due to the image charges. The nonlinear 
frequency shift, 

(12) 

is positive, since the force due to the image charges in- 
creases with increasing D faster than the first power of D. 
It turns out that for a column of relatively large radius, 
displacement of the column off the axis gives rise to a 
substantial quadrupole distortion of the column.‘O~*’ The 
quadrupole interaction with the image charges is repulsive 
and can change the sign of the frequency shift to be nega- 
tive. By formally making the frequency shift in Eq. (9) 
negative, say, by substituting #d/_( 1 -l-d/R2) for 
ad/( 1-0*/R*), one can check that W2 is no longer a 
maximum at the off-axis root. 

Ill. VARIATIONAL AND BIFURCATION ANALYSIS 

Let us consider a state that is characterized by density 
n( r,0) and potential c#( r,6). If the density and potential 
undergo the variation 6n( rJ3) and Sr$(r,e), where 
V2&$= +4% Sn and S+(R,0)=0, the variation in the 
functional W is given by 

SW= F&z d*r--i 
s s 

e S$ Sn d*r, 

where L= -e4 +weB?/2c is the potential energy of a 
charge ( -e) in 5 frame that rotates with frequency o. We 
use the symbol h since the potential energy is the Hamil- 
tonian for a test charge within the context of ExB dynam- 
ics. The variation in density is assumed to occur through 
incompressible flow, so the functional (generalized en- 
tropy), 

S= 
s 

G( n)d2r, (14) 

has zero variation (&S=O) .*-’ Here, G(n) is an arbitrary 
function. To second order, we may set 

o=ss= G’(n)& d2r+i 
s 

G”(n)(&z)* d*r. (15) 

Subtracting this equation from Eq. (13) then yields the 
result 

SF= [h-G’(n) ]Sn d2r-i f [e S+ 6n+G”(n) 

x (&)‘]d’r. (16) 

If the initial state is an equilibrium, the first-order vari- 
ation (first term) can be made to vanish through a proper 
choice of G(n). By transforming Eq. ( 1) to a frame that 
rotates with frequency w, one can see that a state is sta- 
tionary if the density is constant along equipotentials in the 
rotating frame, since these are the trajectories of guiding 
centers. This occurs if the density can be expressed as n 
=n(h), Such a functional relationship implies that there 
exists a function G(n) such that [h - G’( n )] = 0, and this 
implies that the first term vanishes for all 6n. We assume 
that the initial state is such an equilibrium, so Eq. (16) 
reduces to the form 

f( 

di- 
eG#Sn+z (c%)* 

where use has been made of G” (n ) = dhjdn. 
Before proceeding, it is useful to enumerate the equi- 

libria of interest. The simplest is an on-axis cylindrically 
symmetric state with a density profile, no(r), that we as- 
sume is a monotonically decreasing function of r. Let #e(r) 
be the corresponding self-consistent potential and define 
ho=- &-,+oeB?/2c. By eliminating r between ha(c) and 
nc( r), one obtains a relationship of the form n = n (h ) . As 
one would expect, this state is stationary in any rotating 
frame. 

We approach the off-axis states as perturbations away 
from the on-axis state. We set 

n=n&) +An(r,e), 

4=40(r) +A#(r,B). 

Since the condition for a state to bean equilibrium is that 
the density be expressible as n = n( h), and since the fre- 
quency shift mustbe second order (it is even in An), we 
have An = ( dnddho) ( - eA$ ) and 

dno/dr 

=(eBr/c)[o--oE(r)] * 
(19) 

(We use An to denote a change from one equilibrium to 
another, whereas Sn denotes a variation about an equilib- 
rium.) Here, w&r) = (c/Br) (d&‘dr) is the local EXB 
drift rotation frequency of the unperturbed column. The 
perturbed density and potential must satisfy Poisson’s 
equation, 

4-rrec dno 
V*(A@ +- - CA+) =o 

Br dr [w-o&r)] ’ 

subject to the boundary condition A#(&@) =O. 
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This is the eigenfunction equation for an I= 1 dio- 
cotron mode, and for w = @d the solution is known to be 

An=D. 2 cos(B-S), 
(21) 

where D and S are constants. 2*3 The boundary condition on 
A$ is satisfied since adCuE( From the expression for 
An, it follows that the equilibrium can be interpreted as a 
displacement D of the column off the axis. 

The analysis here is to first order in D, and to this 
order the equilibrium is stationary in a frame that rotates 
with frequency w=o& In the next section, we carry the 
analysis to higher order and obtain the nonlinear frequency 
shift o--wd= (D/R)2A, where the constant A depends on 
no(r) and R. At each order of the perturbation theory, care 
is taken to make sure that the off-axis state is accessible 
from the on-axis state through incompressible flow. This is 
clearly the case for the linear expressions in Eq. (21)) since 
the new state is obtained by displacing the column. In 
higher order, there is distortion of the column as well as 
displacement. The parameter D is then defined to be the 
displacement of the column center of mass. From an ex- 
perimental (or operational) perspective, the off-axis state 
is reached through incompressible flow, if the I= 1 dio- 
cotron mode is excited adiabatically. 

Figure 1 (a) shows the locus of equilibria in the (w,D) 
plane for the case of a positive frequency shift (A > 0). The 
line at D=O represents the on-axis equilibria and the pa- 
rabola through w=wd represents the off-axis equilibria. 
From the figure, one can see why this case is called a 
forward pitchfork bifurcation.” The case of negative fre- 
quency shift (A < 0) is shown in Fig. 1 (b); this case is 
called a backward pitchfork bifurcation. Finally, the arbi- 
trary phase factor S in Eq. (21) means that there are infi- 
nitely many off-axis equilibria for a given value of D. Of 
course, this is a consequence of the azimuthal symmetry. 
To represent all of these equilibria we must regard D as a 
two-dimensional vector and rotate the parabolas in Figs. 
1 (a) and 1 (b) about the o axis. 

To-determine the stability of a particular equilibdum 
n =n( h), we must examine ‘the second variation of W, as 
given by Eq. ( 17). Stability Against small-amplitude per- 
turbations is implied when W is either a local maximum 
(6 W < 0 for all allowed 6n) or a local minimum (6 w> 0 
for all allowed 6~). It is relatively easy to establish the 
criterion that W be a local minimum.1*5P7 By using 
V2 &$=4re Sn and S#(R,8) =0, Eq. (17) can be rewritten 
as 

(VS@2 dh 
--;i;; (&z)~ 4T (22) 

so 6 w > 0 for all 6n, provided that dh/dn < 0. 
This criterion was used to show that a cylindrically 

symmetric equilibrium with a monotonically decreasing 
density profile, n=no( r), is locally stable.“’ Such an equi- 
librium is stationary in any rotating frameland, corre- 
spondingly, a relationship of the form n =no( ho) exists for 

DA 0 a 

0 I--- 
co 

D w 
\ 

\ 
\ 

0 

1 

/ cud 
/ / 

FIG. 1. Bifurcation diagrams for displacement D versus rotation fre- 
quency w for the reference frame. (a) Small column, (b) larg column. 
Solid curves indicate equilibria that as local maxima of W; dashed 
curves, those that are saddle points of W. 

any rotating frame], so there is flexibility in the choice of 
frame where the analysis is to be carried out. In a rapidly 
rotating frame [i,., w > w&O) >oE( r)], it follows from Eq. 
( 19) that dn,,/dho < 0, so W is a local minimum. Here, use 
has been made of the fact that oE(r) decreases monoton- 
ically when n,(r) does. 

This stability argument cannot be extended to the off- 
axis equilibria, because the criterion dn/dh < 0 cannot be 
satisfied by these equilibria. Let us assume that there exists 
an off-axis equilibrium nl = f (K, ) where df/dh, < 0, and 
then prove a contradiction. Because the confinement geom- 
etry has cylindrical symmetry, the equilibrium state can be 
rotated through an arbitrary azimuthal angle to obtain an- 
other equilibrium n2 = f_C h2). From _Poisson’s equation in 
the rotating frame, _V2h = -4re2f (h) + 2weB/c, and the 
boundary condition h( R,8) =weBR2/2c, an integration by 
parts yields 

s 
d2r]V(Fi--h2) 12=47re2 

s 
d2r(hl-h2)[ f(h,) 

-f(hdl. (23) 
The left-hand side& positive and the right-hand side is 
negative (for df/dh < 0, by the mean value theorLm), so 
there cancot exist an off-axis equilibrium n=f (h)-such 
that df/dh ~0. More explicitly, the reason that df/dh can- 
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not be negative for an off-axis equilibrium is that the fre- 
quency w of the frame in which the equilibrium is station- 
ary is too low. For o equal to or near the diocotron mode 
frequency [i.e., WZ~=W~( R) <wE( r)], it follows from 
Eq. ( 19) that dnddh, > 0. 

For this situation, the two terms in the bracket of in- 
tegral (22) have opposite signs. To prove stability, we are 
forced to undertake the relatively difficult task of showing 
that one of the two terms (the second, as it tkrns out) is 
larger than the other. When this is the case, 6 W < 0 for all 
allowed an, and W is a local maximum. 

Before tackling the off-axis equilibria, it is useful to 
reexamine the on-axis equilibrium n = no( r) [where 
n;(r) < 01, but this time in a slowly rotating frame. We 
will find that W is a local maximum when o < @d=@E( R ). 
To rewrite the second variation [Eq. ( 17)] in a more con- 
venient form, it is useful to consider the eigenfunction 
problem 

(24) 

where $j(R,e) =O. From this equation, one can derive the 
orthogonality condition 

O= (/ii-ilk) s 
V$fV$k d2r. 

As usual, degenerate eigenfunctions must be made orthog- 
onal explicitly. It is convenient to normalize the eigenfunc- 
tions so that 

V$;V$k d2r = SrSjk . (25) 

We assume that the set of eigenfunctions is complete and 
expand the perturbed potential and density as 

S+= C aj$j, 

i 

(26) 

Substituting into Eq. ( 17) and using Eqs, (24) and (25) 
yields the result 

tjjq=- pp;. 
i 

(27) 

If the eigenvalues are all positive, @ isa local maxi- 
mum. From Eq. (24) and the fact that dh/dn > 0 (for 
o - wd), it follows that the higher eigenvalues are large and 
positive. Also, by a happy circumstance, we can determine 
the value of w where the lowest eigenvalue, /2r, passes 
through zero. For w on one side or the other of this critical 
value, all the eigenvalues must be positive. 

By using Eq. ( 19), Eq. (24) can be rewritten as: 
4rrec dno tjj 

V2$j+ t 1 +/zi) - - Br dr [o-oE(r)]=o’ (28) 

For /z =O and w=od, this reduces to the eigenfunction 
equation for the I= 1 diocotron mode, so a solution is given 
by 

Jl,(r*e)=d.(Br/C)[w,(r)-Wd]GOSe, (291 

where d is a constant. The boundary condition $, (R,B) =O 
is satisfied since od=oE( R ) . The corresponding density 
perturbation, 

(30) 

results from a displacement, d, of the column off the axis. 
Here, d is determined by the normalization condition [Eq. 
(2511 

dno a2r;i;- r[md-u)e(r)]. 
Because of azimuthal symmetry, there exists a second 
eigenfunction, 

$2(r,8) =d*(Br/c) [#d-@E(r)]sin 8, (32) 
that is degenerate with the first (i.e., L1=/2,=O). Of 
course, we have chosen the azimuthal phases so that the 
two eigenfunctions are orthogonal. 

Since t,$ and tj$ have azimuthal mode number I= 1 and 
only a single peak in their radial dependence, ;1t =a, are 
the lowest eigenvalues that enter expansion (27). In this 
regard, note that the expansion contains no I=0 eigenfunc- 
tions. As a first-order perturbation that is produced 
through incompressible flow, Sn can be written as 
Sn =&V~Vno, where f = f (r,@). By using Vno=?dno/dr, 
this reduces to Srr = - ( I/r) (r3f/iW (dnddr), so the theta 
average of Sn vanishes, and no I=0 terms can appear in 
expansion (27). 

There remains the question of whether /z,(w) =,X2(w) 
are positive for o---wd> 0 or for w- tid < 0. Treating 
o--od as a small parameter and applying first-order per- 
turbation theory to Eq+ (28) yields the integral expression 

n,(m)=+ ~d2r(~)‘~(a-md)($). (33) 

Substituting from Eqs. (30) and (3 1) and carrying out the 
resulting integral, then yields the result 

A,(@) = (@d--w)c, ‘+ (34) 
where 

is 

R 
C= f2N 2m dr 2 [@d-f%(r) 1)“ (35) 

0 

is positive. Thus, L,(w) and n,(w) are positive for w < wti 
Finally, since /z,(w) =A,(@) are the two lowest eigen- 

values that appear in expansion (22), all of the eigenvalues 
are positive for w <w& Thus, SW is negative for all Srr 
(accessible under incompressible flow), W is a local max- 
imum at the on-axis equilibrium, and we may conclude 
that the equilibrium is stable to small amplitude ExB drift 
perturbations. 

For w>od, A,(w) =A,(@) are both nsative, but the 
remaining eigenvalues are positive. Thus W is a saddle at 
the on-axis equilibrium, and no conclusion concerning sta- 
bility can be reached (by working in this frame), 
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Next we examine the extremal properties of w at an 
off-axis equilibrium that is close to the bifurcation point. 
The rotation frequency w differs only slightly from wd, and 
the displacement off-axis &(w) =R[(w--w~)/A]“~ is 
small. Let $j and ,%j be the eigenfunctions an_d eigenvalues 
obtained from Bq. (25) with the function dh/dn given by 
the off-axis equilibrium. Since this equilibrium differs only 
slightly from the on-axis equilibrium, one expects by con- 
tinuity that tc;! and ;li differ only slightly from ~j and A? In 
particular, we know from Sturm-Liouville theory that ei- 
genvalues are ordered by I and by the number of nodes. 
Thus Aj forj)3 are positive and well separated from zero 
for w close enough to w,+ However, A; and A$ are small 
(but may be positive, negative, or zero). 

We determine A2; by appeal to the cylindrical symmetry 
of the confinement geometry. In general, the potential for 
an off-axis equilibrium can be written as 4=4( r,0-S), 
where S is an arbitrary phase. When this potential is ex- 
pressed as an expansion in D,(w)/R, the first-order term 
is given by Bq. (2 1) . Because of the cylindrical symmetry 
the function n(h), which appears in Poisson’s equation 
[i.e., V2#=4nen(h)], depends on S only through 4. By 
taking the derivative of Poisson’s equation with respect to 
6, one sees that d$/dS is a il=O solution of eigenfunction 
equation (22). Also, d$/dS satisfies the boundary condi- 
tion d4/d6(R,8--6)=0. To be specific, we choose the 
phase S=O, so at first order in Dq(w)/R, d+/dC316=o is 
proportional to q2(r,6). Thus, we identify d$/dS lay0 as 
the eigenfunction $4 = 0 and conclude that & = 0. 

To determine ,%{ we develop a construction in the spirit 
of bifurcation theory.12 Referring to expansion (27), we 
imagine that the plasma starts in the on-axis state and then 
is displaced a small amount in the direction of eigenfunc- 
tion t+$. The new potential is &(r) +[D/d]$l(r,B). This 
process is continued with many infinitesimal steps, each of 
which occurs through incompressible flow and produces an 
increment SD, where D is the displacement of the column 
center of mass. At each stage the potential and density are 
related self-consistently through Poisson’s equation, and 
the potential is determined as an expansion in D/R, with 
the first term being [D/d]t,b(r,8). In this expansion there 
are no extra terms with coefficients that can be varied in- 
dependently of D. Eventually, the plasma state passes 
through the off-axis equilibrium at D=Deq(o). The off- 
axis equilibrium is, by definition, reached through such a 
sequence of infinitesimal flows. In this way we define a path 
through state space, starting from the on-axis equilibrium 
and passing through the off-axis equilibrium. By calculat- 
ing the el@rogatic energy along the path we obtain the 
function W= W(o,D). 

The path through state space passes through the on- 
axis equilibrium in the direction of eigenfunction 4, and 
through the off-axis equilibrium in the direction of the 
eigenfunction t/i. In fact, each step along the path is in the 
direction of the local $1. Displacements in the direction of 
other eigenfunctions ($j for j# 1) would correspond to 
extra terms in the expansion with amplitudes that can be 
varied independently of D, and these terms are, by detini- 
tion, ruled out. Near the on-axis equilibrium, the expan- 

sion coefficient ai [see Eq. (27)] is given by aI = D/d, and 
near the off-axis equilibrium, the expansion coefficient a; is 
given by u; = [D - Deq(w)]/d’. Thus, it follows that 

d2 a2w 
A'=TzF D=o' 

d12 a2 W (36) 

I;=% aoz D=D 
eq 

(*) * 

_ To relate 13.i and A ;, we construct a Taylor expansion of 
8 W/aD that is valid & the region of the bifurcation.Jince 
the first variation of W vanishes at an equilibrium, d W/aD 
must vanish at D=O, D=D,(w), and 0=-D,,(o). 
These are the three equilibria that are encountered by 
drawing a line at constant w (for w > wd) in Fig. 1 (a) and 
(for w < od) in Fig. 1 (b) . Thus, to third order in D, we can 
set 

ai 
~=gWD[@-D:J4 I. (37) 

Substituting into Bq. (36), and eliminating g(w) between 
the resulting two equations, then yields the result 

A;(w) = -2(d’/d)2A,(w) - -U,(w), (38) 

where d’/d has been approximated by unity to lowest or- 
der in D,(w)/R. 

For the case where the nonlinear frequency shift is 
positive, the off-axis equilibrium is stationary in a frame 
with w>wd. In this frame&(w) ~0, soil;(w) > 0. Thus, 
,l.j > 0 for allj excgtj= 2 and /2$ = 0. From expansion (27) 
it follows that SW is negative for variations along ay of 
the eigenfunctions, except that for j=2, and that 6 W=O 
for variations along this eigenfunction. As compared to 
other states accessible under incompressible flow, the off- 
axis equilibrium is a local maximum of W, except for the 
degeneracy associated with the azimuthal symmetry. Thus, 
except for changes in the azimuthal orientation, the off-axis 
equilibrium is stable to small-amplitude E x B drift pertur- 
bations. 

For the case where the nonlinear frequency shift is 
negative, the off-axis equilibrium is stationary in a frame 
w@h w < wd. In this frame ill(w) > 0 so n;(o) < 0. Thus, 
W is a saddle at the off-axis equilibrium, and no conclusion 
concerning stability can be made. 

Referring again to Figs.2 (a) and 1 (b), the solid lines 
represent equilibria, w_here W is a local maximum, and the 
dashed lines, where W is a local saddle. For the forward 
pitchfork bifurcation (positive frequency_shift) in Fig. 
1 (a), the property of being a maximum of W is transferred 
at the bifurcation point from the on-axis equilibria to the 
off-axis equilibria. Such a transfer is typically the case for a 
forward pitchfork bifurcation, but not for a backward 
pitchfork bifurcation.12 Note that Fig. 1 (b) does not show 
such a transfer. 

IV. NONLINEAR FREQUENCY SHIFT 

In the previous section we found that the off-axis equi- 
libria are stable to small-amplitude EXB drift perturba- 
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tions, provided that the nonlinear frequency shift is posi- 
tive. In this section, we show that this quantity is indeed 
positive for a column of sufficiently small radius. 

Explicit calculations of the frequency shift have been 
done for the simple case of a waterbag model. to”’ In this 
model, the density is uniform within some boundary curve, 
and is zero elsewhere, so the off-axis equilibrium clearly is 
accessible through incompressible flow from the on-axis 
equilibrium. When the center of mass of the column is 
displaced off the axis by a small but finite amount D, the 
nonlinear frequency shift is given by o - od=A (D/R) 2, 
where 

(39) 

Here, r,, is the radius of the column in the on-axis (cylin- 
drically symmetric) equilibrium. One can see that the fre- 
quency shift is positive when rP < R/t/2. This result is in 
reasonably good agreement with experiment, even when 
the plasma edge is rounded somewhat, that is, is not pre- 
cisely modeled by the waterbag model.4 

For a column of small radius but arbitrary monotoni- 
cally decreasing density profile, the off-axis equilibrium 
(and frequency shift) can be obtained as an expansion in 
the small parameters r/R and D/R. Here, rP is the char- 
acteristic radius and D is the displacement of the center of 
mass. Making the change of coordinates, p=r-D and 
p’ =r’ - D in Eq. (6) and Taylor expanding the logarithm 
with respect to p/R, p’/Rzr,JR, and D/R yields the re- 
sult 

4i(pP 1 -cod + 
2Dp cos(a) 

R2 s 
d2p’ n(p’,a’) 

2 I2 
X l+$p~cos(2at) 

i 1 

D2p2 cos(2a) 
+ R4 I- 

d2p’ n(p’,a’)+*** , 

where a is the angle between p and D and a’ is the angle 
between p’ and D. By construction, n(p’,a’) is indepen- 
dent of a’ to lowest order in D/R; it is also consistent to 
assume that it is even in a’; these properties were used in 
deriving Eq. (40). 

Substituting into the Hamiltonian 

h= -e($f+qV +weB(D+p12/2c, (41) 
yields the expression 

we3p2 
h-const-e4f(p,a) f- 

e3 
2c +pDcos(a) 7 w 

I 

d2p’ n(p’,a’)p’2 cos( 2a’) 
-++;+ j- NR2 )] 

e2ND2p2 cos( 2a) - 
R4 ’ (42) 

The free space potential #f can be written as 

4fCpd-y) =Mp) +Wy(p,a) fconst, (43) 

where qbo(p) is the potential for the on-axis equilibrium, 
but shifted to the off-axis center of coordinates at r=D, 
and S#f(p,a)-+O as D-+0. By introducing 
ho(p) =&-,0(p) +weBp2/2c and by dropping constant terms, 
the Hamiltonian reduces to 

02 
F-&(p) +pD cos(a)y O--Q l+? 

I t 

+ d2p’ I 
n(p’,a’)~‘~ cos( 2a’) 

NR2 )I 

e2 N#p2 cos ( 2a ) 
R4 -eWf(p,a). (44) 

For the off-axis state to bean equilibrium, the density 
must be expressible as n=n(h). Also, we require that the 
off-axis state be accessible from the on-axis state through 
incompressible flow. It turns out that both of these condi- 
tions can be satisfied, if we set 

- dno - - 
n=no(h) -no(ho) +=(h--ho), 

dho 

and then choose w so that the square bracket in Eq. (44) 
vanishes, that is, so that 

s;-&- 
- e2 Nl?p’ cos ( 2a ) 

R4 - eS$j(p,a). (46) 

The remaining unknown, S~$~(p,a), must be deter- 
mined self-consistently from Eq. (5), that is, from the in- 
tegral equation 

S#f(p,a)= d2p’2eSn(p’,a’)hjp-p’19 
s 

(47) 

where 6n = (dndd&) (h-h,), Noting that the I= 1 con- 
tribution vanishes in the center-of-mass coordinate system, 
and using the expansion*3 

InIp-p’[ =in(p,)- * lP<I c ( f=l 
7 p ) cos[Qa-a’)], 

> 
(48) 

where p, =max(p,p’) and p< =min(p,p’), one can see 
that S#Jp,a I= Sqbf(p ) cos(2a) and that S+/(p) + l/p2 as 
p + 43, This latter condition serves as a boundary condition 
for the differential equation 

( ia a 4 -- --- 
PappaP ~2 ) 

h$f(p) +4m2 2 Wf(p) 
0 

- 4re3Npp2 dno 
= 

R4 z’ 

which is obtained by operating on both sides of Eq. (47) 
with the Laplacian. For simplicity, we solve the differential 
equation rather than the integral equation. 

To this end, consider the eigenfunction equation 
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(ftpt-;) o $j+47E2 2 (1 +;lj)~j=O, (50) 

subject to the boundary condition $j(p) + l/p2 as p+ co. 
From this equation, one obtains the orthogonality condi- 
tion 

O=(Aj-A,> Opdp~ll;Jix. 
s 0 

We normalize the eigenfunctions so that 

s 
mpdp$ll;Jix=6jkm 

0 0 

Substituting the expansion 

Wff(P) = C ujqj(P) 
i 

(51) 

(52) 

into Eq. (49), and using Eqs. (50) and (52), yields an 
expression for the expansion coefficients, 

dpp3%$j* 
0 

Thus we obtain the result 

Wff(PP ) = 
+eN@ cos(2a) m 

R4 
C *j(P) i, 

j=l J 

* Jm dp’p”? $j(p’)* 
0 0 

(54) 

(55) 

Operating on both sides of this equation with the La- 
placian and using eigenfunction equation (50) yields the 
density perturbation 

Gn(p,a) = 

(56) 

Equivalently, this quantity could have been calculated 
from Eq. (45). At this stage one can see that the off-axis 
equilibrium is accessible through incompressible flow from 
the on-axis equilibrium. The density no(r) is changed into 
no(p) through a displacement of the column as a whole, 
and the density no(p) is changed into no(p)+6n(p,a) 
through a quadrupole distortion. The distortion can be 
achieved through incompressible flow since Sn(p,a) can be 
written as z^XVf-Vn. 

Finally, setting the square bracket in Eq. (44) equal to 
zero, and substituting for n (~‘,a’) yields the nonlinear fre- 
quency shift w - wd= A (D/R ) 2, where 

A=o,[ l-e2i, (*+-$r( JfdP$s@j(P))‘]* 

(57) 

The second term in the square bracket is of order (rJR)4 
and is negligible for sufficiently small rp Note that a Taylor 
expansion of the right-hand side of Eq. (39) yields 
A--wJl- (rJR)4]. 

V. DISCUSSION 

We have considered the stability of a pure electron 
plasma column within the context of 2-D EXB drift dy- 
namics. The column is confined by a uniform axial mag- 
netic field in a region of space that is bounded by a cylin- 
drical conducting wall. Previously it was known that an 
on-axis, cylindrically symmetric, plasma column with a 
monotonically decreasing density profile is locally stable.’ 
We showed that this stability persists when the column is 
displaced off the axis, provided that the column radius is 
not too large. Displacement of the column is affected by 
exciting an I= 1 diocotron mode, and our stability analysis 
may explain, in part, the remarkable longevity observed 
experimentally for these modes. 

Some other dynamical equilibria, such as 1=2 dio- 
cotron modes or multiple-vortex configurations, are saddle 
points of W because certain displacements decrease the 
energy functional. (The equilibrium frame rotation fre- 
quency w > ad.) Hence our analysis does not solve the sta- 
bility problem in these cases. 

The stability analysis may also be relevant to recent 
experimental results on confinement in an apparatus with- 
out cylindrical symmetry.14 In these experiments the cylin- 
drical wall is divided azimuthally into several electrically 
isolated sectors. When the various sectors are maintained 
at different potentials, the wall ceases to be an equipotential 
surface, and the cylindrical symmetry of the geometry is 
destroyed. Nevertheless, long-lived (seconds) equilibria 
are observed experimentally.‘4 At first glance this result is 
surprising; in general, it has been thought that cylindrical 
symmetry of the apparatus is required for good 
confinement.15 

In its most general form, the stability argument devel- 
oped here also requires cylindrical symmetry of the appa- 
ratus. We used conservation of the total canonical angular 
momentum 5 and of the total electrostatic energy W to 
argue that W= W+wP, is conserved. However, for the 
special case w = 0 (the laboratory frame), W reduces to W, 
and we need not require that Pe be conserved-cylindrical 
symmetry of the apparatus is not required. If the electro- 
static energy W is a local maximum in the laboratory 
frame (w=O) for the equilibrium of interest, then that 
equilibrium is stable to small-amplitude ExB drift pertur- 
bations. 

In general, the equilibria for an asymmetric trap are 
stationary only in the laboratory frame. Let n = n (r,f3) and 
#=I$( r&3) be the density and self-consistent potential for 
such an equilibrium. It is necessary that there exist a func- 
tional relationship n=n(h), where h= -e#, and we re- 
quire that this relationship be such that dn/dh > 0. We can 
show that W is a local maximum for such an equilibrium 
in the limit where the asymmetries are small, that is, where 
the potentials on the various sectors are all close in value. 
In this case, the asymmetric equilibrium differs only 
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slightly from a cylindrically symmetric equilibrium 
n=no(ho), where dnddho > 0 (or, equivalently, 
dnddr<O). Of course, this latter equilibrium is realized 
when all of the sectors are held at the same potential. Since 
w= 0 < @d, we know from the analysis in Sec. III that W is 
a local maximum for the cylindrically symmetric equilib- 
rium and, correspondingly, that the eigenvalues /zi in ex- 
pansion (27) are all positive. Moreover, from Eq. (34) one 
can guess that for w=O the two lowest eigenvalues 
(A, =k2) are separated from zero by order unity. Since the 
asymmetric equilibrium differs only slightly from the sym- 
metric equilibrium, one expects by continuity that the ei- 
genvalues for the asymmetric equilibrium differ only 
slightly from those for the symmetric equilibrium. Thus 
the eigenvalues for the symmetric equilibrium are all pos- 
itive, and W is a local maximum. We may conclude that 
the asymmetric equilibrium is stable to small-amplitude 
ExB drift perturbations. The fact that these configura- 
tions are local maxima of the electrostatic energy has a 
somewhat surprising consequence. The electron plasma is 
effectively repelled by a segment of the boundary, which is 
held at a positive potential or attracted by a negative one. 
This is consistent with behavior seen in experiments.14 

Finally, all of the analysis in this paper is based on 2-D 
EXB drift dynamics, and some comments concerning the 
relevance of this approximation to real three-degrees-of- 
freedom plasmas are necessary. We have in mind that the 
magnetic field is sufficiently strong that the EXB drift 
rotation frequency (and the diocotron mode frequencies) 
are small compared to the characteristic bounce frequency 
for an electron. (This limit should not be hard to satisfy in 
experiments, although it is only marginally attained for the 
parameters of Ref. 4.) In this case, a theory of the low- 
frequency motion can be developed as an expansion in the 
inverse of the bounce frequency, and 2-D ExB drift dy- 
namics arises in lowest order, that is, as bounce average 
dynamics. For the bounce average dynamics to reduce to 
true 2-D ExB dynamics, it is also necessary for the col- 

umn to be sufficiently long that solutions to Poisson’s equa- 
tion are approximately 2-D. 

In other words, the stability theorem should be inter- 
preted as insurance against low-frequency (rotation fre- 
quency) instabilities. Also, when the axial bounce fre- 
quency is not large compared to these frequencies, the 
theorem cannot be trusted. For example, the bounce action 
is then not a good adiabatic invariant, and the parallel 
kinetic energy can vary, that is, can be interchanged with 
electrostatic energy. Of course, such a possibility vitiates 
the stability theorem. 
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