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The thermal equilibria of a two-dimensional guiding-center model for a single-species plasma
bounded by a cylindrical conductor are considered in the microcanonical ensemble. The same
description applies to identical point vortices in a two-dimensional, ideal fluid surrounded by a
circular streamline. The statistically dominant configurations are displaced asymmetrically
from the axis, for sufficiently large energies at specified canonical angular momentum. The
transition between symmetric and asymmetric states resembles a second-order phase
transition, and occurs at negative temperatures. It is related to a bifurcation in the mean-field
(Vlasov) description. The theory is compared with Monte Carlo simulations of

microcanonical ensembles of guiding centers.

I. INTRODUCTION

In this paper, we demonstrate that thermal equilibrium
states of a cylindrically bounded, single-species, two-dimen-
sional (2-D) guiding-center plasma or point-vortex gas are
displaced from the center of the system for certain values of
the constants of the motion. That is, the statistically pre-
dominant configurations of such a system do not have the
rotational symmetry of the underlying confinement geome-
try at sufficiently large energies. The broken symmetry may
be interpreted as the spontaneous excitation of a finite ampli-
tude diocotron mode. Such equilibria have formally negative
temperatures, and may describe non-neutral plasma co-
lumns in cylindrical Penning traps on intermediate time
scales. Some of the work discussed below was summarized in
an earlier letter.'

The system under consideration is a collection of N
identical long rods of length L and charge ¢. (The point-
vortex analogy will be defined below.) The rods are parallel
to a uniform magnetic field B2 and surrounded by a ground-
ed conducting cylinder at radius » = R. We use cylindrical
polar coordinates (r,6,z) throughout. When not otherwise
qualified, the term symmetric will subsequently mean “inde-
pendent of the azimuthal angle 8.”” Each rod moves with the
drift velocity v = (¢/B)E X2 due to the electrostatic field E
determined by the rod positions and the conducting bound-
ary. For simplicity, we assume that L is sufficiently large
that finite-length corrections to the electric field may be ne-
glected. We regard this system as a 2-D guiding-center mod-
el of a magnetically confined, non-neutral plasma column.

We study microcanonical ensembles of guiding-center
systems using two approaches. Most of the discussion is
based on a Vlasov or mean-field description, where many
analytical results are available. We also employ a Monte
Carlo scheme to simulate the ensemble directly; this con-
firms some of the predictions of mean-field theory, and
shows when correlation effects may be important.

In the mean-field description, a configuration of the sys-
tem is specified by a continuous charge density gn(r,8). As-
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sociated with this density is a self-consistent electrostatic
potential ¢ satisfying Poisson’s equation, V¢ = — 4rgn,
subject to the boundary condition that ¢ = 0 at the bound-
ary r = R. (Sometimes we will write the inverse relation as
é = — 47qV ~*n.) The mean-field approximation applies
when N is sufficiently large and certain correlations are
weak; we will return to this point later.

The number of rods is related to the density through
N =L §d*r n, where d *r = r dr d@. The total energy is giv-
en by E = (gL /2)§d *r né and the total canonical angular
momentum by

M= (EIL) fdzr nrd, (r) = (ﬂ) fdzr n,
c 2c

where 4, = Br/2is the vector potential for the uniform axial
magnetic field. Inertia is neglected in the 2-D guiding center
model, so the energy is entirely electrostatic, and the canoni-
cal angular momentum consists solely of the vector potential
contribution. The confinement geometry is invariant under
translations in time and azimuth, so E and M are conserved
during evolution of the system, as is N.

The guiding-center plasma is dynamically equivalent to
a collection of identical point vortices in a two-dimensional
fluid surrounded by a circular streamline. Each vortex has
circulation 4mgc/BL, and is advected by the velocity field
induced by the others. The mean-field vorticity is then
4mgcn/B, and the streamfunction is c¢/B. The statistics of
this discrete system may describe some features of a turbu-
lent two-dimensional fluid at large Reynolds numbers.> The
remainder of our discussion will employ the language appro-
priate to the line-charge model.

Our goal is a statistical description of an isolated collec-
tion of guiding centers. Such a description is provided by
averages over Gibbs’s microcanonical ensemble, which is
the set of all configurations having specified values of N, E,
and M. For sufficiently large N, the entropy functional
S= —Lfd’rnlnn gives a logarithmic measure of the
number of microscopic configurations corresponding to a
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macroscopic distribution n(7,8). The most probable density
distribution is found in the usual manner by maximizing .S
subject to the fixed values of N, E, and M. We will refer to
these maximum entropy solutions as thermal equilibria.
From the variational equation

5S — B(SE + wM) — y6N =0, (1)

where S, o, and y are Lagrange multipliers, one easily sees
that S is an extremum for distributions of the form

n=n, exp{ — B q¢ + w(eB/2c)r*]}. (2)

Here, ¢ must be determined self-consistently through use of
Poisson’s equation, and the values of the parameters
n, = e~ 7", B, and @ must be chosen so that integrals of the
density yield the specified values of N, E, and M. Most of this
paper is concerned with characterizing such self-consistent
solutions. Although thermal equilibria described by Eq. (2)
have been studied before,> the significance of the param-
eter » and interesting nonaxisymmetric solutions in a
bounded domain have been overlooked.

A similar characterization has previously been provided
for the thermal equilibrium configuration of a magnetically
confined, non-neutral plasma column when all 3N degrees of
freedom are retained. In this case, the distribution function

is given by®
Sry) = no( mp )m eXP[ -B [ﬁ(v + wrB)?
27 2
+ap+ 22 o). (3)

For self-consistent solutions, the parameters n,, 5, and @
have been related to the total charge, energy, and angular
momentum (including the kinetic terms).” As one would
expect, the high-field limit (¢gB/mc>w) of the density
n = fd>v f isidentical in form to the guiding-center density,
Eq. (2).

The distributions in Eqs. (2) and (3) are both of the
form C exp( — Bhy ), where hx = h + wp, is the one-parti-
cle Hamiltonian in a frame rotating with frequency — w.
For Eq. (3), h and p, refer to full three-degree-of-freedom
dynamics; for Eq. (2), to the guiding-center dynamics alone.
o specifies a frame in which the density is static and does not
respond secularly to static perturbations. Of course, the den-
sity of a symmetric plasma is static in any rotating frame, but
there is a preferred frame for the asymmetric equilibria dis-
cussed below. As we shall see, @ need not actually equal the
local E X B rotation rate anywhere in the guiding center flu-
id. The form of Eq. (1) and comparison with Eq. (3) shows
that S can be identified as the inverse temperature.

The inverse temperature [ is negative at large energies
of the guiding-center system. (As noted by Onsager,® higher
energy requires that the rods be packed together tightly;
such states are characterized by greater order and hence low-
er entropy than more diffuse configurations, so
B = 35 /JE <0.) Thereis an extensive literature on negative-
temperature states of 2-D guiding-center systems and of for-
mally identical systems of line vortices.®'** Our mean-field
analysis follows most closely the previous work of Joyce and
Montgomery® and Pointin and Lundgren.!* This approach
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is particularly useful for a single-species plasma, since the
mean-field density distribution is nontrivial (i.e., not a con-
stant) even for positive 5. In contrast to a neutral plasma, a
single-species plasma can reach thermal equilibrium while
confined magnetically.

We will find that for energies above an angular-momen-
tum-dependent threshold, corresponding to a certain range
of negative f3, the thermal equilibria do not share the under-
lying symmetry of the confinement geometry. The reason for
this is easy to understand. Large energy requires the proxim-
ity of many rods, which can be realized by symmetric equili-
bria dominated by a small central cluster. However, the fixed
mean-square radius associated with a given value of M im-
plies the presence of a halo of particles at larger radii. (There
is a finite limit to the energy of a thin annulus at the root-
mean-square radius.) Symmetric configurations with two
populations have less mean-field entropy than a single clus-
ter displaced from the origin, so we expect off-axis configu-
rations to predominate at large E. (Moreover, symmetric
states with these energies are usually subject to diocotron
instabilities; such instabilities furnish a mechanism for in-
creasing entropy.) These off-axis equilibria are stationary
not in the laboratory frame, but in a frame rotating with a
frequency close to — 2Ngc/BLR ?, which is the frequency of
the / = 1 diocotron mode.'®

Previous work on guiding-center thermal equilibria has
concentrated on neutral systems, where the positive S mean-
field equilibria are spatially homogeneous and have a well-
defined thermodynamic limit. At high energy (and negative
B3), the rods tend to segregate into clusters of like charges.
One may regard the transition between these kinds of equili-
bria as the spontaneous excitation of a low-order, zero-fre-
quency mode. In a periodic system, the mode breaks the
translational symmetry, much as the diocotron mode breaks
the rotational symmetry in the present context.'*

The off-axis states can also be understood in terms of a
simple physical picture. From the form of the Boltzmann
distribution [Eq. (2) ], one can see that changing the sign of
beta from positive to negative effectively changes the interac-
tion between like charges from repulsive to attractive. Thus
the effective potential may be decomposed into the local self-
attraction of the cloud and a repulsive field or potential hill
due to the image charges associated with the boundary con-
dition. The @7* term (for w > 0) represents a centered poten-
tial hill. The cloud can be confined between the two hills at a
radius D, where O < D < R; self-attraction then localizes it in
azimuth.

This picture suggests that the symmetry is broken con-
tinuously—the equilibrium state is a continuous function of
energy. In this sense, the transition between symmetric and
off-axis states of maximum entropy resembles a second-or-
der phase transition. (Some aspects of this analogy have
been presented elsewhere.! ) Indeed, as we show below, cer-
tain thermodynamic derivatives change discontinuously,
and significant fluctuations of the displacement mode persist
near the transition in the limit of large N. Fluctuations are
also important near transitions in neutral guiding-center sys-
tems, which have been studied from a different point of view
by Lundgren and Pointin.'*
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The remainder of this paper is organized as follows.
Some of the properties of mean-field thermal equilibria are
explored in Sec. II. Section III is devoted to the thermody-
namic stability of such equilibria. In Sec. IV, we compare the
predictions of mean-field theory with Monte Carlo simula-
tions of the discrete system, and discuss the importance of
fluctuations near the transition. Some of the unusual ther-
modynamic properties of the system are discussed in Sec. V.
We conclude with a discussion of the implications of this
study. Details of the bifurcation theory of solutions to the

mean-field equations are presented in the Appendix A, asare

the numerical methods used for various parts of this project.

{l. MEAN-FIELD THEORY

Before proceeding with the mean-field analysis, it is use-
ful to introduce scaled variables. We scale lengths by R, den-
sities by (N/RZL), potentials by (¢N /L), energies by
(N?¢*/L), and angular momenta by (¢NBR 2/2c). In terms
of the scaled variables, Poisson’s equation takes the form
V?¢ = — 4mn, with the boundary condition ¢ =0atr =1,
and the conserved quantities are given by

l=fd2rn, E=%jd2rn¢, M=fd2rr2n. 4)

Note that M is now explicitly the mean-squared radius. Simi-
larly, theentropy perrodisS = fd*rnlnn —In(N/R?L);
since the last term is a constant, it may be dropped. Note that
all explicit dependence on N, R, and B has been removed
through this scaling. The entropy per rod is extremized sub-
ject to Egs. (4) by densities satisfying

n(r) = ny exp{ — B [¢(r) + 01}

= n, exp (47BV ~’n — wfr*). (5

Here, 8 is the inverse temperature scaled by (L /Ng*); this
scaling is a reminder that the large NV limit is not described by
a conventional thermodynamic limit. The rotation frequen-
cy w is scaled by (2cNg/LR *B), which is the EXB drift
rotation frequency at the boundary (for the case of a cylin-
drically symmetric column), and also the frequency of the
I = 1 diocotron mode. These scalings are associated with in-
variances of Eq. (5) under (n,—any,B-f/a) and
(r-brw—w/b*n, —ny,/b*). Again, ny, @, and B are to be
determined from the constraints, Egs. (4). Thermal equili-
bria thus form a two-parameter family, specified as
n=n(EM),B=F(EM), and v = w(E,M).

Equation (5) may be derived as an approximate de-
scription of the microcanonical ensemble of the discrete sys-
tem by several methods, e.g., by counting areas in phase
space,>® or expanding the hierarchy of static correlation
functions in powers of the plasma parameter.''* It is worth
emphasizing that all such derivations assume certain corre-
lations are weak; we will return to this point. Finite boundar-
ies and/or an angular momentum constraint allow for ther-
mal equilibria with a nontrivial mean field. This is what
allows for interesting results at the level of a distribution
function of the Boltzmann type.

Let us choose a representative value of angular momen-
tum, say M = 0.1, and follow the behavior of the equilibrium
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FIG. 1. Dependence of entropy on energy, for mean-field equilibria [solu-
tions of Eq. (5) ], at fixed M = 0.1. The solid line represents the symmetric
branch; the dashed line, results of (perturbative) bifurcation theory; the
dot-dashed line, the large-energy approximation described in the text. The
points marked A-D are discussed in the text.

as a function of energy. 8, w, and S are plotted as functions of
Ein Figs. 1-3. The points marked A-D have been selected as
illustrative limits; some of the state variables corresponding
to these points are listed in Table I, and they are discussed
more fully below. All solutions up to point D are symmetric,
so they satisfy the equation

1d d
— —r—Inn(r
rdn()

= 47fn — 4fw, (6)
rdr dr

subject to a regularity condition n’'(0) =0, with n(0), 5,
and @ chosen to satisfy Eqgs. (4). For computational pur-

Inv. Temp. B
o
4

1 125 15 1.7 2
Energy E

FIG. 2. Dependence of inverse temperature on energy; parameters and con-
ventions as in Fig. 1.
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FIG. 3. Dependence of rotation frequency on energy; parameters and con-
ventions as in Fig. 1.

poses, it is most convenient to solve Eq. (6) indirectly, by
integrating

1 d _d "

r dr rdr u=r-e
numerically, for specified constants fand g. Then an equilib-
rium is given by n(r) =C expu(r), 3= Cf/4w, and
® = g/4pB, where C ~' = 2mwfjdrru(r). A standard root-
finding algorithm was used to adjust f or g to achieve the
desired value of M, and other quantities calculated from the
solution were used for the plots. An alternative method, de-
scribed in Appendix C, gives equivalent results and can also
be used to find asymmetric equilibria, but is not as accurate
because it employs a fixed spatial grid.

Point A corresponds to zero temperature (8- + « ),
where the density profile is a step function, n(r) = =M for
r<\2M,n(r) =0for r> J2M . This profile minimizes the
energy for the specified values of total charge and angular
momentum, so point A is the lower limit of the curves in
Figs. 1-3.

For slightly larger energies, the outside edge of the pro-
file is rounded over a scale length set by the Debye length
Ap = [4mBn(0)] =2, which is approximately (M /25)">
in our units. Such profiles are identical to those discussed

u(0)=0, #'(0)=0, (7)

TABLE I. State functions (energy E, inverse temperature 5, rotation fre-
quency o, and entropy S) for representative mean-field thermal equilibria,
at angular momentum M = 0.1.

Label E B ® S

A 1—{In(2M) =1.055 © 2M)~'=50 — 0.200

B 1.093 0 + -0.158

C 1.213 — 1917 0 —0.318

D 1.337 —2.232 1 —0.579

E © -2 (1-M)'=ll111 —
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previously’ as positive-temperature states of a 3N-degree-of-
freedom plasma.

Point B represents the limit of the profile rounding,
where 8—0but w — o simultaneously so that the limit of w8
is finite. The density profile becomes Gaussian,
n(r) = nye =%’ SinceB = 35 /JE, point Bis the maximum
of the curve S(E) and corresponds to infinite temperature,
which cannot be attained in a 3N-degree-of-freedom plasma.

At point C, where the rotation frequency vanishes, Eq.
(6) may be solved exactly. [ For instance, by transforming to

' new variables 7 = In 7 and y() =In n(r) + 279, one can

integrate to obtain a Riccati equation for ' (7).] The result
for f<0is

n(r) =44 /(2 — mBArH> (8)
The constraints yield the relations
A=n(0)=[7(1+48)] ", (9a)
2 2 B
M=(1+—)[1——1n(1+—)], 9b
F; ; ) (9b)
and
2 /3) B ]
E= ——|IInfl+=)——].
o)

Equation (8) was introduced as an approximation in Ref. 4,
in the context of a point-vortex system without boundaries.
Note that as M0, i.e., the system shrinks to a point, the
inverse temperature approaches the value — 2. This corre-
sponds to the “supercondensation” phenomenon described
by Kraichnan.!” We will return to the thermodynamic sig-
nificance of equilibria described by Eq. (8) in Sec. V.

A. A continuation algorithm

Before discussing the transition point D, it is convenient
to describe a formal procedure for progressing along the
curves in Figs. 1-3. That is, we start at one solution n of Eq.
(5) at specified (M,E) and advance to a nearby solution
n + &n at the energy E + SE. The density has the form
n=exp(—pBd—ar*—y), where a=pfo and
¥ = —In n,. We compute the density increment perturba-
tively. Ordinarily, the leading terms in 6n are & (6E):

dn= —n(6B¢+r’ba+by+B8p) + C(SE?),
(10)
where 8¢ satisfies V> 8¢ = — 47 6n,5¢ =0 at r= 1, and
the increments (8a,88,6y) are to be computed from the con-
straints at consistent order:

0=Jd2r6n, (11a)

5E=J’d2r ébn+ O (8E?), (11b)
and

0=J-d2rr26n. (11¢)

Ordinarily, we can eliminate the parameter increments
by substituting Eq. (10) into Eq. (11):
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0 r? ba
6E +de2rn6 ¢ l=—-—M6B1, (12)
0 1 oy
where the matrix M is given by
rt r r?
M= fd rnlri¢ ¢* 4|, (13)
r: ¢ 1
and terms of & (8E ?) are neglected in this paragraph. Hence
Sa 0 r?
8= —M'|6E BM“fdzrn&ﬁ é
oy 0 1
Equation (10) and Poisson’s equation then yield
& 8¢ = 4wn(r)A(r)SE, (15)
where
L=V—-4mnB(1+r’L , +¢Ls+.L,), (16)
L 4 (64) r2
ZL5(64) =—M“fd2rn6¢ ¢} amn
£, (6¢) 1
and
A(r)= —[F2(M~ ), + (M), + (M5, ], (18)

This algorithm will fail if there is a singularity in the
linear problems posed above. A singularity of the operator
£ (vanishing eigenvalue) can lead to bifurcation, that is, a
confluence of multiple solution branches. Just this situation
occurs at the transition point. If the matrix M is singular,
then there is ambiguity in the parameters a,5,y. The only
case of this kind of singularity which we have encountered is
associated with a degenerate bifurcation from a spatially uni-
form density. Although we have analyzed this case, we do
not discuss it here, because it does not lead to maximum-
entropy equilibria (cf. Sec. III).

B. The transition point

At a bifurcation, we must retain higher-order terms in
the perturbation analysis to obtain consistent solutions when
8¢ involves a singular eigenfunction ¢ of .. First we char-
acterize 9 itself.

Since the basic solution # is on the axisymmetric branch,
the linear problem .Z¢ = 0 can be decomposed into azi-
muthal Fourier harmonics, labeled by mode number /. Here
we assume the bifurcation involves a change of symmetry
(/> 0); the special case of / = O is discussed in Appendix B.
Let the first-order potential increment be xy(7,8), where ¢
is normalized independently of x,3*¥/d0* = — 1%y, and x
is an amplitude. Then we note that the azimuthal phase, and
a fortiori the sign, of ¢ are arbitrary. Thus the parameters éa,
8B, 6y must be invariant under the operation x— — x. At
leading order, the constraints are satisfied trivially because
of the azimuthal dependence, so 6E, M, 8a, 63, and 5y are
& (x*), and ¢ satisfies ., = 0, ¢ = 0 at r = | and regular
at the origin. The effective linear operator .7, is defined by
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It
1d _d ) (19)

L, f= (T"; ;——f 4mpnf.

Here we restrict our attention to the / = 1 Fourier subspace;
other values of / are irrelevant for reasons of thermodynamic
stability, as we show below. Hence we let ¢ = #(r)e” + c.c.,
and look for a solution of the equation

1d d 1\~ ~
————— — 4aBngy =0.
(r dr dr rz)tp mhng

It is illuminating to rewrite Eq. (20) in the form

1d d 1Y 21rdn(ld¢ )—u

4,4 _ smen(_ e =0,

(r drrdr r2)¢+ r dr \2r dr to) ¢
@2n

which is just the dispersion relation for an / = 1 diocotron
mode in terms of the scaled variables. The EXB velocity is
12X V¢ in these units, so the local E X B rotation rate of the
equilibrium is wz (r) = (4r) (d¢/dr). This quantity is nega-
tive, and at the wall has the value w; (1) = — 1. Forw =1,
the frequency of the / = 1 diocotron mode, Eq. (21) has a
smooth solution satisfying the boundary condition
1/1(1) =0, given by'®

¥ =Drlwg(r) +1], (22)

where D is a constant. Substituting this expression into the
second term of Eq. (21), and using the Laplacian in the first
term to compute the associated density perturbation, yields

(20)

on(r,0) =Z—n |D | cos(8 + arg D). (23)
r

Thus, to first order in D, a step along the asymmetric branch
is simply a displacement of the column away from the axis.

To see why the bifurcation occurs at @ = 1, recall the
interpretation of the off-axis column as a self-attracting clus-
ter of rods trapped between the wr 2 potential hill and the
image charge associated with the conducting wall. A small
displacement D gives rise to a dipole image potential
¢, = — 2D-r The average force on arod due to the potential
hill is N ~' 2,V,0r } = 2wD, and the average force due to
the image potentlal 1sN ~!'2,V,(—2D-r;) = — 2D, where
we have used the normalization N ~'2,1 = fd’rn(r) =1
for both terms. Thus force balance yields the condition
o=1

In Appendix A, we relate the branches near the bifurca-
tion to solutions of a nonlinear algebra problem of the form
Ax + x* = 0, which describes a pitchfork bifurcation for the
amplitude x in terms of a bifurcation parameter 4, which is
generically proportional to a linear combination of §M and
OE. The analysis also furnishes perturbative expressions for
the dependence of S and w on E along the off-axis branch,
which were used to construct the dashed curves in Figs. 1-3.

C. Large energies

When the energy is sufficiently large (for a fixed value of
M), the most probable density distribution is localized with-
in a region of small radius 7,, much smaller than the magni-
tude of the displacement D of the center of charge. If the
cloud is sufficiently far from the wall [, €(1 —D)], an
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approximate description of an asymmetric equilibrium den-
sity n(r,6;8,n,,0) may be constructed as follows. Lettingr’

=r—D, we write the potential as @(r) =¢,(r")

+ ¢p(r’), where ¢, (r') =2 In|rD — D/D| is the image
potential of a unit charge at D. This is very nearly the image
potential of the cloud itself, which is assumed to be localized
away from the wall. The boundary condition ¢(r = 1,6) =0
requires that ¢, ~ — 2 In|r — D| for |[r — D|>7,.

We rewrite Poisson’s equation as

V24, = — 4mn,
Xexp[ —B(¢p + wr” + 2wr "D+ D+ ¢,)].
(24)

To find a solution in the vicinity of the plasma, we Taylor
expand in 7 ":

’ 2 2D'l"
;(r')~2In|1 — D? — D (25)
It is convenient to let
ny = ny exp[ —B(21n|]1 — D?| + wD?)], (26)

and to choose w = 1/(1 — D?), so that Eq. (24) reduces to

Vp = —dwn; exp{ —B [6,(r') +wr”?]}. (27

Note that this choice for @ is equivalent to the force balance
condition 20D + V'¢; = 0at r' = 0. The large r ' asympto-
tic behavior ¢p(r',0’')~ —2Inr’ is equivalent to the
boundary condition ¢,(r'=1,8"') =0, and the constants
n; and 3 are determined by the constraints

1 =fd2r’n(, exp{ —B[do(r) +wr?}}, (28a)

M'=fd2r’ rny exp{ —B[¢p(r') +0r?]},
(28b)

where M’ = M — D?is the portion of the canonical angular
momentum due to the dispersion of charge around D.

Consequently, we have reduced the large-displacement
equilibrium problem to a radial integration: The desired so-
lution of Eq. (27) is the symmetric one characterized by
®=1/(1 — D?) and M’ = M — D?2. This solution yields a
cloud self-energy E ‘', which we relate to the energy of the off-
axis equilibrium through

1 1 1
B= [@em= [anbi v [ dens,

=In(1-D*»+E/', (29)

whereln(1 — D?) is the energy of interaction with the image
charge. As D? approaches M, the plasma is concentrated
into a small column with a large self-energy £’. Hence E can
be substantially larger than the bifurcation value E,. Note
that the plasma becomes better localized as D 2_, M, and the
above approximations become more reliable. A thermody-
namic interpretation of this scheme will be given in Sec. V.
The results of the above approximation scheme are indicated
by dot-dashed curves in Figs. 1-3. At very large energies, the
column is so thin that exp( — Bwr '*) does not differ signifi-
cantly from unity over the region of appreciable density.
Thus a good approximation to the density distribution is
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given by the » = 0 solution, Eq. (8), for the appropriate
value of M. This leads to the asymptotic value of — 2 for the
inverse temperature 8 as E— oo at any fixed M.

The symmetric solutions to the Euler-Lagrange equa-
tion for E'> E, are not physically relevant, since they are not
entropy maxima. (We argue below that they are not even
relative maxima.) These solutions oscillate at large 7; as the
first radial minimum crosses 7 = 1 from the outside, we ob-
tain the two-population configuration described earlier
(central cluster and halo near the wall). But this is just
where the bifurcation occurs, so such solutions compete with
the off-axis ones. As energy increases, the separation be-
tween the two populations becomes more severe; a limit is
continuously approached in which a fraction of the charge
(equal to M) is arbitrarily close to the wall and the remain-
ing charge is concentrated at the center. The limiting value
of 3 along this branch as E— » is — 2/N(1 — M), corre-
sponding to the condensation temperature for the central
cluster alone.

lil. THERMODYNAMIC STABILITY

All of the solutions discussed above (symmetric and off-
axis) are constrained extremals of the entropy. However, by
the postulates of statistical thermodynamics, only entropy
maxima are related to long-time averages. This requirement
plays the role of thermodynamic stability for the microcan-
onical ensemble. As we show below, the principal / = 1 bi-
furcation discussed above is the first to occur as E is in-
creased from its minimum value. There is only one extremal
for E < E_; this must be a constrained entropy maximum,
since the entropy is bounded from above. Above E,, we must
determine which of the extremals is the maximum. A simple
way to compare the two branches is to use the thermody-
namic relation dS = B(dE + o dM), which is easily verified
for infinitesimal changes which preserve the total charge and
satisfy the condition for an extremal (Inn= — B¢

— Bwr? —y). For steps along either solution branch
dM =0, so S(E) =S(E,) + z B(E)dE, where B(E) is
evaluated along the branch in question. Since S(E) is larger
along the off-axis branch, that branch has larger entropy. At
the bifurcation, thermodynamic stability is transferred from
the symmetric branch to the off-axis one.

There are other branches of solutions to the extremal
problem at larger energies. Nevertheless, we believe that the
above description correctly describes the thermodynamical-
ly stable equilibria at all values of E, on the basis of a qualita-
tive argument and numerical evidence. Since S is maximized
by solutions with the least structure, we expect entropy
maxima to have a single density peak (or well, for M > 1/2),
as do the symmetric solutions for E < E, and the off-axis
solutions for E > E,. Furthermore, such solutions extend to
arbitrarily large energies.

The signature of a local entropy maximum is the nega-
tive definiteness of the second-order change in the entropy,
&S, for density perturbations which satisfy the constraints.
Next we construct an explicit representation for &S, and
show that the symmetric branch changes from a local maxi-
mum to a saddle of the entropy as E is increased through the
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critical value. We also argue that the off-axis branch is a local
maximum.

Let us consider the change in S associated with a small
deviation én from the equilibrium density n, to second order:

r L .

2n
We require that 6n not change the charge, angular momen-
tum, or energy:

6S~—fd2r(lnn+l)5n—fd (30)

0=Jd2r6n, (31a)

0=fd2rr26n, (31b)

0=fd2r(¢6n+§6n6¢). (31c)
and

By substituting In n = — ar* — B$ — ¥, using the con-

straints and Poisson’s equation, we find that

1 V2 64
OS5~ — d? ( — 4 ) 2 80.
2 J‘ T " w3 6¢ V> 8¢ (32)

[Of course, the first-order change around a constrained ex-
tremal vanishes for any &n satisfying the first-order con-
straints, Egs. (31a) and (31b) and fd’r ¢ 6n =0.] The
quantity in large parentheses is closely related to the eigen-
value problem

Vi, —dmn(B+ AV +P L, + 6L s+ L)Y, =0,
(33)

with ¢, = 0 at the boundary r = 1. Recall that the function-
als .7, % g,and .Z,, [see Eq. (17)] are constructed so that
the density perturbation n, = — (47) ~ 'V?*¢, satisfies the
first-order constraints. An appropriate inner product for po-
tential perturbations is (f,g) = fd ’r V/Vg. From Eq. (33)
and the constraints, it is easily seen that
(A4, —1,)(#,,4,) =0, so the ¢, can be chosen to satisfy
the orthonormality condition (¢,,¥, ) = 476,,,. We will as-
sume that they are complete in the space of normalizable
functions which satisfy the constraints and vanish on the
boundary. (If they are not, a variational interpretation of the
eigenvalue problem justifies our criterion for definiteness.)
Accordingly, we expand any allowed potential perturbation
as 8¢ = X a, ), ; by substituting into Eq. (32), and using the
constraints and orthonormality, we find that 6 =} 2, 4,a2
to second order. That is, the A, are generalized eigenvalues
of the second variational operator §°S /8n?. If the algebrai-
cally largest eigenvalue is negative, n furnishes a local maxi-
mum of the entropy.

For A =0, Eq. (33) reduces to .¥’¢ = 0, which was in-
troduced earlier as the criterion for bifurcation. Hence the
second variation has a zero eigenvalue at the critical energy
E = E_. There are two singular eigenfunctions, which are
proportional to linear combinations of sin & and cos 6. Since
there are no zero eigenvalues for E < E,, and the symmetric
branch is stable for sufficiently small E, all eigenvalues are
negative for E < E,. As E increases through E_, the doubly
degenerate principal /=1 eigenvalue increases through
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E

FIG. 4. Eigenvalues of the second variation 6°S /8n” as a function of scaled
energy, for equilibria with M = 0.1. Top: axisymmetric equilibria, principal
eigenvalues 4, for / = 0,1,2. Bottom: principal eigenvalues near the bifurca-
tion (solid line, symmetric branch; dashed lines, off-axis branch).

zero, and the symmetric branch changes from an entropy
maximum to a saddle. We have evaluated various eigenval-
ues along the symmetric branch numerically (using a
scheme described in Appendix B). The results shown in Fig.
4 confirm / = 1 stability below E, and instability above, for
the representative case of M = 0.1. (For /> 1, stability also
follows from Sturm-Liouville theory.) The principal eigen-
value for / = Ois always negative at the bifurcation, as shown
in Fig. 5.

150 b——_ 1 1 1)
0O 01 02 03 04 05

M

FIG. 5. Principal / = O eigenvalue of §°S /6 at the critical energy, for var-
ious angular momenta M.
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On the off-axis solution branch, the degeneracy is
broken. One eigenvalue remains zero; the associated eigen-
function is d¢/d0, corresponding to an infinitesimal change
of the azimuthal phase of the equilibrium, which obviously
does not affect any scalar state variables. The perturbative
numerical evaluation of the other eigenvalue (see Appendix
A) shows that it is negative, as shown in Fig. 4(b). Hence
this branch represents rotationally degenerate, local maxima
of the constrained entropy.

This situation is analogous to the well-known connec-
tion between bifurcation and stability of dynamical systems,
with the appropriate interpretation of the eigenvalues. Once
the rotational degeneracy has been factored out, this is a
forward pitchfork bifurcation, with E as the bifurcation pa-
rameter. Accordingly, one expects a transfer of stability
from the symmetric to the off-axis branch.

The similarity between our variational problem and that
which arises in Arnol’d’s method for treating nonlinear dy-
namical stability'®' suggests a nontrivial property of the
displaced equilibria in the continuum limit. By the comple-
mentarity property of constrained extrema, the mean-field
thermal equilibria are energy maxima at fixed entropy; since
energy and entropy are conserved by the incompressible
E X B flow, all small perturbations should be benign. Specifi-
cally, they lead to evolution which can be decomposed intoa
change of azimuthal phase and a residual which must remain
small.

IV. MONTE CARLO SIMULATIONS

To check the predictions of the mean-field theory, we
have simulated representative microcanonical ensembles
numerically. We used a modification of Creutz’s microcan-
onical Monte Carlo algorithm.?® The simulation consists of
an ensemble of configurations consisting of N points {r;} in
the unit disk, plus an auxiliary degree of freedom, known as a
demon, which is characterized entirely by its energy E, and
its angular momentum M. The demon parameters are con-
strained to be in narrow ranges |E, | < E,,|Mp| <M,,. The
total energy includes particle-particle and particle-image
interactions, and is given by

Er=Ep— Y In(|r, —r;|) + ¥ In (7r, — rr)) .

= J (34)
Here, E is conserved to within roundoff error for each en-
semble. Similarly the total angular momentum
M, =M, + 3,1} is conserved. We construct a sequence of
configurations within errors E,, and M, of the energy-mo-
mentum shell which defines a microcanonical ensemble with
specified values £, and M. An initial configuration is es-
tablished by annealing. A candidate for a step to another
configuration is constructed by using a random number gen-
erator to pick two distinct particle indices / and j, and displa-
cements Jr;, or; uniformly distributed on a square of edge A.
(Displacements which would leave the disk are rejected.)
The changes in energy and angular momentum associated
with the displacements are computed; the new configuration
is accepted if and only if these amounts can be 4ransferred to
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FIG. 6. Density contours in the high-energy phase,at M =0.3and £ =0.9,
from a Monte Carlo simulation with 512 rods. The rod locations were accu-
mulated over 10 000 configurations, in a coordinate system with the net
dipole moment for each configuration directed downward.

the demon without exceeding its parameter ranges. Evolu-
tion via this sort of “long-range collision” between two parti-
cles is more efficient than single-particle moves, since it al-
lows for more rapid radial motion without violating the fixed
value of mean-square radius. A “Monte Carlo step per parti-
cle,” (MCS) consists of N such collisions. The step scale A is
adjusted to maintain a rejection ratio consistent with effi-
cient exploration of phase space. Statistics are collected over
ensembles of typically 40 000 MCS.

Examination of typical realizations at large energies
shows that they are indeed displaced from the center. The
average density n,. (7,0) (with the center of charge at
6 = 0) was computed for some of the Monte Carlo runs. An
example of contours of 7, in the displaced phase are shown
in Fig. 6, along with the corresponding mean-field equilibri-
um in Fig. 7, which was approximated numerically using a

FIG. 7. Density contours at M = 0.3, E = 0.9, from numerical solution of
the mean-field equation.
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method described in Appendix C.

As noted by Creutz, the demon is effectively in thermal
equilibrium with a heat bath when N is large. Its energy and
angular momentum distributions therefore tend to the forms
exp( — BE,/N) and exp( — BoM,/N). (Recall from Sec.
II that beta differs by a factor of N from the usual inverse
temperature; for the simulations, L and g were set equal to
unity.) Hence the demon parameters must be bounded on
one side, in accordance with the signs of  and w. A second
bound is used to ensure faithful approximation of the micro-
canonical ensemble for moderate N; that is, E,, and M,
must be chosen small enough that relative fluctuations in £
and M are negligible. On the other hand, they should be large
enough to allow for efficient progress through the allowed
region of phase space. The parameters S and w are deter-
mined by fitting the observed distributions of £, and M}, to
exponentials; the results are shown as functions of energy in
Figs. 8 and 9. For our data, the accuracy of this technique is
limited to about 1% and 5% for S and o, respectively, as
determined from a chi-squared test. We have checked that
the results are not significantly affected by moderate changes
in E,, and M,,.

A. The order parameter

To quantify the asymmetry, it is convenient to introduce
as an order parameter the mean dipole moment per particle,
D =|Z,1;|/N. Here D is proportional to the amplitude x of
the spontaneously excited fundamental diocotron mode,
which arose in the bifurcation analysis. The dependence of
ensemble averages of D on energy are shown in Fig. 10. In
the symmetric phase, {D ) has a small value associated with
thermal fluctuations of order N ~ /2. In the displaced phase,
(D ) is nearly independent of N and grows slowly to the max-
imum value consistent with M. The Monte Carlo results for
(D) appear to be consistent with mean-field theory, al-

-1.50
Q —1-75 -
&
o —2.00 -
=
N
g 225
-2.50 L . ' .
1 125 15 175 2

Energy E

FIG. 8. Dependence of inverse temperature on energy for M = 0.1, as in-
ferred from Monte Carlo simulations. Symbols: + , N = 256; X, N = 512;

¢, N = 1024. Other conventions as in Fig. 1.
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FIG. 9. Dependence of rotation frequency on energy for M = 0.1, as in-
ferred from Monte Carlo simulations. Symbols as in Fig. 8.

though discrepancies in the immediate vicinity of the transi-
tion cannot be ruled out.

B. Fluctuations near the transition

The mean-field approach of the previous section may be
regarded as a weak-correlation approximation. This approx-
imation may break down in several ways. There may be long-
lived dynamical correlations which make the ergodic hy-
pothesis inapplicable on the time scales of interest; we will
not consider this case here. At sufficiently low energies, cor-
relations on the scale of the interparticle separation become

I I | I
0.3 -
. /'%l.
/ e
02 | ,-% .
—~ /
(]
S~
0.1 | =
! 1
RS
0.0 L1 | | |
1 125 15 175 2
Energy E

FIG. 10. The order parameter (dipole moment) from the Monte Carlo sim-
ulations and mean-field theory. Symbols as in Fig. 8.
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important. These ultimately lead to the frustrated triangular
lattices described by Stauffer and Fetter,?! but are not of
concern in the present context. Near the bifurcation, one of
the second variation eigenvalues is very small. That is, the
configurations with macroscopic amplitudes of the displace-
ment mode are not much less probable than the maximum-
entropy states, and averages may deviate substantially from
the most probable values. This is analogous to critical behav-
ior near a second-order phase transition.

The dominant fiuctuations can be measured by the vari-
ance of the dipole moment. In the continuum approxima-
tion, the probability & (n) of a configuration n is propor-
tional to (exp NS{n}). Thus a schematic expression for the
ensemble average of a state functional A{n} is given by

A) =f,@nmn),4{n}

=/V“f@n exp[ NS{n}14{n}, (35)
where 4" is a normalization constant, and & n represents a
measure on the space of density distributions, concentrated
on those which satisfy the ensemble constraints. (We leave
aside the subtle problems associated with the rigorous con-
struction of such a measure. ) Expanding S in eigenfunctions
of the constrained second variation yields

w-f[u(2) ]

Xexp[% NZ af,/lv]A{ne + z an,}

E

=A{n,} — 2—(—A{n + xn })

2NA, \0x? x=0
(36)
where n, = — V?y, /4x. In particular, the dipole variance
around symmetric equilibria is approximately
2 1 2
D%~ fdzrrn | s (37)
PI=2 2 Win) g

where the n,;,, for m =1,2 are the /=1 eigenfunctions
fi;;(r) cos 6 and #,;(r) sin 6. Since the h,; are obtained
from a Sturm-Liouville problem, the eigenvalues — A, ; are
ordered by increasing numbers of nodes, which we identify
with the index j. As E approaches E, from below, the princi-
pal eigenvalue A, « (E — E,) approaches zero, and (D ?)
can be approximated by the leading terms

(DY) =~ U dr P )
N|/110| °

In the Gaussian approximation, the variance diverges as
1/(E — E_). Of course, this approximation involves an ex-
pansion in small fluctuation amplitudes, so it is inconsistent
in the immediate vicinity of the transition. The energy de-
pendence of the dipole variance is shown in Fig. 11. Unfortu-
nately, the poor statistical quality of the Monte Carlo data
forbids a quantitative analysis of large fluctuations here. The
data does exhibit a large fluctuation level over a broad range
of energies around the critical value, consistent with the
range of small |4, | shown in Fig. 4.

(38)
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FIG. 11. The dipole variance from the Monte Carlo simulations. A factor of
1/N has been removed for comparison of different runs. Symbols as in Fig.
8.

V. THERMODYNAMICS

It may be helpful to summarize the above results by
means of a phase diagram. We suppose that the number of
rods is fixed, and consider E and M as the independent state
variables. Then the state space may be divided into four re-
gions as shown in Fig. 12. Region 1 is bounded by one curve
where w = 1 and another where 8= oo} it corresponds to
the usual axisymmetric equilibria, with density concentrated
near the origin. Equilibria in region 2 (similar boundaries,
but M > 0.5) have significant density near the wall, and are

Energy E

0 025 05
Ang. Moment. M

0.75 1

FIG. 12. Phase diagram of the guiding-center system in energy/angular
momentum space.
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thus unrealizable. Region 3 consists of the displaced equili-
bria, and region 4 is forbidden because the mean-field energy
is not consistent with the specified angular momentum.

It is a simple matter to relate some thermodynamic
quantities to the calculations described above. For example,
we note that the thermodynamic relation dS = B(dE

+ w dM) identifies — w as the slope of an isentropic path
on the E-M plane. By comparison with numerical results for
w(E,M) (like those shown in Figs. 1-3), these adiabats will
have the qualitative form shown in Fig. 13. Furthermore, we
can interpret our approximation scheme for large-energy
equilibria as the result of a reversible displacement from a
symmetric fiducial state 4 (on the critical curve where @

= 1) to B (atlarge M) along an adiabat. The approximation
that the distribution is not distorted at large D implies that
theentropy — fd ’r n In nisnearly identical in the two states

(E,M) and (E’,M ). The frequency along the curve is found
from the force-balance argument, w = 1/(1 — D?), and we
integrate to find

M D
E_E' = _f dM o= —f 2DdD _ 1 _ D>
M o 1 —D?

Another implication of the thermodynamic relation
dS = B(dE + w dM) concerns the effect of a small, exter-
nally imposed, static asymmetry in the confinement fields.
Such asymmetries break the invariance of the Hamiltonian
under translations in azimuth, but not under translations in
time. Thus they gradually change the angular momentum of
the plasma (dM #0) but not its energy (dE =0). In re-
sponse, the plasma evolves through a sequence of states near
to thermal equilibrium. For each step in the evolution, the
second law implies that 0<dS = Sw dM. The state point
moves toward larger entropy along a path of constant ener-

Energy E

Ang. Moment. M

FIG. 13. A representative path of constant entropy (solid line). The dash-
dotted line corresponds to S— oo, the dashed line to w = 1.
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gy. When the system reaches the entropy maximum along
this curve (where Bw = dS /M |;), the evolution ceases.
Note that the confined states with @ = 0 and 8 < 0 (points C
in Figs. 1-3) are the states of maximum entropy when the
angular momentum constraint is relaxed.

A. The canonical ensemble

The circular guiding-center system is unusual in that the
canonical and microcanonical ensembles differ qualitatively
in certain parameter ranges, even in the large N limit. In a
canonical ensemble, where the system is regarded as coupled
to a heat bath, beta is specified and the most likely states are
those which maximize the total entropy of the system and
heat bath. This is usually phrased in terms of the free energy
F = FE — S /B, which is minimized for 8> 0 and maximized
for B <0. In the mean-field approximation, the variational
problem for the canonical ensemble leads to the Euler-La-
grange equation treated above, Eq. (5), but the energy con-
straint is no longer imposed. Furthermore, the stability
problem is changed; the second variation of F is taken at
fixed B, leading to an eigenvalue problem like Eq. (33), but
without .. In this case, there is a positive eigenvalue for
both branches above E_, as we have verified numerically (by
straightforward extension of methods described in Appen-
dix A). From the perspective of bifurcation theory, when g
is the bifurcation parameter, the transition at fixed M is a
subcritical pitchfork bifurcation. Hence the large energy
branches are both unstable; the low-energy, symmetric
branch is a local maximum of total entropy, but only a rela-
tive maximum of free energy (i.c., a metastable state) for

— 2> B>pB.. The distinction arises because the entropy is
bounded from above, whereas the free energy is not.

The instability of the off-axis branch is consistent with
its negative specific heat at constant M. Suppose the system
is weakly coupled to a heat bath at 3, so that it remains
close to a microcanonical equilibrium at each point along a
trajectory in the £ plane from some initial values 8;, E,
until equilibration at B, E,. The heat transferred to the heat
bath is E; — E/, so the total entropy of the guiding centers
plus the heat bath changes by an amount

B JE
AS= - —dp.
A (B—Bsp) % B
For the off-axis states, the specific  heat
Cuy = — B*(JE /3P) is negative; the entropy change would
violate the second law, so the off-axis states cannot be in
equilibrium with a heat bath. If coupled to a heat bath at
B < — 2, the guiding-center system would presumably col-
lapse to a single-line vortex.!” This account is supported by
the failure of Monte Carlo simulations of canonical ensem-
bles to converge when 8 < — 2. (For 8> — 2, such simula-
tions appear to be consistent with the microcanonical ones,
but the statistics are even poorer.)

(39)

VI. DISCUSSION

We may expect the most likely configurations to domi-
nate long-time averages of a typical system, assuming that a
generic realization ergodically explores all but a negligible
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region of the kinematically accessible phase space. Of
course, the degenerate entropy maxima in the large-energy
phase all contribute to the long-time average, which would
therefore be rotationally symmetric. This is true even in the
frame rotating at frequency @, where fluctuations in the
strength of the electric field at the center of charge would
lead to slow changes in the azimuthal location of a given
realization. This is analogous to the situation in second-or-
der phase transitions; for example, in a vector spin system,
there are hydrodynamic spin waves associated with the rota-
tional degeneracy of the ordered phase. (The global nature
of the order parameter in this model prevents a precise anal-
ogy, since there is nothing to correspond to the wave number
of the spin waves. )

There are several limitations to the validity of the two-
dimensional guiding-center model as a description of a non-
neutral plasma. In practice, of course, the application to ex-
periments must be restricted to cases where the density is
negligibly small near the boundary and is everywhere small
compared to the Brillouin limit. Since we are invoking a
negative effective temperature for the asymmetric configu-
rations, the guiding-center variables are obviously not in
equilibrium with the velocity space degrees of freedom of a
real plasma. Inclusion of these degrees of freedom would
force the temperature to be positive.” Hence we expect our
description to apply only if there is a separation of time scales
such that the statistical equilibration of guiding center posi-
tions through EXB flow is rapid compared to exchange of
energy with other degrees of freedom; this requires a strong
magnetic field. In this case, a separate guiding-center tem-
perature can be defined, and may be negative like the spin
temperature of 2 magnet.??> The thermal equilibria described
here may then characterize such a plasma for intermediate
times, before collisional relaxation to the rigid-rotor equili-
bria of Eq. (3). There is evidence of such time scale separa-
tion in recent experiments,”>?* which indicate evolution
dominated by E X B drift dynamics.

Even in the context of 2-D evolution, there are impedi-
ments to relaxation. Ideal two-dimensional E X B drift dy-
namics in the continuum limit preserves all generalized en-
strophies, i.e., integrals of the form §d >rG(n), where n(r,t)
is the plasma density. (This expresses incompressibility of
the nonneutral plasma, which corresponds to the incom-
pressible flow of vorticity in an ideal neutral fluid.) The bear-
ing of such constraints on statistical equilibrium models of
fluid turbulence has been discussed by Carnevale and Fre-
deriksen.?® The mean-field entropy is such a functional. For
a system of line charges or point vortices, the equilibration
process relies on the underlying discreteness, although the
mean-field density is continuous. Even in the case of a con-
tinuous fluid, we can identify the mean-field distribution
with a coarse-grain average, and regard small-scale fluctu-
ations as noise. Rapid mean-field equilibration may then re-
sult from violent shear-flow or diocotron instabilities, which
lead to fine-scale filamentation of the density. That is, we
suppose that segments of a filament behave like discrete
rods. The achievement of a point-particle thermal equilibri-
um in this fashion requires that the turbulence is sufficiently
violent to mix the density ergodically, and that coarse-grain
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average densities are small compared to the peak fine-scale
density within a filament. [ This assumption can be relaxed
by generalizing the statistical description to nonoverlapping
fluid elements of finite size.?%?” This leads to thermal equili-
bria resembling Fermi distributions, whose low-density limit
is equivalent to the Boltzmann distribution of Eq. (2).] Un-
der these rather restrictive conditions, the equilibria which
we have described are candidates for the density distribu-
tions after violent fluctuations (due to instabilities or vortex
merger) have decayed. The experiments described in Ref. 24
are sometimes consistent with these criteria, but not over a
wide enough parameter range to allow detailed comparison
with the present theory.

It is possible that certain discrete-particle effects of a 3-
D plasma can be modeled by a 2-D guiding-center kinetic
theory leading to our thermal equilibria. This would be con-
sistent with the 1/B scaling of relaxation times observed in a
series of quiescent experiments.”® However, the ergodic hy-
pothesis may be incompatible with experimental conditions.
There are many other mean-field dynamical equilibria
(where the density is constant along equipotential surfaces,
but the relation between » and ¢ differs from the maximum
entropy condition). If the time scale for cross-field guiding-
center transport is comparable to the scale for exchange of
energy with velocity-space degrees of freedom, then the ob-
served guiding-center equilibria may never resemble the
maximum entropy ones, but presumably decay to the ther-
mal equilibria of all 3N degrees of freedom, which always
have positive beta and are¢ axisymmetric. This applies to the
experiments described in Ref. 23, for example.

It should be emphasized that the character of the transi-
tion depends crucially on the rotational symmetry and the
presence of a boundary. If the symmetry of the confinement
geometry is broken, the system will drift secularly toward an
@ = Q equilibrium as described in Sec. V, rather than toward
some other solution of the problem
n = ny exp[ — B(¢ + wr?)] with different boundary con-
ditions. If the boundary is removed altogether, the equilibria
are as described by Lundgren and Pointin,* and there are no
bifurcations of maximum entropy states. The condition for
the transition (@ = 1) is not attained in thermal equilibrium
in either of these cases.

ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation Grant No. PHY87-06358 and by Office of Na-
val Research Contract No. N00014-82-K-0621. Computa-
tions were done under an allocation from the San Diego Su-
percomputer Center.

APPENDIX A: DETAILS OF THE /=1 BIFURCATION
ANALYSIS

In this appendix, we show that the mean-field equilibria
near an / = 1 bifurcation off of the symmetric branch at M,
E, (M, ) are in correspondence with solutions of the algebra
problem
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X+ {4, [E— E.(My)] +4,(M— M;)}x =0,
(A1)

where x is proportional to the displacement and the con-
stants 4, and 4, are determined from the equilibrium at the
bifurcation point. The derivation of Eq. (A1) is knownas a
Lyapunov-Schmidt reduction. The standard methods for el-
liptic problems (as described in Ref. 29, for example) must
be modified to handle the constraints, so the following dis-
cussion will be more or less self-contained. We also compute
the principal eigenvalue of the second variation of the con-
strained entropy along the off-axis branch, at leading order
in perturbation theory.

Let the increment in the electrostatic potential be ex-
panded as

5¢(r,0) = x¢p(r,0) + fP(r,0) + fP(r,0) + -,
(A2)

where f? = £ (x/). We proceed by substituting Eq. (A2)
into

n+én=exp[ — (B+5B)(d + 6¢)

— (a+ ba)P —y — 6y] (A3)
and the constraints. (For the remainder of this section,
terms without & are considered fixed at their bifurgation val-
ues.) Without loss of generality we can take ¥ = ¥(r) cos 6.
This identifies the null solution of Eq. (A1) with the sym-
metric branch of equilibria, and the nontrivial solutions with
the displaced branch. At & (x), we obtain .%°, ¢ = O; the
solution is discussed in Sec. II. At & (x?) we obtain the linear
system

Lf® =agn( — B + Péa + ¢68 + 8y), (Ada)

0=fd2rV7‘2’= —Jd& af;:) o (Adb)

M = —%fdzr £, (Adc)
and

8E=fd2r nf‘Z)—%xzﬁBszr ny?, (A4d)

where L = (V> — 47nf3). The right-hand side of Eq. (A4a)
includes azimuthal modes / = O and 2. Generically, L is non-
singular except for / = 1, so the Fredholm solubility condi-
tion—that the right-hand side be orthogonal to the singular
eigenfunction ¢ of L—is trivial. Hence we can express f* in
terms of da, 88, and 8y by integrating Eq. (A4a). At third
order

Lf® = 4anxyp(68 — B*f P — Brba

— B$ 88— By + x4 B*V)
+ terms independent of 6. (AS5)

The value of x consistent with prescribed §E and M is deter-
mined from the solubility condition at this order:
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0=xfd2rn¢z(ﬁzf‘2’+ﬁt25a + Bé 5B

+ B &y + 88) +-é—x3fd2rn¢“. (A6)

It is convenient to introduce the functions y; () defined by

(-2t s

(% g; r ;1‘17 - 417'Bn))(2 = 4mng,

(% % rg-r- -~ 4‘rrﬁn),y3 =47n, (A7)
(_}.% r-;ir - 41r,3n),y4 = 4mnif?,

(%;ir rg; - % - 41rﬁn),‘(5 = 4mny?,

with y; regular at » = 0 and vanishing at 7 = 1, and the nor-
malization constant = {dr rny?. Then the constraints and
the solubility condition can be written as

Sa — 25N 0
—1 — —16M

B = 3(6M — 8N) = } , (A8)

oy B8E /m BOE /

x*/4 0 0

where the elements of the matrix Q are given by
Q,=x;(1) j=1..4,

Qy =fdr ryi j=1..4,
()Y =Jdr nry; Jj=12,3,

0, =J'dran4 +4fdrrn§zz, (A9)

0 = [ drmir 4300,

0o = [drmiF4~5-"+ 1),
Qs =fdrm{p2(1 +15)

Qus =fdrrm7fz<x4 +%xs +—;—:2r2)

From Eq. (A8), it is clear that the entries in the matrix
inverse of Q are simply related to thermodynamic deriva-
tiveslike 38 /JE at the transition point. Given an equilibrium
satisfying the criterion for bifurcation (@ = 1), the y; and
the elements of Q can be obtained by numerical integration
of Egs. (A7) and (A9); Q can then be inverted numerically.
Such computations for M = 0.1 were used to construct the
dashed curves in Figs. 1-3 and 10. In particular, they indi-
cate that the bifurcation is a forward pitchfork with respect
to SE when M = 0.
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1. Perturbation theory for the principal eigenvalue

The same approach can be used to evaluate the leading
nontrivial eigenvalue of 65 /8n* along the off-axis branch at
order SE. We consider an equilibrium at a finite displace-
ment amplitude x away from the bifurcation point. Thus the
equilibrium quantities #, B, and ¢4 are expanded in powers of
x: for instance, n = Z;n”(r,6), where n'” « x/, and n‘® is
the density at the transition. We write the eigenvalue prob-
lem, Eq. (33), as
[VZ—4mn(B+ A) 1y =4mB Pn(FPa+ b +c). (A10)
The functionals . ,, .¥ 5, and .Z,, which are evaluated at
t, are represented by the constants a, b, and c; these will be
determined from the constraints. (The factor of 8 ©’ simpli-
fies later notation.) The terms g, b, ¢, ¥, and A in Eq. (A10)
are also expanded in orders of the displacement amplitude x:
a=Z3,;_,a"%, etc. The leading order change in the equilibri-
um potential, ¢V, is just x¢'?, which we again take propor-
tional to cos 6. The operators in the perturbed problem are
still invariant under the parity operation 8- — 8, so eigen-
functions are even or odd. The principal odd eigenfunction is
the rotation d@/df (with zero eigenvalue); the principal
even eigenfunction can be expanded in cosine harmonics. At
¢ (x) we encounter the regular problem

L (0)¢(1) — 417.3(0)[”(1),/,(0)
+n(0)(a(1)’2+b(l)¢(0)+c(1))]’ (All)

since A ("’ vanishes by symmetry. At & (x?), there is a solu-
bility condition

0= f d*r l/J(O)L (0)¢(2)

O:J.dlr ¢(0){n(1)¢(1) + n(2)¢(0) + (/{ @2 +ﬂ(2))n(0)¢(0)
B(O)

+n“’(a“’rz+b‘”¢‘°’+c“’)+n‘°’b(”¢‘”].
(A12)

(Terms such as the one involving a® are annihilated by
integration over 8.) The first-order constraints are equiva-
lent to

(1)
0= fd 2 V(P + ¢“’)ocfd9 dy

’
r=1

0=fd2r(¢‘°’+¢‘”)oc fdzr P, (A13)
0 =fd2r(n‘°’¢"’ + Oy
= fdzr RO [0 — B O (5 ®)2],
After substituting for the equilibrium terms computed in the

course of the bifurcation analysis, the constraints and the
solubility condition reduce to

0 aV
) ~10 p»
2 Jarmo o= o (Al4)
B©@ 0 c
1 —x/2
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This is a linear algebra problem whose solution yields the
constant of proportionality between 4 ¥ and x? (as well as
the coefficients in the perturbed eigenfunction, a‘”’, bV,
and ¢‘). Finally the perturbed eigenvalue at energy E is
obtained by expressing x? in terms of the energy increment to
second order:

@
A o

i 2)
AmA P =X~
x

a(x?)
0E |e-k’
(A15)

where the last derivative is obtained from Q ~ . The numeri-
cal solution of this system yielded the results shown in Fig.
4(b).

APPENDIX B: EIGENVALUES FOR SYMMETRIC
PERTURBATIONS

In the text, we used the fact that there are no symmetric
singularities of the second variation operator 62S /8n* which
might lead to positive eigenvalues for the equilibria of inter-
est. That is, all symmetric singularities occur at thermody-
namically irrelevant values of beta. (They typically occur on
secondary symmetric branches, at energies larger than the
critical energy for the / = 1 bifurcation. )

This picture is consistent with our numerical evaluation
of eigenvalues of the second variation. We can write the
eigenvalue problem as

VY —4mn(B+ Ay =4mn(a, P + a,d +as3),

where the coefficients a; are determined from the first-order
constraints. This computation is rather delicate, because of
the sensitivity of eigenvalues for the fully constrained prob-
lem. We found the following method for obtaining these
eigenvalues to be fairly robust. We integrate Eq. (A7), with
betareplacedby B + A, forj = 1,2,3. Now the solution ¢isa
linear combination Z;a;y;. The constraints form a singular
linear algebra problem for the a;. Hence an eigenvalue is a
value of A such that this linear algebra problem has a vanish-
ing determinant. Such values of A are located by a numerical
root finder; the algorithm is thus a generalized shooting
scheme. This method was used to construct the curve in Fig.
4, and checked against unphysical singularities of the equi-
librium problem, which were obtained independently as un-
foldings of a degenerate bifurcation (whose details need not
concern us here).

APPENDIX C: COMPUTING OFF-AXIS MEAN-FIELD
EQUILIBRIA

Numerical approximations to solutions of Eq. (5) were
obtained by use of a conjugate-gradient-continuation
scheme, closely following the algorithm of Glowinski, Kel-
ler, and Reinhart.*® (Simpler methods were not found to be
as robust. ) First we introduce a more convenient normaliza-
tion for the numerical work; let «(7,8) = In[n(r,0)/n(1)].
Then we are looking for solutions to the generalized Bratu
problem

Vu —Ae*+4a =0, u(1,0)=0, (Cl)

where a and A are easily related to £ and @ by normalizing
after the solution has been obtained. We impose the angular
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momentum constraint in the form fd *re*(¥* — M) = 0, and
augment the system with a continuation formula

Jd’r Vi V(u—u,)
+ Ao (A —4,) +ao(a—a,) =As,

where s is a pseudoarclength, the dot indicates a derivative
with respect to s, and (%,,, 4,,, @, ) is a reference solution. To
obtain the asymmetric branch, we start at the bifurcation
point (u,, 4o, @), where we can approximate the initial
tangent (i, Ag, &) from the analytical results in Sec. IL
(Subsequently, we use a finite difference approximation to
the tangent.) We approximate the positive-definite quadrat-
ic form

2
J(uA,a) =—;—jd2r|V§|2+”—+f_,

C2
YD) (C2)

where

E=u—AV 2% 4 a(r’-1),

u =J-d2r[Vit,,~V(u —u,)+A,(A=4,)

+a,(a—a,)] —As,

v= f dre'(r* — M),
by representing u in terms of finite elements in r and Fourier
components in 6. Then a conjugate-gradient algorithm is
used to minimize J, starting at the result of an Euler predic-
tor, u, + #,As. The gradient calculations involve extensive
use of a fast cylindrical Poisson solver. The algorithm is iter-

ated to construct the solution branch parametrized by the
arclength s. It appears to be more robust than schemes used
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by others for similar problems,*'~*?> and is simpler than

methods based on full Newton iteration.
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