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Magnetically confined columns of electrons are excellent experimental manifestations of two-
dimensional {2-D) vortices in an inviscid fiuid. Surface charge perturbations on the electron
column (diocotron modes) are equivalent to surface ripples on extended vortices; and unstable
diocotron modes on hollow electron columns are examples of the Kelvin—Helmbholtz
instability. Experiments demonstrate that the stable and unstable modes are distinct and may
coexist, having different frequencies and radial eigenfunctions. For azimuthal mode number

{ = 1, an exponentially unstable mode is observed on hollow columns, in apparent
contradiction to 2-D fluid theory. For / = 2, a similar unstable mode is observed, consistent
with fluid theory. These diocotron instabilities on hollow columns saturate with the formation
of smaller vortex structures, and radial transport is determined by the nonlinear interaction of
these secondary vortices. The vortex pairing instability has been observed for isolated, well-
controlled vortices, and the instability is found to depend criticaily on the vortex separation

distance.

I INTRODUCTION

It has been known for 25 years that the two-dimensional
(2-D) drift-Poisscn equations governing a magnetized elec-
tron column are isomorphic to the Euler equations govern-
ing a constant density inviscid fluid.”? However, this has
been treated as little more than a curiosity, and is not men-
tioned in standard texts on non-neutral plasmas.>* Here, we
shall try to demonstrate that electron columns are excellent
experimental manifestations of 2-D vortices, with interest-
ing consequences for both fluid theory and plasma experi-
ments.

This isomorphism implies that surface charge perturba-
_tions on electron columns, called diocotron modes,””!! are
equivalent to the surface ripples on extended vortices first
studied by Kelvin.'*!? The electron system has a large ex-
perimental advantage in that we can directly measure the
charge density n(#,4,1), which is proportional to the vorti-
city of the flow. When the radial density profile is monotoni-
cally decreasing, the Rayleigh stability criterion™'* demon-
strates that all modes are stable. When the density profile is
nonmonotenic (i.e., “hollow™), the unfavorable shear in the
rotation velocity gives rise to unstable diocotron modes,
which are examples of the Kelvin~Helmholtz instability."

Theory approximations based on “step profiles” are
useful for obtaining simple answers, but lead to the miscon-
ception that the stable mode becomes unstable as the profile
becomes hollow. Experimentally, we observe that the stable
and unstable modes are distinct and may propagate simulta-
neousiy.”!! The measurements completely characterize the
modes, showing they have different radial eigenfunctions as
well as different frequencies.

Unstable diocotron modes were perhaps the first strik-
ing manifestation of collective instabilities on non-neutral
systems, being readily observable as the filamentation of hol-
low beams.'® Similarly, the Kelvin-Helmholtz instability is
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readily observed in a variety of sheared fluid flows.'> Never-
theless, there has been surprisingly little experimental analy-
sis of growth rates and eigenfunctions for detailed compari-
son to theory. Qur preliminary measurements of the
unstable diocotron mode with azimuthal mode number
/=2 show agreement with 2-D fluid theory.” However,

these experiments have deferred to investigation of a surpris-

ing contradiction observed for [ = 1 perturbations.

For ! = 1, linear mode theory predicts that there are no
exponentiaily unstable diocotron modes in our geometry
{which has no conductor at »=0)."* However, a recent
linear initial value analysis based on the Laplace transform
predicts that there is a subtle instability that grows asymp-

totically as /7 .17 Experimentally, we observe a robust expo-
nential instability that is basically similar to the unstable
! = 2mode."* This discrepancy may indicate that the theory
is inadequate, or that experimental subtleties such as finite
length must be considered. In either case, this new instability
has an important effect on a realistic 2-D vortex system.

The diocotron instabilities on hollow columns saturate
with the formation of smaller vortices and filamentary struc-
tures. Radial transport to a stable, monotonically decreasing
density profile is then the result of nonlinear interactions
among these smaller vortices, with a prominent interaction
being the vortex pairing instability. '*2° There are also inter-
esting turbulence and noise questions associated with this
process.’

We are able to study the vortex pairing instability in
detail by starting with two well-formed, isolated vortices.
We find that the time required to merge varies dramatically
from less than one orbit period to over 10* orbit periods as
the separation between the vortices varies from 1.8 to 2.0
vortex diameters. Here, an advantage of the electron system
becomes apparent: the internal electron viscosity is very low
and there are no radial or axial boundary layers to dissipate
the vortices. Unlike conventional fluids that “spin down” in
10 to 3G orbit periods,'® the electron system shows little dis-
sipation even on time scales of 10* orbits. The electron sys-
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temn may thus offer the best experimental data on this funda-
mental vortex interaction process.

il. ELECTRON CONTAINMENT

The pure electron plasmas are contained in a grounded
conducting cylinder, as shown in Fig. 1. A uniform axial
magnetic field (B, = 375 G) provides radial confinement
and negative voltages applied o end cylinders provide axial
confinement. The apparatus is operated in an inject/mani-
pulate/dump cycle. For injection, the leftmost cylinder is
briefly grounded, allowing electrons to enter from the nega-
tively biased tungsten filament source. The trapped elec-
trons can be contained for hundreds of seconds,*?! and can
be manipulated in a variety of ways. Typically, we manipu-
late the plasma to create the desired “initial condition” then
study the resuiting evolution.

At any time ¢ during this evolution, we can obtain the
plasma density by grounding the rightmost cylinder, thereby
dumping the plasma. We measure the charge @(r,8,¢) that
flows along B, through a collimator hole ofarea 4, = 7 (1.6
mm)?, giving the z-averaged density’®

n(r6,:) EJ- dz A(r0.2,1) = (0.0 .

L, (—ed, L))
Only one density measurement is obtained on each machine
cycle. We cbtain the temporal dependence by varying the
evolution time ¢ and the spatial dependence by varying the
position 7 of the radially scanning collimator hole, and the
phase 6 of the initial condition. Of course, this imaging pro-
cess relies on a high cycle-to-cycle reproducibility in the
plasma initial conditions; typically we have jess than 0.1%
variations in the measured { at a given point and time.

The plasmas considered here have local densities
fiz5X 10°cm ~ > out to a (half-density) radius R, =~ 1-2 cm
aver an axial length L, =30 cm, and are contained in a cylin-
der of radius R, = 3.81 cm. The unneutralized space charge
gives a radial electric field E, $ — 7 V/cm, resulting in an
E X B rotation frequency of f; = 140 kHz. The electrons
have a characteristic thermal energy kTS 1 eV, giving a cy-
clotron radius 7, S60 um, and an axial “bounce” rate
Jo=v /2L, > f¢.

The plasma column can also be diagnosed and manipu-
lated using isolated 60° sectors of the wall as antennas. Any
azimuthal or axial variations in the electron density induce
variations in the image charges on the wall sectors and these
waves can be detected with high sensitivity. Conversely, vol-
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FIG. 1. The cylindrical containment apparatus.
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tages applied to the wall sectors induce drifts in the elec-
trons, thereby launching waves. Applied voltages of >1 V
can induce significant (i.e., readily detected) density waves
inabout 1 usec. Alternately, smaller voitages may be applied
phase coherent with an internal wave using standard positive
or negative feedback technigues over larger times.

The electron column is easily manipuiated in the axial
direction by varying the containment voltages on various
cylindrical electrodes. There are actually seven containment
cytinders, as opposed tc the three shown schematically in
Fig. 1. If a substantial negative voltage is applied to the cen-
tral ring, the electron column can be “cut in half,” giving two
independent columns separated axially. This technique is
used to create the two vortices discussed later. Alternately, if
the containment voltage on an end cylinder is made less neg-
ative, some electrons will escape axially in 2 time <1 gsec.
The electrons escape preferentially from near r == 0, where
the space-charge potential is most negative and the contain-
ment voltage is least negative. This technigue is used to cre-
ate the “hollow” plasma initial conditions discussed iater.

il DRIFT DYNAMICS

The electron dynamics can be approximated by the two-
dimensiconal guiding center theory. Here, the axial bouncing
of the individual electrons averages over any z variations at a
rate fast compared to -8 motions. The -8 motions of inter-
est arise as a result of particle drifts, which can be treated by
the guiding center equations, since the cyclotron orbit size is
small.

The 2-D drift-Poisson equations for the evolution of the
electron column are isomorphic to the 2-D Euler equations
for an inviscid fluid of uniform density p."* This isomor-
phism is displayed in Fig. 2. The electrostatic potential ¢
arises from the charge density »# through Poisson’s equation,
and the resulting £ X B drift velocities give incompressible
flow. (The drift velocity is well defined even where there are

2D Euler, p = constant

2D Drift-Poisson
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FIG. 2. The 2-D drift-Poisson eguations are isomorphic to the 2-D Euler
equations for a constant density fluid.
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no electrons.) This is equivalent to incompressible fiuid flow
characterized by a streamfunction ¥. The vorticity {1 of the
flow is then proportional to V¢ (or V*#). In the electron
system only, this vorticity is proportional o the density n,
which we measure directly. The continuity equation for elec-
trons and the momentum equation for the fiuid then both
give the same evolution equation, i.e., that the convective
derivative of the vorticity is zero. The boundary conditions
are also equivalent, namely, ¢ = const and ¥ = const on the
cylindrical walls.

Thus, an initial distribution of electrons n{r,6,t = 0} in
a cylinder with vorticity £ « » will evolve exactly the same as
an initial distribution of vorticity {2 in a uniform fluid such as
water. For example, a single column of electrons in our appa-
ratus is equivalent to an extended vortex in a tube of water. If
the vortex is centered and azimuthally symmetric, it will
have a stationary flow field v, (7). Outside the region of vor-
ticity, the flow falls off as vg o« 1/#. This arises naturaily from
Poisson’s equation in the electron system, since E, « 1/rout-
side the charge column.

One advantage of the electron experiments for testing 2-
D fluid theory is that the electron system tends to remain two
dimensicnal because of the magnetic field. Another advan-
tage is that the electron column has low internal viscosity
and has no boundary layers at the cylindrical walls or ends.
The time for internal viscosity to act is typically 10 sec,*!
compared 1o the 10 usec time scale for the drift motions of
interest here. Further, the £ X B drift velocity v, may be
large at the wall, but since there are typically no electrons
near the walls, one has a free-slip boundary condition. Of
course, small effects on the electron dynamics (such as finite
cyclotron radius and finite z-length effects) have been ig-
nored here.

The evoiution of the 2-D drift system is constrained by
three conserved quantities.>* These are the total number of
particles,

N‘.‘Ejjdﬁrdrn(r,e,t); (2)
the angular momentum,

Py= J( J dor dr( ;:B

and the electrostatic energy,

E;-—_;f J dé rdr( — -% e¢(r,9,r>)n(r,9,t>- (4}

r 2)n(1',9,t); (3

Of course, these quantities are all per unit axial length in a 3-
D system. In fluid dynamics the corresponding guantities
would be called the total circulation, the total angular im-
pulse, and the excess kinetic energy.®®

V. LINEAR WAVE THEORY

Linear wave theory treats &, = (0 modes as surface
charges (or vorticity) rotating on the surface of a centered,
symmaetric charge (or vorticity} column. That is,

n(ré,f)=n, (ry + % 8n,(rt)e”, (5)
!
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Sn(ry=3 8n, (r)4, (1), (6)
4
with
Ay (1) = &7 P! (7
for an eigenmode.
Linearizing the evolution equations of Fig. 2 gives the
eigenvalue equation,™ which is most conveniently written

in terms of the perturbed potential 8¢, (#) corresponding to
on,, (r):

— 2ecl dn,/0F
= e 815 (8)
rB L fiy + i1/ 2m — U (1) ]
where
cE, (7) 4 L ,
fr(r)= 27(7)78 =;%jo 2o dY n, (r') | (9)

is the £ X B rotation frequency of the unperturbed equilibri-
um,

As early as 1880, Kelvin noted “ A Disturbing Infinity in
Lord Rayleigh’s Solution...””? when the denominator be-
comes zero at 7, where £, = If;{7,). This difficulty can be
delayed by considering only “step” profiles, with
Iny/dr = 0 except at discrete steps. One then obtains as
many modes as there are steps, and the mode frequencies are
either real or occur in complex conjugate pairs.>® However,
this result seems to have little utility in predicting the num-
ber and types of modes in experiments.

If a continuous profile is approximated by a single step
profile (a vortex “patch”), as shown in Fig. 3(a), a single
stable mode is predicted, with frequency™’

S =fe @I+ (R,/R,)¥ —1].
These modes were first studied by Kelvin'? as ripples on the
surface of a vortex in the absence of a beunding wall, i.e.,

with R,, = «. For the case where there is a boundary wall,
the / = 1 mode is particularly simple,’ with frequency

f;s sz(Rw) =C€NL/7TR i,B, :Vh::(), (10)
and eigenfunction
a
by, (r) = D22 (1)

r
Note that the frequency depends only on the total number of
particles {per unit length) N, rather than on the profile
n,(r); and there are no resopant particles, since r, = R

w*

(b} (c)

FIG. 3. “Step profile” approximations to continuous density profiles.
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For /> 1, Eq. (8) must be integrated numerically, and there
may be resonant particles.

V. STABLE DICCOTRON MODES

The simplest dynamical motion of the electron column
is the stable / = 1 diocotron mode.»***® This mode is mere-
ly the entire plasma column displaced a distance D off the
cylindrical axis. In this case, the column orbits around the
cylindrical axis as well as rotating about its own center. Ex-
perimentally, this mode is observed at the predicted frequen-
cy, and persists undamped for more than 10° orbits.'® The 2-
D linear theory predicts no damping of this mode, whereas
some finite-length theories’ predict weak damping (which is
not observed). Previous observations of damping of this
mode® were apparently caused by loss of plasma contain-
ment.

When the electron coiumn is pushed a long distance off
center, linear theory is inapplicable, and the motion is more
properly referred to as a nonlinear dynamical state of the
system. Figure 4 shows an example of the z-integrated elec-
tron density measured at a particular phase of a large ampli-
tude / = 1 diocotron mode.'? Note that the electron column
is oval rather than circular, equivalent to the distortion of a
fluid vortex interacting with a wall.”® Even at these large

FIG. 4. Measured density n(r,6) phase coberent with a stable / = 1 dioco-
tron mode of two different amplitudes. Colors represent density on a linear
scale of 10°cm %
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amplitudes, no damping of this mode is observed. Thus, the
vortex would be stationary in a frame rotating at the wave
frequency f;;. This implies that the density contours coin-
cide with the potential contours, sincein £ X B fiow the den-
sity is convected along potential contours. The nonlinear dy-
namical state is therefore determined by

V2$,(r,8) = dmen(r,8) = F(4,), (12)

where ¢, is the potential in the rotating frame and F is an
unknown function.

We find that the oval distortion of the column is propor-
tional to the mode amplitude squared, as is the shift in {re-
quency of the mode.'® Figure 5 shows the relative quadru-
pole moment g, and the frequency shift (f — £, ) /f;. Here, f;,
is the small amplitude mode frequency. The frequency shift
arises because (1) the column is closer to its image than a
linear model assumes, and (2) the shape distortion modifies
the image charge distribution. The experimental results cor-
roborate theory and computational models.

The stable /= 2 diocotron mode is the next simplest
conceptually. This mode is an elliptically distorted column
rotating about the cylindrical axis. Kirchhoff generalized
the / = 2 linear mode to large amplitude by demonstrating
analytically that an elliptical vortex patch is an unchanging
rotating solution for arbitrarily large ellipticity.** Histori-
cally, this mode has been observed to be damped, because the
profile n, (#) was nonzero at the resonant radius »,.> This
damping is the spatial analog of Landau damping, here de-
pending on dn, /dr rather than on df,/dv.” With profiles
that fall to zero sufficiently rapidiy, the mode is observed to

‘be essentially undamped.

Figure 6 shows the electron density in the presence of an
=72 diocotron mode of two different amplitudes. The
smaller amplitude mode of Fig. 6(3) is experimentally un-
damped, since the electron density falls to zero inside »,. Of
course, for large amplitude modes, r, varies with 4. When
the mode is driven to larger ampiitude, the column becomes
more eccentric, and some electrons become resonant with
the wave. The resonant eiectrons are transported in » and 8,
forming the low-density filamentary arms and resulting in
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F1G. 5. Quadrupcle moment g, (measuring ellipticity) and frequency shift
versus displacement D for the / == 1 mode of Fig. 4.
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)]

FIG. 6. Measured density #{#6) phase coherent with a stable / = 2 dioco-
tron mode of two different amplitudes. Colors represent density on a loga-
rithmic scale.

some wave damping. However, there are a finite number of
electrons that can participate in the damping, and the pro-
cess soon saturates. The density configuration of Fig. 6(b)
rotates unchanged for hundreds of wave periods, being the
saturated state of nonlinear wave damping.

Vi. UNSTABLE DIOCOTRON MODES

When the charge density profile n, (#) is nonmonotonic
{i.e., at least partially “hollow”), unstabie diccotron modes
may appear. Experimentially, these unstable modes are
found to be distinct from the stable modes. That is, for any
given /, the stable and unstable modes coexist, with distinct
frequencies and radial eigenfunctions. This distinction has
been missed historically due to reliance on step profile ap-
proximations. Furthermore, we observe a robust exponen-
tial instability for / = 1 where none is predicted.

Figure 7 shows the evolution of a partially hollow elec-
tron column when a small / = 1 seed exists at 7 = 0."" The
initial seed asymmeiry has two components: the center of
mass (c.m.) of the plasma column is dispiaced off the cylin-
drical axis, and the central density minimuim is not centered
in the plasma. We observe that the c.m. orbits about the axis
with constant orbit size (this is the stable mode). Similarly,
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FIG. 7. Measured density n(r,0) at five times in the evolution of a hollow
column that had a small / = | perturbation at # == 0.

the low-density region orbits about the c.m. but it is spiraling
outward with time (this is the unstable mode). The unstable
mode also causes the high-density ring to collapse in finto a
high-density region, as shown at 7 = 150 ysec. Eveniually,
the high-density region moves to the center and the low-
density region spreads out in & at an appropriate radius, as
shown at 7 = 200 usec. Most ¢ variations (with respect to
the c.m.) have been eliminated by ¢ = 1000 usec.

The initial stages of this evolution can be analyzed from
the perspective of linear modes, and our data for n{r,6,1)
characterizes the %, = 0 modes rather completely. The
Fourier transform of Eg. (5) gives 81, (r,t) directly from the
density measurements. We ghserve that two frequency com-
ponents are present in 8u, (#.2), and that these frequencies
do not vary with radius, consistent with Eqs. (6) and (7.
Thus, the / = 1 data component can be computationally fit
to a sum of two modes, and this least-sqguares fit determines
the mode frequencies f , growth rates y;,, and radial eigen-
functions &n, (7).

Figure 8 shows the amplitudes and phases of the radial
eigenfunctions of the stable and unstabie modes, ér,, and
én,, (normalized to unity), obtained from an evolution sim-
ilar to that of Fig. 7. The eigenfunction 8n,, represents the
stable orbit of the entire hollow plasma column about the
cylindrical axis: the amplitude and phase are well approxi-
mated by 8n,, () = dn, /Jr, as predicted by linear theory.’
This mode appears to have the same general characteristics
for either monotonic or hollow density profiles, with a fre-
quency f (B, ).
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FIG. 8. Stable and unstable / = 1 eigenfunctions &a,, (#) and &n,, (7} dis-
played as complex amplitudes and phases. Also shown are the equilibriom
profile n, () (units 10° cm~*) and the £ X B rotation frequency fp. ()
(units 40 kHz).

The unstable mode arises only for density profiles that
_ are at least partially hollow. The unstable mode frequency
1., equals the maximum of f; (7}, to within the experimental
accuracy of + 3% in determining f (#). Interestingly, this
mode is largely self-shielding: the electric field arising from
the mode is essentially zero outside the plasma. That is, no
wall-sector signal is received from the growing mode, and
the electric field eigenfunction 84,, (#) calculated from the
measured &n,, (r} is essentially zero outside the plasma.
Figure 9 shows the magnitude of the unstable mode am-
plitude 4,, versus time for two initial seed perturbations
differing by 30 dB, i.e.,, D = 850 gm and D = 27 um. (The
upper curve is the evolution of Fig. 7.) In both cases, the
perturbation initially exhibits what appears to be exponen-
tial growth. For the smallest initial perturbation, this expo-
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I o o ]
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— i 744 Yall
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'g : ® ® 3
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FIG. 9. Amplitude of the unstable / = 1 mode versus time for two different
amplitudes of initial /= 1 perturbation. The upper curve corresponds to
Fig. 7. For comparison, an initial value theory integration is shown as the
dashed line. Hollow symbols are the initial amplitudes [4,,] of the stable
mode, which remains essentially constant with time.
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nential growth covers more than two decades. The instabil-
ity e-folds in about six wave periods, and appears to be a
linear process, as evidenced by the parallel growth curves in
Fig. 9. Further, the mode saturates at the expected level,
representing & variations from the minimum to the maxi-
mum density. After this time, nonlinear vortex dynamics
and the effects of rotational shear eventually eliminate the &
variations.

Also shown for reference in Fig. 9 is the theoretically
predicted [ = 1 growth.!” This curve was obtained by nu-
merically integrating a linear Laplace transform solution
that started from initial conditions similar to the experimen-
tal initial conditions. Asymptotically, the initial value inte-
gration gives a perturbation proportional to ¢ /2, i.e., alge-
braic growth.

Although the differences between experiment and theo-
ry here are large, there are intrigning similarities. The early
time instability growth is seen to be similar. Further, the
time-asymptotic theory perturbation is self-shielding,’” as is
observed experimentally at all times."! However, the rela-
tion between the experimental and theoretical instabilities is
not presently understood.

For /= 2, an exponentially unstable mode is observed
for a wide range of hollow profiles,” and these results are
basically consistent with 2-D theory predictions. Figure 10
displays n(r,6,1) at four evolution times for an initially hol-
fow plasma with an / = 2 seed. An / = 2 perturbation grows
exponentially with an e-folding time of 17 usec, and is clearly
visible by ¢ = 50 usec. At r= 120 usec, the mode is fully
saturated, and would best be described as two isclated vortex
structures with density plateaus about 50% above the den-
sity minima. The two vortices rotate around their own
centers and around each other with both periods ~ 10 usec.

50 us 120 us

FIG. 10. Measured density #(7,8) at four times in the evolution of a hollow
columa which had a small / = 2 perturbation at ¢ = 0. Density units are 10°
em .
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The two vortices persist for many rotations, then begin
to merge toward the center at ¢t = 170 usec. Presumably, the
two-vortex state is unstable, and the merger is the result of a
vortex pairing instability.'®?° There may be extended fila-
mentary structures arising during the vortex formation and
disintegration, as suggested, giving rise to density fluctu-
ations on smaller spatial scales. Finally, by 1000 gsec the
density is monotonically decreasing and therefore stable,
and only small fluctuations are observed.

Mode eigenfunctions and amplitudes for the stable and
unstable / = 2 modes can be obtained® by the process de-
scribed above. We find that the stable mode has eigenfunc-
tion 8n,, ~r dny /9, and that the unstable mode eigenfunc-
tion &n,, appears qualitatively similar to the eigenfunction
én,,. Again, the two [ = 2 mode frequencies differ widely.
The amplitude of the stable / = 2 mode varies little during
the linear phase of evolution, whereas the unstable mode e-
folds every four wave periods until saturation.

These mode frequencies and growth rates are not well
predicted by eigenvalue analysis with the step profile ap-
proximations of Fig. 3. Of course, instability is predicted
only for hollow profiles, in agreement with observations.
However, the completely hollow profile of Fig. 3(b) gives
two complex conjugate modes, whereas two distinct mode
frequencies are observed. Adding an internal step as in Fig.
3(c) does not change the prediction of conjugate modes, and
small internal densities of n; 2 0.2 can lead to a prediction of
stability, whereas instability is observed even for barely hol-
fow continuous profiles. The instability seems to be sensitive
to dn/dr at the resonant radii, which is not included in the

step profile approximation. Approximating a continuous
profile by a large number of steps brings in more modes,
which are not observed experimentally.

Numerical solution of the eigenvalue equation for realis-
tic smooth profiles has given fair agreement with unstable
{ =12 growth rates in preliminary experiments. Computa-
tionally, the unstable mode is distinct from the continuum of
eigenvalues which are the extension of the step profile to an
infinite number of steps.

We note that the linear diocotron instabilities do not
result in radial transport, but merely in rearrangement in 8.
The instability saturates with the formation of two nonlinear
vortices, and it is the dynamics of these secondary vortices
that gives radial transport to a stable profile.

Vil. TWO-VORTEX INTERACTION

The two-vortex merger process can be studied as an iso-
Iated process, independent of any diocotron instability pro-
cess. Straightforward manipulation techniques allow us to
form an initial condition consisting of two electron columns
of chosen profile and placement. Here, we consider the par-
ticular case of two equal columns that are placed symmetri-
cally on either side of the cylindrical axis, separated by a
distance 20. Each vortex has a half-density radius of
R,=0.6cm.

We observe that the behavior of the two vortices de-
pends dramatically on their separation to diameter ratio, i.e.,
2D /2R ,,.25 If the vortices are separated by more than 2.0
diameters, we observe that they orbit around each other rela-

FIG. 11. Measured density n(r,6) at six times during the merger of two vortices initially separated by 1.8 vortex diameters. Time intervals are 10 usec.
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tively unperturbed for up to 10* orbits. If the vortices are
initiaily separated by 1.9 diameters, their mutual interaction
quickly results in filamentary tail formation, but the vortices
still orbit around each other for about 100 orbits before
merging at the center.

Figure 11 shows an evolution where the vortices are sep-
arated by 1.8 diameters. Here, we observe merger at the cen-
ter in less than one orbit period. The time to merge abruptly
increases from 10 usec to about 1 sec as the separation varies
from 1.8 t0 2.0 diameters. Of course, these last two numbers
would vary somewhat with a different definition of R , since
the vortex “edge” is a significant fraction of the radius. This
may represent the cleanest experimental measurement to
date of this fundamental voriex interaction process, due {o
the fow inherent viscosity of the plasma, and due to the total
absence of boundary layers at the wall. These preliminary
results®® are in fair agreement with theory and computa-
tional results,>*2® and with an experiment in a2 water tank."

The orbit frequency and vortex shape distortion can also
be measured as a function of separation of the two vortices.
We find that the orbit frequency is well modeled by the inter-
action of two *‘point™ vortices of appropriate total circula-
tion (i.e., total charge per unit length axially), but the wall
interaction must be included for large separations. We also
find that the interacting vortices elongate toward each other
even in the absence of merger. The elongation appears
roughly consistent with various “moment models” and nu-
merical calculations,”"** but the experimental data have not
yet been analyzed in detail.

Of course, two vortices may merge even if they are not
symmetric in size or placement. Experimentaily, the asym-
metry is easily controlled. Also, it is easy to take three vorti-
ces as the initial condition. Here, the parameter space is sub-
stantially larger, and chaotic behavior is often observed.
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FIG. 10. Measured density n(7,60) at four times in the evolution of a hollow
column which had a small / = 2 perturbation at ¢ = 0. Density units are 10°
cm °*.
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FIG. 4. Measured density 7(r,8) phase coherent with a stable / = 1 dioco-
tron mode of two different amplitudes. Colors represent density on a linear
scale of 10°cm *.
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FIG. 6. Measured density n(#,6) phase coherent with a stable / = 2 dioco-
tron mode of two different amplitudes. Colors represent density on a loga-
rithmic scale.
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FIG. 7. Measured density #(r,6) at five times in the evolution of a hollow
column that had a small / = 1 perturbation at ¢ = 0.

the low-density region orbits about the c.m. but it is spiraling
outward with time (this is the unstable mode). The unstable
mode also causes the high-density ring to collapse in # into a









