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The three-body recombination rate is calculated for an ion introduced into a magnetically 
confined, weakly correlated, and cryogenic pure electron plasma. The plasma is strongly 
magnetized in the sense that the cyclotron radius for an electron r,, = ,/m&, is small 
compared to the classical distance of closest approach b = e’/k, T,, where T, is the electron 
temperature and f12,, = eB /m,c is the electron cyclotron frequency. Since the recombination 
rate is controlled by a kinetic bottleneck a few k, T, below ionization, the rate may be 
determined by considering only the initial cascade through states of electron-ion pairs with 
separation of order 6. These pairs may be described as guiding center atoms since the dynamics 
is classical and treatable with the guiding center drift approximation. In this paper, an 
ensemble of plasmas characterized by guiding center electrons and stationary ions is described 
with the BBGKY hierarchy. Under the assumption of weak electron correlation, the hierarchy 
is reduced to a master equation. Insight to the physics of the recombination process is obtained 
from the variational theory of reaction rates and from an approximate Fokker-Planck analysis. 
The master equation is solved numerically using a Monte Carlo simulation, and the 
recombination rate is determined to be 0.070( lO)n:v, b 5 per ion, where n, is the electron 
density and u, = dm is the thermal velocity. Also determined by the numerical 
simulation is the transient evolution of the distribution function from a depleted potential well 
about the ion to its steady state. 

I. INTRODUCTION 
Recent experiments have produced magnetically con- 

fined pure electron plasmas in the cryogenic temperature 
range.’ The plasmas are strongly magnetized in the sense 
that r,, 4 b, where r,, = ~,/a,, is the electron cyclotron ra- 
dius and b = e2/k, T, is the classical distance of closest ap- 
proach. Here u, = ,/m is the electron thermal speed 
and R cr = eB/m,c is the electron cyclotron frequency. 

In this paper, we discuss the three-body recombination 
process2 that occurs when an ion is introduced into one of 
these plasmas. Three-body recombination dominates since 
the rate for this process is very large at low temperature (i.e., 
R ?- T;- 9’2). To understand this scaling, note that the im- 
portant energy scale in determining the rate is k, T, and that 
this energy corresponds to an electron-ion separation of 
b = e’/k, T,. The frequency of electron-ion collisions char- 
acterized by an impact parameter in this range is neb2v,, 
where n, is the electron density, and the probability that 
another electron is close enough to carry off energy k, T, is 
of order n,b 3. The three-body rate is given by the product 
R,-(n,b’u,)(n,b3),andthisscalesasT;9’2.Inthisdis- 
cussion and in the paper as a whole, we assume that the 
plasma density is low enough that n,b 3 < 1; such a plasma is 
said to be weakly correlated. One can easily check that radia- 
tive recombination, where a photon carries away the binding 
energy, is much slower than three-body recombination in the 
cryogenic temperature range considered here.3*4 

The antimatter analog of the electron-ion three-body 
recombination process is a possible way of producing antihy- 
drogen’ for use in gravitational and spectroscopic studies.5 
Positron plasmas have already been produced,6 and antipro- 

tons have been trapped and cooled to less than 0.1 eV.’ A 
logical next step is to introduce antiprotons into a positron 
plasma (of the same character as the cryogenic strongly 
magnetized electron plasma) so that the antiprotons and 
positrons recombine. The recombination rate is a design pa- 
rameter for such experiments, and that in part motivates 
these theoretical studies. 

For the case of zero magnetic field, the three-body re- 
combination rate has been calculated previously.*-” How- 
ever, when a strong magnetic field is present, a constraint is 
imposed on the electron dynamics (the electrons cannot 
move freely across the field), and the rate is reduced by an 
order of magnitude. The previous rate obtained for B = 0 is 
R,(B = 0) = 0.76(4)n~b%, and the strong field rate ob- 
tained here is R,(B = CO ) = 0.070( 10)n:b ‘of. 

As we shall discuss below, the rate is controlled by a 
kinetic bottleneck” at a binding energy of a few k, T, below 
the ionization energy. The dynamics in this range is classical, 
since k, T, is much smaller (four orders of magnitude 
smaller) than the Rydberg energy. Also, the electron dy- 
namics may be treated by guiding center drift theory,“.” 
since the cyclotron radius is much smaller than the scale 
length on which the interaction potential varies (i.e., 
r,, < 6). Equivalently, the cyclotron frequency is much larg- 
er than the next largest dynamical frequency (i.e., 
R,, ) o,/b). This implies that the high-frequency cyclotron 
motion may be averaged out and the number of degrees of 
freedom correspondingly reduced; the center of the cyclo- 
tron orbit (guiding center) moves according to guiding cen- 
ter drift theory. 

In the energy range of the bottleneck, a bound electron- 
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ion pair from a novel atom, which we call a guiding center 
atom. The electron guiding center oscillates back and forth 
along a field line in the Coulomb well of the ion and more 
slowly E x B drifts around the ion (see Fig. 1) . The frequen- 
cy of oscillation back and forth along a field line is of order 
w, -,/m’-v,/b, and the frequency of the ExB drift 
motion is of order aEXB - ec/Bb ‘. One can see that a conse- 
quence of the ordering r,, Q b is the ordering w, ) Knin. 

In this discussion and in the paper as a whole the ion is 
treated as stationary. This approximation makes sense when 
the electron motion is rapid compared to the ion motion. For 
example, we require that u, % uill , where uill is the characteris- 
tic ion velocity parallel to the magnetic field. The require- 
ments on the transverse motion are most easily stated as the 
frequency ordering: mEXB % vit /b&, where uit is the char- 
acteristic ion velocity transverse to the field and 
!& = eB /m,c is the ion cyclotron frequency. 

With these orderings in mind, we develop a model based 
on guiding center electrons and stationary ions. Consider an 
ensemble of weakly correlated and guiding center electron 
plasmas with a single stationary ion located deep within the 
plasma at the origin ofcoordinates. A long way from the ion, 
the plasma is assumed to be in thermal equilibrium at density 
n, and temperature T,. The ion produces a Coulomb poten- 
tial well, and collisional interactions allow an electron to fall 
into the well, that is, to become bound to the ion. Between 
collisions with other electrons the electron-ion pair from a 
guiding center atom. As the atom undergoes a sequence of 
collisions, the atom may be reionized or it may cascade in 
energy to very deep binding. Note that in some of these colli- 
sions the incident electron may replace the originally bound 
electron. At a very deep level of binding there is a sink; any 
electron that reaches this level is formally removed from the 
vicinity of the ion and returned to the background plasma. 
The recombination rate is then the steady state flux of elec- 
trons into the sink. We will find that the value of this rate 
does not depend on the exact location of the sink, provided 
the sink is below the kinetic bottleneck. 

In Sec. II, the BBGKY hierarchy for the ensemble is 
discussed.‘” The equations of the hierarchy contain two 
small parameters, (r,,/b) 4 1 and n,b 3 & 1, and we analyze 
the equations to lowest nontrivial order in these parameters. 
The smallness of r,,/b implies that the ExB drift motion 
that occurs during a collision is negligible; recall that 
r,,/b< 1 implies that o,/bg-oEXB. Because the most impor- 
tant collisions are close collisions (particle separation - b) 
and because the plasma is low density (i.e., n,b ‘g 1), the 
hierarchy can be truncated by neglecting three-electron 
collisions. The first and second equations of the hierarchy 
then form a closed set. These two equations are formally 
reduced to a master equation; but the transition rates in the 
master equation (for steps in the recombination cascade) 
are not known analytically. In general, these rates depend on 
the complicated collision dynamics of two electrons in the 
force field of an ion. Consequently, a rigorous analytic solu- 
tion of the master equation is not possible. However, two 
approximate treatments of the hierarchy equations yield im- 
portant physical insights into the recombination process, so 
we discuss these treatments before going on to a proper nu- 
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FIG. 1. Drawing of guiding center atom. In order of descending frequency, 
the electron executes cyclotron motion, oscillates back and forth along a 
field line in the Coulomb well of the ion, and ExB drifts around the ion. 

merical solution of the master equation. 
The first of these treatments is discussed in Sec. III, 

where the collisional dynamics is solved perturbatively and 
the hierarchy equations are reduced to a Fokker-Planck 
equation. I4 This approximation makes sense when the colli- 
sional cascade toward deeper binding takes place through 
many small and random steps. Each collision is assumed to 
produce a step in binding energy that is small compared to 
the energy scale on which the electron energy distribution 
varies. The step in energy is in fact small and the dynamics 
treatable perturbatively for collisions characterized by suffi- 
ciently large impact parameter. Unfortunately, it is clear 
from the Fokker-Planck coefficients that small impact pa- 
rameter collisions make an important contribution, so the 
analysis in Sec. III is not the whole story. However, the anal- 
ysis does provide an important insight. Consider a bound 
electron-ion pair and a second electron that is incident on 
the pair, Suppose that the oscillation period of the bound 
electron is short compared to the duration of the collision. In 
this case, the oscillation is characterized by a good adiabatic 
invariant, and the collision changes the binding energy only 
by an exponentially small amount. We refer to the impact 
parameter beyond which the energy perturbation is expon- 
entially small as the adiabatic cutoff. 

In Sec. IV, a variational theory of the recombination 
rate is presented. I5 The underlying assumption for this treat- 
ment is the opposite of that for the Fokker-Planck treat- 
ment; the distribution function is assumed to vary on an 
energy scaie that is small compared to a typical step size. In 
particular, the two-electron distribution f,( 1,2) is taken to 
be of the thermal equilibrium form if electron 1 is bound less 
deeply than some energy E, and is taken to be zero if electron 
1 is bound more deeply. Electron 2 is assumed to be a free 
electron that is incident on bound electron 1. The interaction 
of electron 2 with electron 1 produces a flux of electron 1 
toward deeper binding: the one-way thermal equilibrium 
flux through the energy surface E( 1) = E. This tlux is 
shown to scale as the product of the Boltzmann factor 
exp(&) and the phase space factor E-~, where E = E/k, T, 
and binding energy is taken to be positive toward deeper 
binding. The flux [ - exp( E)/E4] has a strong minimum at 
E = 4, and this minimum is the kinetic bottleneck. The vari- 
ationa! theory takes the recombination rate to be the value of 
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this one way fiux at the bottleneck. 
From the existence of the bottleneck, we may deduce the 

following picture. As atoms are formed and cascade to deep- 
er binding, only a small fraction get through the bottleneck; 
the rest are re-ionized. If an atom makes it through the bot- 
tleneck, it continues to ever deeper binding with only a small 
probability of being re-ionized. Well above the bottleneck 
the distribution is very nearly of the thermal equilibrium 
form, and well below the bottleneck the distribution is de- 
pleted relative to thermal equilibrium. 

This picture motivates the basic assumption of the vari- 
ational theory, namely, that the distribution is of the thermal 
equilibrium form for E( 1) < E and is zero for E( 1) > E. Of 
course, the assumption is an idealization; the actual distribu- 
tion does not drop off discontinuously, but rather falls off 
gradually over a finite range in energy. There will now be 
fewer atoms with E( 1) < E which can change to a state with 
E( 1) > E over the course of a collision.. In addition, the 
atoms bound with E( 1) > E will be able to change to a state 
with E( 1) < E leading to a return flux. This is particularly a 
problem for large impact parameter collisions, where the 
step size is small. The flux associated with these collisions is 
diffusive in nature and is greatly overestimated by the one 
way flux. Another problem is the fact that the one-way flux 
is instantaneous. If an atom recrosses the surface E( 1) = E 
during the course of a collision, it will be counted too many 
times by the one-way flux. Large impact parameter colli- 
sions will again contribute most to such recrossings. To rec- 
tify these problems, the variational theory imposes a cutoff 
at large impact parameter. This cutoff is introduced in an ad 
hoc fashion, and the value of the cutoff is not determined 
within the context of the theory. Crude arguments from the 
Fokker-Planck analysis suggest that the cutoff should be of 
order 6. Also, the actual one-electron distribution is not sim- 
ply a function of energy, as is assumed in the variational 
theory, but also depends on the separation between the field 
line through the ion and the field line through the bound 
electron. One expects such a dependence in the strong mag- 
netic field case, because the electrons are not free to move 
across the field. 

Because neither the Fokker-Planck treatment nor the 
variational treatment is entirely satisfactory, the cascade dy- 
namics is followed numerically in Sec. V. Guiding center 
atoms are formed and then followed through a sequence of 
collisions, with the incident electron picked at random from 
a Maxwellian distribution. This procedure can be justified 
formally as a Monte Carlo solution of the master equation.16 

1 

The solution verifies the existence of the bottleneck and de- 
termines the recombination rate. In addition, the time-de- 
pendent behavior of the distribution function is obtained. 
The result is a quantitative understanding of how the initial- 
ly depleted potential well is filled to the steady-state condi- 
tion. 

II. BASIC EQUATIONS 

In this section, we develop the BBGKY hierarchy I3 for 
the ensemble of guiding center plasmas described in the In- 
troduction. Anticipating that the important energy scale is 
k, T,, we scale the lengths by b = e2/k, T,, velocities by 
v, = ,,/m, and time by b /v,. In terms of scaled vari- 
ables, Liouville’s equation for the ensemble is given by’3*‘4 

i=O 

+ + $ 2#‘jc5jiVjD, = 0, 
( > 

(1) 
j= I 
i=O 

where DN(r,,v,;.. ,rN,vN,t) is the N-electron distribution 
normalized to unity (i.e., Jdr, dv, . * -dr,v dv, D, = 1). We 
have used Cartesian coordinates with a uniform magnetic 
field B = B2 and the velocity in the i direction. Particle i = 0 
is the ion (i.e., 4jo = - l/lrjl forj= l,...,N) and the re- 
maining particles are electrons (i.e., fjij = I+, - rj] for 
i,j= l,..., N). 

The s-electron function is defined as’” 

J‘i=$j-h+, dV,.,--*dr,d’-‘,D,, 
where Vis the plasma volume. To obtain the first equation of 
the hierarchy, we integrate Eq. ( 1) over the variables for the 
last (N - 1) electrons [i.e., take s = 1 in Eq. (2) ] and ob- 
tain 

Z(l) +v,g+++ + 6XV,#,,*V,f,(l) 
I I I ( > 

=n,b3 
s 

dr, dv2 

x %*. 6’ 
[ az, au, ( > 

5 ;xv,q4,*v, f,(lJ), (3) 1 
where we have set (N - I)/ V= ne. Integrating Eq. ( 1) over 
the variables for the last (N - 2) electron yields the second 
equation 

(4) 

I 
These equations involve two small parameters, (r-=,/b) compared to a term of order unity and consequently are neg- 

< 1 and n,b ’ < 1, and we analyze the equations to lowest ligible. This argument does not apply to the fourth term on 
nontrivial order in these parameters. First, let us note that all the left-hand side of Eq. (3). We will find that the second 
terms of order (r,,/b) may be dropped. All such terms in Eq. and third term on the left combine to be of order n,b 3 < 1, 
(4) and in the bracket on the right-hand side of Eq. (3) are and is not necessarily the case that r,,/b is smaller than 
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yt,b3. On the other hand, symmetry implies that the one- 
electron distribution is of the form f, (1) =f,(z,,~,,~~,,f), 
wherep: = n: + .Y:, so the fourth term vanishes identical- 
ly. 

Physically, we are neglecting the EXB drift motion that 
occurs during a collision; recall that r,,/bg 1 implies that 
ue/bw,,,. For an electron bound to the ion, we are not 
neglecting the EXB drift motion that occurs between colli- 
sions. This motion is described by the fourth term on the left- 
hand side of*Eq. (3), and this term vanishes by symmetry. 

On the right-hand side of Eq. ( 3),f2( 1,2) is multiplied 
by n,b 3, so a zeroth-order solution may be used for&( 1,2). 
Thus, the term on the right-hand side of Eq. (4) may be 
dropped, and a closed set of equations involving onlyf, ( I ) 
and fi ( 1,2) is obtained, that is, the hierarchy of equations is 
truncated. 

This truncation procedure is different from that typical- 
ly followed in plasma kinetic theory. ” Focusing on the long- 
range nature of the Coulomb interaction, one typically re- 
writes f2( 1,2) and f;( 1,2,3) in terms of a Mayer cluster 
expansion and truncates the hierarchy through an expansion 
in the weakness of correlations, or equivalently, an expan- 
sion in the weakness of the long-range interactions. Here, we 
are interested in close collisions (impact parameter - 6) and 
for such collisions the interaction strength is not weak (i.e., 
e2/b = k, T, ). We focus the analysis on these close colli- 
sions and neglect the effect of long-range interactions; one 
may imagine that the functions #ij (ri - rj ) are cut off for 
particle separation somewhat larger than b. The system is 
then similar to a low density neutral gas, that is, a gas for 
which the force range is small compared to t’he interparticle 
spacing (i.e., n, b 3 Q I), and the truncation procedure used is 
the same as that for such a gas.13 

The kind of effect that is lost in this procedure is Debye 
shielding. “However, this is unimportant for the small parti- 
cle separations of interest here; the shielded interaction is 
nearly identical to the bare interaction for particle separa- 
tion of order b, since b is much smaller than the Debye 
length. Note that the inequality n,b 3 Q 1 implies the inequal- 
ity b&, . Also lost in this procedure are the relatively low 
frequency fluctuations (i.e., w-w/, = v,/& ) associated 
with the long range interactions, but one expects these to be 
unimportant because of the adiabatic invariant associated 
with the bounce motion of a bound electron (i.e., 
W,%VJ& ). 

In rewriting Eqs. (3) and (4), it is useful to change 
variables from v, to ~~ = - [ vf/2 + c$,~ (zj,p, ) 1, where 

j = 1,2. The new variable, E,, is the binding energy of elec- 
tron j scaled by k, T,; the minus sign is introduced so that 
binding energy increases positively toward deeper binding. 
By making this change of variables, dropping the ExB drift 
terms, and dropping the three-electron interaction term, 
Eqs. (3) and (4) take the simple form 

ami) +v a-,(i) -= -nn,b3 
at ' az, s 

dr2dvZhv,@$??s 
az, 

’ (5) 

ah2 I 
az, ( v*&-u2$ f,(1,2) =o, 

1 2 > 
(6) 

where d /az, is to be carried out at constant Ed. 

Since the right-hand side of Eq. (5 ) is of order n, b 3 4 1, 
the left-hand side of the equation dominates the initial evolu- 
tion off, ( 1). During this evolution, f, ( 1) becomes nearly 
independent of z,, that is, it evolves to the form 

fi ( 1) =.?I (P,,E,,G +A (Z,,P,rE*,f), (7) 
where f; /y, - n,b 3 < 1. On a longer time scale (the colli- 
sional time scale), ~,(P,,E,J) evolves in a manner deter- 
mined by the right-hand side. Substituting Eq. (7) into Bq. 
(5) and retaining terms of order n,b 3 yields the result 

n,b3 
s 

ah2 af2,c ia dr,dv,-v -. 
a+ ' aE, 

(8) 

For the energy regime E, > 0 (the regime where electron 1 is 
bound to the ion), we operate on both sides of the equation 
with the integral $E,dz,/v,(~,,~,,~,). Since the integral is 
carried out over a closed loop in phase space, the second 
term on the left is projected out and the equation reduced to 
the form 

~,%(p,,c,) = -g.~~3~dz,~r,du2~f,(1,2), 
t E. I 

(9) 
where T, = +,,E,) is the period of the oscillatory motion 
for electron 1. 

For the energy regime E, < 0, we don’t have to solve for 
7,. This regime corresponds to unbound electrons that 
stream in from infinity and back out to infinity. By hypothe- 
sis the plasma is in equilibrium a long way from the ion, so 
x ( E,,P, ) must be of the thermal equilibrium form 

(10) 
There is one aspect of this distribution that can be con- 

fusing. The spatial dependence is of the form 
exp[ql,,(z,g,)], which is what one expects for a bare ion. 
However, some of the ions have a bound electron, and the 
electron screens out the ion potential +,a (this is short range 
screening, not long range Debye screening). The reader may 
ask why such screening is not manifest in Eq. ( 10). The 
point is that only a small fraction of the ions have a bound 
electron; we will verify a posteriori that the fraction is of 
order n,b3< 1. Note in this regard that an electron that 
reaches the sink is declared to be recombined and is removed 
from the vicinity of the ion. The reason that only a small 
fraction of the ions have a bound electron is that the cascade 
time is smaller than the recombination time by a factor 
n,b’< 1. 

There is no small parameter in Eq. (6), so all of the 
terms are of order unity (or of order v,/b when written in 
unscaIed variables). In accord with Bogoliubov’s ideas, I3 
one expects/,( 1,2) to relax to become a functional off, ( I ) 
on the time scale v,/b. In the remainder of this section, we 
will use this functional dependence to rewrite Eq. (9) first as 
a Boltzmann-like equation and then as a master equation. 
This latter equation will be used as the framework for the 
numerical solution developed in Sec. V. 

After the relaxation has occurred, the term a$$( 1,2)/dr 
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in Eq. (6) is nonzero only becausef, ( 1) varies in time. How- 
ever, this latter variation is of order n,b ‘, and hence is negli- 
gible to zeroth order in n, b ‘. Dropping af, ( 1,2)/& and op- 
erating on the remaining terms with $E,d~,/~,fdr2 du, 
yields the result 

where particle 1 is assumed to be bound (i.e., E, > 0). The 
first term in the bracket on the left-hand side vanishes be- 
cause the integral $E, dz, af,/az, is around a closed loop in 
phase space, and the second term in the bracket on the right- 
hand side vanishes because of the integration over v,. Carry- 
ing out the integral over z2 on the left-hand side then yields 
the result 

drZ, dv, v2 [ f2(z2 = + co) -f,(z, = - 00) I 

=-- ah dr, dv, - az f,(V), I 12) 

where the right-hand side is the same as the right-hand side 
of Eq. (9) (except for a factor of n,b ‘). 

In evaluating the bracket on the left-hand side, we first 
consider the region of phase space where v2 > 0. The distri- 
bution f2(z2 = - CL ) describes a bound electron 1 (recall 
that E, > 0) and an incident electron 2 before the collision 
has occurred. In this region of phase space, the electrons are 
uncorrelated, so we may set f2(z2 = - CO) =T,(~,,E,) 
X7, (p?,~,). The distributionf,(z, = + CO ) is evaluated in 
a region where electron 2 is coming from the collision, so 
electrons 1 and 2 are correlated. To evaluate the distribution 
in this region, we first note that Eq. (6) implies that f,( 1,2) 
= f2 ( 1’,2’), where ( 1’,2’) is a phase space point that evolves 

into (1,2). Thus, we may set f2(z2 = CO) =T,(p, ,E; ) 
Xx (p2& 1, where (p&; 92,~; ) evolves into (pI,~,,p2,E2) 
during the collision. Again we have used the fact that the 
electrons are uncorrelated before the collision. Substituting 
these expressions into Eq. ( 12) and then substituting for the 
right-hand side of Eq. (9) yields the Boltzmann-like equa- 
tion’2 

Jg (PIPE,) = n,b 3 1 f s dz, 4, 6 lu21 Q-I f, 0, 
x [X(PI,4 u-l(P2~~;) -7,(p,,E,V,(p2,Et)], (13) 

where the absolute value sign on vz is needed to make the 
integrand valid for uz < 0 as well as v2 > 0. 

To obtain a master equation, we first rewrite Eq. ( 13) in 
the form 

x (PI,&: )J; (PzJ: ) j’, (p,,~, 17, (P~,E~) 
&,(E;)J;h(E;) - .h(E,)h,(Ez) ’ 

( 14) 
where& (E,) is the thermal distribution given in Eq. (10) 
and we have used conservation of energy (E; + E; = E, 

+ cz). In the post-collision state, particle 2 is free (i.e., ~~ 

~0) so?, (P~,E~) =A,, (Ed). In the pre-collision state parti- 
cle 1, particle 2, or both particles 1 and 2 are free. We choose 
the particle with largest binding energy, and denote its vari- 
ables by (P’,E’), that is, we define E’ = max( E; ,E; ) and let p’ 
be the corresponding p, or p2. The other particle is guaran- 
teed to be free and to have a thermal distribution. Thus, Eq. 
(14) reduces to the form 

$$ (p,,E,) 

Let us define the forward transition rate 

k, (p,,~,Ii%~) 
1 =n,b3- 

f s 
dz, pz dp, de, dv, bzlfth (~2) 

7, El u, 

X+---E+ (Z,,~&,,/&&)] 

xa[p -P+ (Z,,p,,E,,pz,ez,Ez)], (164 

where the plus indicates evolution forward in time from an 
initial state characterized by (z,,~,,E,,&$,E~). Here, elec- 
tron 1 is initially bound (E, > 0) and electron 2 is incident 
(E* < 0),13, is measured relative to 8, (by symmetry only 
8, - 8, matters), and z, specifies the position (or phase) of 
bound electron 1 when the evolution begins. The functions 
E+ andp, are the energy and radial position of the electron 
with the largest energy in the post-collision state. Likewise, 
one can define the backward transition rate 

k _ (PI&, I@& 

=n,b3L 
Lf s 

dz, p2 dpz de, 4 Iv21 Ah (~2) 
r, El u, 

~612 - E- (Z,,p,,E,,~2,e2,E2) 1 

xq -p- (Z,~p,~E,~pz,~2~E2)]t (16b) 

where the minus indicates evolution backward in time from 
an initial state characterized by (Z,,p,,&,,p2,~2,E2). The func- 
tions E- and p- are the energy and radial position of the 
electron with the largest energy in the pre-collision state; 
these quantities may be identified with E’ and p’ in Eq. ( 15). 
By time-reversal symmetry (reversal of all velocities), it fol- 
lows that k _ (p,,~, Ip,Z) = k + (p,,~, IP,E); so we may drop 
the plus and minus. 

In terms of this rate, Eq. (15) takes the form - 
at s @&Ah (E) k(p,E,Ijj;,Z) fE - fE 

th & th E 
( 17a) 

where we have dropped the subscript on E, and p,. To put 
this in the standard form for a master equation, it is useful to 
introduce the distribution W (p,~) = n,b ‘2~p~(p,~) 7, 
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x (p,~), where n,b 327.rp~(p,~) is the density ofstates for the 
differential dp d&. Equation ( 17a) then takes the form 

aw+,d = 
at s 

dF ~ w,, (PA) k(p&E) 

> ’ 
(1%) 

where w,h (p,E) = (n,b 3)2?i-p~(p,~)fth (E). By using time- 
reversal symmetry plus the Liouville theorem one obtains 
the statement of detailed balance14*,6 

w,, (p,E)k(/.wlj%) = w,, (p,S)k(&E}p,E). (18) 
Also, one can verify this relation by noting that it is required 
for Eq. ( 17b) to conserve particle number for an arbitrary 
choice of W(~,E). Substituting this relation into Eq. ( 17b) 
then yields the master equation,” 

awp,E) 
= 

at s 
+ ~6 Ik(j%PJp,E) W&a) 

- k(p,EIim Wcp,~) I. (19) 

ill. FOKKER-PLANCK EQUATION 

In this section, we focus on collisions characterized by 
an impact parameter that is somewhat larger than b and 
reduce Eqs. (6) and (9) to a Fokker-Planck equation. Con- 
sider the case where electron 1 is bound (E, > 0) at a radius 
p, < 1 and electron 2 is incident from infinity (Ed < 0) at a 
relatively large radiusp, Xp, g 1. Here, the cutoff at p2 =pd 
is introduced arbitrarily; one might imagine that an opaque 
disk of radiusp, is placed in front of each ion. For this situa- 
tion, Eq. (6) can be solved perturbatively through an expan- 
sion in l/p,, that is, through an expansion in the weakness of 
the interactions +,2 and +20. To simplify the analysis, we can 
assume that electron 1 is bound deeply enough that its oscil- 
latory motion is simple harmonic. 

It is useful to rewrite Eq. (6) as (L (O, + L (‘))f2 = 0, 
where 

L (0) _ a -~f*‘$ I I h, +*2$ , 
2 I 0: 

(2Oa) 

L (1) - a+,, a ah, I aho a 
- -~v’aE,- a~, az, du,’ (20b) ( > 

and v2, rather than E?, is treated as an independent variable. 
The zeroth-order orbits described by L (‘) are such that elec- 
tron 1 oscillates back and forth with a constant value of c1, 
and electron 2 streams by with a constant value of vZ. At first 
glance, the operator L (‘) appears to be of mixed order in the 
expansion parameter I/p,. The quantity a#, 2/az, is of order 
l/p:; whereas, the bracket (a#,,/az, + &$,,/a~,) is of or- 
der l/p:, since cb12 and @20 cancel to lowest order leaving a 
dipole interaction. However, we will find that the two terms 
in L (If contribute equally. The reason is that the derivative 
d/au, will produce a factor u2 (i.e., d/au, = u2 d /&) and 
this factor is effectively of orderp,. 

Let us look for a solution of the form f, = f :O) + f :I’, 
where 

This choice for f i”) is determined not only by the require- 
ment that L (“‘f (Ok - 2 - 0, but also by the requirement that 
electrons 1 and 2 are uncorrelated in zero order, and by’the 
fact that electron 2 is unbound and hence distributed ther- 
mally. The first-order distribution is determined by the 
equation 

L 'o'fy' = _ L Wf~O), (22) 
where second-order term L “‘J’$” has been neglected. The 
operator L (‘) is the total time derivative taken along the 
zeroth-order orbits; so a solution forf i’, is given by an inte- 
gral over these orbits 

f:‘)= +~~~dt’[(~v,)~~(p,,~,~~ 
I IT 

The zero-order orbits are given by 

ElU’) =E,, ul_(t’) =v2, ZZ(f’) =22+*2(t’-t), 
(24) 

z,(t’) =a,cos[$,(t’)l, +,(t’) =q, +w,(t’-tt), 
where the amplitude of oscillation of particle 1 is given by 
w:af/2 = (l/p, -E,) and the frequency by w: = l/p:. 
This follows from the deep binding approximation for the 
energyofparticle l,~,=l/p, - [VT/~+ (l/p:)$/2]. 

Substituting Eq. (23) into Eq. (9) yields the Fokker- 
Planck equation 

a! _ 
rYc- , - $ Bx (P,,E,) + A g- (PI,&, 1) , (25 

I 
where 

1 

‘4 = + n,b’r,~~~~r2~-+~dv~~~~dt’~ 

x (v,~)(v* F)‘, (26a) 

B= - n,b3r ,lr$- ~rZ~~~dvZ[~ %dt’s 

(26b) 

and the integral $dz,/v, has been replaced by r&“d$,/2rr. 
To evaluate A, we approximate 84, Jdz, by z,/( 2 
use the identity 

+ pi ) 3’2, 

Z 
=?-- 

(z2+p2)3/2 s 
%dk k K,(kp) sin kz, 

77- 0 
(271 

and substitute the orbits in Eq. (24). The result is the inte- 
gral expression 

A = f n,b 3T,[V % Je+:dzIl:217p, dp2J::dvZ 

X J; Ix dt’( P~~xdkk~~dqq~K,(kp,) 

XK0(qpz)(a,o,12sin $, sin[w,(t’- t) + $,I 

Xsin kz, sin[qz, + qv,(t’- t) 1, (28) 
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where a low impact parameter cutoff has been introduced at 
p2 = pd. Carrying out the z2, $,, 4, t ‘, and k integrals in that 
order then yields the result 87T A = + n,b37-,(a,w,)2- s “dv, 

fi 0 v2 

Xe cc 
- a:/2 

s 
4xfG(~). 

(WlPd4) 
(29) 

In evaluating B, one must pay attention to the fact that 
dlz and (p10 cancel to lowest order leaving a dipole interac- 
tion. Applying identity (27) to G’#12/Jz2 = (z, - z2)/ 
jr;ar;;13 and to 4S2,JJz2 = z2/lr213 yields the approximate 

( a4,, + a4,, -- 
azz az, > 

2 - z- 
s 

dq q Ko(qp12) (qz, cos q’z, - sin qz2) 
r 0 

+z I -dq q Ko(qp2)sin kz,, 
r 0 

(30) 

which is accurate to order l/p:. Also, using identity (27) to 
evaluate &j,,/az, SZ,/(~ + p: )3’2, substituting for the ze- 
roth-order orbits, and evaluating the z2, +,, q, and t ’ integrals 
in that order yields the result B = A; so Eq. (25) reduces to 

a7; Tl-= -&j(7’+~)]. 
at (31) 

Of course, this result would have been anticipated since the 
bracket on the right must vanish for a thermal distribution 
[Es. (lo)]. 

What conclusions can be drawn from this simple calcu- 
lation? First, we note that A is exponentially small for suffi- 
ciently large pd. By using the large 6 asymptotic expansion 
K,( 5) = (r/24’) “2 exp ( - g) and evaluating the v2 integral 
with the saddle point method, Eq. (29) reduces to the form 

q-2 ^ - 3/2(20,,@” 

A = + n,b 3T,(u,w,)* c r 
fi mwis’3 . 

(32) 

In terms of unscaled variables the argument of the exponen- 
tial is given by (209, ) 2’3 -, (2w,p,/v, ) 2’3. The exponential 
cutoff is simply a manifestation of an adiabatic invariant for 
the oscillatory motion of electron 1. This invariant is nearly 
conserved when the interaction field is slowly varying (i.e., 
w, ) v,/p& ). Note that the existence of this invariant is not 
associated with the approximation that electron 1 is bound 
tightly enough that its oscillatory motion is simple harmon- 
ic. The result can be generalized by using action angle vari- 
ables. 

Another conclusion follows from the observation that A 
is sensitive to the value ofp, whenp, is pushed down to the 
range pd G 1 where the expansion procedure fails. This 
means that small impact parameter collisions make a signifi- 
cant contribution and the Fokker-Planck treatment is not 
the whole story. 

Incidentally, the analysis can be carried out when the 
E X B drift motion is retained, and a correction to A of order 
&4 - ( r,,/6)2A is found. The smallness of the correction is 
simply a verification of the fact that this motion is negligible. 

IV. VARIATIONAL THEORY AND THE KINETIC 
BOTTLENECK 

The variational theory of three-body recombination15 
can be thought of as the opposite limit from the Fokker- 
Planck theory; the distribution function is assumed to vary 
sharply compared to a step size. Anticipating the existence 
of a bottleneck, the variational theory presumes that the dis- 
tributionf,( 1,2) is zero for E~ > E and is of the thermal equi- 
librium form 

f,( 1,2) = ( 1/25-)e”+“2-412 (33) 
for E, <E. Here, electron 1 is bound and electron 2 is a free 
electron that interacts with electron 1; the value of E is ulti- 
mately chosen to be the energy location of the bottleneck. 
The theory requires a specification off2( 1,2) on the surface 
E, = E, and from Eq. (6) one can see the term 
v, (&#,,/a~,) (af,/&,) convects the thermal form off, to the 
surface for v , a$, 2/az, > 0 and convects the zero value to the 
surface for v , a#, 2/azl < 0. 

The first step is to calculate the flux of electrons through 
the surface E, = E. From Eq. (9) and from the relation 

$%‘,,E,) (34) 

one can see that the dimensionless flux toward deeper bind- 
ing through the surface E, = E is given by 

R(E) = (n,b3j2 dr,, 
s P 

3 
EI=E v, 

Here, the distribution f,( 1,2) is taken to be of the thermal 
equilibrium form for v, &#,,/az, > 0 and to be zero for 
v, @,,/az, ~0. In the (z,,u,) phase space, the loop defined 
by E, = E is such that v, > 0 for the top half and vI < 0 for the 
bottom half. Consequently, v1 d412/az1 > 0 at any point z, 
for either the top or the bottom of the loop, and Eq. (35) can 
be rewritten as 

R(E) = (n,b3)2~rlL~zl~r2dv2 1% 1 f2, (36) 

where f2 is of the thermal equilibrium form and is evaluated 
for E, = E. The integral overzl is over one half the loop in the 
direction of increasing z, (i.e., - dm <z, 
<JFqy,. 

Also, we restrict the domain of integration to the regime 
where E, + &2 - 412 <Ed; this insures that it is energetically 
possible for electron 1 to move from E, = E to deeper binding 
and for electron 2 to escape to infinity. This restriction can be 
rewritten as a restriction on the domain of the v2 integration 
(i.e., V:/2 + 412 + #2r,>o). 

One final restriction is necessary. Large impact param- 
eter collisions produce small steps in the binding energy, 
some positive and some negative, and as we have seen, the 
evolution due to these collisions is diffusive in nature. In 
addition, large impact parameter collisions tend to have re- 
crossings of the surface E, = E during the course of a colli- 
sion. The one-way thermal equilibrium flux being calculated 
here would greatly overestimate the contribution from these 
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collisions; in fact, the contribution would diverge. For that 
reason, the integral in Eq. (36) is cut off for ir2 - rl 12 C/E, 
where Cis a constant. To understand the scaling with E, note 
that h Imax = l/e and that lr2 - ri 1 must be less than on the 
order of /rijmax for the interaction to make a substantial 
change in the atomic state. 

It is convenient to change variables from (rl,r2) to 
(7,,~,;J/,T2,,~~#) where 
(r2-r,) =~2,E-‘(sinBcosd,~+sin6sin4j-+cosBi), 

(37) 
rl=‘i;,~-‘(sin~cos7++.?‘+sin~sin~~+cos~4’), 
and 

Y=sin8cos4~fsin8singl~+cos~i, 
y= -sinfjZ+cos@j, (38) 
~‘=cosec0si+5.?+cos8sin~~-sinBi. 

An important point to note is that i’ is directed along the 
( rl - r, ) direction; so < is the angle between ( r2 - r, ) and 
r,. Rewriting Eq. (36) in terms ofthese variables, taking into 
account the restrictions on the domain of integration, and 
carrying out the v2 integration yields the result 

R(E) = (n,b3)2 ~~c&,lF:,~sin OdOcrdq5 

xl&, T:J%sin<dclfld$y 

X@ 6+(p), (39) 

where F(P) = erfc(Jm) and 

/iL=& (J 
1 1 

-- . (40) 
-2 r, + 7;: - 27,q, cos 5 321 

) 

The integrations over all angles except 6 can be carried out 
trivially and yield 

R(E) - (n b’)@ (2~))‘~ - e E4 

where x = cos 5. 
The behavior of R (E) can be examined by looking at an 

upper bound. Using the inequality F(p)@<1 in Eq. (41) 
and carrying out the integrals yields 

e” 2( 27~)~” 
R(c)<(n,b312C- 

E4 3 + 
(42) 

The minimum value of the right-hand side is approximately 
(2.2) C( n, b 3, * and is attained at E = 4. This strong mini- 
mum in the one-way thermal equilibrium flux is called the 
bottleneck; it is due to a competition between the Boltzmann 
factor e’ and the phase space factor E - 4. The variational 
theory takes the value of the flux at the bottleneck to be the 
recombination rate. 

A more accurate evaluation of Eq. (4 1) can be carried 
out numerically. Such evaluations have been used to mini- 
mize R(E) for various values of C, and the results are shown 
in Figs. 2 and 3. Figure 2 shows the location of the minimum 
(or bottleneck) Ed. As one would expect from Eq. (42), the 
location of the minimum in R ( E) is insensitive to the value of 
C and has the approximate value Ed ~4. Figure 3 displays 
the value of the minimum flux. The bound on the minimum 
flux Eq. (42) is always greater than the calculated value, as 
we would expect. In addition, the minimum flux scales as C 
to the first power as Cgoes to infinity-the same as the upper 
bound. 

The variational theory illustrates the idea of a bottle- 
neck and provides an order of magnitude estimate of the 
recombination rate but does not provide an accurate value of 
the rate. First, the theory has a free parameter, C, to compen- 
sate for recrossings. Although the Fokker-Planck analysis 
suggests that C is of order unity, its precise value is not 
known. Second, the bottleneck is not infinitely sharp but 
extends over some finite range AE - U( 1). At the low E end 
of this range, the atomic states are populated according to 

FIG. 2. Energy that gives the minimum flux (i.e., the location of the bottle- 
neck) as a function of the adiabatic cutoff used in the integration. The 
dashed line shows the estimateofc,, = 4 predicted by Eq. (42). The quanti- 
ty Cis the adiabatic cutoff defined in Sec. IV 

FIG. 3. The minimum value of the one-way thermal equilibrium flux as a 
function of adiabatic cutoff used. The dashed line is the upper bound given 
by Eq. (42). Note that for IargevaluesoftheadiabaticcutoffC, tbeone-way 
thermal equilibrium flux approaches the upper bound. 
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thermal equilibrium, but the flux is not predominantly one 
way. At the high E end, the flux is predominantly toward 
deeper binding but the atomic states are depleted relative to 
thermal equilibrium. There is no one surface where the states 
are populated according to thermal equilibrium and the flux 
is predominantly one way. Finally, the theory assumes that 
the surface defining the bottleneck depends only on E, rather 
than on E and p. Such an assumption makes sense when the 
transitions between p values are more rapid than those 
between E values, but this is not the case where a strong 
magnetic field is present. 

V. MONTE CARLO SIMULATION 

This section presents a numerical simulation of the re- 
combination process and a numerical determination of the 
rate. The simulation traces the state of an atom through a 
sequence of collisions with electrons from the background 
plasma. The distribution of atomic states is assumed to be of 
the thermal equilibrium form down to some energy .Q > 0. 
We will choose E,,, to be substantially smaller than the bot- 
tleneck energy E& -4 and will find from the numerical re- 
sults themselves that the thermal distribution extends below 
E,,, . To initiate the simulation, an electron in an initial state 
chosen at random from the thermal distribution for the 
background plasma is allowed to collide with an atom in an 
initial state chosen at random from the thermal distribution 
of atomic states (i.e., E <Q, ). This process is repeated until 
an atom is formed with binding energy greater than Ed,, . The 
state of this atom is then followed through a sequence of 
collisions with electrons chosen at random from the thermal 
distribution for the background plasma. The simulation 
stops following the atomic state, when the state goes back 
into the thermal distribution (E < cth ) or reaches the sink 
(E > E,~ ). We will choose E, to be substantially larger than the 
bottleneck energy (E, BE,, ) and will find from the numerical 
results themselves that it is very unlikely for an atom to be re- 
ionized once it has passed beyond the bottleneck. An atom 
that reaches the sink is declared to be recombined, and the 
steady-state flux to the sink is the recombination rate. 

Formally one may think of this simulation as a Monte 
Carlo solution of the master equation, Eq. (19). This equa- 
tion describes a Markov process’6 with transition rates 
k(p,e(p,Z). The evolution of a guiding center atom in the 
state (p,~) is governed by the probability that the earliest 
change in state is at a time between t and t + dt to a state 
with energy between 2 and T + & and radial position 
between p and p + @ 

P(jT,Z’,t)& ~$5 dt = k(p,a)j%)e - R(p*E” + & dt, (43) 

where the total collision rate R (p,~) is given by 

R+,E) = 
s 

k(p,clp,P)@ do. (44) 

Such an evolution, where the next step is dependent only on 
the current state rather than the past history, is what we 
mean by a Markov process. The Monte Carlo aspect of the 
simulation is the determination of the time of the transition 
and of the final state by a random choice weighted according 
to P@,F,t). 

The choice of (p$) and t is complicated by the expres- 
sion for the transition rate, Eq. ( 16a), which is not a simple 
function of p and Z. It is dependent on the functions 
p + (~p,~,p~,8~,G and E + (z,~,E,~~,&,,E~) that must be de- 
termined by numerical integration of the equations of mo- 
tion. (Here, we have replaced z,,p,,~, by z,~,E.) Although it 
is convenient to have a simple expression for the transition 
rate, it suffices to have a numerical method of choosing (Ij,E) 
in a manner consistent with the distribution k(p&,E). To 
this end, we choose the pre-collision variables in a manner 
dictated by the weighing factor in the transition rate, that is, 
P(z>p,,B,,v,)dz dp, de, do, 

p2 dp2 de, 1~21 A,, (E2)du2 dz/v(z,p,e) 

= Spz dpz de, dv, IvzI&, (E2)$,dz/v(z,p,&) * 
(45) 

With the initial conditions chosen in this manner, the equa- 
tions of motion are integrated numerically to determine 
(&Z), and it is an easy exercise to show that (p,Z) so chosen 
are distributed according to k(p,El&E). 

A technical complication arises from the fact that the 
integral over p2 diverges in the normalization factor above 
and in the total collision rate 

R(~,E) = n,b 3 
&f&kp’p2 

xd& dv, IuzlJ;~, C&Z), (46) 
which is obtained by substituting Eq. ( 16) into Eq. (44) and 
carrying out the integrals over the delta functions. However, 
we know from the Fokker-Planck analysis [see Eq. (32) ] 
that the largep, collisions contribute an exponentially small 
amount to the diffusion coefficient. The divergence can be 
removed without affecting the transport by introducing a 
cutoff forp,. We take the cutoff to be the larger of the adiaba- 
tic cutoff (i.e., the radius at which the product of the z- 
bounce frequency w, -E - 3’2 and the collision time t, -p/v2 

is much greater than one) and the maximum radius at which 
an electron can be bound with energy E (i.e., p = E - ‘). The 
second condition is necessary so that we can make the dipole 
approximation for the interaction potential 412 as was done 
in the Fokker-Planck analysis. The cutoff can be stated sim- 
PIY as 

p,(.5,v2) =C’rnax(~-~‘~v~,c-‘), (47) 

where C ’ is some constant. We choose C’ to be large enough 
that the results of the Monte Carlo simulation are insensitive 
to further increase in C ‘. 

We now wish to obtain a set of possible realizations for 
the temporal evolution of the state of a bound atom. To get 
one possible evolution we need to follow an atom through a 
sequence of collisions with electrons. The choice of initial 
state for the atom requires some explanation. Since unbound 
electrons stream in from infinity, where the plasma is speci- 
fied to be in thermal equilibrium, we know that the distribu- 
tion of states is of the thermal equilibrium form for E ~0. 
Also, there is rapid thermalization of the weakly bound 
states (E 2 0) and, in steady state, thermalization down to 
near the bottleneck energy Ed -4. For the numerical work, 
we assume that the distribution of atomic states is thermal 
down to some small but positive binding energy 
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E,,, (0 < E,~ < Ed ). We choose Q, to be large enough that any 
initial state with E ZD Ed,, has a reasonable probability (e.g., 
l/400 for E th z 1) of evolving through subsequent collisions 
to the sink. We consider transitions out ofthis thermal sea to 
deeper binding (from E <Ed,, to 2 > Ed,, ) . The rate of such 
transitions into a state ($), where Z > E,,, , is given by k, (P,F) = s dp dE k(p,+%) w,, Qw), (48) 

E < Gh 
and the total rate for transitions to any state with T > E,~ is 
given by 

R, = ( @dlk,(~,~). (49) 

Thus, the probability that the earliest transition occurs be- 
tween t * and t * -l- dr * and is to a state with energy between 
&, and To + ~2~ and radial position between PO and PO + a& 
is given by 
P(&&,,t *)@, d-q, dt * 

- - = k, (po,E,,)e - RLr* t&, d&, dt *, (50) 
where the subscript 0 refers to the fact that (&&) is the 
initial state in the evolution. 

Rather than work with k, @,a) and R L, it is useful (for 
numerical reasons) to introduce the inverse problem and 
rely on detailed balance. We will explain the reason for this 
after the method has been presented. Ifthe states with Z > E,,, 
were distributed thermally, then the rate of transitions into 
some state (p,~), where E < ctr,, would be given by 

k, t&E) = s @ d.F k(p,+,E) w,, (@3. (51) 
F>C,h 

Likewise, the total rate into all such states would be given by R, = dp dE k, @,E) = s @iEk,-Y&Z), 
B>E&h 

(52) 

where 

k;‘(p,Z)r 
s 

dp dc k(@,z[p,E) w,, (j%‘). 
f < t‘th 

(53) 

From detailed balance [ Eq. ( 18)], it follows that 
k, (j%) = k ,- ’ @,Z) and that R , = R, . Consequently, the 
distribution of initial states and times can be rewritten as 
P(&&,t *) = k ; *(&,.Y?o)exp( - R, t *). - - We use a numerical procedure to pick (po,go) according 
to this distribution. First, define the quantity 

cf,= s dp dE k, (p,&) 
all E 

= (n,b”)’ 
s 

27&, Go ii % el 
5, > f,l, m&,~~) x&Go) s p2 dpz de, dv, tu2l.h t&2), (54) 

which is the sum (or integral) ofthe collision frequencies for 
all of the atoms with Z. > E,,, (the distribution ofstates being 
assumed thermal). The procedure is to choose (&&,,~o,p2, 
S2,.c2) according to their contribution to Q> and then to inte- 
grate numerically through the collision to the final E = E + 

&b 

FIG. 4. Relative location of the energies E ,,, , E,, E&, and E,; and a typical step 
size AE. 

X &&&,,p2t~Z,~2) and p = p + G,~o,~otp2,~2,~2). Reject 
this try if E > Q, , but retain it if E < .Q, . One can show that 
(po,ZO) so determined are distributed according to k ; ’ 
X (&,Zo). Also if N, is the total number of trys and N, is the 
number retained, then as N, becomes large R, 
s (fv, /fv,)<P. 

Technical complications arise again from the fact that 
the integrals over pz and FO diverge in the expression for @ 
[ Eq. (54) 1. The divergence in pz can be removed by intro- 
ducing a cutoff for p2 as we did in Eq. (47). The divergence 
in go we remove by introducing a lower bound EC such that 
cc > Ed,, (see Fig. 4). This cutoff is chosen large enough so 
that the average change in E during a collision (i.e., (AE) ) is 
much less than cc - E,,, . We check that the results are insen- 
sitive to a further increase in E,. 

One may now ask why did we have to consider the in- 
verse problem when an analogous algorithm could have been 
defined for the original problem. The answer is efficiency. 
Most (~&,) chosen in the inverse algorithm are close to et,, , 
that is, within (A&). In addition, the transitions normally 
lead to a smaller value for E compared to &,. This implies that 
most transitions have E < E,,, , leading to few rejections. The 
opposite would be true of a forward algorithm. Most initial 
(~,p) would not be within ( AE} of e,,, and transitions would 
normally lead to a smaller value for EO when compared to E. 
Hence most transitions would have Z0 < E,,, , leading to many 
rejections. It is therefore preferable to use the inverse algo- 
rithm. 

Once we have the initial state (~o,Zo) we continue to 
follow the evolution through a sequence of collisions until 
the bound electron is re-ionized or enters the sink. The pro- 
cedure is then repeated many times with the initial time (t *) 
of each evolution measured relative to the initial time of the 
previous evolution. This ensures that the flux through 
E = E,,, is given by ,R, . We refer to a sequence of N, such 
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evolutions as a time history for one member of the ensemble 
of plasmas. Figure 5 shows a graphical representation of a 
sample time history. 

There are three well-separated time scales in a time his- 
tory. The smallest of these is the duration of a collision: 
(u,/b) - ’ in unscaled variables and unity in scaled variables. 
(Figure 5 is drawn as though a collision were instanta- 
neous.) The second is the time between collisions: 
(n,b ‘u, ) - ’ in unscaled variables and (n,b 3, - ’ in scaled 
variables. This is the time scale for the duration of an evolu- 
tion The third is the time for an electron to make a transition 
out of the thermal sea to a state with E > E”, : (nzb ‘u, ) - ’ in 
unscaled variables and (n, b 3, - ’ in scaled variables. This is 
the time between evolutions. Since the plasma is weakly cor- 
related (i.e., n,b 3 < 1 ), the three time scales are ordered as 
(u,/b)-’ <(n,u,b’)-’ <(nzb5u,)-‘.Inotherwords,a 
collision is complete before another begins and an evolution 
is complete before another begins. 

Each member of the ensemble of plasmas has an asso- 
ciated time history, and the distribution function W(p,~,t) 
that appears in the master equation [i.e., Eq. ( 19) ] can be 
constructed as an ensemble average over the time histories. 

The boundary conditions on the integrodifferential 
master equation are W (p,~,t) = W,, (P,E) for E <E,‘, and 
W (p,~,t) = 0 for E > E,. These are enforced by the method 
by which initial states (&,&) are chosen and the removal of 
atoms which reach the sink. The initial condition on W 
(P,EJ) between E,‘, and E, is W (P,E,I = 0) = 0. This initial 
condition is built into the time history since no evolution can 
start before t = 0. 

By invoking the equality of the temporal average and 
the ensemble average, we can obtain steady-state quantities 
from a single time history. For example, the steady-state flux 
to the sink (the recombination rate) is given by R, = R, 
= @NJ/NT, where N, is the number of the initial tries which 

reach the sink in the course of their subsequent evolution. 
Likewise, the steady-state distribution is given by 

w,, @El --R, N, & ~h#%,;~~Ad 
x ANp,;p&), (55) 

where N, /R ’ is the total elapsed time in the time history, 

if x,Gx<x, + Ax, 
otherwise 

, 
and to is the time spent in the jth state in the ith evolution. 

Not only can steady state flow rates and distribution 
functions be obtained; one can estimate the time-dependent 
distribution function W(p,.c,t). This needs to be examined in 
order to see how the steady state is established. The straight- 
forward way to do this is to generate many time histories, 
that is, many realizations of the ensemble of plasmas. One 
would then count how many of these histories are in a state 
(P,E) at time t as an estimate of the distribution function. 
The problem is that very few realizations would be in any 
given state at any given time; more specifically only n,b ’ of 
the histories generated. To compound the problem, each 
time history is very expensive to generate since one must 
numerically integrate through many collisions. What we 

* . 
-(n’v bs,-’ e e 

FIG. 5. An example of a time history showing the order of the time scales. 
The state of the atom (P,E) is plotted as a function of time. The square 
corners show the duration collision [i.e., f- (v,/b) ’ ] as being effectively 
instantaneous on the time scale ofan evolution. Three evolutions are shown. 
The duration of an evolution is of order (n,v,b ‘) - ‘, and the time between 
evolutions is of order (nfu, b ‘) - ‘. 

choose to do instead is to use one time history and manipu- 
late it to generate a large subensemble of the ensemble of 
plasmas. An easy way to see how this is done is to first under- 
stand that each evolution in a time history is independent of 
the other evolutions. The time at which an evolution starts is 
not dependent on the details of that evolution or any other. 
This will allow us to place the N, evolutions in the time 
history at any time between 0 and N, /R, with equal proba- 
bility and to thereby generate an infinite number of realiza- 
tions of the ensemble. These realizations are a large suben- 
semble that gives us a good estimate of W(p,~,t). When the 
average over this subensemble is done one finds that 

wp,m s- AE14 2 Gtg A~(E+,AE) 

(56) 

where 

e(x;x,) = 
I 

1, if xGxO, 
0, otherwise. 

The earlier statement that a temporal average is equal to 
an ensemble average in steady state can now be justified. 
Consider a time such that (n,b 3, - ’ <f, . For such a time 
8(X{ = , ru;t, ) = 1 for all i and j, so that Eq. (56) reduces to 
Eq. (55) [i.e., W(p,EJ, 1 = K,(p,~)l. 

Since we now have an estimate of the time-dependent 
distribution function, all physically meaningful average 
quantities can be estimated along with their time depend- 
ence. We now present the results of a Monte Carlo simula- 
tion. The recombination process is simulated by generating 
20 000 evolutions. The value of E,‘, used is 1, and the value of 
E, used is 4. The p2 cutoff C ’ is 4. The following results are 
found to be insensitive to a further increase in E, or C’. The 
value for which an atom is considered recombined E, is 20, 
well below the expected bottleneck at E,, -4. Only l/400 of 
the evolutions reach E,. This corresponds to a numerically 
calculated recombination rate R,~O.070( 10)nab ‘u,. 
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FIG. 6. Number ofevolutions which reach E (i.e., h’, ), divided by the total 
number of evolutions N, This figure shows that one can unambiguously 
define a recombined atom as an atom which reaches the sink and that a 
bottleneck of finite width exists near c-4. 

10.0 I 
0.0 E p I .ou 

The existence of the bottleneck is illustrated in Fig. 6. 
This is a plot (as a function of E) of the fraction of the evolu- 
tions NC/N, that make it to the energy E. Note that almost 
all, 399 out of 400, of the evolutions lead to re-ionization, but 
al1 of the evolutions that make it past E= 10 eventually 
reach the sink at E,. This allows the unambiguous definition 
of a recombined atom as one which reaches the sink. It also 
confirms that there is some energy Ed between E,,, = 1 and 
E = 10 such that if an atom is bound with less energy 
(E < E& ) it is more likely to be ionized and if it is bound with 
more energy (E > Ed ) it is more likely to be recombined. The 
bottleneck energy Ed can be determined from Fig. 6 by find- 
ing the energy for which the fraction NC/N, is twice its con- 
stant value for deep binding. This value is found to be 
E,, -4.9( lo), which agrees with the expected bottleneck of 
E,, = 4-4.5 shown in Fig. 2. In addition, the finite width of 
the bottleneck is evidenced by the smooth approach of 
N,/N, to its constant value at deep binding. If the bottleneck 
was infinitely sharp we would see a discontinuous jump of 
NJN, at Ed to its value at deep binding. 

The time-dependent distribution function, divided by its 
thermal equilibrium value W(p,&,t)/Wt, (p,~) is shown in 
Fig. 7. For convenience we plot this function in (E~,E) space 
rather than (p,~) space. The maximum value of Ep is unity, 
so the boundary of the space is rectangular. We display the 
distribution function for four different times 
(tn,u,b * = 0,O. 1,1, and 10) as well as the time asymptotic 
result ( t = CO ) . The value of the distribution function is indi- 
cated by the shade of gray displayed on the (E~,E) plane. 
Black corresponds to thermal equilibrium and white to total 
depletion. We first concentrate on the steady state function 
Fig. 7(e) which remains at its thermal equilibrium value 
until E = 4 then precipitously drops off from that value. This 
again confirms the existence of the bottleneck and justifies 
the initial formation process with E,,, = 1. To more dramati- 
cally show the bottleneck, thep-integrated time-dependent 
distribution function 

;rev Scale 
1.00 

W(p.E,t) 
w,/,tP.e) 

FIG. 7. Time dependent distribution function divided by its thermal value. 
Shownareitsvaluear four different times (a) t = 0 (initialcondition), (b) 
t= (l/IO)(n,u,,b’)- ‘, (c) t= (n,u,b’) ‘, (d) t= lO(n,.u,b’) - i and 
its steady-state value (e). AI1 scales are linear. 

s 

l/E 

W(EJ) E  dp W(p,e) 
0 

(57) 

divided by its thermal value is shown in Fig. 8. We display 
thep-integrated distribution function at three different times 
( tfl,u,b2 = O.l,i, and 10) as well as the time asymptotic 
result (c = 00 ). We again focus your attention to the steady 
state values shown as diamonds. Thep integration takes the 
average of the full distribution function shown in Fig. 7 
along a horizonta1 line of constant E. This allows us to dis- 
play in a more quantitative way how quickly the distribution 
function is depleted by many orders of magnitude as one 
moves beyond the bottleneck. 

Another interesting feature of Fig. 7(e) is illustrated by 
the average .cp value 

(Ep) S-J- 
s 

f/E 

K$k) 0 
dp(crp) cy,, (P&), (58) 

which is plotted in Fig. 9. This graph shows that the value of 
the moment (cp) is larger than the value for a thermal equi- 
librium distribution. This has a rather simple explanation. 
First, remember that collisions that do not involve an elec- 
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FIG. 8. The p-integrated distribution function at various times. The time 
marked Q) corresponds to steady state. The dashed line is thermal equilibri- 
um. 

tron exchange do not change p values. In (EP,E) space this 
corresponds to remaining on the same line through the ori- 
gin, E = ( l/p)&p. To change the value ofp [i.e., jump off the 
line, E = (l/p)&p] a collision involving an electron ex- 
change must occur; but only a small fraction of the colli- 
sions, ( -&) involve electron exchange. What happens is 
that below the bottleneck an atom hops along a line of con- 
stant p until an electron exchange collision occurs. Initially 
the atom will usually be formed at a largep value. It will then 
have to wait for the rare exchange collision to be able to jump 
to the lines with smallerp. This causes a traffic jam of atoms 
at large p since the routes to smaller p are partially blocked. 
The final result is that the distribution function is skewed 
toward larger p values, and this increases the moment (up) 
relative to the thermal equilibrium value. 

0.78 

0.72 

FIG. 9. Thep-integrated moment (&p) in steady state for different values of 
E. The dashed line shows the value expected if the distribution is thermal. 

t n,veb2 

FIG. 10. Location of the front ofoccupation as a function of time. The time 
is when thep-integrated distribution function reaches l/2 of its steady-state 
value. 

We now turn our attention to the time dependence of the 
distribution function; that is, to the question of how fast the 
steady state is established. The evolution of the distribution 
function W(p,~,t) from its initial condition to its steady state 
is illustrated in Figs. 7 and 8. One can see a front of occupa- 
tion that moves to deeper binding as time progresses. 

The location of the front as a function of time [i.e., 
E = I ] is shown in Fig. 10. It is obtained by plotting the 
time for which thep-integrated distribution function reaches 
one-half of its steady-state value. This time is also character- 
istic of how long it takes a typical atom to cascade to a given 
energy E. At large time, the location of the front scales as 6. 
This scaling can be explained by a simple argument. Assume 
that the rate of a collision of an electron with an atom R, is 
proportional to the area within the cutoff radius R, -pf, 
where pc is defined in Eq. (47). Note that for large E, pc 
scales as z - ‘. From an independent numerical calculation, 
the average step in energy (A&) is found to be proportional 
to E for both electron exchange and nonexchange collisions, 
that is (he) --E. For energies below the bottleneck we make 
the further assumption that the atom must step in energy 
toward deeper binding during the course of each collision 
until it reaches the sink. To populate a certain energy level 
we must wait long enough for the average atom to reach that 
level, so the rate at which the front moves is determined by 

which has the solution E( t) -fi. The prediction of this sim- 
ple argument is that the location of the front should scale as 
fi for large binding energies-a prediction the data sup- 
ports. 

To show the relationship between the Monte Carlo sim- 
ulation and the analytic work, a set of runs are done using 
different values of Et,, . Only the one-way rate of z,,, crossing 
R, (E,~ ) is measured. The results are shown in Fig. 11. Also 
plotted is the numerical evaluation of the tlux integral Eq. 
(41) for three values of the free parameter C, the adiabatic 
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FIG. 11. One-way rate ofcrossing a  surface of constant energy if the system 
is in thermal equilibrium. Shown is the Monte Carlo calculation of this rate 
(0) and  the analytic estimate Eq. (41) of this rate for three values of the 
adiabatic cutoff C. Also shown is the Monte Carlo estimate of the recombi- 
nat ion rate R?. 

cutoff. The rate R, (E,, ) can be compared to the one-way 
flux expressed analytically in Eq. (41). Recall that the ana- 
lytic calculation of the one-way flux may count a collision 
multiple times because of recrossings of the surface E = E,,, 
during the course of one collision. We  introduced the adiaba- 
tic cutoff C to compensate for this effect. The Monte Carlo 
rate R i (E,,, ) does not have this problem since it only consid- 
ers the state before and after a collision, that is, R f (q,, ) is the 
one-way flux corrected for recrossings. A comparison of the 
two results determines the value C which would compensate 
for recrossings. From Fig. 11 one can see that the minimum 
R, (E,, ) at E,,, = 5 corresponds to an adiabatic cutoff of 
C = 1.2. Also shown in Fig. 11 is the recombination rate 
determined by the Monte Carlo simulation R3 which is a 
factor of 6  less than the minimum value of R, (E,, ). This 
difference is caused by the finite width of the bottleneck and 
the skewing of the distribution function toward largerp val- 
ues. 

VI. CONCLUSIONS AND DISCUSSION 

By using a Monte Carlo simulation, we have calculated 
the three-body recombination time R ; ’ for ions that are 
introduced into a cryogenic and strongly magnetized pure 
electron plasma. The rate given by R, = 0.070( 10)n~u.b ' is 
an order of magnitude smaller than the rate obtained pre- 
viously for an unmagnetized plasma. Also determined by the 
simulation is the characteristic time for an electron-ion pair 
to cascade to a given level of binding. For deep binding,; this 
time is given by Fig. 10 to be of order an evolution time 
(n,u,b ‘) - ’ multiplied by .8. 

1292  Phys. Fluids B, Vol. 3, No. 5, May  1991 

It is instructive to discuss these two quantities in terms 
of a simple physical example. Consider a cryogenic pure 
electron plasma that is confined in a Penning trap; the plas- 
ma has the shape ofa long column (say, of length L) with the 
radial confinement provided by an axial magnetic field and 
the axial confinement by electrostatic fields applied at each 
end. Suppose that an ion transits the full length of the pias- 
ma, drifting with a small velocity nilI along the magnetic 
field. If the transit time is long compared to the recombina- 
tion time (i.e., R,L /vi,, $- l), theion recombines with nearly 
100% probability, and the electron-ion pair is deeply bound 
when it exists the plasma. If the transit time is long compared 
to the evolution time but small compared to the recombina- 
tion time, the probability of recombination during transit is 
given by R,L /vi,, . For a typical recombined pair, the depth 
of binding is given by the plot of E( t) in Fig. 10, where the 
time is to be interpreted as t = (L /vi,, 1. It is important that 
the binding be deep enough to avoid ionization by the elec- 
trostatic confinement field at the end of the trap. (The exter- 
nal field should be small compared to the binding field.) If 
the transit time is short compared to the evolution time, the 
calculated recombination rate (steady-state flux to the sink) 
is not applicable. For this case, it is very unlikely that a re- 
combined pair would survive the electric field at the end of 
the plasma. 

Next, let us reexamine the approximations used in the 
theory. The guiding center approximation breaks down at 
sufficiently deep binding [i.e., E 2 (b /I;,, ) 2’3] and all three 
degrees of freedom begin to interact on an equal footing. The 
motion becomes chaotic, and the perpendicular kinetic ener- 
gy (that had been tied up in the cyclotron adiabatic invar- 
iant) is shared with the other degrees of freedom. One might 
worry that this would lead to ionization, but it cannot since 
the perpendicular kinetic energy is of order k, T, and the 
binding energy is much larger than k, T,. Of course this 
assumes that the guiding center approximation does not 
break down until the binding energy is well below the bot- 
tleneck. Also, the one-way flux to deeper binding below the 
bottleneck is not changed qualitatively by the breakdown of 
the guiding center approximation. The nature of the bottle- 
neck and of the flux is determined by a competition between 
the Boltzmann factor and a phase space factor, and this com- 
petition is modified only slightly (by one power of E in the 
phase space factor) when all degrees of freedom are in- 
volved. 

At sufficiently deep binding, classical mechanics no 
longer provides an adequate description of the dynamics, 
and one might worry that quantum effects (e.g., metastable 
states) would modify the evolution rate. In this paper, quan- 
tum effects have not been considered at all; we assume that 
the classical description is valid down to binding energies 
such that the bound pair can survive the electrostatic con- 
finement field at the end of the trap. 

Finally, the analysis treats the ions as stationary. The 
ion motion parallel to the magnetic field is negligible com- 
pared to the electron motion provided that uitt <u,. The con- 
dition that the perpendicular motion be negligible is more 
restrictive. For an electron-ion pair that is separated by the 
distance r = /r, - ri 1, the frequency of the ExB drift mo- 
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tion of the electron around the ion is aEXB = cc/B?. The 
transverse ion motion is characterized by two frequencies 
& and vii/r, so the condition that the ion motion be slow 
compared to the electron motion is v,/r,& <cc/B?. In 
these inequalities, the electron-ion separation may be re- 
placed by b, since we follow the dynamics only for binding 
energies E>E~,, = 1. The rest of phase space (i.e., E <.Q,, 
which corresponds to r> b) is characterized by a thermal 
equilibrium electron distribution and we do not care if the 
ion motion is negligible or not. By using r=: b = e’/mvz the 
inequalities can be rewritten as vi1 4 (r,,/b)v, and 
14 (mi/mc) (rc,/b)2. 

When the latter of these two inequalities is reversed, the 
ion cyclotron frequency is larger than the E XB drift fre- 
quency. In this case, the electron and ion E XB drift togeth- 
er across the magnetic field with the velocity vEXB =ce/Bb ’ 
= v, (r,,/b) . The results of our calculation should still ap- 

ply since the drifting pair maintain a constant separation. It 
does not matter to the cascade process whether the electron 
is E XB drifting around a fixed ion at constant separation or 
the electron and ion are drifting together at constant separa- 
tion. 

When the first of the two inequalities is reversed, the ion 
can run away from the electron before the electron com- 
pletes an E XB drift circuit around the ion. In this case, one 
expects a substantial reduction in the recombination rate. A 
simple dimensional argument suggests a rate of order R, 
- n:v,<, which is a reduction by the factor (t-,/b) *, where r, 
is the electron-ion separation for which the E XB drift ve- 
locity equals the perpendicular ion velocity (i.e., v, = ce/ 
Br z ). A detailed analysis of the recombination rate for the 
case where ion motion is included will be presented in a fu- 
ture paper. 
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