Numerical study of a many-particle adiabatic invariant
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For a pure electron plasma in a sufficiently strong magnetic field, an unusual many-electron
adiabatic invariant is predicted to constrain the collisional dynamics. To the extent that this
invariant is preserved, no exchange of energy is possible between the parallel and perpendicular
degrees of freedom; the system can acquire and maintain two different temperatures, 7' and
T, . However, since an adiabatic invariant is not an exact constant of the motion, equilibration
eventually takes place, but on an exponentially long time scale. This Letter presents the results
of a molecular dynamics simulation, which verifies the existence of this unusual invariant and

verifies the theoretically predicted equilibration rate.

This Letter presents the results of a molecular dynamics
simulation of a strongly magnetized pure electron plasma.
The simulation supports the recent theoretical prediction
that the collisional dynamics of such a plasma is constrained
by a many-electron adiabatic invariant.! Before describing
the simulation, we review the basic elements of the theory.

We say that a pure electron plasma is strongly magne-
tized when the characteristic cyclotron radius 7, = /(1 is
small compared to the minimum separation between elec-
trons. The theory has been developed for the case of a weakly
correlated plasma, where the minimum separation is the
classical distance of closest approach, b = 2¢*/T. In this
case, the condition that the plasma be strongly magnetized is
the inequality 7, <5, which can be rewritten as 73/2 (eV)
€10~7 B (G); so one can sec that strong magnetization
requires low temperatures as well as large magnetic field.
This unusual parameter regime is realized in a current series
of experiments, where a magnetically confined pure electron
plasma cools to the cryogenic temperature range as the elec-
trons lose kinetic energy through cyclotron radiation.?

The existence of the adiabatic invariant is justified by an
argument based on time scale considerations.’ We start by
considering the Hamiltonian for V electrons that move in a
uniform external magnetic field and interact electrostatical-
ly. As canonical variables, it is convenient to decribe each
electron in terms of its guiding-center variables plus its gyro-
angle ¥ and conjugate momentum P,. The gyroangle de-
scribes the cyclotron motion, and the conjugate momentum
is the cyclotron action, P, = mv}/2Q),, where v, is the com-
ponent of the electron velocity perpendicular to the magnet-
ic field.

The gyroangles vary at the cyclotron frequency (). and,
as an estimate of the highest frequency associated with the
guiding-center variables, we take the frequency characteris-
tic of a close collision, 7/b. The criterion for strong magneti-
zation thus implies that the gyroangles are all rapidly vary-
ing compared to the guiding-center variables (i.e., Q, >0/
b). Because there are N fast variables, ¢, (i = 1,...,N), the
existence of an adiabatic invariant is not yet apparent. To
uncover the invariant, we make a canonical transformation
that takes the variables ¥, (i=1,...,N) to the variables
Y: i=1,.,N), where y, =, and y, =19, —¢, for
i =2,...,N. In other words, all of the y; except y, are relative
variables and, thus, are slow variables. Since y, is the only
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rapid variable, its conjugate momentum P, is an adiabatic
invariant. This momentum turns out to be the total action
associated with the cyclotron motion, P,, = Emuv};/2Q,.

This result has a simple physical interpretation. One
may think of the original cyclotron variables as a collection
of high-frequency oscillators and of the guiding-center vari-
ables as a collection of low-frequency oscillators. The high-
frequency oscillators can exchange quanta with each other,
but not with the low-frequency oscillators; so the total action
associated with the high-frequency oscillators is very nearly
conserved.

For the case of a uniform magnetic field, one may equiv-
alently say that the total perpendicular kinetic energy,
Emv? ;/2, is an adiabatic invariant, and this invariant con-
strains the collisional relaxation of an anisotropic velocity
distribution. The usual time scale for such a relaxation is the
time scale for a few collisions. On this time scale, the adiaba-
tic invariant is well conserved, and there is negligible ex-
change of energy between the parallel and the perpendicular
degrees of freedom. Thus, the distribution of parallel and the
distribution of perpendicular velocities become Maxwellian
separately, with the parallel temperature (T’ ) not necessar-
ily equal to the perpendicular temperature (7', ).

The evolution does not stop at this stage, since an adia-
batic invariant is not strictly conserved; it suffers exponen-
tially small changes. In the present case, each collision pro-
duces an exponentially small exchange of energy between
the parallel and the perpendicular degrees of freedom, and
these act cumulatively in such a way that the two distribu-
tions acquire a common temperature. However, the rate of
relaxation is exponentially small.

The simple case of an isolated binary collision can be
treated analytically, and we find that the small exchange of
parallel and perpendicular energy is of the form

AE, = (16) " 'm’v, v} (p/€”)

Xcos(8)h(ep/b)exp] —g(p/b) /€], (nH

where the velocities are relative velocities (i.e., v = v, — v,),
p is the distance between the field lines on which the elec-
trons move, and & is an initial gyroangle. The quantity € is
the small parameter € = v, /)b, where b = €°/ (v} /2) and
= m/2 is the reduced mass. The function 4 (€,0/b) is non-
exponential, and g(p/b) is a monotonically increasing func-
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tionwithg(0) = m/2andg(p/b) =~p/b forp/b large. Asone
would expect, the argument of the exponential is of the form
Q. 7, where 7 is the duration of the binary collision. For a
head-on collision (i.e., p =0), r=7b /2v|| and for a large
impact parameter collision (p/b> 1), 7=p/v|.

Clearly, the collisions that are most effective in produc-
ing an exchange of parallel and perpendicular energy are
those characterized by small impact parameters (i.e.,p $b).
For a weakly correlated plasma, such collisions are well sep-
arated binary collisions (i.e., p Sb<n~?); so their effect
on the velocity distribution can be treated with a Boltzmann-
like collision operator.’* From such a treatment, we find the
rate equation’

dTl_(T”_Tl)l il
dt T, T, 4J

2mp dp

XJdV U"_f,(U“,U_L)(AEJ_)zy (2)

where

Z ‘/2( p ) ( ] #vi)
v, ) = expl ——————} (3
T o) (2777‘") )N\ "2, ") ©

is the distribution of relative velocities. It is the square of
(AE)) that is averaged over impact parameter and relative
velocity, because the factor cos (&) in Eq. (1) varies random-
ly from collision to collision.

Equation (2) can be rewritten as

aT,
dt
where b and € are simply b and € with v, replaced by

Uy =T /u. The factor nb 25” is very nearly the collision
frequency, or equilibration rate, for an unmagnetized plas-
ma (i.e., v,, =27 In(A)nb * ), and the factor I () is the
reduction in this rate for the case of strong magnetization.
For small €, this reduction is given by

I(8) = (0.47) (8)"/5 exp[ — (2.05)/(8)*°]. (5)

Notice that the function /(€) varies exponentially as
(€) ™% rather than as (&)~ '. This dependence arises
through a competition between two effects. Since € varies as
vﬁ , the quantity (AE, )*> ~exp( — #/€) is a rapidly increas-
ing function of v . On the other hand, £, (v,v, ) is a rapidly
decreasing function of v ; so the integral in Eq. (2) contains
the product of two functions that compete at large v . Physi-
cally this is easy to understand: very few collisions involve
large relative velocities, but the collisions that do involve
large relative velocities are very effective in producing an
exchange of parallel and perpendicular energy. A saddle-
point evaluation of the integral yields the small € asymptotic
expression I(€) given in Eq. (5).

We now describe the numerical simulation. For compu-
tational ease, we scale velocities by v = N T, /u, distances by
b = 2¢*/u; , and times by b /7. With these units, the equa-
tions of motion take the form

. . 1 .1 & X —x
Xi’=v1{! V;=TV,{XZ+—2 13 » =19'~,N,
€ 4 7 Ixi —xj|
(6)
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where primes signify scaled variables. Because we need to
evaluate the full Coulomb force term, the number of floating
point operations associated with each reference to this set of
equations scales roughly quadratically with the number  of
particles in the system; this is the main obstacle to a simula-
tion involving a realistically large number of particles. Nev-
ertheless, a glimpse of the phenomena has been obtained
with a simulation involving 50 interacting particles, per-
formed on the SDSC CRAY X-MP.

As initial conditions, we take the 50 particles to be uni-
formly distributed spatially inside a box —L/2

< (x,2) < + L /2, of volume L 3, and with initial velocities
picked from a bi-Maxwellian velocity distribution with
(T, /T,) = 0.2. As the system evolves, the particles are con-
fined in the z direction by specular reflections at the walls at
z= 4+ L /2. Confinement in the radial direction is ensured,
since the total canonical angular momentum P, is a constant
of the motion and provides a constraint on the allowed radial
positions of the electrons.* Another constant of the motion is
the total energy; we employ a high precision Bulirsch-Stoer
ODE solver’ and find during a typical run that the total
energy is conserved to order AE /E ~ 10~ and that the total
canonical angular momentum is conserved to order AP, /P,
~10772,

From a statistical (or macroscopic) perspective, the
scaled system is characterized by two parameters: €and L '.
Here, we have in mind fixed N =50, fixed initial
T,/T; =02, and fixed initial {(vj*) = (T,/m)
/(T /u) = }. The parameter € is a measure of the magnetic
field strength, and the parameter L ' is a measure of density
n' = N /L . By decreasing L ', we increase the collision fre-
quency (v,,), or equivalently, we increase the correlation
strength (I = €’/aT |, where 47na*/3 = 1). Not all of the
(€,I') parameter plane is physically accessible. For a non-
neutral electron plasma, the Brillouin limit® (i.e.,

w, <,/ V2) specifies the maximum density that can be con-
fined for a given magnetic field strength, and in terms of €

and T this limit takes the form /2 < 1/,/12.
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FIG. 1. Evolution of W, /W and W, /W (a) for weak magnetic field (i.e.,
€ = 14) and (b) for strong magnetic field (i.e., € = 0.14).
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FIG. 2. Comparison of the function I(€) (solid curve) to values of
(AT, /A0 [(T, — T,)nb?3, ]~ obtained from the simulations.

Some sample results are shown in Figs. 1(a) and 1(b),
where W, /W and W, /W are plotted as functions of time.
Here, W, and W refer to the total perpendicular and paral-
lel kinetic energies, respectively, and W= W, + W,. The
dashed lines mark the values predicted by the equipartition
theorem: W, /W = %and W, /W = |. Figure 1(a) shows the
results of a run with low magnetic field strength (€ = 14)
and Fig. 1(b) shows the results of a run with increased field
strength (€ = 0.14) but the same correlation strength (i.e.,
I' = 0.03). One can see that the increased field suppresses
the relaxation. Also, one can check that the relaxation rate in
Fig. 1(a) has the expected value, that is, v,, ~8 In(€)T>,
where we have set A ~€ since 7, €A1y,
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To investigate the rate equation numerically [i.e., Eq.
(4)], we examined the initial rate of temperature equilibri-
um for a bi-Maxwellian velocity distribution with
T, =0.2T. In order to suppress statistical fluctuations
without going to a large number of particles, we averaged the
change in perpendicular and parallel kinetic energy over 20
different sets of initial conditions. These were advanced for-
ward a time Az short compared with the equipartition time,
but long enough for a least-squares fit to the slope of the
evolving W, (t) = NT, (¢). InFig. 2, the analytic prediction
(dT,/dt) [(T) — T, ynb 25" 17 '=1(& is compared to nu-
merical values of (AT, /At) [ (T, — T,)nb?, | ~" for var-
ious values of € and I'. One can see that the numerical values
are insensitive to the value of I' and follow the I(€) curve
quite well, although the agreement is best in the small € limit.
This is to be expected, since I(€) was obtained in the small €
asymptotic limit.
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