Collisional dynamics of a strongly magnetized pure electron plasma
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For a pure electron plasma in a sufficiently strong magnetic field, there is a many-electron
adiabatic invariant which constrains the collisional dynamics. For the case of a uniform magnetic
field, the adiabatic invariant is the total kinetic energy associated with the electron velocity
components that are perpendicular to the magnetic field (i.e., £; mv}, /2). Were the adiabatic
invariant an exact constant of the motion, no exchange of energy would be possible between the
parallel and the perpendicular degrees of freedom, and the plasma could acquire and maintain
two different temperatures, 7' and T, . However, an adiabatic invariant is not strictly conserved.
In the present case, each collision produces an exponentially small exchange of energy between
the parallel and the perpendicular degrees of freedom, and these act cumulatively in such a way
that T, and T relax to a common value. This paper provides a calculation of the equipartition

rate.

I. INTRODUCTION

A recent paper’ established the existence of a many-
electron adiabatic invariant that constrains the collisional
dynamics of a strongly magnetized pure electron plasma.
For the case of a uniform magnetic field, the invariant is
simply the total kinetic energy associated with the electron
velocity components perpendicular to the magnetic field
(i.e., 2, mv} /2). This paper discusses the influence of the
invariant on the long-time collisional evolution of the elec-
tron velocity distribution.

Because of the invariant, the evolution proceeds on two
very different time scales. The usual time scale for such evo-
lution is the time for a few collisions. On this time scale, the
adiabatic invariant is well conserved, and there is negligible
exchange of energy between the parallel and the perpendicu-
lar degrees of freedom. Thus the distribution of parallel ve-
locities and the distribution of perpendicular velocities be-
come Maxwellian separately, with the parallel temperature
(T ) not necessarily equal to the perpendicular temperature
(7).

The evolution does not stop at this stage, since an adia-
batic invariant is not strictly conserved; it suffers exponen-
tially small changes. In the present case, each collision pro-
duces an exponentially small exchange of energy between
the parallel and the perpendicular degrees of freedom, and
these act cumulatively in such a way that ' and 7 relax to
a common value. This paper provides a calculation of the
rate at which this exponentially slow equipartition proceeds.

In Sec. 11, the rate is calculated for the case where the
electron dynamics may be described by classical mechanics.
The analysis begins with the consideration of an isolated col-
lision between two electrons that interact electrostatically in
the presence of a strong and uniform magnetic field B. The
magnetic field is strong in the sense that Q> |v,|/b, where
Q = eB /mcis the cyclotron frequency, v; is the initial veloc-
ity of electronj(j = 1,2), and b = €*/( uv} /2)is the distance
of closest approach between the two electrons. Here, u = m/
2 is the reduced mass, and v is the initial parallel relative
velocity. The orbits for such a collision are quite different
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from those for Rutherford scattering. The Larmor radii for
the two electrons are small compared to the distance
between the electrons, and the electrons spiral toward and
away from one another along tight helical orbits that follow
field lines.

We find that the exchange of parallel and perpendicular
energy that occurs during such a collision is of the order
exp{ — (17), where 7 is a time that characterizes the duration
of the collision. This time is a function of the initial parallel
relative velocity v; and of the distance p between the field
lines on which the electrons move; one can think of this dis-
tance as a kind of impact parameter. The time 7 is shortest,
and the energy exchange is largest, for collisions character-
ized by small impact parameter (i.e., p<b). For such colli-
sions, the time is given by 7 = (7/2)(b /v| ), and the energy
exchangeis of the order exp [ — (7/2)(Qb /v;)]. This quantity
is exponentially small, since the condition for strong magne-
tization ensures that the parameter x = b /v, is large com-
pared to unity.

For simplicity, we consider the case of a weakly corre-
lated plasma, and we say that such a plasma is strongly mag-
netized when Q> (T,,,./m)'/?/b, where T.,,, is the larger of
T, and T, and b is the quantity b with v, replaced by
v, =T /u(i.e., b= 2¢*/T). Thecriterion for weak corre-
lation (in the strongly magnetized case) can be written as
b<n— '3, where n is the electron density. The collisions that
are most effective in producing an exchange of parallel and
perpendicular energy are characterized by impact param-
eters that are small compared to the interparticle spacing
(i.e., p<b<n™"'3). These collisions tend to be well separated
binary interactions, and their effect on the electron velocity
distribution can be treated with a Boltzmann-like collision
operator.

An analysis based on this collision operator leads to the
equilibration  equation  dT,/dt = (T, —~ T,)nb 51 %),
where nb %0, is very nearly the usual Coulomb collision fre-
quency, k is the parameter k = (b /v, withv, replaced by v,

and b replaced by b (i.e., & = y2me*(}/T'}"%), and the func-
tion I(x) is essentially the average of [exp(— Q)]
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= exp( — m«) over the distribution of relative parallel veloc-

ities. It is the square of exp ( — {17) that enters the average,
since the sign of the energy exchange varies randomly from
collision to collision.

Since « varies inversely as the cube of y; (ie,
Kk = 4¢*Q/mv}), the quantity exp ( — 7«) is a rapidly increas-
ing function of v;. On the other hand, the distribution of
relative parallel velocities, a Maxwellian, is a rapidly de-
creasing function of v;. Consequently, the integral expres-
sion for I (), which is an average of exp ( — 7«) over the
distribution, contains the product of two functions that com-
pete at large v, . Physically, this is easy to understand: very
few collisions involve large relative velocities, but the colli-
sions that do involve large relative velocities are very effec-
tive in producing an exchange of parallel and perpendicular
energy. A saddle point evaluation of the integral yields the
large K  asymptotic result I(x)=[(0.47)k /"]
X exp[ — (2.04)c%/%).

The main point to note here is that the equilibration rate
is exponentially small in #*/° rather than in k. This distinc-
tion is important, since ¥*/> <& for ¥» 1. In other words, the
collisions that involve large relative velocities produce an
equilibration rate which is faster than one might have
guessed.

For a sufficiently strong magnetic field and a sufficiently
low electron temperature, the electron cyclotron motion
must be treated quantum mechanically. Such a treatment is
necessary when the de Broglie wavelength is comparable to
the Larmor radius (i.e., #i/mv, ~5/8 or #Q ~mi?). In Sec.
III, a quantum mechanical analysis is carried out for the case
where T, ~#) but T’ »#£}. This ordering of T') relative to
T, is motivated by a current series of experiments.” The
quantum analysis follows the same outline as the classical
analysis and begins with the consideration of an isolated col-
lision between two electrons in a strong magnetic field. As
one would expect, the probability of transitions that involve
an exchange of parallel and perpendicular energy is expon-
entially small. When the transition probability is used in
conjunction with a quantum version of the Boltzmann-like
operator, an equilibration rate is obtained that has essential-
ly the same value as the classical rate.

Although the parameter regime of strong magnetization
is quite unusual, it is realized in a current series of experi-
ments.?> For T = T, = T, the inequality defining strong
magnetization can be written as 73/?€10~7 B, where T'is in
electron volts and B is in Gauss. Even for B as large as 100
kG, the inequality is satisfied only for electron thermal ener-
gies that would lead to the recombination of a neutral plasma
(i.e., T<0.1 eV). However, the experiments alluded to in-
volve the magnetic confinement of a pure electron plasma,
and recombination cannot occur for such a plasma. More-
over, there is an effort to cool such a plasma to the liquid and
crystal states,”* and the low temperatures required (cryo-
genic range) are such that the plasma enters the parameter
regime of strong magnetization.

Also, the results of this paper may have implications for
the cooling effort. A cooling mechanism such as cyclotron
radiation (the current choice) reduces T, butnot T', and the
question of whether or not collisions can maintain equiparti-
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tion of energy depends on a comparison of the radiation rate
and the equilibration rate calculated here.

A caveat must be appended to the entire previous dis-
cussion. A complete dynamical solution of the N-electron
problem is out of the question. We have simply focused at-
tention on those pieces of the dynamics that we believe are
most effective in producing an exchange of parallel and per-
pendicular energy, that is, on the close two-particle colli-
sions. However, we have not calculated the remaining dy-
namics and shown that it produces negligible exchange of
parallel and perpendicular energy. For example, one might
worry that a high-frequency instability (o> 2} would break
the adiabatic invariant and allow 7' and 7} to equilibrate on
a collective time scale. The equilibration rate resulting from
close two-particle collisions should be interpreted as a lower
bound on the equilibration rate.

Il. CLASSICAL ANALYSIS

This section presents a calculation of the equilibration
rate for the case where the electron dynamics may be treated
by classical mechanics (i.e., T, T, »7i€2). The first step in the
calculation is to analyze an isolated collision between two
electrons that interact electrostatically in the presence of a
strong and uniform magnetic field, B = 2B. The equations of
motion for the electrons are

dv, A € (rp—ry)
-1 Ov z=___.1__..__2_, 1
dt TinX m |r, — )
dv, A € (r,—r1)
24 Qv xs=—-—2_U 2
dt + X m |r, —r,)? @

wherer; and v; are the position and velocity of electron j. By
adding and subtracting these equations, we obtain the two
equations

4V L avxz=0, 3)
dt ,

av e r

P ayxz=L T 4
o T X P (4)

where V =d /dt (r, + r,)/2 is the velocity of the center of
mass, r =r, — r, is the position of electron 2 relative to that
of electron 1,v = d /dt (r)is therelative velocity,andu = m/
2 is the reduced mass. The center of mass motion is equiva-
lent to that of an electron in a uniform magnetic field, and
the relative motion is equivalent to that of an electron in a
uniform magnetic field and the field of a fixed charge. The
solution for the center of mass motion is trivial, and, as we
will now see, the solution for the relative motion is simplified
by the existence of an adiabatic invariant.

Let (v),v,) be the parallel and perpendicular compo-
nents of the relative velocity before the interaction, and let &
be the distance of closest approach (i.e., [r| >4 ). The condi-
tions for strong magnetization imply that the gradient scale
for the interaction is weak in the accessible region (i.e.,
[r|>&>v, /Q,v, /Q); thus v} (¢)/B is an adiabatic invariant.
Since B is a constant, one can say equivalently that v? (r)isan
adiabatic invariant. Finally, we use the fact that the perpen-
dicular energy is an adiabatic invariant to write the distance
of closest approach as b = e*/( uv} /2).

Note that v? (¢)/B is a new adiabatic invariant associat-
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ed jointly with the two electrons; neither v, (t)/B nor
v, (¢)/B are valid adiabatic invariants. For example, in Eq.
(1), r,{¢ } is a time-dependent function that varies at the cyclo-
tron frequency, and this breaks the adiabatic invariant of
electron 1 [i.e., v, (t)/B #const]. Likewise, the temporal
variation of r,(¢ ) breaks the adiabatic invariant of electron 2.
By introducing the relative position and velocity (i.e., r and
v), we have removed the explicit time dependence from the
interaction and uncovered a new adiabatic invariant,
v (t)/B.

From Eq. (3), one can see that ¥'2 (¢ )is an exact constant

of the motion; the relation mv?, (t)/2 4+ mvl, (£)/2

=uv? (t)/2 + (2m) V2 (¢)/2 implies that the sum of the
perpendicular kinetic energies for the two electrons is an
alternative expression for the adiabatic invariant. In Appen-
dix A, this expression is generalized to the case where many
electrons interact simultaneously, that is, the quantity
2, mv? (t)/2 is shown to be an adiabatic invariant.

An adiabatic invariant is not strictly conserved but
suffers exponentially small changes. For the case of a weakly
correlated plasma, we will argue that the overall invariant
lie., Z; mv}, (t)/2] suffers changes primarily through close
two-particle collisions; therefore we calculate the change
that occurs in uv? (¢)/2 during a collision. From Eq. (4), it
follows that

i/*wi (t) =e2vl(t)-rl(t)_ (5)
dt 2 re)®
thus, the quantity A(puv? /2) = pv? (w0)/2 — pv? (— »)/2
is given by the time integral
2 + 2. .
A(/w). ) __:f dte v, (t) rz(t)’ (6)
2 —w Ir(e))?

Following the usual practice in the theory of adiabatic invar-
iants, we use the lowest-order orbits in evaluating the time
integral, that is, we rewrite Eq. (6) as

o(E)ins [ TS

where {p,z} is the guiding center approximation for (r, 2}, § is
a constant, and 2{(¢ ) is determined by
+ 26%/u
o + 201"

The origin of time may be shifted simply by changing
the value of the constant §; so, without loss of generality, we
choose the origin of time so that Z*(¢ ) is an even function of 7,
that is, so that the electron either passes z = 0 or reflects at
the time ¢ = 0. Equation (8) then reduces to the form

+ o
A1) = o [ et
In terms of the scaled variables
$=2z/b, E=vit/b, n=p/b, k=0b/v,, (10)
the time integral in Eq. (9) can be written as

=22(t=—voo)==l)ﬁ. (8)

—
e

e dtcosit)
w [p2 +22 }3!2

_ J’ **  dE cosikt)
v b? [772+§2(§)]3;:;
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and Eq. (7) can be rewritten as

dEV_, 1
(dg) P+ e i

Since x> 1, the £ integral in Eq. (11) involves the product
of a rapidly oscillating function and a slowly varying func-
tion and turns out to be exponentially smali. In Appendix B,
theintegral is evaluated by deforming the contour of integra-
tion into the complex & plane and is shown to be of the form

J‘ *e dE cosik€)

—w [P+
where / (x,7) is neither exponentially small nor exponentially
large in the range of x and 7 of interest, and g(7) is given by

3/2
gln) = x>'% dx '
Vo = 17 — 5%
From the plot of g(n) in Fig. 1, one can see that g(7)~#/2 for
7 = p/b<1 and that g(n)=~7 for n = p/b> 1. Thus, the £ in-
tegral is of order exp[ — 7b /2v] for p<b and of order
exp[ — @ p/v] for p>b. These exponentials are each of the
form exp{ — (¥}, where 7 characterizes the duration of the
collision. Also, we note that the § integral is largest for colli-
sions characterized by small impact parameter and large rel-
ative velocity.

Next we turn to the question of how such collisions act
cumulatively to produce the relaxation of T’y and 7 in a
strongly magnetized plasma. For simplicity, we consider the
case of a weakly correlated plasma, that is, a plasma in which
¢’n'*&T, where n is the electron density. This inequality
can be rewritten as the condition that 5 is small compared to
the mean interparticle spacing (i.e., <z~ !/3). One can easily
verify that correlations are determined by T in the strongly
magnetized parameter regime.

We have just seen that for the class of two-particle colli-
sions it is the close collisions (i.e., |r; — r,| %) that are most
effective in producing an exchange of parallel and perpendic-
ular energy. If we add a third particle into the dynamics, we
obtain a small perturbation on the close two-particle coili-

= h (x,77)e &, (13)

(14)

BllslililT‘lllf}Tl‘r

gln)
>

|Illl[lll1|lll]

2

IIllJlLllllllLll;l‘Ll

0 2 4 6
n

Q

w P S U S 1

FIG. 1. A plot of the function g{7), defined in Eq. (14).
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sion unless all three particles are close simultaneously. We
assume that the energy exchange caused by a close three-
particle collision is of the same order as that for a close two—
particle collision; this is reasonable considering time scale
arguments concerning the durations of the collisions. Of
course, we know from Appendix A that the overall adiabatic
invariant, 2, mv}, ()/2, exists for many-electron collisions.
Since the inequality <7 ~'/? implies that close two-particle
collisions are more frequent than close three-particle colli-
sions, we neglect the close three-particle collisions and, simi-
larly, all higher-order collisions. Also, we note that the close
two—particle collisions are well-separated events f{i.e.,
r, —r,| Shgn—173).

Such well-separated binary collisions can be treated
with a Boltzmann-like collision operator.'-> In particular, we
evaluate the integral

dT, J‘ mv?,
= dvl

dt 2
by replacing the time derivative of the distribution function
with the Boltzmann-like operator

7]
—a—{(v,,t) =n f27rp dp J-dv2

X [fvi2)f(v5:2) —f (vt ) flv2)]. (16)
This operator can be derived from the BBGKY hierarchy
under the assumption that the plasma is strongly magnetized
and that the most important collisions are well-separated
binary interactions.’ In relation to the usual form of the
Boltzmann collision operator, the integral over 2mp dp is
equivalent to the integral over the impact parameter (or,
scattering cross section), and the quantity |2« (v, — v,)| re-
places |v, — v,], since the two electrons stream toward one
another along field lines. In the usual manner (v;,vj) are
velocities that evolve into (v,,v,) during a scattering.
By substituting the collision operator into Eq. (15) and
by using detailed balance, we obtain

dT
dtl =—Z~f2ﬁpdpfdv1fdv2

X [fvist) flv,t) = f(vit) f(vast)]
2 2 2 m 2
X(mvu muvy; _ mvy; _ U3y ) (17)
2 2 2 2
The distribution functions are assumed to be of the form

f(v. t) = (—rn_—-)l/z( m )exp( — ﬂ —_ ﬂ)
g 27T,/ \27T, - 2T, 2T,

(18)
To evaluate the multiple integral, it is convenient to intro-
duce the center of mass velocity and the relative velocity (i.e.,
V, and v). With the aid of the relations

mvl, m3, _ vt 2mvi
2 2 2 2

mv},  muy _ woi  2mV;
2 2 2 2

VZi=V?i dv,dv,=dvdV,

Ei
3 ") (15)

2+ (va— vy

2« (vp-vy)|

, (19)
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Eq. (17) can be rewritten as
daT, n P
G _2 [ 2mp dp [ avioy | Ufboj0) — floy )]

X A(pvi/2), (20)
where the integral over d V has been evaluated and

172 ,UUZ u2
Flogy) = (_#_) _ (_ﬂ_)exp( B e
2T, ) \2nT, 2T, 2T,
21

is the distribution of relative velocities.
By using  A(uv}/2)=pv}/2 — u)/2 = pvjl/2
— uv} /2, Eq. (20) can be rewritten as

dT, n o,
d: =—4—f27fp dedVl”|||ﬁ(U||’”l)A( 21 )

ol e

Taylor-expanding the exponential, substituting for A(uv?/2)
from Eq. (9), and integrating over dv, yields the expression

dT, 1 1 n
d; — [Tl(-?l——_ﬁ)] —4—f277'p dpfdvu ‘U" l ’
exp( — uv} /2T)) o%p? U*” dt cos(z) )2
(277'"/)“)1/2 U w [p2 +22(t)]3/2 :
(23)

By using Egs. (11) and (13) to reexpress the time integral, Eq.
(23) reduces to the form

dT,
dt

0= [ {5

[ (oo 28)

where we have introduced the scaled variables
(25)
Since & is assumed to be large and g(7) is an increasing
function of 7, the main contribution to the 7 integral comes

from small 7. By making the approximations (see Appendix
B)

=(T) - Ti)”z ZEHI(E)’

g(n)= g(0) + g"(0)7*/2 = 1.57 + (0.675)7%, (26)
h(%/0%q) =~ h (k/0°0) = (2.79)(k/°),
we obtain
o —?/2
I(®) ~ (0.67)f do < o~ B4R/, 27)
0 ag

For large x, the o integral may be carried out by the saddle
point method, and the result is

T{®) = (0.47)c /3¢ — @0W™", (28)

In Fig. 2, this large ¥ asymptotic expression for 7 (k) is com-
pared to the results of a numerical evaluation of 7 (). The
curve is a plot of the asymptotic expression, and the points
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FIG. 2. The saddle point evaluation [Eq. (28)] of I (¥) compared to the result
of a numerical evaluation of I (%) for various values of &.

are the result of numerical integration for various values of x.
One can see that the agreement is good for large enough
values of k.

The main point to note here is that the equilibration rate
is larger than one might have guessed. Since the exchange of
parallel and perpendicular energy for an isolated collision
between two electrons is exponentially small in «, one might
have guessed that the equilibration rate would be exponen-
tially small in ¥. However, the equilibration rate turns out to
be exponentially small in 2/, and this distinction is impor-
tant since ¥*/5 ¢« for k> 1.

The x*/° dependence is determined by a competition
between the velocity dependence of exp(— m«)

= exp( — 4me’l/muj}) and the velocity dependence of the
distribution of relative velocities, exp( — uvj/2T}). Colli-
sions characterized by large relative velocity are particularly
effective at producing an exchange of parallel and perpendic-
ular energy, but there are relatively few such collisions.

HI QUANTUM ANALYSIS

In this section, a quantum mechanical calculation of the
equilibration rate is provided for the case where T, ~#i(} but
T, >#Q. This relative ordering of T and 7, is motivated by
the experiments mentioned in the introduction.? Since elec-
tron energies of the order #{) are deemed relevant in this
calculation, one should take into consideration the energy
associated with orientation of the spins. Since the spin flip
frequency is {2, the total spin action plus the total orbital
cyclotron action form an adiabatic invariant. However, for
the case of a uniform magnetic field, the spin dynamics and
the orbital dynamics decouple, and the spins effectively drop
out of the problem. Here, spin-spin interactions are neglect-
ed because the electron density is assumed to be very low.?

Following the same outline as the classical calculation,
we begin by considering the scattering problem for two elec-
trons that interact electrostatically in the presence of a
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strong magnetic field. The Hamiltonian operator for these
two electrons is given by

1 = [0y —(e/2)r, XB1* [, — (e/2¢)r, X B]?
2m 2m
+e/(|r,— 1)), 29)

where p, = (#/i)d /Jr, and p, = (/)3 /dr, are the momen-
tum operators for electrons 1 and 2. In terms of the center of
mass position, R = (r, + r,}/2, and the relative position,
I =r, — Iy, the Hamiltonian operator reduces to the form
H= H_ + H_, where

H.. = [P— (e/cRXB]*/4m,
. (30)
= [p — (e/4c)rXB1*/2u + €*/|r|.
Here, = (fi/i)d /d Ris the center of mass momentum opera-
tor and p = (/)3 /Jr is the relative momentum operator.

Thus, the wavefunction can be expressed as the product
¥Y=v_ (R, t)\Ilrel (r,t), where the evolution of Ve is
determined by H_,, and the evolution of ¥, by Hrel Since
¥_.(R,t) is not aﬁ‘ected by the interaction, we need only
consider the evolution of ¥, that i, the solution of the
Schrédinger equation /0¥, /9t = H ¥, ;.

In terms of cylindrical coordinates, the operator fl,,,
takes the form

o # (3> 1 4 a 1 92

H, = —_——t = —

wm -t 2 "t )
i) 9 |, uQd r’ é?
—_—— . 31
wos s Txar

Since p, = (/i)3 /30 commutes with <1, the angular mo-
mentum is a good quantum number, and we can look for
wavefunctions of the form WY, (z,r, ,0,t)=¥,(zr ,t)
exp(il@ ). Replacing @ /d0by ilin H,, yields the reduced oper-
ator

~ (3> 14 ;uQ’
H LA . ( 22
rek! 2u (822 to r c?rl 8rl) + 872 =i
+ &/t + )7, (32)
where p, is defined through the relation #il=p, =
— pQp3/2.

We will find that the main contribution to the integral

expression for the equilibration rate comes from wavefunc-
tions representing electrons with perpendicular kinetic ener-
gy of order #iQ2 and with p, of order 4. These wavefunctions
have large and negative values of the angular momentum
quantum number: — I =uQp?/2%i~(p,/r.)*>1, where r,
= (2%/u8))"/? is the effective Larmor radius. The classical
picture that corresponds to these wavefunctions is that of a
reduced mass electron incident on the force center with an
impact parameter r, = p, and with a Larmor radius that is
small compared to p,. For the quantum case, the 8 location
of the incident electron is completely uncertain, since the
probability density is distributed uniformly in 6.

Since the wavefunctions are peaked near r, = p,, we set
r, = p; + x and Taylor-expand terms in H,,, with respect
to x. To lowest nontrivial order, H,,, can be written as
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ﬁrel,l =HO+ H? + HY, where

0 — __ﬁi a* ¢
: W 62 (pi+A
2 2
0= ~£—%+"? 22, (33)

HY = —xp,e/(p} + 2%

In zero order, the x and z dynamics decouple; so the zero-
order eigenfunctions can be written as the product ¥, .(x,2)
= G, (x)F.(z), where ¥, ., G,, and F, are solutions of the
eigenvalue problems

H? +HW, (x,2) =E, ¢,.(x2),
HY G, (x)=#Qv + })G, (x), (34)
HY F,(2) = €F (z),

and E,, = #i{)(v + }) + €. The functions G, (x) are the well-
known eigenfunctions for a harmonic oscillator,® and the
functions F, (z) are eigenfunctions for one-dimensional mo-
tion of energy € in the potential 2/( p? + 23)'/2.

The perpendicular dynamics tends to be quantum me-
chanical in that small v values play an important role in the
theory; recall that 7, ~ #i€). On the other hand, the parallel
dynamics tends to be quasiclassical in that the WKB method
provides a useful approximation for F, (z). To see that this is
the case, first note that b = ¢*/¢ is the minimum scale length
on which the potential varies in the classically accessible re-
gion. The condition that the de Broglie wavelength
A = #i/\/me be small compared to b can be rewritten as the
inequality e€Eg, where Ex = ue*/# is the Rydberg energy
{i.e., 13.6 eV). This inequality is easily satisfied for the low
electron energies we have in mind (i.e., 7' <ER).

Since the x and z dynamics decouple in zero order, there
is no energy exchange in zero order. The energy exchange is
introduced by H"(x,z). According to Fermi’s “golden
rule,” the probability per unit time of a transition from the
state ¢,, . to the state ¥, . is given by

probability

time
where dn/de is the density of final states and it is assumed
that the transition conserves the total energy (ie.,
€ + il = e + i),

In the Boltzmann analysis that follows, we will need the
transition probability per collision, rather than the transi-
tion probability per unit time. Let J. be the incident flux
associated with the wavefunction ¥, .. Since J, is equiv-
alently the number of collisions per unit time, the transition
probability per collision is given by

collisions) ( probablhty)
time time

=2 Ay HW ), (35)

P(ppev —e€v)= (
(36)
I(% <HY, )%

To make (J,)~! and dn/de ﬁmte (and the amplitude of
¥, . nonzero), we impose periodic boundary conditions at
z= 4 L,whereLislarge(i.e., L»p;) but finite. Over most of
the z domain, F_(2) is simply a free-space wavefunction; so a

Plp;€v —ev)= -2-;—- ("e’)_—l dn
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discrete spectrum of energy values is introduced through the
relation 2kL = 2mn, where n is an integer and #°k 2/2u = €.
The density of states is given by dn/de = (L /m)dk /de = (1/
2mh)(2L /vy), wherev, = #ik /u. Likewise, theincident fluxis
given by J, = (v, /2L ). Thus, Eq. (36) reduces to the form

P(p;ev —€yv)

= (/#)2L /vy 2L /0})|(y  H M, ) (37)
The matrix element (,, . H" ¢, ) is given by
Wy HM,,)
= —&p(f/2u0) P8, +\v+16,,.,)
L FEF.(2)
Xf_ . dz -(m—sl—z, (38)

where the integral fdx G % (x)xG, (x) has been evaluated us-
ing well-known properties of the harmonic oscillator eigen-
functions.® One can see that the allowed transitions involve
an exchange of parallel and perpendicular energy of the
amount €' — € = 7i{}v — v') = 4 #i(). Substituting Eq. (38)
into Eq. (37) yields the result

Pp;€ev —env)

—(ep%/zuﬁn)(\/‘ﬁw_l+W8w+1)2
J~ F*2)F.(2)

m T

The z integral in this expression is most easily evaluated
for the case of large parallel energy (i.e., €,6' ~ T »#iQ2) and
large impact parameter (i.e., p,»b,b ' or €,6'>¢*/p,). For this
case, the probability of reflection from the potential
€*/( p? + 2%)"/? is negligible, and the WKB solution for F.(z)
is of the form

F.z)=4 A/Wz)exp(i fo k (z)dz), (40)

where %7k %(2)/2u + €*/(p,* +22)"? = ¢, and 4 is deter-
mined by the normalization 1=, dz|F (z)|*
~2L |A |*/k. The solution for F. (z) is obtained simply by
replacing unprimed by primed quantities.

In terms of these WK B solutions, the z integral takes the
form

(39)

fL 5, FHEFL)
\/v”—, _ (p2+22)3/2

= ——exp( f dzlk(z) — k (z)]) 41)
Y (z)v" (z)

where v) (2) = ik (z)/u. By using the equations for k *(z) and
k "*(z) and the relation € — € = + i}, the wavenumber dif-
ference can be expressed as k'(z) —k(z)= + 201/
[vj(2) + v, (2)]. The integral can then be evaluated to lowest
order in |k'—k|/k~#il/e€l simply by setting
v} (2) = vy (2). If we also introduce a time variable through the

relation 7 = (§ dz/v) (z), the integral takes the form

J- F*(2)F.(2) f"“ gr EXpL £ i)
(P +Z23/2 L) [p,2+22(t)]3/2,
T. M. O’Neil and P. G. Hjorth
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and if we take into account the facts that z%(¢) is an even
function of 7 and that L) p,, the integral reduces to the famil-
iar form

2L (¢ F3@EE (" . cosit)
dz ———— ~ dt e——o — |
Joror . TR - (7 +20]"

(43)
This time integral is the integral that enters the classical
expression for the change in the adiabatic invariant
[see Eq. (9)]; it is exponentially small.

We have been considering collisions that are character-
ized by large parallel energy (i.e., €,6' ~ T > #(}) and large
impact parameter (i.e., €,¢'>¢?/p,). Equation (43) is most
easily demonstrated for such collisions, but such collisions
do not ultimately make the dominant contribution in the
expression for the equilibration rate. As one would expect by
analogy with the classical analysis, the dominant contribu-
tion is made by collisions characterized by large parallel en-
ergy (i.e., €, ~ T > #1) and small impact parameter (i.e.,
€,€ <&*/p,). For this case, the solutions for F.(z) and F. (z)
encounter turning points near which the WKB approxima-
tion breaks down. However, in Appendix C, the z integral is
analytically continued into the complex z plane, that is, away
from the turning points on the real axis, and Eq. (43) is again
obtained. In what follows, we use Eq. (43) as a general result
and rewrite the transition probability as

P(p;,€,v,—€v)

e4 2
= (2#:}))(\/;5V.v—1 + Vv+ lav’,v+l )2

+
x(f dt

By analogy with Eq. (20), one can see that the rate of
change of the perpendicular temperature is given by the
expression

cos(f2z) )2 ' (44)

[0} +2)]

dt

=% [ 2mpidoy [ ot |5, Plpiev—en)
X[ flog.v) — floyv)]AQv —v'), (45)

where the distribution of relative velocities is given by

2sinh(A2/27,) (_ H A+ 5))
@nT | /)" ory T,/

f r(v" V=
(46)
By using the relations P(p,;€’,v',—€,v) = P(p;;e,v—€' V')
and € + iy = €' + AiQV, Eq. (45) can be rewritten as
daT,

, _n
dt

=7]21rp, dp, fdv|v|| | Y Ppe'v'—ev)
vev

wi-alE-3)

X AQUY — v)] }m(v' — ), (47)

which is manifestly positive for 7' > T,. Finally, substitut-
ing for P( p,;€’'v'—€,v) yields the result
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dT, — (l —expl(1/T) — l/Tl)ﬁQ])l
dt 1 —exp(—#Q/T,) /4

exp( —uv) /2T ) o}
sz,,p dp fd”ll loy | T

dt cos () )2 (48)

X(f—w [} + 2]

where use has been made of the sum

Z (v + 1)exp(i(¥"iﬂ)
v=0 1
= [2sinh(#2/2T,)] ~'[1 —exp( — AY/T,)] ~1. (49)
By comparison with Eq. (23) of the previous section, one
can see that Eq. (48) differs from the classical result only in
that the large parentheses in front have replaced the bracket
[T,(1/T, — 1/T)). This is consistent with letting % go to
zero in Eq. (48). One can also see that the classical result and
the quantum result are the same for the ordering considered
in this section (i.e., 7, ~ #Q)but T, > #Q). In particular, the
square bracket in Eq. (48) is nearly unity provided that
T\ > #Q, regardless of the relative ordering of 7, and #().
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APPENDIX A: AN ALTERNATIVE DERIVATION OF THE
ADIABATIC INVARIANT

In this appendix, we consider collisions involving the
simultaneous interaction of many electrons. For each elec-
tron we use the canonical coordinates and momenta’
(z, p,, Y, mQX, ¢, p,), where

tany = —v,. /v,

Py = m(v +02)/29,

X=x-0v,/Q, Y=y+0v,/0
Here, ¢ is the gyroangle and p,, is its conjugate momentum,
and (X,Y) are the guiding center coordinates, P, = mQX
being the momentum conjugate to Y. The Hamiltonian for

the electrons is given by
2

b

(A1)

e2

N
H= 2+ Qp, + , A2
,-;1 2m Py, ,% r, —r] (A2)
where
|r; — rj|2 =(X; +p, cos ¢; — X, —p, cos ¢j)2
+(Y; +p; sing, — Y, —p, sin ¢j)2
+(z; — z)) (A3)

The quantity p = (2p,,/mQ)"/? is the Larmor radius for an
electron.

Assuming that the dynamics is that of a many-electron
collision, rather than a collective mode of oscillation, the
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inequality 1 v, /b, vy /b implies that the 3, are rapidly
varying (i.e., y; = dH /dp,, ~ () compared to the other var-
iables. Since there are many fast variables (i.e., ¥;, for
j=1, ..., N), the existence of an adiabatic invariant is not
immediately obvious.

To uncover the invariant, we make a transformation to a
new set of variables such that only one of the
variables is rapidly varying. The transformation takes
{('ﬁpp.p,)ll =1,.., N} into {(6;,pe)lj=1,....,N} via the
generating functlon

F,=po ¥, + .Zzpo’('pj — )

and leaves the variables (z;, Py Y, mQY)) unchanged. Of
course, an identity transformation for these latter variables
could have been added to the generating function. The new
variables are related to the old by taking partial derivatives
in the usual manner®:

(A4)

0= = ,9— = , forj> 1, A5
21’0, Yy 6 (9 P, ¥, — ¥ J (AS5)
OF, o .
="2=p — , =p,, forj>1.
Py, a0, Do, jgzpaj Py, = a:p, = Py, J
(A6)
From Eq. (A6), it follows that p, ==Y, Py so the
Hamiltonian takes the form
4 2
H=p,Q+ }: 4 ¢ (A7)

2m ,<,~|r,.—rj|'

For the Hamiltonian, one can see that 6, is the only rapidly
varying variable. Also, when the slow variation is sup-
pressed, (0,,p,) are action angle variables. Thus, p,

= 3| py, is an adiabatic invariant. From the definition of
Py, in Eq. (Al), one can see that the adiabatic invariant is the
total perpendicular action associated with the cyclotron mo-
tion (i.e., pg, = 2, mv;,/2Q), and for the case of uniform
magnetic field, thls reduces to the total perpendicular kinetic
energy.

APPENDIX B: EVALUATION OF THE OSCILLATORY
INTEGRAL IN EQ. (11)

In Sec. II, we found that the change in the adiabatic
invariant is proportional to the oscillatory integral

te dE coslké) B1
L [7* + 61" .
where x > 1 and £ (£) satisfies the differential equation
ag 2e1—1/2
(dg) + I+ M2 =1, (B2)

The choice of initial condition is that £ %(£ ) take its minimum
valuefor £ = 0, and, for this choice, £ *(£ ) is an even function
of £. First, let us examine the integral in the two limiting
cases 7» 1 and 77 <1.

For 9% 1, the solution of Eq. (B2) that satisfies the con-
dition £ %0) = 0 is approximately £ = £. This solution de-
scribes the motion of an electron that is incident at such large
impact parameter that the interaction potential does not sig-
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nificantly alter the electron motion. For this solution, inte-
gral (B1) is a representation of the modified Bessel function

K (ken),
J' T décosikE) %
— % 17

K,
TR

~ ( 2k )3/2e -
7 (B3)

As expected, the integral is exponentially small, and « ap-
pears as a factor in the exponent.

The limit 77 €1 corresponds physically to a collision that
is nearly head on. For such a collision, the sign of £ (£ } does
not change, and to be specific we choose £ > 0. Equation (B2)
then reduces to the form

(5—)2 ~=1 (B4)
dg 4
and the solution has the following character. As & varies
from — oo t0 + o0, (£) variesfrom + oo to l{at§ = 0)and
then back to + o, with d{ /d€ changing sign at the turning
point {i.e., at § = 1).

This can be represented in the complex { plane as the
motion of £ (£ ) in along one side of the branch cut for y¢ — 1
and then back out along the other. We take the square root of
both sides of Eq. (B4) and choose the branch cut for & — 1
along the line arg(¢ — 1) = Oand the branch cut for yZ along
the line arg({) = 7 [see Fig. 3(b)]. As & varies along the
dashed contour in Fig. 3(a), § (£ ) varies along the dashed con-
tour in Fig. 3(b).

Bearing in mind that in integral (B1) the factor cos(x& )
may be replaced by exp(ix€ ), since £ %(£ ) is even, we deform
the £ and ¢ contours in such a way that £ takes positive
imaginary values. The deformation may be pushed as an
analytic continuation process until the £ contour collides
with the branch cut associated with £ . Figures 4(a) and 4(b)
show the £ and ¢ contours when the £ contour has been
pushed as far as possible toward positive imaginary £. The
analytic continuation process yields an alternate representa-
tion for integral (B1)~

[l RN ) (B3

where C is the dashed contour in Fig. 4{a).

During the deformation, the turning point moves from
& =1to{ =0, and, according to Eq. (B4), the image of this
point in the £ plane moves from £ =0 to

FIG. 3. Consistent contours in (a) the complex £ plane and (b) the complex &
plane for the motion & (£) of Eq. (B2) in the limit #<1.
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{a)

-

zRe§

Ilmc
Re § e
i

FIG. 4. The contours of Fig. 3 analytically continued as far as possible to-
ward positive imaginary values of £.

= df — 2 == L . B6
S =3 (B6)
Contour C loops down around this point. We can solve Eq.
(B4) in the neighborhood of this point to obtain 3
£32 = ¢ —im/2)or{? = — Y& — im/2)*. Theintegrand of
integral (BS) has a second-order pole at § = iw/2, and the
residue at this polc yields the result

xxg K

e
Thus, we find for both #» 1 and 7 <1 that integral (B1) is of
the form % («,7) exp[ — «g{n)], where h {x,7) is nonexponen-
tial, and the function g(7) takes the limiting forms g{y) ~ 7/
2 for 7 €1 and g{n} =~ 7 for 7> 1. We now generalize this
result to arbitrary values of 7 < 1, that is, to all cases where
there is reflection. The cases where there is no reflection (i.e.,
7> 1) follow similarly.

It is useful to introduce the variable x = (% + 77,
which satisfies the differential equation

ax _ WX =g Jx—1 ’ (BS)

ds x —x
where the branch cut for Jw(x) is taken along arg w(x) =0
and w(x) = x* — 7%, x — 1, —x. As £ varies from — o« to
+ o along the dashed contour in Fig. 5(a), x(§ ) varies along
the dashed contour in Fig. 5(b), reaching the turning point
x=1for £ =0 [i.e, x(0) = 1]. We deform these two con-
tours so that £ moves toward positive imaginary values, con-
tinuing the deformation process until the x contour collides
with the branch point at x = 7. This yields £ and x contours
of the form shown in Fig. 6.

— (w/2)x‘ (B?)

{b}
{a)

Im €

ammcmmgesemcasy et e : Re X

-1 7 14

FIG. 5. Consistent contours in (a} the complex £ plane and (b} the complex x
plane for the motion x(£ ) of Eq. (B8)in the case 0 <9< 1.
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(@) (b}

. . A ImX

.

Re{ s, . e Re X
e

FIG. 6. The contours of Fig. 5 analytically continued as far as possible to-
ward positive imaginary values of £.

During the deformation, the turning point moves from
x =1 to x = 7, and according to Eq. (B8}, the image of the
turning point moves from £ =0 to

1 3/2
f=igm) =i 22 (B9)
7 N1 —x x> =77

The two points around which the £ contour loops are the
images of x =0 approached from opposite sides of the
branch cut between x =0 and x = 7. The coordinates of
these two points are £ = ig(n) 1+ f(n), where

X312 dx
Sflg) = ,
o J1—x > —x?
and there is a branch cut of x(£ ) along the line between the
two points. Integral (B1) can be rewritten as

j‘ dé exp mf

where C'is the contour in Fig. 6(a). Since the singularities of
the integral involve more than isolated poles, the integral
cannot be evaluated simply as a sum of residues. Neverthe-
less, one can see that the integral is of order exp[ — «g(7}]].
The same conclusion is reached for the case where > 1.

The value of the integral is determined numerically.
Mutally consistent contours of the form shown in Fig. 6 are
established numerically, and the integral is evaluated nu-
merically along the § contour (i.e., along C’). By repeating
this procedure for an array of («,7) values, one can verify that
theintegralis of the form 4 («,77)exp[ — xg(7)], where 2 (x,7)is
not exponentially large or small in the parameter range of
interest. One can also verify the small % expansions used in
Eqg. (26).

Also, the expression for 7 (%) in Eq. (24) was evaluated
numerically. This involves an integration over (o,7) space,
where k = K/0 *. However, because of the exponential char-
acter of the combined integrand, only values of (0,7) in a
neighborhood around some critical point {g,,7,) contribute
to the integral, the integrand falling exponentially to 0 away
from (g4,7,); see Fig. 7. Once (0,7} is established, a suitable
number (=50} of the values were chosen to represent the
integral around that point, and the integrals over o and 7
were then carried out. The results of these computations ap-
pear in Fig. 2, where the numerical data for the integral I (k)
are compared with the ¥ asymptotic result of Sec. II. The
agreement is reasonable for large ¥.

(B10)

(B11)
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FIG. 7. The integrand of Eq. (24), {0, 7), falls exponentially to 0 away from a
critical point (g4,7,) in the (0,7) plane.

APPENDIX C: DISCUSSION OF EQ. (42)

In this appendix, we argue that collisions characterized
by large parallel energy (i.e., €, € * T »#i(}) and small im-
pact parameter (i.e., p, <b,b ' or €, € €¢*/p,) make the domi-
nant contribution in the expression for the equilibration rate.
This result is what one would expect by analogy with the
classical analysis. Also, we verify Eq. (42) for such collisions.

Let us consider this latter point first. For the case of
small impact parameter, the solution for F,(z) encounters
turning points at z = -+ a, where ¢%/( p? + a%)'/2 = €. Since
a=b is large, the probability of tunneling fromato —ais
negligible (recall that #/y/me <b ), and an appropriate WKB
solution is of the form

in%} cos U;zk(z)d —-—%), forz>a,

F.lz)=

A
k(z)|dz), f .
Py exp (J:l @l z) orz<a
(C1)

This corresponds to incidence from positive z and total re-
flection at the turning point; of course, the solution is not
valid in the neighborhood of the turning point. The solution
for F_(z) is of the same form as that for F_{z].

Following Landau’s analysis of matrix elements in the
quasiclassical limit,” we express F,(z) as the sum of two
WKB solutions:

( Y
Vk(2)

exp(iJ- k(z)d _%r_)’ forz>a,

Fliz)=1 (€C2)
— i exp(—rlk(zndz), forz<a,
L VI ()] @
and
(4 (" in
exp| —i ]| kizidz+—], forz>a,
I - S Al

+id exp ( — f lk {z)}dz) , forz<a.
Lk (2)] @

(C3)
That F }*(z) + F [ {z} is a proper decomposition of F,(z} re-
quires some explanation. One must bear in mind that the
expressions given for these quantities are not exact but are
only the first terms in asymptotic series. For z > a it is clear
that F * (z) + F [ (z) = F,(z), but for z < a the expressions for
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F f{z)and F [ (z) add to zero rather than to the exponential-
ly small quantity F, (z). The true solutions for £ [ (z) and for
F 7 (z) have additional terms, and it is these terms that add to
give the exponentially small quantity F,{z).

It is useful to look at F,(z), F*(z), and F[ (z) in the
complex z plane. Near the turning point, the wavenumber is
given by k (2) = @z — a and the integral of the wavenumber
is given by [Zk(z)dz = (2a/3)z — a)*’%, where a~(2ue/
#a)'/? and we choose the branch cut along the line
arg(z — a) =0 (see Fig. 8). There are anti-Stokes lines at
arg(z — a) =0, 27/3, and 47/3, and we denote the regions
bounded by these lines as regions I, II, and III. In regions I
and III, the solution exp[ — if%k (z)dz] is dominant, and in
region II, the solution exp[ + if;k (2)dz] is dominant. In
general, the solution is the sum of a dominant and a subdo-
minant solution, and, in analytically continuing through a
given region, it is permissible to retain the subdominant solu-
tion only if the dominant solution enters with zero coeffi-

cient.
For example, for F_{z) the dominant solution enters

with zero coefficient in region I, and the solution

4 exp (i f k (2)dz — I—F)
Vk () a 4
may be analytically continued through region I into region
I1. One may easily check that for arg(z — @) = « this expres-
sion reproduces that given in Eq. (C2) for z < a. In fact, this
analytic continuation is one method of verifying that the two
expressions in Eq. (C2) match onto the same overall solution.

Since the solutions must be continuous across the
branch cut, even though k{(z} is discontinuous, we write
F_(z)as

Flig= (C4)

(s [ e )
ex i z)dz s
N pl+7) kladz+—
for arg{z — a} = 2w. Note that the expression in the first line
of Eq. (C3)is for arg(z — a) = 0. Since the dominant solution
enters with zero coefficient in region III, expression (C5)
may be analytically continued through this region into re-
gion I1. One can easily check that expression (C5) reproduces
the expression in the second line of Eq. {C3) when evaluated
for arg(z — a) = .
Likewise, one can check that the function

T
ex i z)dz +
%7 p | KL Mz +
reproduces the second line of Eq. {C1) when evaluated for
arg(z — @) = 7. This function is valid in the whole complex
plane except near the positive real (z — @) axis.

Folo)= (c5)

F(2)= (C6)

FIG. 8. Regions of the complex z
plane in the vicinity of the turning
point a. The dashed lines are anti-
Stokes lines separating regions of
dominance and subdominance for
a WKB solution.
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The z integral in Eq. (42) can be rewritten as

F@FGE _ (., FaFrl
Jo (o7 + 27" =), (0} + 27"
s’(z)Fs (Z
+J‘ (o} + 2P <

where we have taken into account the fact that F, (z) and
F_(2) are real, and C'is a contour along the real z axis. With
the aid of Cauchy’s theorem, the contour on the first integral
can be moved up to C * and that on the second integral down

to C ~ (see Fig. 9). By using Egs. (C4) and (C6), the first inte-
gral can be written as
F -+ +
R =
e (pi+2) ¢t Jk'2k(z)
X exp (zJ kizdz —i J‘ k’{z)dz),

(C8)

and, by using Eqgs. (C5) and {C6}, the second integral can be
rewritten as

J‘ d FoaF 7(z) AA'
2, st 2 z ———
-+ Je- VKK @)
X exp (i f k(z)dz — i J k'(2)dz + iﬂ') . (C9)

For the case € > €', the convention chosen in Sec. II, the
integrands in Eqs. (C8) and (C9) are both exponentially small
along their respective contours. Where the contours C * and
C ~ run parallel to one another, the two integrands are equal
and opposite; so the sum of the two integrals can be written
as

f gy Le@ER) [, A4’
c (p+2P? T Jk@k'R)
X exp (z’ fz kzdz —i J-z k ’(z)dz) s

(C10)

where C is the loop contour shown in Fig. 10. The factor
et in the integral (C9) was used to change the sign of dz
along the lower half of this loop.

/]Imz

— —>Re 2

FIG. 9. Two contours, C * and C —, each a continuation of an integration
along the real z axis.
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AImz

(%74

>Re:

FIG. 10. The combined integration on C* and C ~ merged into a single
contour € that describes a path of a reflected particle, analytically contin-
ued away from the classical turning points.

As mentioned earlier, the true solutions for F (2} and
F [ (z) do not cancel exactly along the negative real axis, but
add to the exponentially small quantity F,(z). Thus, neglect-
ing the portion of the integral where C * and C ~ run parallel
to one another involves an error of order |F.(z)F,(z)|
Sexp[ — (/70)(b2/v; )]. We will see that this error is much
smaller than the contribution to the integral along the con-
tour C.

The integral along C can be rewritten as a time integral
over the classical orbit. After substituting the relation
k (z) — k'(z) = 29/[v; (2) + v} (2) ], theintegral is evaluated to
lowest order in |k — k’|/k ~#i€}/€ simply by neglecting the
distinction between primed and unprimed quantities. By in-
troducing a time variable ¢ through the relation dz/
dt = v (z), Eq. (C10) reduces to

fd F 2)F (2)
c (P +z2)3/2

A 2 J- ’ etﬂt
(C11)

where C, is related to C through the mapping z = z{t ). In
other words, the time integral is carried out in the complex ¢
plane along the analytically continued path for a reflecting
particle. This is the same integral that enters the classical
analysis for the change in the adiabatic invariant, and, in
Appendix B, the integral is shown to be of order
exp( — 7§2b /2v)).

To make 4 nonzero (and dn/de and J [ ! finite), we im-
pose a potential barrier at z = L, where L is large but finite
(i.e., L»a). The normalization condition for F,(z) reduces to
1 = fLdz|F,(2)|*> = 24 °L /k,and adiscrete spectrum of ener-
gy values is specified by kL = wn. The density of states is
given by dn/de = (L /m\(dk /de) = (1/2mA)2L /v), and the
incident flux is given by J, = v, /2L. For convenience we
have imposed different boundary conditions here than were
used in Sec. II1, but dn/de and J, take the same values here
as they do in Sec. III. Consequently, Eq. (39) contains the
correct factors to give the transition probability for both
choices of boundary conditions. In Eq. (39), the z integral

appears with the factor 2L /\/v, v} , and from Eq. (C11) and
the condition 4> = k /2L we ﬁnd the result

f Fe () —f dz_____efz__...
\jvuvu pi+zz < {P?+x2(t)]3/2

{C12)
This relation is the required generalization of Eq. (42).
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In Sec. II1, we considered collisions characterized by
large parallel energy (i.c., €, € >T »7i(}) and large impact
parameter (i.e., p,>b,b '}, and here we have considered colli-
sions characterized by large parallel energy and small im-
pact parameter (i.e., p,<b,b ). In both cases, the matrix ele-
ment is proportional to the time integral that enters the
classical expression for the change in the adiabatic invariant.
For the intermediate impact parameter (i.e., p, ~b,b'), the
analysis is complicated by the fact that the positive and nega-
tive turning points {i.e.,, - @) must both be taken into ac-
count. Nevertheless, one can show that the matrix element is
of order exp| — (7/y2)b92/v; ], which is the order of the
time integral for the case p; = b. Thus, for any value of the
impact parameter, the matrix element is proportional to the
time integral as indicated in Eq. (42).

In Sec. II, the time integral was expressed as
h (x,m)exp[ — xg(n)] wherex = Qb /v, and g = p/b. The plot
of g(n) given in Fig. 1 shows that g(#) is a monotonic increas-
ing function of 7; so the matrix element takes its largest value
for the small impact parameter case (i.e., p/b = n<1) that
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was considered here. The case of small energy (i.e.,
€,6' ~#Q<T ) has not been discussed explicitly, since this
case corresponds to large distance of closest approach (i.e.,
b~e*/fi¥>€*/T ) and very small matrix element.
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