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Collisions are discussed for a pure electron plasma which is so strongly magnetized that the
Larmor radius is small compared to the classical distance of closest approach. In this regime, the
most important collisions are characterized by an impact parameter which is the order of the
distance of closest approach. Assuming that this distance is small compared to the interparticle
spacing, a Boltzmann-like collision operator may be derived. In turn, this operator may be
reduced to a Fokker—Planck operator, which is integrable. An interesting property of the collision
operator results from an adiabatic invariant which is preserved during scattering. There is no
energy exchange between the velocity components which are parallel to the field and the velogity
components which are perpendicular to the field. This may have implications for a current effort

to cool a pure electron plasma to low temperature by cyclotron radiation.

I. INTRODUCTION

In this paper we discuss the collision operator for a ho-
mogeneous, pure electron plasma which is strongly magne-
tized. In particular, the Larmor radius is assumed to be small
compared to the classical distance of closest approach, that
isr, b, wherer, =v/02andb = e*/mv*. Here, 2 = eB /mc
is the cyclotron frequency and U is a characteristic electron
velocity (e.g., thermal velocity for a Maxwellian plasma). To
insure that the plasma is weakly correlated, the number of
electrons in a Debye sphere is assumed to be large (i.e., nd 3,
» 1), and, to insure that the plasma is classical, the de Broglie
wavelength is assumed to be small compared to the Larmor
radius (i.e., #i/mv<r, , or equivalently, %2> mu°). Thus, the
plasma is characterized by the ordering #/mv<r,
<bgn'*<ip.

There has been much previous theoretical work on
collisions in a magnetized plasma.'~” However, all of the
previous work involves the assumption that a collision pro-
duces only a small perturbation in the orbit of an electron,
and the derivation of the collision operator involves an inte-
gration along unperturbed electron orbits. We will see that
this assumption, which may be called the assumption of
weak interaction strength, is not appropriate in the regime
r. <b. The strong magnetic field effectively modifies the
range of the interaction so that the most important collisions
(as defined in Sec. III) are characterized by an impact param-
eter which is of order b, and the interaction strength for such
collisions is not weak since e?/b = mv”.

In this paper, we do not assume that the interaction
strength is weak. Rather, advantage is taken of the short-
range nature of the interaction, and a Boltzmann-like coili-
sion operator is derived from the BBGKY hierarchy.® Such
a collision operator provides a valid description of well-sepa-
rated binary collisions, and collisions characterized by an
impact parameter of order b are of this nature. Recall that b
is small compared to the interparticle spacing (i.e., 5<n ~'/3).

In addition to modifying the effective range of the inter-
action between two electrons, the magnetic field restricts the
possible outcomes of the interaction. An adiabatic invariant
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prevents the exchange of energy between the velocity com-
ponents which are parallel to the magnetic field and the ve-
locity components which are perpendicular to the field. This
means that the collision operator does not force equiparti-
tion of energy between the parallel and perpendicular veloc-
ity components.

Since there is no exchange of energy between parallel
and perpendicular velocity components, conservation of en-
ergy and conservation of momentum imply that the parallel
velocity components for the two electrons are not changed
by the interaction, or simply interchange (i.e., v,, <20, ). This
means that the distribution of parallel velocity components
does not change in time.

The exchange of energy between the perpendicular ve-
locity components for the two electrons is not restricted in
this manner, and the distribution of perpendicular velocity
components evolves to a Maxwellian. Moreover, the time
evolution may be followed analytically. To be specific, the
Boltzmann-like collision operator reduces to a Fokker—
Planck operator, and the Fokker-Planck equation is inte-
grable as an initial value problem.

In Sec. II, the scattering solution for the interaction of
two electrons in a uniform magnetic field is obtained as an
expansion in 1/B. In Sec. III, the Boltzmann-like collision
operator is derived from the BBGKY hierarchy. In Sec. IV,
this operator is reduced to a Fokker-Planck operator, and
the temporal evolution of the velocity distribution is dis-
cussed. In Appendix A we provide an alternate derivation of
the adiabatic invariant and generalize the invariant to the
case where many electrons interact simultaneously. In Ap-
pendix B, the collision operator derived in this paper is com-
pared with that derived earlier by Rostoker."'

Before beginning the calculation, we note that the re-
gime 7, <b may be relevant to a current series of experi-
ments.® That the regime is quite unusual can be seen by re-
writing the inequality as (kT')*’<10~7 B, where kT is in eV
and B is in G. Even for B = 100 kG, the inequality is not
satisfied for any temperature that would not lead to recom-
bination. However, the experiments9 alluded to involve the
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magnetic confinement of a pure electron plasma (nonneutral
plasma), and recombination cannot occur for such a plasma.
Moreover, there is an effort underway to cool a pure electron
plasma down to the liquid and crystal states,'® and the low
temperature required (cryogenic range) is such that the plas-
ma enters the regime r; €b. The other two inequalities (i.e.,
nA 3> 1 and #i2 ¢k T ) are satisfied, provided the temperature
is not too low. In other words, there is an intermediate tem-
perature regime where all three inequalities are satisfied.

Also, the results presented here may have implications
for the cooling effort. A cooling mechanism such as cyclo-
tron radiation reduces the perpendicular temperature but
not the parallel temperature. Since the adiabatic invariant
prevents energy exchange between the parallel and perpen-
dicular degrees of freedom, one cannot rely on collisions to
maintain equipartition of energy.

Il. BINARY INTERACTION

Let us consider the electrostatic interaction of two elec-
trons which move in the uniform magnetic field B = BZ. In
order to identify an adiabatic invariant which is preserved
during the interaction, we introduce the sum and difference
coordinates and velocities

R=r,+r, V=v,+v,
(1)

r=r,—r, vV=VY,—V,

where r,, r,, v,, and v, are the coordinates and velocities of
the two electrons. The sum and difference velocities satisfy
the equations of motion

4V L ovxi=o, 2)
dt

va
Do avxz=2 1 (3)
dt m |r?
where £2 = eB /mc is the electron-cyclotron frequency.
Let us choose 7 = £, to be some time before the electrons
begin to interact and ¢ = ¢, to be some time after the interac-

tion is completed. From Eq. (2), it follows that
Vz(tb) = Vz(ta )’ .
Vilty) =V (t)e ™", (4)

where V, =V, +iV,.

Equation {3) is identical to the equation of motion for an
electron which moves in a uniform magnetic field and in the
electric field of a fixed charge. In the regions accessible to the
electron, the scale length of the electric field is large com-
pared with the Larmor radius of the electron. This follows
from the inequality r; «b. Thus, the adiabatic invariant
|v, |?/B is preserved during the interaction, and we can set
|v, (t,)| = |vi(t,)|. Squaring both sides of the equation and
adding it to the equation |V, (t,)|? = |V (¢,})|% which fol-
lows from Eq. (4), yields the result

0240017 + 01 )7 = o2 (1) + Jorae) s (5)
where we haveset V, =v,, +v,, andv, =v,, —v, . .In

other words, the total energy associated with the perpendi-
cular velocity components is conserved.
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The underlying physics is the following. Because of its
cyclotron motion, electron 1 produces a field of frequency £2
at the location of electron 2 and breaks the adiabatic invar-
iant of electron 2 (i.e., |v,, |*/B), and vice versa. In this way,
there is an exchange of energy between the perpendicular
velocity components of electrons 1 and 2, but the total ener-
gy in the perpendicular velocity components is conserved. In
Appendix A, this result is generalized to the case where
many electrons interact simultaneously.

To calculate the exchange of energy between the per-
pendicular velocity components, we start by writing v_ (¢, ) in
the form

_ 2ty — 1)) . i50

vilty) =v (t)e e (6)

where 86 is a phase shift. This form follows from |v (z,)|
= |v,(t,)|. The x and y components of Eq. (3) can be com-
bined in the complex equation

dU+ 2e2 x +ly
— —1 = ——_— 7
dt Toom P (7)
which, when integrated, yields
i 2 ol ] '
U+(tb)=v+(ta)e:n(tb7tai+2_3_f dr' &1
m Ji,
X [x(¢") + iyt )1/ 1e(t )] . @

We will find that 56 is small. Setting e ~ *°~1 — 50 in Eq.
(6), and comparing to Eq. (8), allows the identification

2% (" dr’ ¢~ [x(t)) + iy(e))] . o)
mu.(t,) Je, (e )|
To evaluate the integral in this equation, we express the
electron orbit as the sum of a guiding-center motion plus
cyclotron motion about the guiding center
[i.e, r(t") =r,(t’) + 6r(t)], and we use the Taylor expan-
sion

x(t I) + Iy(t ') xg(t ’) + l:yg(t ') 5 ’ .v
) PUTEERRRA
X (1) + iy, (t) (10)
I (e)®

The first term in the Taylor expansion gives negligible con-
tribution to the integral, since the guiding-center motion is
characterized by frequency components which are much
smaller than £2 (i.e., U/b<42). Of course, the integral under
discussion is simply the Fourier transform of expression (10)
evaluated at the frequency 2. The second term in the Taylor
expansion gives the main contribution, since 8r( ') varies at
the frequency 2. By using the expressions

Ox(t’) = Refv, (¢, )exp[i2(t' —1,)}/if2 },

oy(t')=Im{v, (¢, )exp[i2 (¢’ —1,)]/i2 }, (11)
we obtain (to first order in 1/B)
2 + oo
50 = 2€ d,'(—l__
m . [zz(t:)+p2]3/2

3 p2
SN — 12
> @) "

where the ¢ integral has been extended to + <o and p = x2
+ y2 = const.
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This can be rewritten as

=m.()f v

Zmin z

_3_r )
2 (@ +pP)
(13)

(Z \(ZZ +p2)3/2

where v, (2) is given by
2 172
4e°/m ) , (14)

v{z) = (U:(ta) - W
and z,;, is the smaller of zero or the value of z where v, (z)
= 0. In terms of scaled variables, 66 takes the form
t 0
A
pL2 ola)
[(§2 + 1)—3/2 _ %(é-Z + 1)—5/2]
[1 _ a(§2 + 1)—1/2] 1/2
where a = 4¢%/ [mpv? (t,)] and ola) is zero for a<1 and
(@® — 1)/ for @ > 1. One may check that |66 | <1, except for
a~1, where the integral diverges logarithmically and
|66 |~ — (m|v,|*/é*2)In|1 — a|~r, /b In|1 — a|. In other
words, |66 |«<1 except in an exponentially small range
|1 — a|~exp ( — b /r.). This range will be negligible in our
future use of Eq. (15).
From Egs. (1), (4), and (6), it follows that
v (8,)]7 = 2 (2,) + Lle~ °o— D{va (e} — vy (8] @
(16)

, (15)

which to second order in 88 is given by

V24 (817 = 02 (8,)]> + 86 v, . (2,)]
X vy (2,)[sin(y, — ¢,) + [(66%)*/4]
X [|o1 ()1 = o2 (t)17]- (17)
Here, thenotationv; , = |v;, |exp{ig;) has been introduced.

The corresponding expression for |v,, (¢,)|? is obtained by
interchanging the subscripts 1 and 2in Eq. (17). These are the
desired expressions for the interchange of energy between
the perpendicular velocity components for the two electrons.
Of course, when the expression for |v,_, (#,)|” is added to that
for |v, . (¢,)|?, one simply recovers Eq. (5).

Turning next to a consideration of the parallel velocity
components, we note that |v_ (¢,)|> = |v_.(¢,)|? together with
|¥(,)|* = |v(z,)|* imply that |v,(z,)| = |v,(¢,)|. This plus the
result ¥, (¢,) = V,(z,) imply that the parallel components for
the two electrons are unchanged by the interaction, or sim-
ply interchange. Recalling that @ > 1 corresponds to reflec-
tion of one electron from the other and that @ <1 corre-
sponds to no reflection, we set

vlz(tb) = vlz(ta)’ UZz(tb) = v22(ta) fora < 1’

(18)

Vi, (E) =05, (8,),  Ua(2,) =0,(E,) fora>1.

1Il. BOLTZMANN-LIKE COLLISION OPERATOR

Generally speaking, a Boltzmann collision operator
may be used to determine the effect on the particle distribu-
tion of well-separated binary collisions. It is not obvious that
such an operator is appropriate for the case of electrons,
which interact via the Coulomb interaction. This interaction
is long range and typically leads to many electron effects
such as Debye screening.
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The reason a Boltzmann operator may be used is that
the strong magnetic field effectively reduces the range of the
interaction, at least for the scattering of the perpendicular
velocity components. From Eq. (10) and the discussion fol-
lowing it, one can see that the perpendicular velocity compo-
nents are scattered only by an interaction electric field with
frequency components as high as the cyclotron frequency.
For the ordering £2»7/b, only the cyclotron motion itself
introduces such high frequencies. When the high-frequency
component is separated out by Taylor expanding the interac-
tion field with respect to the cyclotron motion, one sees that
the perpendicular velocity components are scattered by a
dipole interaction. Of course, during the interaction, the z
motion of the electrons is determined primarily by the mono-
pole term.

Because the dipole interaction falls off with increasing
particle separation as 1/7° rather than 1//2, small-impact
parameter collisions are more important than large-impact
parameter collisions. (Here, the quantity p serves as the im-
pact parameter.) We will see that the term in the collision
operator which describes the scattering of the perpendicular
velocity components is constructed mainly from impact pa-
rameters of order b. The effect of such collisions may be
described by a Boltzmann collision operator, since b is small
compared to the interparticle spacing (i.e., b<n ™ '"3).

Since the parallel velocity components can be scattered
by a low-frequency field, the interaction responsible for this
scattering falls off as 1/72. We will see that the term in the
collision operator which describes this scattering is propor-
tional to an integral over impact parameters which diverges
logarithmically at large impact parameter. We remove the
divergence by imposing an ad hoc cutoff for impact param-
eters larger than A . Of course, this procedure is not rigor-
ous; it is to be understood in the sense of Landau’s derivation
of the Fokker—Planck collision operator (for an unmagne-
tized plasma) starting from the Boltzmann collision opera-
tor."!

In any case, we argue that the most important collisions
are those characterized by small-impact parameter (i.e.,
p~b), and the Boltzmann operator provides a proper de-
scription of the effect of these collisions. Only these colli-
sions can produce a scattering of both the perpendicular and
the parallel velocity components. The collisions character-
ized by large-impact parameters (i.e., p» b ) are trivial in the
sense that they produce negligible change in the perpendicu-
lar components and at most an interchange of the parallel
components (i.e., v, V5, ).

Because of the strong magnetic field, the Boltzmann
operator may not be used in its usual form. We refer to the
modified operator as a Boltzmann-like operator and derive
the form of the operator from the BBGKY hierarchy follow-
ing the arguments of Bogoliubov.® The one-particle distribu-
tion is governed by the equation

a a . d
(‘("9—{ -+ VI'Il — -OVIXZ' )ﬂ(l,t)

ne 1
dr fdv
f ’ 231'1 Irx_rzl

and the two-particle distribution is governed by the equation

ﬁ(l 2,t), (19)
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_ed 1, (_.__-—)]fz(IZt)

m dr, |r; — 1|

dr Idv(
J ’ al'l |r1—r3|

)f3(123t), (20)

3!‘2 |r, — l'3| a‘72

where £, (1,...
tribution.

In accord with the previous arguments, we drop the
three-particle term on the right-hand side Eq. (20), and later
correct this omission by imposing a cutoff on the interaction
for particle separations larger than A . Of course, one can
easily check that in the region of (r,,v,,r,,v,) space where
small-impact parameter collisions take place (ie,
|r; —r,| ~b), the right-hand side of Eq. (20) is negligible
compared to the last term on the left-hand side. The time
derivative in Eq. (20) may be dropped, since the two-particle
distribution is assumed to have relaxed to become a func-
tional of the one-particle distribution. This adiabatic as-
sumption of Bogoliubov® requires that the duration of a col-
lision be short compared to the inverse of the collision
frequency, and this is the case here. Of course, a slow time
dependence of f, remains, since f, follows f; adiabatically
and f; undergoes collisional relaxation. Making these modi-
fications in Eq. (22) and integrating over (r,,v,) yields

3.9

3 3 . 3
d d . .
f ”J v2(v' ar, o, v,

g )f2(1,2,t)

J dr, Jdvz

where [ dv, df /3v, = 0 has been used. The right-hand side
of this equation has the same form as the right-hand side of
Eq. (19); so we obtain

8,8 ) = [ (F1,015e-0F5» Us, 2 ) 1S the s-particle dis-

— v, X%

-—f2(12t), (21)

ar, |r, —rzl

d b5 . d
(-a—t+vl 'ET—Q“XZ'E)”I”)

. d . 0 )
—nN — Ze 1,2,¢). 22
v, X2 F™ v, X o Al ) (22)

We assume that the plasma is homogeneous; so the dis-
tributions may be written as f(1,)=f,(v,,2) and
(1,2t ) = fo(v, Vo152 ), where r =1, — r;. Also, it it conven-
ient to introduce the velocity variables (u,w,¥) = (v,,|v . |*/
2,3). In terms of these quantities, Eq. (22) takes the form

(5 + 234,) 700
= n f dr fj: du, fow dw, f " v,

x[(vz—vl)-%+n((—?—]+a—¢—2)]f2(l21) (23)
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The right-hand side of this equation has the dimensions
v f}, where v is an effective collision frequency. We look for a
perturbation solution, treating v and (1/f}) (df,/3t ) as small
compared to f2. Substituting the expansion f, = f¥ + £V
+ - into Eq. (23) yields in lowest order £2 (3f?'/3¢,) = 0 so
that /' = £ (u,w,z ). In the next order, one obtains an equa-
tion involving £2 (3f''/d4,). This equation can be solved for
an /'Y which satisfies the condition f "¢ = 0) = (¢ = 27}
only if the following constraint is satisfied:

af(O) 27 + o 2
2t = nf dv, j duzJ. dw, f dy, j dr
ar o — o o

f2 (24)

X(v, —vy)e

where use has been made of $Simdy, SiTdy, (3/0¢, + 3/

d,) f,=0.

In regions of (v,,v,,r) space which are such that the two
electrons could not yet have interacted, we assume that the
electrons are uncorrelated, that is, that f(v,,v,,rt)

= filvist ) filv:t ). In the regions where the two electrons
must already have interacted, the two-particle distribution is
given by f3(v,,v,,1,t ) = fi(v] 1) fo(v5,t ), where (v],v}) evolves
into(v,,v,) during the interaction. We have used here the fact
that £, is constant along particle trajectories, which follows
from setting the right-hand side of Eq. (20) equal to zero.
Since the values of x and y change only slightly during an
interaction (i.e., Ax, dy~ry ) and since (v],v;)=~(v,,v,) for a
large-impact parameter, we can set f5(v,,V,I,t)
= filvi,t ) fi(v2,t ) in any region where x or y is large.

These results can be used to evaluate the r integral on
the right-hand side of Eq. {24). In particular, we find that

+ = %___ + ifl _ 25
j_u, dxax J._w d dy 0 23)
and that
J+ i dz(v2z - vlz)a_f;'
— oz
= v, — v | [ iV filv3.2 ) — filvit ) filvat )]
(26)

To lowest order in v/12, one can replace f,(v,? ) by f*” (u,w,t )
in the four distributions on the right-hand side of Eq. (26).
Equation (24) then reduces to a Boltzmann-like collision op-
erator

fw) (uywit) = nf 2mp dpf duzj dwzj- dy,

Xluz - ul'[f(lmuliwl ’t )f(lm (u;,w;,t}

— [ (pw,t) £ (uw, t )]s (27)

where we have used (7dy, (3" dy,( ) =25 dy, )
and have set dx dy = 2mp dp. The form of this collision oper-
ator could have been guessed at the outset, but it is satisfying
to see it come out of the analysis.
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IV. FOKKER-PLANCK COLLISION OPERATOR

In Sec. II, we found that the change in wj; (i.e., in
|v; . |*/2) during a collision is small; so the distributions in
the collision operator may be Taylor expanded. For exam-
ple, £ (u3,w}) may be replaced by

©O),,7 ’ O)f,,7 af(lo) ’ ’
Suzws) = V(g ,w,) +W(uz’wz)(w2 — w,)
2

1 azf‘(l()) ’ ’ 2
+ 7 —a_u‘é‘ (13 W))Wy — wo)”. (28)
By recalling that primed variables refer to before the interac-
tion (i.e., f = ¢,) and unprimed variables to after the interac-
tion (i.e., t = #,), we see that Eq. (17) gives an expression for

]

A
at

50 )
_f(lo' (ulswvt )f‘lo) (u2’w2’t )] + (_4')"'f'10) (ué’wbt)

+ wow,

o ro ).

1

w, — wj in terms of primed variables. To evaluate the right-
hand side of Eq. (28), we want just the opposite, that is, w;
— w, expressed in terms of unprimed variables. This can be
obtained from Eq. (17) through the use of time reversal. By
recalling that time reversal requires a reversal of the magnet-
ic field (i.e., B~ — B or 56— — 56 ) we obtain

w; — W,

= — 60 Jww, sin(¢, — ¢,) + [(60 )2/4](“)1 — w,).
(29)

The expansion for £ (u},w}) is obtained by interchanging
the subscripts 1 and 2 in these equations.

When the expansions are substituted into Eq. (27) and
the ¢, integral is carried out, the terms that are first order in
66 vanish. Retaining the zero-order and second-order terms
yields the collision operator

o + o ey
wrwnt) =n [~ 2mpdo [y [ 27 dluy — | L0 0011 001
0 — oo 0

a ,
wlf(lo' (ui,wy5t)
w

a

1

(30)

The first term in the curly brackets, that is the term which is zero order in 66, describes the effect on the distribution of the in-
terchange of parallel velocities, and the second term describes the effect on the distribution of the change in w.

Let us check that the first term diverges logarithmically unless a large-impact parameter cutoff is introduced. Since
interchange of parallel velocity components occurs (i.e., #; = u; and ; = u,) when the maximum potential is large enough to
reflect the electrons from one another, we can rewrite the first term in Eq. (30) as

ar?
( at

+ o 00
(uy,wy,t )) = nf du2J 21 dw,|u, — u,|mpd
1 — o0 0

X [f(lO) (uz’wht )f(lm(ubwz’t) _f(l()j(ul’wl’t )f(lo) (uzawz’t )]’ (31)
where p, = p, (|u, — u,|) is given by m|u, — u,|?/2 = 2¢*/p,. Because pj varies as |u, — u,| %, the u, integral receives its
main contribution from values of u, near u,. This means that the distribution functions may be Taylor expanded as

[f(IO) (uz’wl’t )f‘lO) (“l!wz’t ) _f'lo,(ubwvt )f(IO) (uz’wZ’t )]
ary
~(u, — “1)('— (upwy,t) (1wt ) — f (w1 )
du,
Ll ux)z(azf‘f)’
2 du?

()t )f‘IO) (U, wyt ) — (10') (Wit )

)

L )

2 £(0)
aaiz (ul’wzst )) (32)

1

When the expansion is substituted into Eq. (31), the first term drops out because it is odd in («, — u,), and the second term

yields
aro 4 e _ w

(fn (0,8 )) _ 1611'2e d|u, —uy 21rdwzi(
ot 1 m* Jo  |u,—uy| Jo du,

By using §5° d |u; — uy|/|u; — uy| = 5 dpo/2p,, the loga-
rithmic divergence at large-impact parameter is made evi-
dent. The divergence is removed by replacing the bare Cou-
lomb interaction with a Debye screened interaction, which

2132 Phys. Fluids, Vol. 26, No. 8, August 1983

are ary

—— 1241, 1 1542y —J 1 1sWs

Fw (0wt ) O (g wast ) — O wy,t)
1 1

(1wt )). (33)

r

changes the defining equation for poflu, —u,|) to
m|u, — u,|*/2 = 2(e*/polexp{ — po/A p). Also, there is an
apparent divergence for a small-impact parameter, but this
is simply an artifact of the failure of expansion (32) for p S b.
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Introducing cutoffs at p, = b and p, = A , yields the result

(0) 4 )
(), =2 () [ 2
0

J ( af {0)
X=—
du,

(ul’wl’t )flo'(ul’wz’t)

(Oi

'—f‘l (“l’wht) (uvwz’t )) (34)

In Appendix B, Eq. (34) is compared to the term in Ros-
toker’s collision operator which describes the scattering of
the parallel velocity components.

Returning to a analysis of Eq. (30), we note that the first
term may be characterized by an effective collision frequen-
cyoforder v, ~nb * In{A , /b ) and that the second term may
be characterized by an effective collision frequency of order
v, ~0nb2((86)*) ~vnb*(r_ /b ). Since v,<v,, the electron
distribution first relaxes in the manner required by the first
term and then relaxes in the manner required by the second
term. From the fact that the first term describes the inter-
change of parallel velocities, one can see that this term forces
the distribution to relax to the form f'™u,w,t ) = glu)h (w,t ),
where

glu) = J: 27 dw fP (u,w,t),
(35)

+ oo
h(wt)= J du fPuw,t).

By integrating Eq. (30) over dw,, one can check that dg/
gt =

To investigate the effect of the second term in Eq. (30),
we set fOu,w,t ) = gu)h (w,t ) + 8f (u,w,t ), where 8f is pre-
sumed to be small. When this expression is substituted into
Eq. {30), 6f need be retained only in the first term of the
collision operator. Integration over du, makes this term van-
ish, so Eq. (30) reduces to

h d ( _ 6h )

—{w,t ) = v,—{ wh (w,t ) + ww—{w,t) ), 36

at( ) Cr (w,t) aw( ) (36)

where the subscript 1 on the w has been dropped, use has
been made of the normalization

o 0 +
f 27 dw h (w,t) =j 27 dwf duf? (uwt) =1,
0 0 — o

(37)
and the following two quantities have been introduced
w= f 2 dw h (w,t w, (38)
0
0 + o«
V, = ”f 2mp dp du, f du, glu,)g(u,)
0 o — o0
X[ul—uzf[ée(p,ul—uz)]z. (39)

As is expected, the time evolution implied by Eq. (36) is
consistent with the definitions in Egs. (37) and (38), that is,
integrating Eq. (36) over dw yields

%J; 2rdw h(w,t)=0, (40)
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and integrating over w dw yields
if 2rdwh(w,t)=0. (41)
dt Jo

Also, we note that Eq. (36) takes a form that may be
more obvious to some readers when written in terms of the

variable v, = |v, | = (2w)'/%. Rewriting the equation in
terms of this variable yields
=
Sk _ Zl-l—ivl(vlh + Y% ﬂ), (42)
ot 2 v Oy, 2 On

where (1/v,) (d /dv,) v, is simply the divergence in cylindri-
cal coordinates.

The expression for v, may be simplified. Using the
expression in Eq. (15) for §8 and changing the integral over p
to an integral over a yields

+ +
v, =ﬂif duzj du, glu ()|, — ]

XZWJw a da 7*(a), (43)

where

[+ D)2 =37+ 1))
n(a) = § —1/27%/2 )
ofer) (1 —alg?+1)7"7]
A numerical evaluation of the a integration yields

vz_(zé)—j i J " du, glulglen)|u, — wl, (45)

which is of order v ~(n/02 %) > ~nb *v(r, /b ).

Equation (36) has an interesting property. As one ex-
pects, it is nonlinear in the sense that v, and w are determined
by the distribution function. However, v, and w are time
independent and are determined by the initial distribution.
Thus, from the point of view of an initial value problem, the
equation is effectively linear. One can easily verify that the
solution is given by

hiwt)=e " i a,L, (%) e " (46)
w

n=20

(44)

where the L, (x) are Laguerre polynominals.'? The constants
a, are given by

Tdwp (3 ) h (w,0). (47)

(o] w

a, =

For example, L, = 1, so a, = (27w) . Of course, this im-
plies that A (w,t = ) = exp( — w/w)/(27w).
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APPENDIX A: AN ALTERNATIVE DERIVATION OF THE
ADIABATIC INVARIANT

In this appendix, we consider collisions involving the
simultaneous interaction of many electrons. First, let us con-
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sider the question of energy exchange between the parallel
and perpendicular velocity components.

To see that there is an adiabatic invariant which pre-
vents such exchange even for a many electron collision, we
introduce canonical coordinates'? for each electron (z, p,, ¥,
milX, ¥, P,), where

tanyy = — v, /v,

P, =m} +v})/202,

X=x~—v,/02, Y=y+v /0
Here, ¢ is the gyroangle and P, is its conjugate momentum,
and (X,Y) are the coordinates of the guiding center, Py

=mJ{2X being the momentum conjugate to ¥. The Hamil-
tonian for the electrons is given by

(A1)

2

e
= 121 w N ,; Ir; _rjl ' A2
where
[r, — ;| = (X, +p; cos ¢, — X; — p; cos '/’j)z
+ (Y, +p; sing, — Y, —p; sin ¢j)2
+(z —z) (A3)

The quantity p=(2P,/m2)"/? is the Larmor radius for an
electron.

Assuming that the dynamics under discussion is that of
a many-electron collision, rather than that of a collective
mode (e.g., a plasma oscillation), the inequality 2> v/b im-
plies that the variables ¢; are rapidly varying {i.e., ¥;
= 6H /3P, ~{2) compared to the other variables. Since
there are many fast variables (i.e., ¢; forj = 1,...,N), the exis-
tence of an adiabatic invariant is not immediately obvious.

To uncover the invariant, we make a transformation to
a new set of variables which is such that only one of the
variables is rapidly varying. The transformation takes
(¥, Py)lJ =1, ,N} into {{6;,Py)|j = 1,...,IV | via the gen-
erating function'*

and leaves the variables (z;, p-» Y;, m(2X;) unchanged. Of
course, an identity transformation for these latter variables
could have been added to the generating function. The new
variables are related to the old by taking partial derivatives
of the generating function in the usual manner'*

dF, 3F,

. :8P =9, 6 :an =, — ¢, forj>l, (A5)
c?F Y dF.
P —2=P, — YP,, P,=—""2=P, forj>l.
W = En o, j;z 6 Y = a9, o, rj>
(A6)

From Eq. (A6), it follows that P, =X\, P,; so the
Hamiltonian takes the form

p? 2

Z 4

2m e =1

H=P,

(A7)

From the Hamiltoman, one can see that €, is the only rapidly
varying variable. Also, when the variation of the slow varia-
bles is suppressed, (0,, Py ) are action angle variables. Thus,
we may identify P, = v, P,ﬁj as an adiabatic invariant.
From the definition of P, v, in Eq. {A1), we see that the invar-
iant expresses conservation of the energy in the perpendicu-
lar velocity components.

Next, let us consider the parallel velocity components.
For a binary interaction, conservation of momentum paral-
lel to the field and conservation of parallel energy imply that
the parallel velocity components for the two electrons can at
most interchange. One can easily see that there is no such
restriction for a three (or more) electron collision. Thus,
many electron collisions should drive the distribution of par-
allel velocity components to a Maxwellian.

APPENDIX B: COMPARISON TO THE ROSTOKER
COLLISION OPERATOR

In this Appendix, we compare the collision operator
derived in this paper to that derived earlier by N. Rostoker.'
He obtained the generalization for the case of a magnetized

=Po, ¥y + 22 Polth; — 1), (A4) plasma of the Lenard—Balescu collision operator'®
P
J
g‘ﬁf 5 ( d +_l£i) Jitkw /R W (kv /2) w8 [k, (v, —v) + (= 1')]
ad nJ@2uP R v, v, v, (k2 + k2V|etk,v, + I2K)|
2 4 1'.0 a
X Nk, _ ) — t t (B1)
g+ T gt = (kg g S )]

where J, is the Bessel function of order / and

Jilk,v /2)[k,(8/dv,) + (12 /v, )(d/dv,)] f

(B2)

[02
elwk) =1 +Zk—"2J_dv
1

is the plasma dielectric function in the electrostatic approxi-
mation. The operator is derived with the aid of the weak
interaction approximation, and an ad hoc cutoff is imposed
for impact parameters which are smaller than or of the order
of b, that is, the k integral is restricted to the domain |k| =1/
b.
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ko, +102 -

r

From the cutoff and from the argument of the delta
function, one can see that in the regime , €bonlythe/ =1’
terms need be retained. Let us consider the terms with
1 = ' #0; these terms involve the scattering of the perpendi-
cular velocity components. Since |k| = 1/b<42 /v, the Bes-
sel functions may be replaced by small-argument expan-
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sions; so, near the cutoff, the k integral is of the form
k II e 47— 1
dk———~f dk, k¥ 2<(1/b)¥~1. (B3
| T kS (/b (BY)

The sensitivity of these terms to the ad hoc cutoff is simply a
reflection of the fact that the most important collisions are
characterized by small-impact parameters, and the weak in-
teraction approximation fails there.

The term for / = /' = 0 describes the scattering of the
parallel velocity components. If we assume that the dielec-
tric function simply imposes a cutoff for |k{<1/4p, this
term reduces to

(af(v,z )) _4me'n (/1_0) f " d,
I=1'=0 b 0 s

ot m?

aJ , 0
X avz (f(vzvvi s ):?Zf(vz’vl ’t)

—f ot ——— (B4)

dv,
This differs by a factor of 2 from the corresponding term
derived in this paper [e.g., Eq. (34)]. Even though the scatter-
ing of parallel velocities is due mainly to collisions with im-
pact parameters which are much larger than b, the weak
interaction approximation is not valid. The parallel veloc-
ities remain unchanged unless the electrons reflect from one

df (v,,v],t ))
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another, and integration along unperturbed orbits fails when
reflection occurs.

Even though the collision operator is not rigorously ap-
plicable in the regime r_ <b, it does exhibit the adiabatic
invariant. For the terms with / =/, one can show that
§ d>v(mv?/2)9f /3t = 0, that is, that the energy associated
with the perpendicular velocity components is conserved.
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