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Nonneutral Plasmas have exceptional confinement properties,
limited by neoclassical transport
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A positive “pure ion plasma”  is confined by static electric and magnetic fields of a Penning-Malmberg trap. 
Magnetic field is produced by a solenoid (not shown). 

Axial confinement is due to electric fields from applied potentials on the end cylinders.

Radial confinement is due to the vxB force from plasma rotation. Typical rotation rates are                10-100 kHz

These errors produce forces that  torque on the plasma rotation wr
slowing it and reducing the confining  vxB force. This causes plasma expansion and eventual loss to the walls

Confinement is  limited by small field errors that break the cylindrical symmetry of the applied fields 
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Experimental data (dots and squares) and 2 theories (solid & dashed lines) on radial 
expansion rate n versus B in electron plasma from three types of field errors:

• (a) unknown “background errors” in the trap fields
• (b)  voltage                   applied to a single wall electrode, length 4cm, 
• (c) a tilt of the magnetic field w.r.t. the trap axis by angle e= 1 mrad
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Dashed lines: self-consistent field error 
potential calculated keeping only the 
bounce-averaged plasma response 
(as in previous work*)

Va = 1Volt

=

d r2

dt
r2

When the error is known, we can predict the
expansion rate within ~ 2

Va = 1 Volt

Solid lines: theory uses self-consistent 
field error potential calculated exactly

ε  = 1 mrad

background

*Dubin,Kabantsev,Driscoll Phys. Plas. 19 (2012) 
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Ingredients in the theory:

1) Calculate realistic self-consistent plasma equilibrium for given measured radial density profile , assuming 
temperature T= 1 eV
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n0 (r,z) = n0 (r,0)exp[−e(φ0 (r,z)−φ0 (r,0)) /T ];
∇2φ0 = 4πen0 (r,z)

-100 VoltsGrounded wall electrode

Solve the nonlinear Poisson-Boltzmann  system:

using an iterative relaxation method on an r,z grid

Contour plot of the right half of the plasma density
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2) Using this equilibrium density and potential, solve for the radial flux from a small applied electrostatic 
potential error on the wall, df(r=3.5 cm, q, z). 3 approaches were used:

a) “Brute force” .  Solve the  linearized guiding center Fokker-Plank /Poisson system for the self-consistent 
perturbed distribution function df(r,z,vz), assuming a uniform collision rate g. The  perturbed distribution 
function  is assumed to satisfy

δ f ≡ (g − eδφ /T )n0 fmaxwellian

where g is the non-adiabatic portion of the plasma response, which satifies
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:Fokker Planck collisions

 δφ  is determined self-consistently from δ f : ∇2δφ = −4πe dvzδ f∫
radial flux is from θ -averaged radial ExB drift: Γr =

c
2πBr

dθ dvzδ f
∂δφ
∂θ∫

Solve this system iteratively on an r,z,vz grid: choose a df, evaluate df,  reevaluate df via a relaxation algorithm, repeat).
Then reduce the collision rate g until resulting radial flux is independent of g (plateau regime)
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b) Evaluate df directly in the plateau regime using action-angle variables appropriate to the plasma equilibrium.
The resulting flux should agree with method a) (it does!). The solid lines in the radial expansion rate figures use 
both method a and b; the difference between the methods is negligible.

Here we drop collisions and write the perturbed Vlasov equation in action angle variables (y,I). The equation  
can then be solved analytically for a given perturbed potential:

Take as the perturbed potential the output of the code from  “brute force” method a). We do not try to iteratively 
solve for a self-consistent g and df using the above expression. Divergences in g at bounce-rotation resonances 
are difficult to deal with, as are                          transformations at each radial grid point. (The Plemelj formula 
can still be used to obtain the radial flux from the above expression for g.)

c) Redo method b) by determining df in a more approximate manner: Approximate df by it’s bounce-averaged 
form in the collisionless Vlasov equation (the n=0 term in (*) ), which removes all bounce-rotation resonances. 
Use this to calculate an approximate self-consistent perturbed potential df iteratively.  Then use this approximate 
bounce-averaged form for df in plateau regime calculation b) or in a). This approximate method yields the 
dashed lines in the  previous expansion rate figure.

g = einψ +ilθgn,l (r, I )
n,l
∑ , δφ(r,z,θ ) = einψ +ilθδφn,l (r, I )

n,l
∑

⇒ ilω E (r, I )gn,l + inωb (r, I )gn,l = il
ω F

T
δφn,l

⇒ gn,l =
ω F

T
lδφn,l

lω E + nωb

(*) ωb (r, I ) :  axial bounce frequency
ω E (r, I ) :bounce − averaged ExB rotation frequency

(z,vz )↔ (ψ , I )
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Radial Transport at different plasma lengths+for a spheroid
We varied the half-length L of the electrode structure: L=15 cm, L=30 cm(previous data) 
and L=45 cm, keeping the end electrodes at 100Volts and the radial density profile 
roughly the same. This makes cylindrical plasmas with three (full) lengths: Lp~ 20 cm, 
Lp~50 cm (previous), and Lp~ 80 cm.
We also created a 50 cm long spheroid using a tailored  wall voltage, with roughly the 
same radial density profile

1 volt localized field error 1 mrad tilt error
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• At or below B~1 kG, transport from a localized error is roughly 
independent of plasma length, while transport from a tilt error scales 
roughly as n ~ Lp

3.8

• Above B~1 kG, transport is suppressed at smaller Lp. For a spheroid it 
is suppressed even more.

Lp
3.8

Tilt error
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Suppression of radial transport at smaller Lp and 
larger B

• Radial transport is dominated by flux at larger radii within the plasma.

• At these larger  radii, and for shorter plasmas, the axial equilibrium electric field is not fully Debye shielded, 
making a weak harmonic axial potential well near z=0 (plasma axial center).

• This causes a minimum value of the axial bounce frequency at low particle kinetic energies

• For sufficiently large B, the plasma rotation frequency approaches or exceeds  this minimum. This suppresses  
bounce-rotation resonances where

• This finite length effect is missed in previous
work that uses periodic boundary conditions in z or “flat ends” 

nωb (r, I ) = lωE (r, I )

Lp = 20 cm
B=10 kG
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Suppression effect is even greater in spheroids
Spheroid density contours

Tailored wall potential This wall potential creates much larger axial harmonic well inside plasma
making minimum bounce frequency larger:

Spheroid
B=10 kG

A magnetic well might be even more effective at suppressing transport 
since magnetic nonuniformity is not Debye shielded –future work
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One experiment* also observed a reduced expansion rate
when the plasma is confined in a harmonic potential in z (including 
plasma image charge effects)

Multi-ring Penning trap with ring voltages chosen
to produce                                  near axis, including image charge
potential, for long plasma with N = 8 x 107 charges

φ = C(z2 − r2 / 2)

*Higaki et al., Jpn J. Appl. Phys. 37 664 (1997)11

Neoclassical transport  is enhanced flux across the magnetic field caused by symmetry-breaking 
“field errors” in the confinement fields
• In non-neutral plasmas, these neoclassical fluxes are often the dominant plasma loss process
• New results: 
1. For known applied field errors that are not too big and do not produce localized particle 

trapping, experimentally observed radial particle transport is explained by the plateau regime
2. To achieve accurate predictions precise self-consistent potentials must be calculated 

numerically, including finite length effects in realistic geometry. This was done using a new 
code described below.

3. Dependence of the transport on plasma length and magnetic field has been characterized for 
two types of errors: a potential asymmetry applied to a wall electrode, and a tilt of the 
magnetic field compared to the axis of the Penning trap

4. For shorter plasmas in strong B fields, plateau transport is strongly suppressed by a novel 
effect: a minimum axial bounce frequency exists in short plasmas that can be larger than the 
rotation frequency if B is large, suppressing bounce-rotation resonances

5. This effect also explains why spheroidal plasma equilibria have been observed to have lower 
field error transport. 1


