Published in Turbulence and Anomalous Transport in Magnetized Plasmas 2L

(D. Gresillon and M.A. ‘Dubois, eds.), Edltlons de Physique, Orsay,
293-308 (1987). :

Like Particle Transport: A New Theory and Experiments with
Pure Electron Plasmas™

T. M. O'Neil, C., ¥, Driscoll, and D. H, E Dybin
University of California, San Diego
La Jolla, CA 92093

Abstract A new theory of cross-magnetic field transport due to like- .
particle collisions is presented. The elementary transport step of the new
theory is the Exg drift of a particle guiding center which occurs during a
binary interaction. The new theory supercedes the traditional theory in
the parameter regime where the Debye length is large compared to the
Larmor radius (Ap ®> ry), since the flux predicted by the new theory
exceeds that predicted by the traditional theory by the ratio (Ap/rq 25> 1,
This parameter regime is standard for magnetically confined pure electron
plasmas, and experiments are discussed in which transport of such a plasma
toward thermal equilibrium is measured. Preliminary results are consist-
ent with the new theory but not with the traditional theory.
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I, Introduction

This talk describes a new theory of cross-magnetic field transport
due to like-particle interactions and the consequences of this theory for the
transport toward thermal equilibrium of a2 magnetically confined pure elec-
tron plasma. It is well known that under ideal conditions such plasmas can
achieve confined thermal equilibrium states. 11 order to explain experi-
ments now underway at UCSD, 2 it is necessary to consgider a hitherto un-
examined regime in the theory of like-particle transport: the regime in
which ry <<\, where ry, is the electron Larmor radius and Ap is
the electron Debye length, Traditional theories3+4 of transport due to like-
particle collisions were intended to describe ion-ion interactions in neutral
plasmas and were formulated for the regime ri, » Ap . The transport
mechanism considered in the new theory yields a particle flux which greatly
exceeds that predicted by the traditional theory in the regime r; << Ap.

The ratio of the particle flyx in the new theory to that in the traditional
theory will be seen to be of O(hD/rﬁ) under the assumption that electrons
interact only via a Debye-shielded potential. Furthermore, an even larger
flux is possible if collective effects are taken into account. However, in the
regime of current experiments, theory indicates that the influence of col-
lective effects on the transport is probably negligible,

Experiments are in progress to measure like-particle transport to-
ward thermal equilibrium, and these experiments will be discussed in the
last part of the talk. Preliminary measurements of the particle transport
have been made as a function of magnetic field., The measured fluxes are
orders of magnitude %reater than predicted by the traditional theory, scaling
approximately as B~ rather than as the predicted B-4, The measured
fluxes are, however, consistent with the new theory both in magnitude and in
scaling with B. Future experimental measurements may provide detailed
tests of the new theory.

II. Transport Mechanism and Scaling

For simplicity, let us consider the case of slab geometry. A pure
electron plasma is immersed in a uniform magnetic field B = zB, has an
electric field and a density gradient in the x-direction [i.e., E = xE(x) and
. n =n(x)], and is homogeneous in the y and z-directions, For simplicity,

let us take the temperature, T, to be uniform.

It is useful to start with a fluid description of like-particle transport.
' The electric field and pressure gradient produce a fluid drift in the y-
direction

[ o4 T an ~
‘L‘X)"B[EJ'E Bx]y' (1)

Because of viscosity, the shear in this fluid drift gives rise to a force
density
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Ee) = 5o Y § (2)
where T is the coefficient of viscosity. In general, this coefficient is of
the form 7= nmv (/_\.x)z. where Vv and (Ax) are frequency and spatial scales
characteristic of the binary interaction which gives rise to the vigscosity. In
turn, the force density produces a fluid drift in the x-direction, and this
drift is the cross-field particle flux

9 eE , 1 Bn] (3)

-C ~ ~ 2 2 3[
Tx(x)—e—ﬁgxz-x_-&er(Ax)nax T nllw

As a passing comment, it is worth recalling that the expression for
the particle flux in a neutral plasma contains a term which is proportional
to the first derivative of the density. This diffusion flux is typically much
larger than the higher order flux in Eq. (3). The diffusion flux arises be-
cause the electron and ion diamagnetic drifts are in opposite directions,
and a collisional drag force between the two species produces a cross-field
drift (which is proportional to the plasma density gradient). Of cour se, this
diffusion flux is not present at all for a pure electron plasma,

The quantities v and Ax must be determined from a microscopic
theory. In both the traditional theory and the new theory, Vv turns out to be
the electron-electron collision frequency. However, the traditional theory
and the new theory yield different predictions for Ax, that is, Ax ~ r. and
Ax =~ \py, respectively. Thus, the traditional theory predicts a flux which

scales 1ik§ S 1/B4, and the new theory predicts a flux which scales like
' = 1/B~4,
x

In the traditional theory, the microscopic treatment is based on a
solution of the Boltzmann equation (or, Lenard-Balescu equation) for an in-
homogeneous plasma. To understand how the elementary step of the trans-
port process comes about according to this treatment, first recall that the
position of a particle guiding center is related to the particle position and
particle velocity through the equation

N>

a4

=T -
~

' (4)

i

r
~8

where Q =eB/mc is the cyclotron frequency. A Boltzmann-like equation
treats a collision as a point event; during the collision, r does not change,
but v undergoes scattering and this produces a step in the guiding center,
Ar, = -A yX 2/Q (see Fig.1), From conservation of momentum, one can
see the the guiding centers of two like particles make equal and opposite
steps, and this is another way to understand why the usual diffusion flux is
not present for like-particle transport.

For the purpose of determining Ax in the coefficient of viscosity, the
important point to note is that a collision is treated as a point event, The
two colliding electrons must have the same value of T ; so their guiding
centers can be separated by no more than the order of ry,. Itis largely
this feature which sets Ax = r; in the traditional theory.
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The Boltzmann equation picture, where the step in the particle guiding .
center occurs as a result of a point scattering of the particle velocity vector,
makes sense when the range of the force is small compared to the Larmor
radius. For example, it makes sense for the case of jon-ion collisions in a
neutral plasma, where the Debye length (effective range of the force) is
small compared to the ion Larmor radius. On the other hand, for a pure
electron plasma {where Ap>> rp), there are many collisions which are not
well described by such a picture.

An example of such a collision is jillustrated in Fig. 2. Two electrons
approach one another moving in tight helical orbits centered on field lines
which are separated by a distance p~ Ap >> ryp, . In this situation, the
collisional dynamics may be treated by guiding center theory. As the elec-
trons move past one another, they undergo equal and opposite E X B drifts,
where E is the interaction field. There is very little velocity scattering
for such a collision, and the Boltzmann analysis completely underestimates
the size of the guiding center steps. For the purpose of estimating Ax in
the coefficient of viscosity, the important point to note is that the two guid-
ing centers can be separated by as much as hp; so such collisions lead to
a Ax = \p . Since Ap>> rj,, these large impact parametercollisions
{i.e., 0~ Ap>> ri,) provide the dominant contribution to the viscosity.

III, Guiding Center Model of the BBGKY Hierarchy

To obtain a kinetic theory which treats such collisions, we construct
a guiding center model of the BBGKY hierarchy. 3 In this model, the state
of each electron is specified by its three configuratfion coordinates and its
axial velocity (%,v,2z,v). From the l-electron equation of the hierarchy (or
simply from inspection), one can see that the particle flux in the x-direction
is given by

3 3 jc\0y -
e = 'fd‘ﬁfd"zfd L2 (B)Wl (zprd ey vz e O

where ¢ (r 1, r 3) is the interaction potential between electrons 1 and 2 and
fz(};l y Vi Lo Voo t) is the 2-electron distribution function.

For simplicity, we first treat the shielding in an ad-hoc¢ manner and
write Y (r 3, r ;) as the Debye-shielded Coulomb interaction

- 1
o e s n] o

~1 ~2

where 1/7&3 = 41 ezn[ (xy + x,)/2] /T. This treatment avoids the mathemat-
ical complexities associated with the development of shielding in an in-
homogeneous plasma. A proper treatment has been completed and the re-
sults will be presented below, & In accord with the ad-hoc treatment of
shielding, the 2-electron distribution evolves according to the equation
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4= - + = - f, =0 . (7)
B ayz 8x1 axz B axz Bxl ayz 2 .

Here, use has been made of the assumed homogeneity in y and =z.

This equation can be solved by use of a perturbation expansion in the
stren%th of the interaction, Y. To this end, we set i = fz(o) + fz(” and
0) + L , where L is the operator which acts on fz. The super-
script (0) refers to quantities which are zero order in y and the super-
script (1) to quantities which are first order in ¥, Thus, L 0) consists of
the first three terms in the bracket of Eq.(7) and L 1 consists of the last
three terms.

In zero order, Eq.(7) reduces to Lm) 2(0) = 0, which has the solu-
tion f (0) - fZ(O}(xl, Vi X2, vz) The solution is further constrained by the
observatmn that in zero order there can be no electron-electron correla-
tions; so the 2-electron distribution must reduce to 2 product of 1-electron
distributions. Taking the l-electron distribution to be a Maxwellian charac-
terized by density n{x) and temperature T vyields the solution

2 2
f(o) _ n(xl) n(xz) 1L mv, +mv2
2 T T (@enT/m) P |[TT\ T3 2 ' (8)

It is interesting to note that the Maxwellian character of the distribu-
tion is forced by collisions which are not directly included in the guiding
center model. This model focuses attention on the large impact parameter
collisions (i.e., P ~ Ap >> r1) which yield the dominant contribution to the
flux, Velocity scattering, which forces the distribution to be Maxwellian,
is agsociated mainly with small impact parameter collisions (i.e., P € ri)-
These collisions are not directly included in the guiding center model but do
have the indirect effect of forcing the distribution to be Maxwellian,

In first order, Eq. (7} reduces to the form L(O)fgl) + L(l)f(zo) = 0,
By observing that L{0) = d/dt is the total time derivative along unper -
turbed orbits and that

dy

‘- v) ot - S (B, - Ex))] 2k ©)

2 1 3z2 8y2

= (v

the solution can be written as

(1) _ ey (0) (0) e TN
£, =g 1 +[vy(x1 -v (x )]f T [dt (5;——2-) , (10)
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where v_(x) is the fluid velocity introduced in Eq. (1) and the time integral
is taken over unperturbed orbits. This equation has a simple physical in-
terpretation. The first term on the right is the thermal equilibrium corre-
lation function established as electrons 1 and 2 stream along the field lines.
The second term is the perturbation in that function produced by shears in
v_(x). As one would expect, it is only the second term which contributes to

the flux.

Substituting f, = f(zo) + f(zn into Eq. (5) and writing out v_(x) in
terms of the electric field and density gradient yields the expression

3 1 dn 1 dn
1qx(xl) = [d rz{[n{xz) dx2 B n(xl) dxl]

+ S (Efx,) - E(xl)]} alx,) nlx,) Bl ,-x 0 (e, +x,)/2) (11)
where
h[rz—rl, (x1+x2)/2]
-1¢1 2 1 2 t s
exp [‘T (Zmvy +Emvz)] TRV R
=fdv1fdv2 (21 T/m) [ dt (-ﬁ) (EE)(S?;) . (12)

~ Because of Debye shielding, the r, integral in Eq. (11) receives
significant contributions only for X, mear x, {i.e., for Ixz -xll < hD) .
We assume that n(x;) and E{x3) vary on a length scale which is large
compared to Ay, and we make Taylor expansions of n(xz) and E(xz) about
Xy =% - The variation of h[};z -Lqr (x1 + xz)IZ] through its second argu-
ment is on the same scale as that for n(x,) and E(x;); so h[;;z -I
(x1 + xz)/Z] also can be Taylor expanded about X2 = %y . Of course, the
dependence of h[;;z -Tq (xl + xz)/Z] on its first argument cannot be
Taylor expanded; it is the peaked nature of this dependence which justifies
the other expansions. Carrying out the expansions and substituting into
Eq.(11) yields the result

n(xl) dx * T E(xl)] !

[ldng_
1

d 2 d
T'x(xl] =3 (xl) K(xl) I (13)

1 1

2
where Kix) = fdsf_,(x /Z)h(};,xl) is the transport coefficient and
r =rz-r, isthe relative position vector.

—~

The unperturbed orbit for the relative position vector is specified by

z'=3z +v(t'- t),

’

¥y

y +(c/B)[E(x,).- Ex)] (¢’ - 1),
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and x’=x. Here, the relative velocity v =.vz - vy and Xy and x, are
independent of t'. By use of the relation

|E(x,) - E(xl)] < |dE/dx2|xD = 4Teniy -

one can see that the inequality A 2> r; implies the inequality v >>

(c /B)lE(xz) - Ex )l . In other words, for most collisions, the relative
velocity parallel to the field is much larger than the relative velocity across
the field, As a first approximation, we neglect the relative cross-field
motion which occurs during an interaction and set vi= y.

By use of the orbit z’ =z +v(t!-t), Y' =y, and x'=x together
with a Fourier representation of the interaction potential

3
y = [ d k3 2('4ne)2 exp(ik - r) , (14)
(27) k + lle(xl)

one can show that

22,2
Te ¢ RD(xl) fdv exp(-mvz/ﬁlT)'

68> lv|  (amT/m)t/?

K(xl) = (15)

Here, the integral over the relative velocity arises in the following way. The
integral {dvy [dv, is replaced by the integral [dv[dV, where V:(V1+v2)/2
is the center-df-mass velocity, and then the integrdl over the center-of-
mass velocity is carried out.

The integral over the relative velocity is logarithmically divergent
at v=0. Physically, this corresponds to the fact that two electrons with
small relative velocity interact for a long time and experience large E XB
steps. To remove the divergence we must take into account physical effects
which limit the time of the interaction, or, equivalently, cut off the velocity
integral at some small but finite value of |v| (i.e., min|v| = Av).

One such effect is small-angle scattering. The small-impact-
parameter collisions, which are not directly included in the guiding-center
model, produce a diffusive spreading of v =v, - v,. During the time 7T,
the amount of spreading is (Av)z = vv- 1T, where Vv is the collision fre-
quency and ¥~ = T/m. This velocity spread can separate electrons 1 and 2
by a Debye length during the time T provided that {Av)T = in. Eliminating
T between the two relations yields the result {(Av/¥) = (v /UJP) /3, where W
is the plasma frequency. '

A competing effect is associated with the relative cross-{ield motion
of the two electrons. Two electrons for which ]xl - le = Ny have a rela-
tive y velocity of (¢/B){dE/dx|\p = (chpy 4Ten)/B. The time T for this
relative velocity to produce a separation |y; -y, | = Ap is given by
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T(4Tenc)/B = 1. Relating this time to a relative parallel velocity through
(Av)T = Ap yields the result (Av/¥) = rL/?\D . Of course, the cutoff for the
velocity integral in Eq. (15) is determined by the effect which yields the
largest value of {Av/¥).

Intr oducing the cutoff and carrying out the velocity integral yields the
result 2 2 2

,\/T—Te c }xD(xl)Qﬂ{_.]

K(x,) = (16}

-
5 —
6B v AV
This coefficient should be compared to the coefficient obtained previously,
that is, to (3/8)(\)/'n)]:'].:l , where Vv = (164/T e4n/15 m2?3)£’/f1 (rL/b) is the
collision frequency and b = e“/mv® is the distance of closest approach.
The ratio of the new coefficient to the previous coefficient is given by

(%)[@n(v/Av}/@n(rL/b)l (g /)

The analysis also has been performed without making an ad-hoc
assumption of shielding.” The plasma dielectric is treated properly, and
the shielding arises naturally through the plasma response. One finds that
the flux can be written as the sum of two parts ' :

I1:\: = I-'x)shi.elc’xed * Iq:'-:)rnodes ' (17)

where the first term is due to the shielded interaction and is to within a
factor of 2 equal to the result given by Egs, (13) and {(16). The second term
is due to the interaction of electrons 1 and 2 through weakly damped modes.
Electron 1 Cerenkov radiates a mode which propagates some distance across
the plasma and then is absorbed by electron 2.

In this way, a large interaction length can occur (i.e., Ay <<Ax < L,
where L is the plasma dimension). Of course, the effective interaction fre-
quency scales inversely with the interaction length (i.e., v < v = v_/Ax); so
the contribution to the viscosity scales like the first power of the in%eraction
length [ie., v (Ax)z = Ax]. It turns out that the most important modes are
those with Ax~ L, and the magnitude of the total contribution from these
modes is of order

x)modes

1-‘:-:)shieldend

L
f o (18)
D

where the factor f arises from the sum over modes and is small (i, e.,
f ~10"2.1073).

Thus, the contribution from the weakly damped modes is negligible,
unless the plasma is large (i.e., L. » Ay /f). Note that for a pure electron
plasma the ratio of the potential difference across the plasma to the
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temperature is of order eA®P /T ~ (L/?\D)Z. For the experiments to be
discussed next, the effect of weakly damped modes is quite negligible
{i.e., L << }xD/f), but their effect may be important for future experiments
with cryogenic pure electron plasmas,

1V. Experiments

Let us now turn to a discussion of the pure electron plasma experi-
ments. 2* 1 A schematic diagram of the confinement geometry is shown in
Fig. 3. The entire apparatus is in a uniform magnetic field, B = zB, and
is evacuated to below 10710 Torr. The system is repetitively pulsed in the
following sequence. Initially, cylinders A and B are held at ground poten-
tial, and cylinder C is biased strongly negative. Electrons emitted from a
negatively biased thermionic source then form a column from the source
through cylinder B. When cylinder A is biased negative, a portion of the
electron column is trapped in the region of cylinder B, The electrons are
confined radially by the magnetic field and are confined axially by the elec-
trostatic fields. DBecause the colummn is unneutralized, there is a radial
electric field., This field and the radial pressure gradient produce a drift
rotation of the plasma and also drive a slow radial transport,

After a time t has elapsed, cylinder C is pulsed to ground potential
and the electrons stream out along the field lines to collimators, velocity
analyzers, and collectors. Repetition of the cycle many times allows one to
construct the radial density and temperature profiles as a function of time.
This relies on shot to shot reproducibility, which is typically better than 1%.

Typical values of the density, temperature, and magnetic field
strength are

7 -
n=>= 10 cm 3, T=1eV, B = 100 Gauss,

and typical values of the Larmor radius, Debye length, and plasma radius
are '

= (0,02 s A== 0, e .
re cm D 0.2 cm, 1'p 2 cm
One can see that these values are consistent with the length scale ordering
assumed in the theory. Typical values of the cyclotron frequency, plasma
frequency, axial bounce frequency, rotation frequency, collision frequency,
and inverse transport time are

8 -1 7 -1 6 -1
) b4 o ot o
Ve 3% 10 sec , vp 3X 10 sec , VR = Vg 10" sec ~,

-1 -1
Vv = 200 , T =
sec {1/ )Tran 1 sec

One can see that there is a comfortable separation between the time scales
for collective phenomena, collisions, and transport.
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The plasma comes to thermal equilibrium in two stages, First, col~
lisions produce a local thermal equilibrium along each field line on a time
scale v-l = (200)'1 sec. On a much longer time scale, T ans. > 1 sec,
cross magnetic field transport allows the plasma to come fo a global thermal
equilibrium.

It is easy to write down the electron distribution function for a state
of global thermal equilibr ium, 1 Here, we switch briefly from guiding center
distributions to electron distributions (in 6 -dimensional phase space). Since
the confinement geometry has cylindrical symmetry, at least nominally, the
canounical angular momentum for an electron enters the distribution on equal
footing with the Hamiltonian for the electron. The Boltzmann distribution is
replaced by a distribution of the form

3/2 ]
= P a— -—=(H - P
f=n, (zw) exp [- 5 (- g Po] 19

where

2
H=m2 - e®(r,=)

- -2
Pe— mv.T - = Ae(r)r . (20)

Here, ®(r, z) is the electric potential and Ag(r,z) = Br/2 is the vector
potential for a uniform axial magnetic field, (The diamagnetic field is neg-
ligible for the low electron densities and velocities considered here.) The
three parameters ng,, T, and Wp are determined by the total number of
electrons, energy, and canonical angular momentum in the system. It is
quite easy to rewrite distribution (19) so that the velocity dependence is
Maxwellian in a frame rotating with angular velocity Wp . In other words,
the distribution describes a plasma of electrons which rotates without shear
(rigid rotation) with angular velocity Wp . '

It is easy to see that distribution (19) corresponds to a confined set
of electrons. The electric potential becomes large and negative near the
negatively biased end cylinders; so the distribution is exponentially small at
the ends. For sufficiently large magnetic field, the vector potential forces
the distribution to be exponentially small at large values of r, and the cylin-
‘drical wall is assumed to be outside this radius.

The existence of such confined thermal equilibrium states is a unique
property of totally unneutralized plasmas., It is well known that a neutral
plasma cannot be confined by static electric and magnetic fields and also be
in a2 state of global thermal equilibrium; if it could the controlled fusion
problem would be trivial. It is precisely the fact that a confined neutral
plasma is never in thermal equilibrium which means that there is always
free energy to drive instabilities, In contrast, distribution (19) describes a
plasma which is in a state of minimum free energy. In principle, such a
plasma is guaranteed to be stable and to be confined forever.
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In practice, life is more difficult. A real confinement apparatus
does not have perfect cylindrical symmetry; so the total canonical angular
momentum is not really constant. Small field errors and construction
errors break the symmetry and apply a small torque on the plasma, and this
allows the plasma to expand slowly in radius. However, by carefully min-
imizing such effects, quite long confinement times can be achieved. For
example, pure electron plasmas are routinely confined for a da.',r.8 For the
experiments to be described here, the plasma radius doubles on a time
scale of 102-10% sec. Since this is much longer than the time for transport
to thermal equilibrium (i.e., T'I'ra.ns. = 1 sec), we will neglect the effect of
the external torque.

Since the electric potential is largely determined by the electrons
themselves, one must solve for the potential self-consistently. One must
solve Poisson's equation with the charge density given by the velocity integ-
ral of distribution (19}). This can be done for the full three-dimensional
geometry, 1 but the results are easiest to display for the case of a long col-
umn, where the radial deunsity profile is the significant feature. Fig. 4 dis-
plays a family of such profiles, and the asterisk marks the profile which is
closest to the experimental parameters,

In general, the density and temperature profiles of the.injected
plasma do not correspond to thermal equilibrium. The radial electric field
and pressure gradient give rise to a fluid drift velocity in the azimuthal
direction

c aPp 1 8 .
vor) =< [+ 2 -;é‘é;‘(nT)] , (21)

which in general does not correspond to rigid rotation (i.e., Vg (xr)/r # con-
stant), Viscous forces in the azimuthal direction then produce a radial drift:
the particle flux

1 8 2 ¢ 9%l
Tr(r)—-";'z" gr—r ﬂ";—ﬁrg( - (22)

This flux conserves not only total particle number but also the total canonical
angular momentum. One can see that the flux vanishes for rigid rotation., In
fact, simply by setting vg(r)/r and T(r) equal to constants in Eq. (21), one
obtains an equation for 9n/dr which leads to the thermal equilibrium density
profile.

In Eqs. (21) and (22) we have included drifts due to temperature grad-
ients in the manner suggested by fluid theory, i.e. as arising from 6(nT)/0r.
We should emphasize, however, that this form has not been obtained directly
from the guiding center analysis of the new theory. In the current

To be precise, one must include in Eq. (21) a drift due to the centrifugal
force. This is typically small for the experimental parameters and has
been neglected in the discussion of transport.
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experiments, the effect of the temperature gradient is smaller than that of
the density gradient, i.e. (1/T)|dT/dr| < (1/n) |dn/dr|. However, the
temperature gradient is generally not negligible as was assumed in the the-
oretical discussion.

Finally, let us turn to a discussion of the experimental data. Beyond
cylinder C there is a plate with a srmall hole that can be moved radially (the
collimator). With a charge collector behind the hold, we obtain a signal
Q(r) proportional to the number of electrons on the field lines passing
through the hole. Additionally, a "Beach Analyzer' (parallel velocity dis-
crimination in the presence of a secoﬁdary magnetic field) is used to obtain
the perpendicular temperature of the electrons. Fig. 5 shows an early
example of such measurements as a function of radius for a plasma at t=0,

The number of electrons is maximal at r =0, and falls fo zero at
about R.WIZ. The plasma temperature in this case is about 1 eV in the cen-
ter and rises to 1.8 eV at the plasma edge. Presently, the shot-to-shot
variation in Q(r) are typically %1%, the temperatures are measured to
+10%, and the zeroing problems apparent in Fig. 5 have been eliminated.

We obtain the density nf{r,z) from the measured z-integral Qr) by
numerically solving a 2-dimensional Poisson equation. Because the elec-
trons are in local thermal equilibrium along each field line, the z-depend-
ence of the density is given by the Boltzmann factor

n(r, z) = n(r, 0) exp [- T%?) {p(r,z) - tp(r,O))] ' (23)

where the normalization is determined by the measured quantity Q(r) =

A fdz n{r,z). The constant A is determined by the collimator hole size and
by absolute calibrations of the amplifier gains and capacitances. Using this
expression for n(r,z) in Poisson's equation and invoking the known boundary
conditions on the cylindrical wall allows one to solve for the potential and
density as a function of ¥ and z. Fig. 6 shows an example of calculated
level curves for the electron density.

Fig. 7 shows n(r,z=0) for three different times. One can see that
the profile is evolving toward a shape that loocks to be of the thermal equilib-
rium form. The same figure also shows the rotation frequency,

o™ 0 rae 1 g
0,0 =2 [Z L S am) (24)

calculated from data taken at t=0, 0.5, and 2 sec. The initially injected
plasma has substantial shear, but one can see that the plasma has evolved to
a state which is near rigid rotation (thermal equilibrium) by t=2 sec. After
this time, the plasma profile evolves more slowly, presumably due to small
external torgques,

In this manner, we make a rough estimate of the time for transport
to thermal equilibrium. Fig. 8 shows a log log plot of this time versus



magnetic field strength. The line which scales as B2 is determined by esti-
mating the transport time according to the new theory, and the line which
scales like B? is determined in the same manner by the traditional theory.
One can see that the evolution times are consistent with the new theory while
being up to 103 times shorter than predicted by the traditional theory. The
large error bars in Fig. 8 should be taken seriously. The data does not
prove a scaling of the form T « B2 » but suggests a scaling somewhere be-
tween T « B1:-5 and BZ.5, Further, there are unwanted systematic varia-
tions in both plasma density and temperature as the magnetic field is
changed, and the effects of these variations have not been removed from the
scaling data., Of course, the results do not prove that the new theory is
correct; they are too limited in scope for that; but they are thus far consist-
ent with the new theory.

Future experimental data should provide incisive tests of the new
theory. In principle, we obtain a complete description of the plasma, and
we should be able to compare the measured flux T'.(r) to the measured
shears in the velocity vg(r). If the transport is the result of '"local®
viscosity, we will obtain the viscosity coefficient directly, for comparison
to Egs. (13) and (16).
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Fig. 1. A collision in the traditional theory. Electron and initial
guiding center positions are given by dots and crosses,

respectively.
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Fig. 2. Side view and end view of collision in the new theory.
The electrons experience equal and opposite E X B
drifts.
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Fig. 3. Schematic diagram of plasma containment device.
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Fig. 4. Theoretical prediction of thermal equilibrium density
profiles for given ®w, T and varying N. The asterisk
marks the profile which is closest to the experimental
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parameters.
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'Fig. 5. Measured charge (number of electrons) on field lines passing
through collimator and temperature of electrons on these lines
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as a function of the radial position of the collimator.
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Fig. 6. Contour plots of n(r,z) ata particular time.
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Fig. 7. Density and rotation frequency pro-
files at 3 different times. Solid
cur ves: immediately after plasma
formation (t =0), Dotted curves:
t=0.5sec. Dashed curves: t=2sec.

Fig. 8. Scaling of equilibration time T
with magnetic field. Dots are
experimental points. Dashed
lines show that T scales like
B2 rather than B4,




