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ABSTRACT

This paper considers a pure electron plasma, with a small admixture of negative ions, confined in a Penning–Malmberg trap. When a
diocotron mode is excited on the plasma, the end sheaths of the plasma are azimuthally distorted. During reflection at a distorted end sheath,
an ion steps off of the surface characterizing the drift motion in the plasma interior, and this step produces transport. The diocotron mode
transfers canonical angular momentum to the ions, and in response damps. These transport mechanism and associated damping are called
rotational pumping. It is particularly strong when the axial bounce motion and the rotational drift motion, in the rotating frame of the
mode, satisfy a resonance condition. This paper calculates the transport flux of ions and the associated damping rate of the mode in the
resonant regime. Previous papers have discussed the theory and the experimental observation of rotational pumping for the special case of a
diocotron mode with azimuthal wave number l¼ 1, and this paper extends the theory to modes with l 6¼ 1, which may sound like a trivial
extension, but in fact is not.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0064401

I. INTRODUCTION

Non-neutral plasmas are often confined in a Penning–Malmberg
trap.1,2 The confinement region is bounded by a conducting cylinder,
which is divided axially into three sections. For a plasma consisting of
negatively charged species, the central section is held at ground poten-
tial, and the two end sections are held at a negative potential. The axial
confinement is then provided by electrostatic fields. The radial
confinement is provided by a uniform axial magnetic field. Because
the plasma is non-neutral, there is a radial space charge field, and the
plasma undergoes E � B drift rotation. Here, the cyclotron radii for all
of the charges are assumed to be small enough that the cross-magnetic
field motion can be described by E � B dynamics.

A typical equilibrium state is cylindrically symmetrical, with an
electric potential, that is, nearly constant along each field line in the
interior of the plasma. Axial electric fields are Debye screened out of
the plasma interior. Within a few Debye lengths of the plasma end, the
magnitude of the potential rises steeply to provide axial confinement
for the charged particles.3,4 Since the Debye length is small compared
to the length of the plasma, the plasma length along each field line is
relatively well defined. Nevertheless, the cyclotron radii are small com-
pared to the Debye length.

For the equilibrium, the potential in the plasma core and the
potential in the end sheath both are independent of the azimuthal
angle, where ðr; h; zÞ is a cylindrical coordinate system with the z-axis

coincident with the axis of the trap. Consequently, there is no azi-
muthal electric field and no radial drift in either region. The drifts in
the end sheath are consistent with the drift surfaces in the core; that is,
the drifts in the end sheath do not move particles off the drift surfaces
in the core.

However, the situation is different when a diocotron mode5–8 is
excited on the plasma. These modes are low-frequency flute-like
modes where the cross-magnetic field motion can be described by
E � B drift dynamics. Even when a diocotron mode is excited, the
plasma potential remains nearly constant along each field line to
within a few Debye lengths of the end.4 The 2D drift surfaces in the
core are the equipotential contours in the rotating frame of the mode,
where the potential is time-independent. When the mode is excited,
the plasma potential is not cylindrically symmetric, but the potential
from the end cylinders is cylindrically symmetric. The proximity of
the end cylinders to the end sheaths and the incomplete shielding in
the sheath produce a difference in the azimuthal symmetries of the
core potential and the end sheath potential. Thus, the drifts during
reflection in the end sheaths can lead to steps off the 2D drift surfaces
characterizing the cross-field motion in the core. These steps produce
particle transport and an associated mode damping; the mechanism is
called rotational pumping.

For the special case of an l¼ 1 diocotron mode, previous
papers have described the theory9 and reported the experimental
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observation10 of rotational pumping. This paper extends the theory to
diocotron modes of arbitrary l number, which may sound like a trivial
extension, but, that is, not the case.

The l ¼ 1 mode is special in that it is excited simply by displacing
the plasma off the trap axis. The displaced plasma retains its cylindri-
cal symmetry, except at the ends, and that symmetry allows the analy-
sis to be carried out using cylindrical coordinates with a displaced axis.
In contrast, when a mode with l > 1 is excited, the plasma axis
remains coincident with the axis of the trap, but the plasma suffers a
distortion, and the simplification associated with cylindrical symmetry
is no longer available.

As we will see the analysis then is conveniently carried out using
the action angle variables ðw; IÞ for the drift motion in the core. The
drift surfaces in the core are the surfaces of constant I; and the deriva-
tive of the end sheath potential with respect to w, while holding I con-
stant, yields precisely the drift step off the core surface. This result

follows trivially from Hamilton’s equation _I ¼ � @H
@w ¼ �

@euend
@w , where

H is the Hamiltonian in the rotating frame of the mode, uendðz;w; IÞ
is the end sheath potential, and e ¼ � ej j is the particle charge. Of
course, in the interior of the plasma, the potential is only a function of
I, so there _I is zero.

Rotational pumping is particularly strong when the axial bounce
motion and the rotational drift motion, in the rotating frame of the
mode, satisfy a resonance condition, and we will focus on this case. A
particle then takes many steps of the same sign, and the transport and
damping are substantially enhanced. This work is similar to previous
work on transport in tandem mirrors in the resonant plateau
regime.11,12 The substantial enhancement is an important experimen-
tal signature of bounce-resonant rotational pumping. We will see that
the predicted flux scales with magnetic field as 1=B6, as the magnetic
field is decreased and the rotation frequency increases toward the
bounce frequency.

Physically, one can think of the transport as arising from a drag
torque exerted by the mode on the plasma. We consider the case of an
l ¼ 2 diocotron mode, that is, excited on a plasma with a top-hat
radial density profile. The mode rotates in the same sense as the
plasma, but more slowly.6 The drag torque then opposes the plasma
rotation and produces an outward radial drift of the particles; that is,
the transport of particles is radially outward. To conserve canonical
angular momentum, the mode damps in response.

Next, we suppose that the density profile has a long skirt that
extends radially outward beyond the radius where the rotation rate of
the mode matches that of the particles. Particles beyond this resonant
radius rotate more slowly than the mode, so the drag torque is in the
same direction as the rotation and produces a radial drift inward. The
response back on the wave from this torque would make the wave grow,
but is typically outweighed by the damping produced by the larger num-
ber of particles rotating more rapidly than the wave. In both cases, the
transport moves the particles toward the resonant radius where the
wave rotation rate matches the plasma rotation rate. Very near the reso-
nant radius, the drag force and consequent transport are small.

Again, the case of an l¼ 1 diocotron mode is special in that the
resonant radius is located at the wall, so rotational pumping transports
all particles radially outward.

The analysis is motivated by current experiments with a non-
neutral plasma consisting primarily of electrons but with a small
admixture of H� ions.13 The characteristic axial bounce frequency for

the electrons is very large compared to the drift rotation frequency, so
the rotational pumping associated with the electrons is relatively weak.
However, the characteristic bounce frequency for the ions is compara-
ble to the drift rotation frequency, so one expects strong rotational
pumping to be associated with the ions. In the experiments, the radial
distribution of electrons is measured by dumping the electrons out
along field lines to a phosphor screen beyond one end of the plasma.
The screen is relatively insensitive to the ions, and direct evidence for
ion position is not obtained. However, there is an inference that when
a diocotron mode is excited, the ions in the plasma are transported
outward. Simultaneously, the mode is observed to damp. The purpose
of this paper is to find expressions for the transport flux and damping
rate.

Other plasmas of recent interest are similar to the electron-H�

plasma and may exhibit similar phenomena. These other plasmas are
electron–antiproton plasmas14 and positron–Beryllium ion plasmas.15

The analysis is based on an ordering of length scales and an order-
ing of frequency scales. The characteristic cyclotron radius for the ions
is small compared to the Debye length (i.e., rci � kD), so the cross-
magnetic field motion of the ions can be described by E � B drift
dynamics even during reflection from the ends. The characteristic axial
bounce frequency for the ions and the E � B drift rotation frequency
xr are assumed to be comparable with each other and large compared
to an effective collision frequency for the ions (i.e., � � xrj j). As will be
discussed later, the effective collision frequency � is the frequency of
small-angle scatterings that are adequate to spoil the resonance between
the bounce and rotation motions. Also, the transport time scale s is
assumed to be long compared to effective collision time (i.e., �s� 1).

II. ACTION ANGLE VARIABLES FOR THE DRIFT MOTION

As a preliminary to the analysis of a finite length plasma, we
establish action angle variables for the 2D E � B drift motion in a long
plasma column on which a diocotron mode of azimuthal wave num-
ber l has been excited. We imagine that the end confinement cylinders
of the trap are removed to ¼ 61. In the laboratory frame, the 2D
E � B drift motion of a particle guiding center is governed by the drift
Hamiltonian16

Hd ¼ eu0 phð Þ þ eAul phð Þcos lh� xl tð Þ; (1)

where ðr; h; zÞ is a cylindrical coordinate system with the z-axis coinci-

dent with the axis of the unperturbed column, h; ph ¼ � eBr2
2c

� �
are

canonically conjugate coordinate and momentum, u0 phð Þ is the space
charge potential of the equilibrium, A is the dimensionless mode
amplitude, and ul phð Þcos lh� xl tð Þ is the mode eigenfunction. Here,
the magnetic field is taken to be� Bẑ , so that ph is positive for nega-
tively charged species. This choice makes the drift rotation frequency,
@eu0
@ph

; negative.

A canonical transformation to a frame that rotates with the mode
is given by the generating function

F2 h; phð Þ ¼ h� xl

l
t

� �
ph; (2)

where bars indicate variables in the rotating frame. Here, we use the
notation of Goldstein.17 Following the standard procedure, the new
variables are related to the old variables through the relations:
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h ¼ @F2
@ph

¼ h� xl

l
t

� �
; ph ¼

@F2
@h
¼ ph; (3)

and the new Hamiltonian is related to the old Hamiltonian through
the relation

Hd ¼ Hd þ
@F2
@t
¼ Hd �

xl

l
ph: (4)

Thus, the drift Hamiltonian in the rotating frame of the wave is given
by the expression

Hd ¼ eu0 phð Þ �
xl

l
ph þ eAul phð Þcos lhð Þ; (5)

where we continue to use the old momentum since the old and new
momenta are equal to one another.

Treating A as a constant, the Hamilton–Jacobi equation can be
solved, at least formally, to introduce action angle variables.17 As a first
step, one solves Eq. (5) to find ph ¼ phðHd; h;AÞ and then defines the
action through the integral

I ¼ 1
2p

ð2p
0
ph Hd; h;A
� �

dh; (6)

where A and Hd are held constant in the integration. In principle, Eq.
(6) can be inverted to find Hd I;Að Þ. The Hamilton–Jacobi equation
for the generating function to action angle variables is then written in
the form

@F02
@h
¼ ph Hd I;Að Þ; h;A

� 	
: (7)

One solves this equation for F02 h;I;A
� �

and defines the angle
variable

w ¼ @F
0
2 h;I;A
� �
@I

: (8)

Ultimately, we will need explicit expressions for the transformation,
but only to first order in mode amplitude. For a given value of Hd , we
define the momentum pI through the relation

Hd ¼ eu0 pIð Þ �
xl

l
pI : (9)

Taylor expanding the right-hand side of Eq. (5) with respect to ph

about pI and retaining only first-order terms in ph � pIj j � A yields
the relation

0 ¼
@eu0 pIð Þ
@pI

� xl

l

 !
ph � pIð Þ þ eAul pIð Þcos lhð Þ; (10)

where use has been made of Eq. (9) to eliminate the zero order terms.
Solving for ph and substituting into Eq. (6) then yield the result I ¼ pI .
Then, solving Eq. (10) for I ¼ pI yields the relation

I ¼ ph þ
eAul Ið Þ
xr Ið Þ cos lhð Þ; (11)

where xr Ið Þ ¼ ð@eu0 Ið Þ
@I �

xl
l Þ is the plasma rotation frequency in the

rotating frame of the wave. Likewise, using Eqs. (7) and (8) yields the
angle variable

w ¼ h � @

@I
eAul Ið Þ
lxr Ið Þ

" #
sin lhð Þ: (12)

This linear perturbation theory assumes that the frequency xr Ið Þ is
not too small. Near xr Ið Þ ¼ 0, the constant I surfaces are nonlinear
cat’s eye structures involving particle trapping in the wave field, and
the present theory is valid only outside of this region. Of course, the I

value where 0 ¼ xr Ið Þ ¼ ð@eu0 Ið Þ
@I �

xl
l Þ is simply the resonant value of

I where the rotation rate of the mode matches that of the plasma par-
ticles according to linear theory. As mentioned earlier, the transport is
small near the resonant value of I.

In Sec. V of this paper, we will show that rotational pumping pro-
duces a slow damping of the mode. Under this damping, the mode
amplitude does change in time, but the change is slow compared to
the period of the angle variable. Although the generating function

F02 h;I;A
� �

contains an explicit time dependence, it still generates a
valid canonical transformation. However, the new Hamiltonian is not

simply Hd I;Að Þ; but rather Hd I;Að Þ þ @A
@t

@F02
@A . Because the second

term introduces a dependence on the angle variable w, the action I is
no longer an exact constant of the motion. However, because the rate
of change of A(t) is small compared to the frequency of the angle vari-
able and because I is an action, I is a good adiabatic invariant.17 The
change in I during one cycle of the angle variable is second-order small
in the change in A. The w dependence in the new term does produce
small first-order corrections to the frequency for the angle variable,
but away from the resonant layer these corrections are negligible com-

pared to the frequency @Hd
@I � xr . Consequently, we neglect the second

term and continue to use the Hamiltonian Hd I;Að Þ; in spite of the
slow change in A.

III. HAMILTONIAN FOR ION MOTION IN A FINITE
LENGTH TRAP

We consider a plasma consisting primarily of electrons, but also
containing a small admixture of H� ions, confined in a
Penning–Malmberg trap. We assume that a diocotron mode of azi-
muthal mode number l has been excited on the plasma.

Even when the diocotron mode is excited, the electric potential
along a given field line is nearly constant within the plasma.4 Over a
few Debye lengths at each end of the plasma, the magnitude of the
potential rises dramatically, providing axial confinement. Since the
Debye length is small compared to the plasma dimensions, we can
define a plasma length along each field line, Lðh; phÞ. Taking z ¼ 0 to
be the axial mid-plane of the plasma, we write the rapidly rising poten-

tial at the þz end as euend z � L h;phð Þ
2

h i
. Changing the minus sign in

the end potential expression to a plus sign yields a similar end poten-
tial for the other end. However, for future convenience we replace the
full-length plasma by a half-length plasma, imposing specular reflec-
tion from a plane at z ¼ 0; using the potential euend �zð Þ. From sym-
metry of the full-length plasma about the z¼ 0 plane, transport for the
half-length plasma is the same as that for the full-length plasma. Both
end potentials can be thought of as step functions that are high enough
that all particles are reflected.

The ion Hamiltonian in the rotating frame of the mode then is
given by the expression14
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H ¼ p2z
2m
þ lBþ eu0 phð Þ �

xl

l
ph þ eAul phð Þcos lhð Þ

þ euend z � L h; ph

� �
2


 �
þ euend �zð Þ: (13)

The last term, which effects the specular reflection from the imaginary
surface at z ¼ 0, causes no transport, but must be included to effect
the back and forth bounce motion.

Next, we replace the variables h; ph

� �
with the variables ðw; IÞ.

The set of variables ðz; pz;w; IÞ is an acceptable set of canonical varia-
bles, since the canonical transformation obtained above for h; ph

� �
to

ðw; IÞ does not depend on ðz; pzÞ or l. Rewriting the Hamiltonian in
terms of the new variables yields the expression

H ¼ p2z
2m
þ lBþ Hd I;Að Þ þ euend z � L w; Ið Þ

2


 �
þ euend �zð Þ;

(14)

where use has been made of Eq. (5).
We write the plasma length as L w; Ið Þ ¼ L0 Ið Þ þ L1ðw; IÞ, where

L1ðw; IÞ is first order in the mode amplitude. There is a subtle point
here. While L1ðw; IÞ is first-order small in the mode amplitude, it is
not the only first-order term in the mode amplitude; the definition of I
depends on mode amplitude, so L0 Ið Þ contains some dependence on
mode amplitude. The important point is that the only length depen-
dence on the variable w comes from a term, that is, first-order small.
This smallness is used to justify the Taylor expansion

euend z � L w; Ið Þ
2


 �
� euend z � L0 Ið Þ

2


 �

� 1
2
@

@z
euend z � L0 Ið Þ

2


 �� 

L1 w; Ið Þ: (15)

Hamiltonian (13) can then be written in the form

H ¼ H 0 z; pz; Ið Þ þ dH z;w; Ið Þ; (16)

where

H 0 z; pz; Ið Þ ¼
p2z
2m
þ lBþ Hd I;Að Þ þ euend z � L0 Ið Þ

2


 �

þ euend �zð Þ; (17)

and

dH z;w; Ið Þ ¼ � 1
2
@

@z
euend z � L0 Ið Þ

2


 �� 

L1 w; Ið Þ: (18)

Let us consider an ion that undergoes a single bounce off the end at

¼ L0 Ið Þ
2 . First, we consider the bounce according to the Hamiltonian

H 0 z; pz; Ið Þ. Neglecting any variation in mode amplitude during a
bounce, this Hamiltonian is independent of t and w, so H 0 and I are

constant during the bounce. Also, euend z � L0 Ið Þ
2

h i
is zero both before

and after the bounce, so the axial momentum simply changes from
p0z to� p0z during the bounce.

The rate of change of w is given by Hamilton’s equation

_w ¼ @H 0

@I
¼ xr Ið Þ � @euend

@z
1
2

� �
@L0 Ið Þ
@I

; (19)

and integrating the second term over the bounce implies the change
due to the bounce

Dw ¼ 1
2

� �
@L0 Ið Þ
@I

ð
dt � @euend

@z

� �
¼ 1

2

� �
@L0 Ið Þ
@I

2p0z :

Although this step in w is zero order in the mode amplitude, it is still
small compared to unity, as can be seen from the estimate

Dw ¼ @L0 Ið Þ
@I

p0z ’
cp0z
eBr

@L0 rð Þ
@r

’ rci
rp

Dz
rp
� 1; (20)

where we have used a parabolic approximation for the rounded end of

the column, L00 rð Þ ¼ L0 � Dz 1� r2

r2p

� �
. Here, rp is the characteristic

radius of the plasma column and rci is the characteristic ion cyclotron
radius.

In first order, the action undergoes a step given by the expression

DI ¼ �
ð
dt
@dH
@w
¼ 1

2
@L1
@w

ð
dt
@euend

@z
¼ 1

2
@L1
@w

2p0z ; (21)

where use has been made of Eq. (18) and of the fact that w changes
by only a small amount during the reflection. There also is a first-
order step in pzj j during the reflection. Since the total Hamiltonian
H ¼ H 0 z; pz; Ið Þ þ dH z;w; Ið Þ is conserved during the reflection,
and since dH z;w; Ið Þ is zero both before and after the reflection,
we may write the relation

0 ¼ DH 0 ¼
pzDpz
m
þ @Hd Ið Þ

@I
DI ¼ pzDpz

m
þ xr Ið ÞDI: (22)

We will calculate the transport due to the steps DI and will not need
Dpz , but it is worth noting that conservation of energy requires Dpz to
be none zero.

To calculate the transport flux to second order in mode ampli-

tude, @L1 w;Ið Þ
@w will be needed only to first order in mode amplitude.

However, as noted earlier, there is some subtlety in the meaning of
L1 w; Ið Þ. The most natural way to express the length of the plasma
along a given field line is the expression L ¼ L00 phð Þ þ L01ðh;phÞ, where
L00 phð Þ is the length of the cylindrically symmetric equilibrium before
the mode is excited and L01ðh; phÞ is the first-order correction pro-
duced by the mode. The primes have been added to emphasize the dis-
tinction between this expression for the length and the expression
L ¼ L0 Ið Þ þ L1 w; Ið Þ. The chain rule for partial derivatives implies
the relation

@L1ð w; Ið Þ
@w

¼ @Lð w; Ið Þ
@w

¼ @L
0
1 h;ph

� �
@h

�
@h
@wI

�
þ @

@ph
L00 phð ÞþL01 h;ph

� �h i�@ph

@w I

�
;

(23)

and by working only to first order in mode amplitude and using Eqs.
(11) and (12), the relation reduces to the form

@L1ð w; Ið Þ
@w

¼ @L
0
1 h;ph

� �
@h

þ
@L00 phð Þ
@ph

l
eAu1 Ið Þ
xr Ið Þ sin lhð Þ: (24)

To obtain a crude estimate of L1 w; Ið Þ; we consider the motion of a
flux tube in the rotating frame of the wave. As the flux tube moves on
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a surface of constant I, its value of ph oscillates about I as described by
Eq. (11). In this motion, the flux tube is subject to radially dependent
axial forces which try to make the length of the flux tube conform to
the equilibrium length at the appropriate radius, L00 phð Þ. Thus, as an
estimate we use the expression

L1 ’
@L00
@ ph

�
I

ph � Ið Þ ¼ �
@L00
@ ph

�
I

eAul Ið Þ
xr Ið Þ cos lhð Þ: (25)

From Eq. (23), one can see that this approximation is equivalent to

neglecting the term @L01ðh;phÞ
@h

in Eq. (24). In the cosine, the h may be

approximated by w since the coefficient of the cosine is already
first-order small in the mode amplitude. For the simple case of a
rounded end with a length that depends parabolically on r [i.e.,

L00 rð Þ ¼ L0 � Dzð1� r2

r2p
Þ�; the derivative @L00

@ ph
¼ � 2cDz

eBr2p
is a constant.

The flux and mode damping will be expressed in terms of the ratio
L1lj j
L0
’ j DzL0

Aul rð Þ
rp
@u0
@r

j. Here, L1l is the Fourier component of L1 hð Þ and

� @u0
@r is the radial electric field in the rotating frame of the mode. We

note that the ratio L1lj j
L0

is independent of the magnetic field.
A more accurate solution can be obtained by using methods

developed in Ref. 4. However, the solution then is for specific trap
geometry, applied end voltages and number of particles along each
field line.

IV. KINETIC THEORY FOR THE TRANSPORT FLUX

The guiding center distribution for the ions can be written in the
form fiðz; pz; h; ph; l; tÞ and evolves according to the collisional drift
kinetic equation

@fi
@t
þ fi;H
� 	

¼ C fi½ �; (26)

where fi;H
� 	

is a Poisson bracket and C fi½ � is a collision operator. To
discuss transport, we define the density in I-space

Ni I; tð Þ ¼
ð1
�1

dz
ð1
�1

dpz

ð2p
0
dw
ð1
0
dlfi z; pz;w; I; l; tð Þ; (27)

where the total number of ions in the plasma is given by the integral
Ni ¼

Ð1
0 dINi I; tð Þ. Integrating over Eq. (26) yields the transport

equation

@Ni I; tð Þ
@t

¼ @

@I

ð1
�1

dz
ð1
�1

dpz

ð2p
0
dw
ð1
0
dl fi

@H
@w

 !
; (28)

where the Poisson bracket in Eq. (26) was written in the form

fi;H
� 	

¼ @

@z
fi
@H
@pz

 !
� @

@pz
fi
@H
@z

� �
þ @

@w
fi
@H
@I

� �

� @

@I
fi
@H
@w

 !
; (29)

and the integrals over z; pz andw in the definition of Ni I; tð Þ kill the
first three terms. Likewise, the integrals over pz andl kill the collision
operator term. Of course, the collision operator conserves particle
number. The integral in Eq. (28) is the negative of the flux in I-space.

First, let us imagine that dH were zero and look for an equilib-
rium solution to Eq. (26) withH replaced byH 0. SinceH 0 is indepen-
dent of w, the Poison bracket H 0; I

� 	
vanishes, and consequently, the

Poisson bracket [fi;0 H 0; I
� �

; H 0� vanishes. For the Maxwellian form

fi;0 ¼
N Ið Þ exp � 1

T Ið Þ H 0 � Hd Ið Þ
� �
 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmT Ið Þ

p T Ið Þ
B

� �
2pL0 Ið Þ=2
� 	 ; (30)

the collision operator also vanishes, so fi;0 is the desired equilibrium
solution. The normalization factors in this distribution follow from
Eq. (27).

For the actual situation where dH is not zero, we write the distri-
bution in the form

fi ¼ fi;0 H 0; I
� �

þ dfi z; pz;w; I; l; tð Þ; (31)

where ambiguity in the definition of df is removed by the requirement
that

Ð 2p
0 dwdfi ¼ 0:
In transport equation (28), the lack of any w dependence in H 0

and fi;0 implies that the equation reduces to the form

@Ni I; tð Þ
@t

¼ @

@I

ð1
�1

dz
ð1
�1

dpz

ð2p
0
dw
ð1
0
dl dfi

@dH
@w

 !
: (32)

Thus, we need to know dfi only to first order in dH to obtain the
transport flux to second order in dH .

To first order in dH , the perturbation dfi satisfies the equation

d 0ð Þ dfið Þ
dt

� C dfið Þ ¼
@dfi
@t
þ dfi;H 0

� 	
� C dfið Þ ¼ dH ; fi;0

� 	
; (33)

where d 0ð Þ ðdfiÞ
dt is the total derivative taken along the orbits specified by

the Hamiltonian H 0. Recalling that fi;0 is independent of w and that
dH is independent of pz; the Poisson bracket on the right-hand side
can be written in the form

dH ; fi;0
� 	

¼ @dH
@w

@fi;0
@I
þ @dH

@z
@fi;0
@pz

: (34)

By using the relations @fi;0
@pz
¼ � pz

mT fi;0 and @fi;0
@I ¼

@fi;0
@I

h i
H 0

� 1
T
@H 0
@I fi;0,

the right-hand side of Eq. (34) can be rewritten in the form

dH ; fi;0
� 	

¼ @dH
@w



@fi;0
@I

�
H 0

� d 0ð Þ

dt
dHfi;0
T

� �
; (35)

where use has been made of the relations

fi;0
T

pz
m
@dH
@z
þ @H 0

@I
@dH
@w

 !
¼ fi;0

T
d 0ð Þ dHð Þ

dt
¼ d 0ð Þ

dt
dHfi;0
T

� �
: (36)

By using the observation that C dHfi;0
T

� �
¼0, Eq. (33) can be rewritten

in the form

d 0ð Þ

dt
� C

� �
dfi þ

dHfi;0
T

� �
¼ @dH

@w
@fi;0
@I


 �
H 0

: (37)

Finally, we set dgi ¼ dfi þ dHfl;0
T and rewrite Eq. (37) in the form
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d 0ð Þ

dt
þ �

� �
dgi ¼

@dH
@w

@fi;0
@I


 �
H 0

; (38)

where � is an effective collision frequency that will be discussed later.
For a given phase point (qj; pjÞ; the total time derivative d 0ð Þ

dt is
taken along orbits qj t0ð Þ and pjðt0Þ that are defined by the equations of
motion

dqj
dt0
¼ @H 0

@pj
;

dpj
dt0
¼ � @H 0

@qj
; (39)

subject to the final condition qj tð Þ ¼ qj and pj tð Þ ¼ pj. Here, ðqj; pjÞ
are simply stand-ins for the canonical variables (z; pz;w,I). We recall
that l is constant under the evolution generated by H 0. The solution
to Eq. (38) is given by the integral expression

dgi ¼
@fi;0
@I


 �
H 0

ðt
0
dt0e� t0�tð Þ@dH

@w

0
; (40)

where use has been made of the fact that @fi;0
@I

h i
H 0

does not evolve with

t0. We recall thatH 0 and I are constant under this evolution.
To further the evaluation of integral (40), we rewrite Eq. (18) in

the form

dH z0;w0; I
� �

¼�1
2
@

@z0
euend z0 �L0 Ið Þ

2


 �� 
X
l

L1l Ið Þeilweilxr Ið Þ t0�tð Þ
;

(41)

where w t0ð Þ has been written as w tð Þ � xrðIÞðt � t0Þ, neglecting the
small increment in w during a bounce (see Eq. (20)). To first order in
mode amplitude, the sum extends only over 6 lj j; where l is the azi-
muthal mode number of the diocotron mode.

From Eq. (32) and the fact that @dH@w is non-zero only during a
particle bounce, dfi; andhence dgi; are needed only during a bounce.
Let t be a time during the bounce, t0 the time just before the
bounce, and the interval from t ¼ 0 to t ¼ t0 a long time contain-
ing many previous bounces. Equation (40) can then be written in
the form

dgi ¼ �
@fi;0
@I


 �
H 0

X
l

ilL1;l Ið Þeilw
�
1
2

ðt
t0

dt0
@

@z0
euend z0 � L0 Ið Þ

2


 �� �

þ 1
2

ðt0
0
dt0

@

@z0
euend z0 � L0 Ið Þ

2


 �� �
e �þilxr Ið Þð Þ t0�tð Þ



; (42)

where the time-dependent exponential has been replaced by unity in
the first integral, since the duration of a bounce is small. The first inte-
gral has the value—½pz tð Þ � pz t0ð Þ�. Neglecting the duration of each
bounce in the second integral yields the result

di ¼ �
@fi;0
@I


 �
H 0

X
l

ilL1;l Ið Þeilw
(
� 1
2
½pz tð Þ � pz t0ð Þ�

þ pz t0ð Þ
�� �� ðt0

0
dt0
XM
j¼1

d t � t0 � L0 Ið Þj
vz t0ð Þ
�� ��

 !
e �þilxr Ið Þð Þ t0�tð Þ

)
;

(43)

where the sum over j is a sum over the previous M bounces.

Carrying out the time integral over the sum of delta functions
yields the expression

dgi ¼ �
@fi;0
@I


 �
H 0

X
l

ilL1;l Ið Þeilw
�
�1
2

pz tð Þ � pz t0ð Þ
� 	

þ pz t0ð Þ
�� ��XM

j¼1
e
� �þilxr Ið Þð Þ L0 Ið Þj

vz t0ð Þj j


: (44)

The sum over j is a geometric progression and can be evaluated

XM
j¼1

e
� �þilxr Ið Þð Þ L0 Ið Þj

vz t0ð Þj j ¼ 1� e
� �þilxr Ið Þð ÞL0 Ið ÞM

vz t0ð Þj j

e
þ �þilxr Ið Þð Þ L0 Ið Þ

vz t0ð Þj j � 1
: (45)

In the numerator, the second term may be neglected since � L0 Ið ÞM
vzðt0Þj j is

presumed to be large. The time scale s ¼ L0 Ið ÞM
vzðt0Þj j can be as large as the

transport time scale, and this time is assumed to be large compared to
the effective collision time scale (i.e., �s� 1Þ.

By using the mathematical identity

1
eiz � 1

¼ � 1
2
� i

Xn¼1
n¼�1

1
z � 2pn

; (46)

and making the identification z ¼ �i�þlxr Ið Þð ÞL0 Ið Þ
vzðt0Þj j , Eq. (44) can be writ-

ten in the form

dgi ¼ �
@f0
@I


 �
H 0

X
l

ilL1;l Ið Þeilw
(
�1
2

pz tð Þ � pz t0ð Þ
� 	

� jpzðt0Þj
�
1
2
þ i
X
n

vz t0ð Þ
�� ��
L0 Ið Þ

1

�i� þ lxr Ið Þ � 2n
p vz t0ð Þj j
L0 Ið Þ

�)
;

(47)

where n runs over positive and negative integers.

Substituting dfi ¼ dgi � dHfi;0
T into Eq. (32) yields the result

@Ni I;tð Þ
@t

¼ @

@I

ð1
�1

dz
ð1
�1

dpz

ð2p
0
dw
ð1
0
dl dgi

@dH
@w
� fi;0
2T
@ dHð Þ2

@w

 !
:

(48)

Here, the second term in the bracket yields zero under thew integral, since
fi;0 is independent of w. Dropping the second term and substituting from

Eqs. (41) and (47) for @dH@w and dgi into the first term yields the equation

@Ni I;tð Þ
@t

¼� @
@I

ð1
�1

dz
ð1
�1

dpz

ð2p
0
dw
ð1
0
dl

@fi;0
@I


 �
H 0

�
X
l

ilL1;l Ið Þeilw
X
l0
il0L1;l0 Ið Þeil

0w

(
�1
2
pz tð Þ�pz t0ð Þ
� 	

�jpzðt0Þj
 
1
2
þ i

vz t0ð Þ
�� ��
L0 Ið Þ

X
n

1

�i�þ l0xr Ið Þ�2n
p vz t0ð Þ
�� ��
L0 Ið Þ

!)

� �1
2
@

@z
euend z�L0 Ið Þ

2


 �� 
� 

: (49)
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Recalling that the integrand is non-zero only in the end region
where the particles are exposed to the plasma sheath potential, we
change the z-integral into an integral over the unperturbed
bounce motion. Since the duration of the bounce is short, I andw
can be treated as constant. Let z ¼ z z0; p0z ; t � t0

� �
and pz

¼ pz z0; p0z ; t � t0
� �

be bounce orbits generated by Hamiltonian
H 0, subject to the initial conditions z t0ð Þ ¼ z0 and pz t0ð Þ ¼ p0z and
holding w and I constant. The Hamiltonian evolution preserves
area in phase space, so we may write dzdpz ¼ dz0d p0z . By varying
t0 through a sequence of increments, while holding t � t0 constant,
one can sweep z through the whole bounce. Setting dz0 ¼ v0zdt0
and using dt ¼ dt0 then yields the relation pz ¼ d p0zv

0
zdt. Since the

incremental steps all occur before the bounce begins, v0z has the
same value for all of the steps and pz t0ð Þ ¼ p0z has the same value
for all of the steps. Also, since H 0 is constant during this evolution,
we may evaluate H 0 at time t0, setting H 0 ¼ mðv0z Þ

2=2þ lB
þHd I;Að Þ in the expression for f0. We recall that the end potential
is negligible at time t0:

Using the relations dzdpz ¼ d p0zv
0
zdt and

d
dt

pzð Þ ¼
d
dt

pz � pz t0ð Þ½ � ¼ � @

@z
euend z � L0 Ið Þ

2


 �� 

; (50)

yields the equation

@Ni I; tð Þ
@t

¼ � @

@I

ð1
0
dp0zv

0
z

ð2p
0
dw
ð1
0
dl

@fi;0
@I


 �
H 0

�
X
l

ilL1;l Ið Þeilw
X
l0

il0L1;l0 Ið Þeil
0w

� 1
2

(
�
ðtf
t0

dt
d
dt

1
4

pz tð Þ � pz t0ð Þ
� 	2 � ðtf

t0

dt
dpz
dt
jpz t0ð Þj

�
 
1
2
þ i

vz t0ð Þ
�� ��
L0 Ið Þ

X
n

1

�i� þ l0xr Ið Þ � 2n
p vz t0ð Þ
�� ��
L0 Ið Þ

!)
;

(51)

where use has been made of the fact that p0z is positive for all of the
reflections.

Recalling that pz tfð Þ ¼ �pz t0ð Þ simplifies the equation to the
form

@Ni I;tð Þ
@t

¼� @
@I

ð1
0
dp0zv

0
z

ð2p
0
dw
ð1
0
dl

@fi;0
@I


 �
H 0

�
X
l

ilL1;l Ið Þeilw
X
l0
il0L1;l0 Ið Þeil

0w

� pz t0ð Þ
�� ��2 þi vz t0ð Þ

�� ��
L0 Ið Þ

X
n

1

�i�þl0xr Ið Þ�2n
p vz t0ð Þ
�� ��
L0 Ið Þ

0
B@

1
CA

8><
>:

9>=
>;
:

(52)

Carrying out the integrals over w and using the fact that n and l run
over positive and negative integers yields the equation

@Ni I; tð Þ
@t

¼ @

@I

X
n;l

ðþ1
0

d v0z v
0
z4
ð1
0
dlm3L02p

@fi;0
@I


 �
H 0

�
lL1;l Ið Þ
�� ��2
L0 Ið Þ2

t

t2 þ lxr Ið Þ � 2n
p vz t0ð Þ
�� ��
L0 Ið Þ

" #2 : (53)

This is a good point to examine what is meant by the effective collision
frequency. First note that the left-hand side of Eq. (38) is a linear oper-
ator and that the right-hand side is a sum of terms given by sum (41)
for dH . Thus, the solution to Eq. (38) is given by a sum of solutions
for the individual terms on the right hand side. Consequently, the
effective collision frequency can have a different value for each term in
the sum. When the Fokker–Planck collision operator acts on a velocity
resonance function, it yields an enhanced effective collision frequency
for velocities in the range of the resonance. This enhancement is pro-
duced by the velocity diffusion term in the Fokker–Planck operator,
which we approximate by �kv

2 @
@v2z

, where �k is a collision frequency

characterizing velocity diffusion of the ions and v2 is the square of the
ion thermal velocity. The velocity width of the resonance function is
Dv0z � �L0

2pn ; so the effective collision frequency at the resonance is

t � �kv2=ðDv0z Þ
2. Here, we have assumed that Dv0z � v . Eliminating

the resonance width yields the effective collision frequency

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k

v2pn
L0

� �2
¼3

r ffiffiffiffiffiffiffiffiffiffiffi
�kx

2
b

3

q
ð2nÞ2=3, where xb ¼

p vzðt0Þj j
L0 Ið Þ is the bounce

frequency and xb ¼ vp
L0ðiÞ is the bounce frequency evaluated at the

thermal velocity. The condition that the resonance width be small
compared to the thermal velocity can also be stated as the condition

� � �k or equivalently the condition �k2=3 � ð2nxbÞ2=3. This is also
the condition that the resonance function can be replaced by a delta
function

t

t2 þ lxr Ið Þ � 2n
p vz t0ð Þ
�� ��
L0 Ið Þ

" #2 ’ pd lxr Ið Þ � 2n
p vz t0ð Þ
�� ��
L0 Ið Þ

" #
; (54)

which is insensitive to the exact value of �.
Here, we are implicitly omitting the term for n¼ 0, which as we

will see later yields the non-resonant rotational pumping. For resonant
rotational pumping, the sum on n run over positive and negative inte-
ger values. The sum can be limited to only positive values of n by
inserting a factor of 2. There is then no longer a sum over l since the
original sum included only one positive and one negative value,
l ¼ 6 lj j; and the delta function requires the sign of l to match that of

xr Ið Þ. Note that the bounce frequency xb ¼ p
v0zj j

L0 Ið Þ is positive.

Equation (53) then takes the form

@Ni I; tð Þ
@t

¼ @

@I

X
n	1

L04p
2m3 L0

p

� �5 ð1
0
dxbxb

4

�
ð1
0
dl

@fi;0
@I


 �
H 0

lL1;l Ið Þ
�� ��2
L0 Ið Þ2

d lxr Ið Þ � 2nxb½ �: (55)

From Eq. (30), one obtains the derivative
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@fi;0
@I


 �
H 0

¼
(

1
T
Ni Ið Þ
L0 Ið Þ

@Hd

@I
þ @

@I
Ni Ið Þ
L0 Ið Þ

 !

þ 1

T Ið Þ2
@T
@I

Ni Ið Þ
L0 Ið Þ

m v0z
� �2
2
þ lB

 !

� 3
2T

@T
@I

Ni Ið Þ
L0 Ið Þ

) exp � 1
T

m v0z
� �2
2
þ lB

 !" #
ffiffiffiffiffiffiffiffiffiffiffiffi
2pTm
p

T=B
� �

p
; (56)

and the integral

ð1
0
dl

@fi;0
@I


 �
H 0

¼
(

1
T
Ni Ið Þ
L0 Ið Þ

@Hd

@I
þ @

@I
Ni Ið Þ
L0 Ið Þ

 !

þ 1

T Ið Þ2
@T
@I

Ni Ið Þ
L0 Ið Þ

m v0z
� �2
2
þ T

 !

� 3
2T

@T
@I

Ni Ið Þ
L0 Ið Þ

) exp � 1
T

m v0z
� �2
2

 !" #
ffiffiffiffiffiffiffiffiffiffiffiffi
2pTm
p

p
: (57)

Finally, substituting into Eq. (55) and carrying out the xb integral
yields the result

@Ni I; tð Þ
@t

¼ @

@I
4pTL0

X
n	1

lL1;l Ið Þ
�� ��2

L20

(
Ni Ið Þ
L0 Ið Þ

@Hd

@I
þ @

@I
Ni Ið ÞT
L0 Ið Þ

 !

þ @T
@I

Ni Ið Þ
L0 Ið Þ

1
2

lxr

2nxb

� �2

� 3
2

 !)
1
2 nj j

lxr

2nxb

� �4

�
exp �1

2
lxr

2nxb

� �2
" #

ffiffiffiffiffiffiffiffiffiffiffi
2px2

b

q : (58)

For completeness, we have retained all of the terms in the squiggly
bracket, but the first term is typically larger than the other terms by a

factor of order Hd
T �

r2p
k2D
� 1, where rp is the plasma radius. Retaining

only this term in the squiggly bracket and using the relation @Hd
@I ¼ xr

yields the simplified expression

@Ni I; tð Þ
@t

¼ @

@I
4pTNi Ið Þ

L1;l Ið Þ
�� ��2

L20

X
n	1

l lxrð Þ5

2nxbð Þ5

exp �1
2

lxr

2nxb

� �2
" #

ffiffiffiffiffi
2p
p :

(59)

We recall that the quantity beyond the derivative @
@I is the negative of

the flux CI .
After all this mathematics, a simple physical model may aid

understanding. Let us focus on a case where the n¼ 1 resonance is
dominant. From Eq. (21), the change in action during a single bounce
is @L1

@w pz . Because of the resonance, the particle makes xb
� bounces of

the same sign before the resonance is destroyed by collisions, yielding

an overall change @L1
@w pz

xb
� . This implies a diffusion coefficient D

¼ � @L1
@w pz

xb
�

� �2� �
w
; and a flux

CI ¼
ð
dz dpzdwdl

@fi;0
@I


 �
H 0

¼ L0
2
2pDpzD

ð1
0
dl

@fi;0
@I


 �
H 0

; (60)

where Dpz ¼ m2p�=L0 is the width of the resonance. Substituting for

D and Dpz; using the approximation @fi;0
@I

h i
H 0

’ xr
T fi;0 and doing a

small amount of algebra yields the approximate flux

CI ’
2p2ffiffiffiffiffi
2p
p TNi Ið Þl

L1;l Ið Þ
�� ��2

L20

lxr

2xb

����
����
5

exp � 1
2

lxr

2xb

� �2
" #

; (61)

which differs only by a numerical factor from the n ¼ 1 term in
Eq. (59).

Next, we obtain the radial flux, noting first that the total number
of particles can be written in the two forms

Ni ¼
ð1
0
dINi I; tð Þ ¼ L

ðRW

0
2prIdrIni rI ; tð Þ; (62)

where ni rI ; tð Þ is the density. By using the relation I¼ pI ¼ � eBr2I
2c , we

obtain the relation

ni rI ; tð Þ ¼
�eB
c2pL

� �
Ni I; tð Þ: (63)

Also using the relation @
@I ¼ @

@PI
¼ � c

eBrI
@
@rI

allows Eq. (59) to be
rewritten in the form

@ni I; tð Þ
@t

þ 1
rI

@

@rI
rI

( ffiffiffi
p
2

r
1
8

Tni rIð Þcl
eBrI

L1;l rIð Þ
�� ��2

L20

�
X
n	1

lxrð Þ5

nxbð Þ5
exp �1

8
lxr

nxb

� �2
" #)

¼ 0: (64)

The quantity in the squiggly brackets is second order in mode amplitude,
and rI reduces to r in zero order in mode amplitude. Thus, to second
order in the mode amplitude, the quantity in squiggly brackets is the res-
onant contribution to the rotational pumping radial flux for the ions

Ci
	1 rð Þ ¼

ffiffiffi
p
2

r
1
8
Tni rð Þcl
eBr

L1;l rð Þ
�� ��2

L20

X
n	1

lxrð Þ5

nxbð Þ5
exp �1

8
lxr

nxb

� �2
" #

:

(65)

Substituting the crude approximation L1lj j
L0
’ Dz

L0
Aul rð Þ
rp
@u0
@r

����
���� from the discus-

sion following Eq. (25), introducing the ion thermal velocity vi ¼
ffiffiffiffi
T
mi

q
and the ion cyclotron radius rci ¼ v i

Xcij j yields the approximate flux

Ci
n	1 rð Þ ’

ffiffiffi
p
2

r
1
8
lvircini rð Þ

r
ej j
e

Dz
L0

Aul rð Þ

rp
@u0

@r

������
������
2

�
X
n	1

lxrð Þ5

nxbð Þ5
exp �1

8
lxr

nxb

� �2
" #

: (66)
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The sum over n can be written as the function

sum xð Þ ¼
X
n	1

x
n

� �5

exp � 1
8

x
n

� �2
 !

; (67)

where ¼ lxr
xb
, and the sum(x) is plotted in Fig. 1 for x values between

0 and 10. This function is odd in x, so values for negative x are given
by the negative of the values plotted. The steep rise and then plateau
are largely due to the n¼ 1 term, and the subsequent rise is largely due
to the n¼ 2 and then n¼ 3 terms. The sum is dominated by first few
terms for x values less than about 10. The continued rise in sumðxÞ for
x> 10 is given approximately by sum xð Þ � 32�; as can be seen by
converting the sum over n to an integral over n. However, a word of
caution is needed here since the very high n terms in the sum are arti-
facts of approximating the reflection from the plasma ends as an
impulse, that is, of using the temporal delta functions in Eq. (43). In
reality, the reflection is not impulsive, but is smoothed out over a spa-
tial scale of the Debye length, so n and x values should be limited to
less than about L/(2pkDÞ.

Since the flux in Eq. (63) is proportional to x5
r
B and since

xr is proportional to 1=B, the flux scales as 1=B6, as the magnetic field
is reduced and the rotation frequency increases toward the bounce
frequency.

In contrast, the flux due to the non-resonant, that is, adiabatic,
rotational pumping, is independent of magnetic field.9 This flux is
given by the n¼ 0 term in Eq. (53). Evaluating the velocity integral for
the n¼ 0 term under the ordering �� xr , using the relation
I¼ pI ¼ � eBr2I

2c and Eq. (53) yields the adiabatic ion flux

Ci
n¼0 rð Þ ¼ 6

�

lxr

Tni rð Þcl
eBr

L1;l rð Þ
�� ��2

L20

’ 6
�

lxr

lvircini rð Þ
r

ej j
e

Dz
L0

Aul rð Þ

rp
@u0

@r

������
������
2

: (68)

Here, � is not the effective collision frequency discussed in the para-
graph preceding Eq. (54) since the n¼ 0 term does not contain a reso-
nant denominator. The analysis in Ref. 9, carried out for a single
species plasma, finds that � ¼ 4

3 �k?, where �k? is the collisional equi-

partition rate between Tk andT? [i.e., 1
2
d Tk
dt ¼ �k?ðT? � TkÞ].

Physically, the adiabatic transport arises from the periodic axial com-
pression and expansion that each flux tube experiences as the plasma
rotates through the asymmetric end surface. During the compression
phase, work is done adiabatically on the flux tube and Tk increases,
but then some of the increased parallel kinetic energy scatters into per-
pendicular kinetic energy, and the energy given back during the
expansion phase is slightly less than that gained during the compres-
sion phase. The energy difference appears as heat, and Eq. (12) of
Ref. 9 provides a simple calculation of the flux by equating the heating
rate to the rate of loss of electrostatic energy due to the radial plasma
expansion. Here, we are considering a plasma with electrons and ions,
so the scattering of parallel ion energy is due to both electrons and

ions, and we should set � ¼ 4
3 �iik? þ �iek?
� �

’ 4
3 �

ie
k?. Note that when

the ions are in the adiabatic regime, the electrons also are in the adia-
batic regime, and the parallel temperatures of the ions and electrons
rise and fall together. Consequently, the important scattering is into
the perpendicular temperatures of each species. Also, �iek? is larger

than �iik? because the electron density is larger than the ion density.

Finally, we note that the adiabatic flux in Eq. (68) is independent of
the magnetic field because Bxr is independent of the magnetic field.

Returning to the question of scaling of the ion flux as the mag-
netic field is decreased and the rotation frequency increases toward the
bounce frequency, the ion flux initially remains constant at the value
given by Eq. (68). When the magnetic field has decreased to the point

where 64
ffiffi
2
p

q
�iek?
lxr

��� ��� 
 sumðxÞ
�� �� ’ x5j j, the resonant transport begins to

dominate with the initial rise in the flux varying as 1=B6. As x
approaches unity, the rise in the flux is not as steep since the rise in
sum(x) is less steep. For larger values of x, the resonant transport can
be orders of magnitude larger than the initial adiabatic transport.

Note that even when the ions are well into the regime where the
resonant transport dominates, the electrons typically are still in the
adiabatic regime with a flux given by the expression

Ce
n¼0 rð Þ ¼ 8

�eek? þ �eik?
� �

lxr

Tne rð Þcl
eBr

L1;l rð Þ
�� ��2

L20

’ 8
�eek? þ �eik?
� �

lxr

lvi rci rð Þne rð Þ
r

ej j
e

Dz
L0

Aul rð Þ

rp
@u0

@r

������
������
2

: (69)

For this flux to be less than the ion flux, it is necessary that

64
ffiffi
2
p

q
�eek?þ�

ei
k?ð Þ

lxr

��� ��� ne
ni

 sum xð Þ
�� ��; which is more restrictive than the

inequality in the previous paragraph because typically �eek? > �iek? and

ne > ni. Of course, at sufficiently low temperature and strong mag-
netic field the electrons enter the regime of strong magnetization,
where �eek? becomes exponentially small.18

On physical grounds, we argued earlier that the radial flux is out-
ward where xr is negative and inward where xr is positive. To see this
result in Eqs. (68) and (69), we note that the quantity e is negative and
that xr is negative for r less than the resonant radius and positive for r
greater than the resonant radius.

By making an end distortion that rotates in the same sense as the
plasma, but faster, the rotational pumping can transport all ions radi-
ally inward. This is an example of the “rotating wall” technique oftenFIG. 1. Plot of function sum(x) vs x.
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used to radially compress or expand non-neutral plasmas.19,20 For
example, such a rotating distortion can be produced by using an end
electrode with azimuthally separated sectors and applying properly
timed voltages to the sectors. In this case, the particle flux is still given
by the above equations, but there is a complication. There is no mode
in the plasma so the second term in Eq. (24) for L1 vanishes, and our
crude approximation for L1 vanishes. In this case, one must solve for
the perturbed end surface of the plasma. Recent experiments with elec-
tron–antiproton plasmas have observed the transport of the antipro-
tons due to a rotating wall drive in the bounce-rotation resonance
regime.14

V. MODE DAMPING RATE

For a typical case where the radial particle flux is dominantly
outward, that is, increases the particle canonical angular momen-
tum, the mode angular momentum must decrease, that is, the
mode must damp. The purpose of this section is to calculate the
damping rate.

The total canonical angular momentum in the plasma is given by
the expression

Ph ¼
ð1
0
dI

1
2p

ð2p
0
dwph w; I; tð Þ Ne I; tð Þ þ Ni I; tð Þ½ �: (70)

Since the E � B drift motion is the same for the electrons and the ions,
the variables w; Ið Þ, and equivalently h; phð Þ; apply to both the ion and
the electron density distributions. The function ph w; I; tð Þ is given to
first order in mode amplitude by Eqs. (11) and (12). The time depen-
dence in this function is included because we allow the mode ampli-
tude A(t) to be a function of time.

Since the angular momentum in the mode turns out to be second
order in the mode amplitude, we will need the function ph w; I; tð Þ to
second order in mode amplitude. The perturbation treatment leading
to Eqs. (11) and (12) can easily be extended to second order, but here
we use a trick to avoid that work. We write the second-order solution
in the form

ph ¼ I � eAul Ið Þ
xr Ið Þ cos lhð Þ þO½A2�g hð Þ; (71)

where the first two terms on the right-hand side come from Eq. (11)
and the third term is an unknown term of second order in A. This
relation and the definition of I yield the relation

I ¼ 1
2p

ð2p
0
dhph h; I; t

� �
¼ 1

2p

ð2p
0
Idh � eAul Ið Þ

xr Ið Þ
1
2p

ð2p
0
cos lhð Þdh

þO A2½ � 1
2p

ð2p
0
g hð Þdh: (72)

The first term on the right-hand side is simply I and the second term
is zero, so the third term must be zero. According to Eq. (12), h andw
are equal to zero order in mode amplitude. Since the coefficient in the
third term of Eq. (71) is already second order in mode amplitude, h
can be replaced by w in the function gðhÞ. Thus, we conclude from Eq.
(72) that the integral 1

2p

Ð 2p
0 gðwÞdw has the value zero. Thus, the

unknown third term makes zero contribution to the integral in Eq.
(70). In contrast, in the second term on the right-hand side of Eq. (72),

h cannot be replaced by w since the coefficient is only first order in
mode amplitude.

Equation (70) then reduces to the form

Ph ¼
ð1
0
dII Ne I; tð Þ þ Ni I; tð Þ½ � �

ð1
0
dI

eAul I; tð Þ
xr Ið Þ

� Ne I; tð Þ þ Ni I; tð Þ½ � 1
2p

ð2p
0
dh

dw

dh

�
I;t

cos lhð Þ; (73)

where to first order in mode amplitude Eq. (12) yields the relation

dw

dh

�
I;t

¼ 1� @

@I
eAul Ið Þ
xr Ið Þ

" #
cos lhð Þ: (74)

With the aid of this relation, Eq. (73) reduces to the form

Ph ¼
ð1
0
dII Ne I; tð Þ þ Ni I; tð Þ½ �

� 1
4

ð1
0
dI

eAul Ið Þ
xr Ið Þ

 !2
@

@I
Ne I; tð Þ þ Ni I; tð Þ½ �; (75)

where the factor of 1
4 comes from the product of two factors of 1

2, the

first from the relation 1
2p

Ð 2p
0 dhcos2 lhð Þ ¼ 1

2, and the second from the

relation eAul I;tð Þ
xr Ið Þ

@
@I

eAul Ið Þ
xrðIÞ

h i
¼ 1

2
@
@I

eAul Ið Þ
xrðIÞ

h i2
.

To understand the physical meaning of the two terms on the
right-hand side of this equation, we first imagine that there is no trans-
port, but that an external agency causes the diocotron mode to slowly
grow in amplitude. For example, the diocotron mode is a negative
energy mode and is subject to the resistive wall instability,21 so a small
resistivity could cause a slow growth of the mode. If the growth rate is
small compared to the rotation frequency of the plasma, as observed
in the rotating frame of the mode, a particle on a drift surface I
remains on this drift surface as the mode amplitude slowly increases;
the action I is a good adiabatic invariant for the particle. Thus, the den-
sity distributions Ne Ið Þ andNi Ið Þ are independent of time during the
mode growth. Of course, the function ph h; I; t

� �
does change in time

as the mode grows.
Thus, the first term on the right-hand side of Eq. (75) is time-

independent as the mode grows in amplitude. Initially, when the
mode has near zero amplitude, the action I is the same as the canonical
momentum ph, so the first term on the right is simply the total canoni-
cal angular momentum in the absence of the mode. The second term
on the right is the angular momentum added to the plasma as a result
of the mode, that is, the mode angular momentum. Since
@
@I Ne I; tð Þ þ Ni I; tð Þ½ � is negative, the mode angular momentum is
positive; that is, the mean square radius of the plasma increases when
the mode is excited.

The transport does introduce time dependence in the density
distributions Ni I; tð Þ andNe I; tð Þ: During reflection ions and elec-
trons step off the drift surface, breaking the adiabatic invariant I
for the particle and introducing time dependence in Ni I; tð Þ
andNe I; tð Þ:

Including the time dependence in AðtÞul Ið Þ, Ni I; tð Þ;
andNe I; tð Þ; while demanding that the total canonical angular
momentum of the plasma is constant yields the relation
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0 ¼ dPh

dt

¼
ð1
0
dII

@Ni I; tð Þ
@t

þ @Ne I; tð Þ
@t


 �

� dA tð Þ2

dt
1
4

ð1
0
dI

eul Ið Þ
xr Ið Þ

 !2
@

@I
Ne I; tð Þ þ Ni I; tð Þ½ �; (76)

where the time derivatives @Ni I;tð Þ
@t and @Ne I;tð Þ

@t were retained in the first
term of Eq. (75) but not the second. Since the time derivatives are sec-
ond order in mode amplitude and the second term already contains a
factor, that is, second order in mode amplitude, the resulting term
would be fourth order and has been dropped.

The case of interest is when the ion flux is due to resonant rota-
tional pumping and the electron flux is due to adiabatic rotational

pumping. The continuity equations in I-space, @Ni I;tð Þ
@t þ @

@I C
i
I;n	1 Ið Þ

¼ 0 and @Ne I;tð Þ
@t þ @

@I C
e
I;n¼0 Ið Þ ¼ 0; define the flux functions in

I-space. Substituting for the time derivative terms in the first term of
Eq. (76) and integrating by parts with respect to I yields the equation

ð1
0
dI Ci

I;n	1 Ið Þ þ Ce
I;n¼0 Ið Þ

h i

¼ dA tð Þ2

dt
1
4

ð1
0
dI

eul Ið Þ
xr Ið Þ

 !2
@

@I
Ne I; tð Þ þ Ni I; tð Þ½ �: (77)

The fluxes in I-space are related to the fluxes in r-space through the
equations CI Ið Þ ¼ CrðrÞð2prLÞ for both electrons and ions. By using

this relation, the relation I¼ pI ¼ � eBr2I
2c and Eq. (63), Eq. (77) can be

rewritten in the form

dA tð Þ2

dt
¼

4
ð1
0
r2dr½Ci

r;n	1 rð Þ þ Ce
r;n¼0 rð Þ�ð1

0
r2dr

cul rð Þ
Brxr rð Þ

� �2 @

@r
ne rð Þ þ ni rð Þ½ �

: (78)

Substituting for Ci
r;n	1 rð Þ from Eq. (65) and for Ce

r;n¼0 rð Þ from Eq.
(68) then yields the result

dA tð Þ2

dt
¼

ffiffiffi
p
2

r
1
2
Tcl
eB

ð1
0
rdrni rð Þ

L1;l rð Þ
�� ��2

L20
sum xið Þ þ 64

ffiffiffi
2
p

r
ne rð Þ
ni rð Þ

�eek? þ �eik?
� �

lxrð Þ

2
4

3
5

ð1
0
r2dr

cul rð Þ
Brxr rð Þ

� �2 @

@r
ne rð Þ þ ni rð Þ½ �

; (79)

where the first term in the square bracket of the numerator is due to the resonant ion flux and the second to the adiabatic electron flux. These two
quantities are negative over most of the density distribution since xr is negative there, and e is negative, so the numerator is positive. Since

@
@r ne rð Þ þ ni rð Þ½ � is negative, the mode damps. By substituting our crude approximation L1lj j

L0
’ Dz

L0
Aul rð Þ
rp
@u0
@r

����
����, we obtain the damping rate

c ¼ 1
2A2

dA tð Þ2

dt
¼

1
4

ffiffiffi
p
2

r
virci
r2p

ej j
e

Dz
L0

� �2

l
ð1
0
rdrni rð Þ

ul rð Þ
@u0
@r

 !2

sum xið Þ þ 64

ffiffiffi
2
p

r
ne rð Þ
ni rð Þ

�eek? þ �eik?
� �

lxrð Þ

2
4

3
5

ð1
0
drr

ul rð Þ
@u0
@r

 !2

r
@

@r
ne rð Þ þ ni rð Þ½ �

: (80)

VI. DISCUSSION

We have generalized the theory of rotational pumping for a dio-
cotron mode to arbitrary azimuthal mode number, calculating the
mode induced transport and mode damping. The analysis focused on
a non-neutral plasma consisting dominantly of electrons but with a
small admixture of H� ions,13 but also would be applicable to similar
plasmas, such as an electron plasma with an admixture of antipro-
tons14 or a positron plasma with an admixture of positive ions.15 The
axial bounce frequency for the light species is typically large compared
to the plasma rotation frequency, so the rotational pumping for this

species is in the relative weak adiabatic regime. In contrast, the rota-
tional pumping for the heavy species can be enhanced by a resonance
between the axial bounce frequency and the plasma rotation fre-
quency, as seen in the rotating frame of the mode.

To obtain numerical estimates for the transport and damping
rates, we consider the simple case where the electrons and ions are uni-
formly mixed and the density profiles are of the top-hat form. The
equilibrium electron density has the constant value ne out to the radius
r ¼ rp and is zero beyond, and likewise, the ion density has the value
ni out to this same radius and is zero beyond.
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From Eq. (11), one can see that the radial position of a particle
oscillates as it moves along a drift surface according to the equation

r hð Þ � rI ¼
Aul rIð Þ

@�u0
@ri

 !
cos lhð Þ � Dl rIð Þcos lhð Þ; (81)

where Dl rIð Þ is the amplitude of the oscillation at radius rI . For a
top-hat profile, the displacement at the edge of the plasma Dl rpð Þ is a
convenient measure of the mode amplitude. Experimentally, the dis-
placement can be obtained from an image obtained when the plasma
is dumped out along field lines to the phosphor screen, and the image
can be used to calibrate the mode signal received on wall electrodes.
The experiment of Ref. 13 discusses the damping and transport for the
case of an l ¼ 1 diocotron mode of scaled amplitude D1 rpð Þ=Rw

� 10�2, where Rw ¼ 3:4 cm is the radius of the conducting wall for
the Penning–Malmberg trap.

Since 2D E � B drift flow in a uniform magnetic field is incom-
pressible, the mode charge density is limited to the edge of the top-hat
density profile. In the interior of the plasma, the mode potential satisfies
Laplace’s equation, so the mode potential varies as ulðrÞ � rl . Also, the
gradient of the equilibrium potential in the rotating frame of the mode

varies as @u0
@r � r. Consequently, the displacement at any radius inside

the plasma is given by the expressionDl rð Þ ¼ DlðrpÞð rrpÞ
l�1.

The radial ion flux can be written as Ci
n	1 rð Þ ¼ nivr rð Þ; where

vrðrÞ is the radial transport velocity. We define a characteristic trans-
port time through the relation

1
sT
¼

vr rpð Þ
rp
¼

Ci
n	1 rpð Þ
nirp

¼
ffiffiffi
p
2

r
1
8
lvirci
r2p

Dz
rp

 !2
Rw

L0

� �2 Dl rpð Þ
Rw

� �2

sum xð Þ: (82)

In the experiments of Ref. 13, the magnetic is field 12 kg; and the
plasma is at room temperature, yielding the approximate values vi
¼ 1:6� 105cm=s and rci ¼ 1:3� 10�3cm. The geometrical factors are
approximately rp �Dz� 1cm; Rw ¼ 3:4cmandL0 ¼ 34cm:Thevalue
x¼ xr

xb
isapproximately5; and as mentioned above, the scaled mode

amplitude is about
Dl rpð Þ
Rw
� 10�2. For these parameters, the characteris-

tic transport time is about sT � 2�102s:
Given enough time, the ions and electrons in a plasma such as

that in Ref. 13 undergo centrifugal separation.16 When an electron and
an ion are at the same radius, the ion must rotate slightly faster than
the electron to achieve radial force balance. Because of this difference
in rotation speed, electron–ion collisions produce a small azimuthal
drag force between the two species, causing the ions to drift radially
outward and the electrons to drift radially inward. The time scale for

this collisional separation of the ions, ��1ie
Xci
xr

� �2
, is two orders of mag-

nitude longer than the transport time for the rotational pumping.
For the top-hat density profile, the ratio of the radial integrals in

Eq. (80) for the mode damping rate reduces to the simple result
ni

2lðniþneÞ, where use has been made of the relation Dl rð Þ
¼ DlðrpÞð rrpÞ

l�1. The increment to the damping rate due to the ion

rotational pumping is then

ci ¼
1
8

ffiffiffi
p
2

r
virci
r2p

Dz
L0

� �2 ni
niþneð Þ

sum xð Þ

¼ 1
sT

ni
niþneð Þ

rp
Dl rpð Þ

� �2
� 0:2 s�1; (83)

where the ratio ni
niþneð Þ has been taken to be 0.1 in accord with Ref. 13.

The transport time is longer than the damping time by the ratio of the
total canonical angular momentum of the ions to the canonical angu-
lar momentum of the diocotron mode

cisT ¼
ni

niþneð Þ
rp

Dl rpð Þ

� �2
� 103: (84)

We note that the coefficients of the transport rate and the damping
rate, as given by Eqs. (82) and (83), are strongly dependent on temper-
ature, scaling as T3=2, if xi /

ffiffiffiffi
T
p

B is held constant. The numbers
given above for the plasma in Ref. 13 assume the relatively low room
temperature. If the temperature were simply raised to 1 eV, while hold-
ing xi /

ffiffiffiffi
T
p

B constant, both rates would increase by three orders of
magnitude.

Because the damping time is short compared to the transport
time, the diocotron mode would damp away with only negligible
transport, except that in the experiments of Ref. 13 the diocotron
mode is continuously driven unstable by a transiting, weak Hþ2 ion
beam. This beam is incidental to the rotational pumping process.
Before the H� ions are produced, by dissociative electron attach-
ment to excited H2 molecules, the diocotron mode grows exponen-
tially at a rate cþ � :05 s�1. When the H� density grows to the
level assumed in Eq. (83), the H� increment to the rotational
pumping damping rate can stabilize the growth and even damp the
mode. Thus, the mode is an intermediary in the angular momen-
tum balance. Ultimately, the angular momentum change associ-
ated with pumping the ions out is deposited in the transiting Hþ2
ion beam.

What are some connections of this research to other plasma
problems of current interest? Experiments with electron–antiproton
plasmas have observed cylindrical separation that proceeds more rap-
idly than would be expected from the collisional transport time scale,22

and there is interest in a collective process that could facilitate this
fast separation. Although the rotational pumping discussed here
does transport out the heavy species faster than the collisionally
driven centrifugal separation, it is not an ideal candidate for the
desired collective process. The current process relies on an external
agency, the Hþ2 ion beam, to provide the angular momentum nec-
essary to move the ions outward. Presumably, what is needed is an
instability that is driven by the free energy of the unseparated
plasma. The unstable mode would drive the heavy species outward
and the light species inward, conserving total plasma canonical
angular momentum without invoking the action of an external
agency. A possible candidate is the drift wave instability discussed
by Dubin.23

Another topic of interest is the collective transfer of canonical
angular momentum from one species to another, and the bounce-
resonant rotational pumping is a good example of such transfer. A
diocotron mode supported primarily by a light species transfers angu-
lar momentum preferentially to a heavy species, since the bounce-
rotation resonance selects for particle mass.
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