Strongly Coupled Plasma Physics (S. Ichimaru, editor), 3H
Elsevier Science Pub. B.V./Yamada Science Foundation,
pp. 313-324 (1990).

COLLISIONAL RELAXATION OF A STRONGLY MAGNETIZED PURE
ELECTRON PLASMA (THEORY AND EXPERIMENT)*

T. M. O'Neil, P. G. Hjorth,T B. Beck, J. Fajansi and J. H. Malmberg

Physics Department, Univ. of Calif. at San Diego, La Jolla, CA 92093 USA

1. INTRODUCTION

We say that an electron plasma is strongly magnetized when the cyclotron period is short
compared to the duration of a close collision. The gyroangles for the electrons may then be
thought of as a collection of high frequency oscillators and the remaining variables (the guiding
center variables) as slowly varying parameters that modulate the high frequency oscillators.
Loosely speaking, one expects the high frequency oscillators to resonantly exchange quanta (or
action) with each other, but not with the slowly varying variables. More precisely, one expects

the total action associated with the cyclotron motion (i.e., vaj/lﬂ) to be an adiabatic
i
invariant."? Here, Q=eB/mc is the cyclotron frequency and v,;j is the componcnt of the j*

electron velocity that is perpendicular to the magnetic field. For the simple case of a uniform
magnetic field, one may equivalently say that the total perpendicular kinetic energy is an
adiabatic invariant, and this paper discusses the influence of the invariant on the collisional
relaxation of the electron velocity distribution,

On a short time scale, the adiabatic invariant is well conserved, and there is negligible
exchange of energy between the parallel and the perpendicular degrees of freedom. The
distribution of parallel velocities and the distribution of perpendicular velocities relax separately
to Maxwellian, with the parallel temperature (Ty) not necessarily equal to the perpendicular
temperature (T;). However, the evolution does not stop at this stage, since an adiabatic
invariant is not strictly conserved; it suffers exponentially small changes. In the present case,
each collision produces an exponentially small exchange of energy between the parallel and the
perpendicular degrees of freedom, and these act curnulatively in such a way that 7y and T)
relax to a common value. The time for this relaxation (the second time scale) is exponentially
long, or equivalently, the rate is exponentially small.

This paper presents a calculation of this exponentially small equipartition rate.” It also
presents the results of molecular dynamics simulations that corroborate the existence of the adi-
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abatic invariant and the value of the calculated rate,> and it presents the results of recent experi-
ments (with cryogenic pure electron plasmas) that are in agreement with the theory.d

In Section 2, we consider the isolated collision of two electrons in a strong magnetic field
and calculate the exponentially small exchange of energy between the parallel and the perpen-
dicular degrees of freedom. In Section 3, this energy exchange is used to calculate the equipar-
tition rate for a plasma with T #T,. The analysis in this section employs a Boltzmann-like col-
lision operator, which treats collisions as well separated binary interactions. The justification
for this is that the most important collisions (most effective in producing energy exchange) are
close collisions, and these tend to be well separated binary interactions—at least for a weakly
correlated plasma. We consider only the case of weak correlation, and the experiments are car-
ried out for this case.

The molecular dynamics simulations are presented in Section 4; the dynamics of 30 point
charges that interact electrostatically in the presence of a uniform magnetic field is followed
numerically for various values of the plasma parameters (density, temperature, and ficld
strength). In Section 5, the results of the experiments are presented; a magnetically confined
pure electron plasma is cooled to the cryogenic temperature range, and the equipartition rate is
measured as a function of magnetic field strength and plasma temperature. For both the simu-
lations and the experiments, the equipartition rate drops dramatically in accord with theory as

the plasma enters the parameter regime of strong magnetization.

2. BINARY INTERACTION

In this section, we analyze an isolated collision between two electrons that interact electros-
tatically in the presence of a strong and uniform magnetic field, B=28. The equations of
motion for the electrons are

dv 2 (ry—r
——-———1+Qv1x£=—€-—~——-——-———(1 2) . ()
dt m e -r,l3
dv 2 (r3-r
—2iQuyxg=f 2 0 2)
dr m Irl—rzi:;

where r; and v; are the position and velocity of electron j. By adding and subtracting these

equations, we obtain the two equations

dVv

—+0Vxi=
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dt por3

where V=d/dt (r;+r;)/2 is the velocity of the center of mass, r=r,—r, is the position of elec-
tron 2 relative to that of electron 1, v=d/dr (r) is the relative velocity, and p=m/2 is the
reduced mass. The center of mass motion is equivalent to that of an electron in a uniform
magnetic field, and the relative motion is equivalent to that of an electron in a uniform mag-
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netic field and the field of a fixed charge. The solution for the center of mass motion is trivial,
and the solution for the relative motion is simplified by the existence of an adiabatic invariant.

The condition for sirong magnetization insures that the cyclotron frequency is much larger
than any other frequency that characterizes the collisional dynamics [i.e., Q= wb, vi/b, where
IFi2h]; so the cyclotron action pvi%(1)/2Q is an adiabatic invariant. Since Q is a constant,
one can equivalently say that uv%r)/2 is an adiabatic invariant. Incidently, the fact that
uv3(t )2 is an invariant implies that the distance of closest approach is given by b = e%/(uvi%/2).

Note that pv2(1)/2Q is a new adiabatic invariant associated jointly with the two electrons;
neither mvﬁ(:)&ﬂ nor mv?i(t Y282 are valid invariants, For example, in Eq. (1), rpft) is a
time-dependent function that varies at the cyclotron frequency, and this breaks the adiabatic
invariant of electron 1 [ie., mvﬁ(f)ﬂﬂ;éconstj. Likewise, the temporal variation of r(t)
breaks the adiabatic invariant of electron 2. By introducing the relative position and velocity
(i.e., r and v), we have removed the explicit time dependence from the interaction and
uncovered a new adiabatic invariant, uvlz(t )20).

From Eq. (3), one can see that V2(¢) is an exact constant of the motion; consequently, the
relation mvﬁ(:)/Z +m vﬁ(t)/Z =uv12(t)f2+(2m) Vlz(l )2 implies that the sum of the perpendicu-
lar kinetic energies for the two electrons is an alternative expression for the adiabatic invariant.
This expression can be generalized to the case where many electrons interact simultancously,
that is, the quantity 3, mv J,-Zl(r)IZ is also an adiabatic invariant.!*?

An adiabatic invariant is not strictly conserved but suffers exponentially small changes. For

the case of a weakly correlated plasma, we will argue that the overall invariant [ie.,
ym vj?'l(t)l2] suffers changes primarily through close two-particle collisions; therefore we cal-
i

culate the change that occurs in uvf(r)fl during a collision. From Eq. (4), it follows that

4 i) _evionw | )
dt 2 x>
thus, the quantity A(Uv/2) = Uv(e)/2 — v(—eo)/2 is given by the time integral
+oa
A [lﬁ]= J dtez‘&(f)"l(f) . 6)
2 2. le()i3

Following the usual practice in the theory of adiabatic invariants, we use the lowest-order orbits
in evaluating the time integral, that is, we rewrite Eq. (6) as

4o
2 )
A &]Eez\ﬁ ) [ drcos@usd) "
[ 2 i, P2+ 220"
where (p,z) is the guiding center approximation for (r;,z), 8 is a constant, and z (1) is deter-
mined by
2
N SL R - ®

[p2+ 22(1 )]1:’2
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The origin of time may be shifted simply by changing the value of the constant 6; so,
without loss of generality, we choose the origin of time so that z%(r) is an even function of ¢,
that is, so that the electron either passes z =0 or reflects at the time ¢ =0. Equation (8) then
reduces to the form

+eo
: dt cos(S)
A B - ey, cos(®) | ———= . )
2 ] pees® | P2+ 2012
In terms of the scaled variables
E=zib, E=vgibh, n=pb , E=v/Qb , (10)

the time integral in Eq. {9) can be wrilten as

e +em
dtcos(far) _ 1 J d& cos(E/e) an
S P 2OP2 wp? L P EP?
and Eq. (8) can be rewritten as
ag|’ 1 (12)
g m?+CEN"?

Strong magnetization implies that €« 1, so the § integral in Eq. (11} involves the product
of a rapidly oscillating function and a slowly varying function and tums out to be exponentially
small. The integral can be evaluated by deforming the contour of integration into the complex
£ plane and is of the form?

+oa

d cos((&/€) =h(eme® (ye {(13)
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where k(€,1) is neither exponentially small nor exponentially large in the range of € and 1 of
interest, and g (1) is given by
n
312
g | o=t | (14)
e )
From the plot of g{n) in Fig. 1, one can see that g (M)=n/2 for n=p/b <« 1 and that g (N)=n
for n=p/b > 1. Thus, the & integral is of order exp{-nQb/2vi] for p<«b and of order

exp [-S2p/vy] for p»b. These exponentials are each of the form exp(—{2t), where t character-
izes the duration of the collision. Also, we note that the & integral is largest for collisions
characterized by small impact parameter and large relative velocity.

3. CALCULATION OF THE EQUIPARTITION RATE
Next we turn to the question of how such collisions act cumulatively to produce the relaxa-
tion of Ty and T, in a strongly magnetized plasma, For simplicity, we consider the case of a
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FIGURE 1
A plot of the function g (1), defined in Eq. (14).

weakly carrelated plasma, that is, a plasma in which e2n 13« T,, where n is the electron den-
sity. This inequality can be rewritten as the condition that b =ezf(u$/2)=2ezf’r;| is small
compared to the mean interparticle spacing (i.e., b «a~13). One can easily verify that correla-
tions are determined by T in the strongly magnetized parameter regime.

We have just seen that for the class of two-particle collisions it is the close collisions (i.e.,
Ir,—ryl =b) that are most effective in producing an exchange of parallel and perpendicular
energy. If we add a third particle into the dynamics, we obtain a small perturbation on the
close two-particle collision unless all three particles are close simultaneously. We assume that
the energy exchange caused by a close three-particle collision is of the same order as that for a
close two-particle collision; this is reasonable considering time scale arguments concerning the

durations of the collisions. Of course, the overall adiabatic invariant, Emvﬁ(r)lz, exists for
J

many-electron collisions. Since the inequality b < n V3 implies that close two-particle colli-
sions are more frequent than close three-particle collisions, we neglect the close three-particle
collisions and, similarly, all higher-order collisions. Also, we note that the close two-particle
collisions are well-separated events (i.e., Ir;~r;l =b «n™'?).

Such well-separated binary collisions can be treated with a Boltzmann-like collision opera-

tor.}23 In particular, we evaluate the integral
2
dly _{ gy, 22V of
dr Jdvl 7 0 ) (13)

by replacing the time derivative of the distribution function with the Boltzmann-like operator
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In relation to the usual form of the Boltzmann collision operator, the integral over 2npdp is
equivalent to the integral over the impact parameter (or, scattering cross section), and the quan-
tity 17 -(vo—vy)| replaces !vy—v;l, since the two electrons stream toward one another along
field lines. In the usual manner (v'),v;) are velocities that evolve into (v,,v;) during a scatter-
ing.

By substituting the collision operator into Eq. (15) and by using detailed balance, we obtain

-d—TL—_jznpdpjdvlj.dvzlz (va~ vyl

X [f (V’l of )f (V’Z!t ) —f (VI,I )f (Vz,l )]

2 2 2 2
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The distribution functions are assumed to be of the form

12 2 2
m _mvjy mvj
Fe0= [mrr ] [2:;71 ]cx"[ T, o ] 0%

To evaluate the multiple integral, it is convenient to introduce the center of mass velocity and

the relative velocity (i.e., V, and v). With the aid of the relations

mvi mVE v 2mv?
2 2 2 2 7

2 2 2
mvi mv22" AL . 2mVy

2 2 2 2 "
VE=V?, dvidv,=dvdV .
Eq. (17) can be rewritten as
=% IZ‘EP dp jd vinl [f, (Vv D~ f ()] < AQuvi/2) (20

where the integral over d 'V has been evaluated and

£ () = " o 21
PR oy T ant, |50 T T, @

is the distribution of relative velocities.
By using AQLv2)=pvi2 — pv' 22 =puv' 2 — v, Eq. (20) can be rewritten as

2
=—:—j21rpdpjdv|v|lf,(vu,v1)A [—%—]x exp [TLI_?I] [P_..] )
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Taylor-expanding the exponential, substituting for A(uv22) from Eq. (9), and integrating over
dv, yields the expression

T 1 1]«
N | L L1 2 [2npdp [dwiw
&r [Tl [Tl Tu”zlj mpdp [dwilw

g exp(~uv2Ty) ep? dt cos({)

(23)
@ryiny?  n | e 2P
By using Egs. (11) and (13} to reexpress the time integral, Eq. (23} reduces to the form
%EL =(Ty-Tnb %1 €) ,
e T T
where we have introduced the scaled variables
Vi=VTdll, O=wW, b=2eMv, TE=7Qb . (25)

Since € is assumed to be small and g (1) is an increasing function of 7, the main contribution

to the 1 integral comes from small . By making the approximations?

gM)=g (O +g" (OM¥2=1.57+(0.675m2,

h(1/8c°n) = h (1/€6°,0)=2.79(1/Ec?) , (26}
we obtain
- o012 3
1(@)5(0.67)]&0 . e~ (1)) 27)
[)]

For small €, the ¢ integral may be carried out by the saddle point method, and the result is
1) =ATE Se~@0N/E (28)

In Fig. 2, this small € asymptotic expression for I(E) is compared to the results of a numerical
evaluation of /(€). The curve is a plot of the asymptotic expression, and the points are the
result of numerical integration for various values of € One can see that the agreement is good

for small enough values of E.

The main point to note here is that the equilibration rate is larger than one might have
guessed. Since the exchange of parallel and perpendicular energy for an isolated collision
between two electrons is exponentially small in 1/, one might have guessed that the equilibra-
tion rate would be exponentially small in 1/E. However, the equilibration rate turns out to be

. . 5 S g e . 5 -
exponentially small in IIE?J . and this distinction is important since €  »€ for €« 1.
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FIGURE 2

The saddie point evaluation of /(€) compared to the result of a numerical evaluation of
I (€) for various values of E,

The UE?J ? dependence is determined by a competition between the velocity dependence of
exp (-2m/€) =exp(—4ne?Qmv?) and the velocity dependence of the distribution of relative
velocities, exp (—uv@/27)). Collisions characterized by large relative velocity are particularly
effective at producing an exchange of parallel and perpendicular energy, but there are relatively

few such collisions.

4. MOLECULAR DYNAMICS SIMULATION

This section presents the results of molecular dynamics simulations.® The dynamics for
N =50 point changes that interact electrostatically and move in a uniform magnetic field is
followed numerically, and the equipartition rate is determined for various values of the plasma

parameters (density, temperature, and field strength).

For computational convenience, it is useful to scale velocities by wi=Twu, distances by
b =2e21u7~"||2. and times by &/, With these units, the equations of motion take the form
N x.—-x.
rr ’ *r ]

Xi=vi, Vis S vixitae S —tdo el N, 29)
£ 4 i I x i —Xj |

where primes signify scaled varables. Because we need to evaluate the full Coulomb force

term, the number of floating point operations associated with each reference to this set of equa-

tions scales roughly quadratically with the number N of particles in the system; this is the main
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obstacle to a simulation involving a realistically large number of particles. Nevertheless, a
glimpse of the phenomena has been obtained with a simulation involving 50 interacting parti-
cles, performed on the SDSC CRAY X-MP.

As initial conditions, we take the 50 particles to be uniformly distributed spatially inside a
box —L{2<{x,v,z)<+L/2, of volume L3, and with initial velocities picked from a bi-
Maxwellian velocity distribution with (T)/Ty)=0.2. As the system evolves, the particles are
confined in the z direction by specular reflections at the walls at z =4£./2. Confinement in the
radial direction is ensured, since the total canonical angular momentum Pg is a constant of the
motion and provides a constraint on the allowed radial positions of the electrons.® Another con-
stant of the motion is the total energy; we employ a high precision Bulirsch-Stoer ODE solver’
and find during a typical run that the total energy is conserved to order AE/E ~ 1077 and that
the total canonical angular momenteum is conserved to order AP /P g~ 1075,

From a statistical (or macroscopic) perspective, the scaled system is characterized by two
parameters: € and L. Here, we have in mind fixed N =50, fixed initial 7\/Ty=0.2, and fixed
initial <v'I>=(Tym)(Tyn)=1/2. The parameter € is a measure of the magnetic field strength,
and the parameter L’ is a measure of density n'=N/L 3 By decreasing L', we increase the
collision frenency (v,,), or equivalently, we increase the correlation strength (C=e%aTy, where
Anna33=1). Not all of the (€I parameter plane is physically acessible. For a nonneutral
electron plasma, the Brillouin limit® G.e., 0, < QN2) specifies the maximum density that can be
confined for a given magnelic field strength, and in terms of € and [ this limit takes the form
T2 < INT2.

Some sample results are shown in Figs. 3(a) and 3(b), where W /W and WyW are plotied
as functions of time. Here, W, and Wy refer to the total perpendicular and parallel kinetic ener-
gies, respectively, and W =W +W,. The dashed lines mark the values predicted by the
equipartition theorem: W /W =2/3 and Wy¢W=1/3. Figure 3(a) shows the results of a run with
low magnetic field strength (€=14) and Fig. 3(b) shows the results of a run with large field
strength (E=0.14) but the same correlation strength (ie., T=0.03). One can see that the
increased field suppresses the relaxation. To investigate the rate equation numerically [i.e., Eq.
(28)], we examined the initial rate of temperature equilibrium for a bi-Maxwellian velocity dis-
tribution with T, =0.2T;. In order to suppress statistical fluctuations without going to a large
number of particles, we averaged the change in perpendicular and parallel kinetic energy over
20 different sets of initial conditions. These were advanced forward a time Ar short compared
with the equipartition time, but long enough for a least-squares fit to the slope of the evolving
W (t)=NT(t). In Fig. 4, the analytic prediction {(dT’ det)[(T"*—Ti)nE?Vu]_l:f (€) is compared
to numerical values of (A]‘]Mt)[(T;,—Tl)ngzw]‘1 for various values of € and I'. On¢ can see
that the numerical values are insensitive to the value of T and follow the /(€) curve quite well,
although the agreement is best in the small € limit. This is to be expected, since /(€) was

obtained in the small € asyptotic limit.
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FIGURE 3 FIGURE 4
Evolution of W /W and W/W (a) for weak Comparison of the function / (E) (solid curve)
magnetic field (i.e., €= 14) and (b) for strong  to values of (AT /JAD[(T,—T )b v, "
magnetic field (i.e,, €=0.14). obtained from the simulations,

V. EXPERIMENT

The condition for strong magnetization can be written as Q:»v/h, or equivalently, as
T¥2(eV )« 107'B(G), where for simplicity we have set Ty=T,=T. One can see that strong
magnetization requires low temperature as well as large magnetic field; even for B as large as
100 kG, the required temperature [T <« (.05)eV'} is such that a neutral plasma would recombine.
However, a pure electron plasma cannot recombine, since there are negligibly few ions in the
confinement region. Recent experiments have succeeded in cooling a magnetically confined
pure electron plasma to the cryogenic temperature range (where the plasma is strongly magnet-
ized) and in measuring the eguipartition rate as a function of plasma temperature and magneltic
field strength.*

A schematic diagram of the confinement apparatus used in these experiments is shown in
Fig. 5. A conducting cylinder is divided into several electrically isolated sections (only three of
which are shown), and the whole apparatus is immersed in a magnetic field that is nearly axial
and uniform in the region of the plasma. The plasma resides in the central grounded cylinder,
with radial confinement provided by the axial magnetic field and axial confinement provided by
electrostatic fields. The two end cylinders are biased sufficiently negative to provide this axial
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confinement. The plasma density for these experiments is of order 10° cm™ and the initial
plasma temperature is of order 10 V. The magnetic field is provided by a2 superconducting
coil, and field strengths up to 60 kG are used.

Immediately after the plasma is trapped, it begins to cool by cyclotron radiation, and the
radiated energy is absorbed by the walils, which are maintained at 4°K. Each electron radiates
according to the Larmor formula® (the plasma is optically thin), and this leads to an exponential
decrease in plasma temperature with a time constant 1=4x 1082 sec, where B is in Gauss.
For example, for B =60 kG, the time constant is .1 sec. This time is long compared to the
equipartition time over the whole parameter range explored in the experiments, so Ty remains
nearly equal to T, even though cyclotron radiation extracts only perpendicular kinetic energy.

The temperature Ty is measured by letting the plasma gradually escape o the collector [see
Fig. 5]. As the potential on the cylindrical section in front of the collector is gradually
increased (toward zero), electrons in the tail of the Maxwellian velocity distribution begin to
tnake it over the potential barrier and reach the collector. The temperature is determined by
measuring the current collected as a function of the potential and fitting to a Maxwellian. Of
course, dumping the ptasma in this manner is a destructive procedure, and the experiments rely
on shot to shot reproducibility. By measuring the temperature as a function of time after injec-
tion, one can follow the radiative cooling of the plasma, and the measured temperature tracks
the theoretical expectation down to about 50°K, which is very likely the present limit of the
temperature diagnostic,

To determine the equipartition rate, a small oscillating component is added to the potential
on one of the end cyclinders. This acts like an electrostatic piston that alternately compresses
and expands the plasma in the axial direction. If the oscillation frequency is low compared to
the equipartition rate, the compression and expansion cycle is a reversible process (a 3-D
compression and expansion charmacterized by cpfc‘,:(f +2)/f =5/3). Likewise, if the oscilla-
tion frequency is large compared to the equipartition rate, the cycle is a reversible process (a
1-D adiabatic compression and expansion characterized by ¢,/c,=(f +2)/f =3). However,
when the oscillation frequency is comparable to the equipartition rate, the process is not rever-
sible. More work is done during the compression stroke than is given back during the expan-
sion stroke, and the excess appears as plasma heat. One can easily show that the heat per cycle
is a maximum for ®=23v, where ® is the angular frequency of the oscillation and v is the
equipartition rate [i.e., dT/dt =v(T,—T()]. To understand the factor of 3, note that in the
absence of heating the definition of v implies that d(T) —T/dt =3v(Ty-T)).

In the experiments, the oscillation frequency is adjusted so that the heating per cycle is
maximum. Also, the oscillation amplitude is adjusted so that the heating just balances the cool-
ing due to radiation, and the plasma temperature remains constant. This procedure is then
repeated for various values of the temperature and magnetic field strength, and the equipartition
rate is measured as a function of these parameters. In Fig. 6, the points are measured values
and the curves are theoretical predictions. The dashed curve applies to a weakly magnetized

3H



3H

B —

)£

33 ]

| @ l ? I[” |

€
FIGURE 5 FIGURE 6

Schematic diagram of the confinement Comparison of measured equipartition rate
apparatus. to theory.

plasma (E>1); it is the prediclion of Ichimaru and Rosenbluth!? as modified by Montgomery,
Joyce and Turner’s!! prescription for the Coulomb logarithm [ie., In(Ap/b)—In(E)). For
strong magnetization (€< 1), the solid curve is the function 7 (€) given in Eq. (28). One can see
that the measured rate drops dramatically for €« 1 in good agreement with theory.
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