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Abstract of the Dissertation

Experiments on Electron Vortices in a Malmberg-Penning

Trap

by

Travis Buell Mitchell
Doctor of Philosophy in Physics

University of California, San Diego, 1993
Dr. Charles F. Driscoll, Chairman

Experiments are presented on confined pure electron plasmas. These plas-
mas are cylindrical columns contained inside hollow conducting cylinders in an axial
magnetic field. In the 2 dimensional E x B drift approximation, an electron column
is a vortex evolving in (r,8) according to the 2D Euler equation.

The ‘diocotron’ waves of a single vortex vary as exp(ik.z + ¢l0 — iwt), with
k, = 0. The | = 1 wave is observed to damp at a rate strongly dependent on the
radial position of the column in the cylindrical trap. The [ = 2 and [ = 3 waves
exhibit a decay instability, where the mode [ decays to mode [ — 1. When this decay
instability is prevented by negative feedback, exponential decay is observed.

Next, the center-of-mass motions of two vortices symmetric in radius and
vorticity, and sufficiently well-separated to be stable to merger, are characterized.
Equilibria are observed in which the vortices orbit about the center of the cylinder,
with either oscillations about stable equilibria or exponential divergence away from

unstable equilibria. The equilibrium positions, oscillation frequencies, and instability




rates for these spatially extended vortices agree well with the predictions of point

vortex theory, apparently because surface waves and shape distortions do not couple

significantly to the center-of-mass motion.

Finally, the merger of two vortices with unequal radii has been quantified.
The two vortices merge rapidly when they are closer than a critical separation, but
stay separated for many orbits when the separation is slightly larger. Merger is
accompanied by the formation of filamentary arms, and results ultimately in an
axisymmetric central core surrounded by a lower density halo. A simple algorithm
for defining the core and halo of a merged vortex is found to be consistent with
experiment. The self-energy of the merged core is found to be roughly the same as
the sum of the self-energy of the merging vortices. The fraction of the total circulation
entrained into the core varies from 70% to 90% as the ratio of the initial vortex radii
is varied from 1:1 to 2:1. This fraction also depends on the initial placement of the

two vortices.

XXI







Chapter 1

Introduction and Summary

1.1 Overview of Dissertation

In this work, I describe experiments on confined pure electron plasmas. The
plasmas studied are electron columns contained inside a trap consisting of hollow
conducting cylinders in a uniform axial magnetic field. The magnetic field provides
radial confinement, and electrostatic fields on end cylinders provide axial confine-
ment. Because John Malmberg pioneered use of these traps to study plasma pro-
cesses [45], whereas Penning [55] used a similar geometry to make a cold cathode
ionization gauge, | refer to the confinement device as a ‘Malmberg-Penning’ trap.

In the operating regime of the experiments, where the 2D E x B drift ap-
proximation is valid and where fast electron motions in the axial direction average
over axial variations, the columns evolve according to the 2D Euler equation. The
columns therefore evolve as would patches of vorticity in an incompressible and in-
viscid fluid contained in a circular tank. The vorticity of the flow is proportional to
the electron density, and the sign of the vorticity is given by the sign of the charge
(42].

This ‘fluid analogy’ adds to the significance of non-neutral plasma experi-
ments: while non-neutral plasmas are a subject of increasing interest in their own

right — having found homes in such diverse places as accelerators, free electron lasers,




atomic clocks and neutron stars — vortices have a tremendous importance due to the
central role of vorticity in fluid dynamics and turbulence. 1 will be presenting both
results which apply only to plasmas and results which also apply to fluid vortices.
To help differentiate between these, I try to adhere to a convention that when the
structures are referred to as columns, the phenomenon being described is unique to
plasmas; when referred to as vortices, it is believed that the phenomenon also applies
to 2D fluid vortices.

As will be seen, several of the complications of vortex experiments using
conventional fluids do not apply to electron systems. For example, in the electron
system there is no boundary layer at the containing wall to complicate the dynamics,
and the Reynolds number is high: an electron vortex can rotate about its axis over
10 times before its radius doubles due to ‘viscosity’. Additionally, the vorticity is
easily manipulated, accurately measured and directly imaged [17]. As a consequence
of these advantages, I have been able to quantitatively study some basic vortex
phenomena which have not been satisfactorily examined before.

The dissertation is organized as follows. Chapter 2 consists of background
information on non-neutral plasmas in’ general, and the ‘Equilibrium Voltage’ (EV)
containment device in particular. The operation and diagnostics of the EV device
are described in detail, some relevant previous results on transport and temperatures
are reviewed, and the fluid analogy (and observed discrepancies from it) is discussed.

Chapter 3 contains the results of studies of a single vortex/cblumn. I first
describe studies of the damping of surface waves characterized by the azimuthal
mode number [ (i.e. varying as cos(/8)), but having no axial variation (k. = 0). In
fluid dynamics, these are referred to as IKelvin waves on a vortex; in plasma physics
they are referred to as diocotron waves. The [ = 1 wave corresponds to a column

displaced from the center of the cylindrical trap. Measurements of the radius and



displacement of such a column show changes at rates strongly dependent on radial

position. I find that while both angular-momentum-conserving and -nonconserving
transport is taking place, the data is consistent with an exponential damping of the
=1 wave. The measured rates of this damping, however, are somewhat higher than
those predicted by a preliminary theory {11].

The | > 2 diocotron waves can be damped by a spatial Landau-mechanism
resonance damping [5, 14]. [ have discovered, however, that small amplitude [ = 2
and | = 3 waves, even when stable to resonance damping, are unstable to a decay
instability. In this instability, the [ wave decays to both an exponentially growing [—1
‘daughter’ wave and presumably to a resonant band of particles. When the decay
instability is suppressed by negative feedback on the daughter wave, exponential
damping on slow “viscous’ timescales is observed to occur. Finally, I have observed
[ = 3 perturbations to grow exponentially on highly elliptical vortex structures. This
appears to be the first experimental observation of an instability predicted 100 years
ago by Love [44].

I have investigated the use of external electric fields rotating/in the 0-direction

5] and have achieved significant

to transfer angular momentum to the column [2
transfer accompanied, however, by a large amount of heating. The central density
increases by about 50%, and the column becomes somewhat narrower. The coupling
of the fields to the column is through electron plasma waves.

Finally, I describe some measurements of the [ = 0, k # 0 ‘sloshing’ density
perturbations induced on an off-axis column, when the magnetic field is not aligned
with the trap axis [33]. I quantify the relationship between the I = 0 signal ampli-
tudes and the confinement times of the plasma in the EV apparatus, and present a

more complete interpretation of the use of these signals to align the magnetic field

with the trap.




Chapter 4 describes experiments on two vortices symmetric in V01'ticity and
radius. The (r, ) drift motions of the ‘center-of-vorticity’ of two vortices, sufficiently
well-separated so as to be stable to merger [29], are described first. Equilibria are
observed in which the vortices orbit about the center of the cylinder, with either

oscillations about stable equilibria or exponential divergence away from unstable

equilibria. The equilibrium positions, oscillation frequencies, and instability rates are .

obtained with high accuracy. I find that these results agree closely with predictions
of a simple point vortex theory, where the spatially extended vortices are replaced
with point vortices of the same circulation. I have extended the stability theory
to the case of equilibria at unequal radial positions. The wide-ranging agreement
between experiments and point vortex theory suggests that surface waves and shape
distortions do not couple significantly to the center-of-vorticity motion, at least at
the precision of the current measurements.

I then discuss the lifetime of the 2 vortex state, which is observed to vary by
5 orders of magnitude depending on the initial placement of the columns. For small
initial separations, immediate vortex merger is observed when the separation between
symmetric vortices, dyy, is below a critical value given by di; ~ 3.2p,, where p, is
the vortex radius (29]. This high precision measurement is consistent with a range of
fluid theory and simulation, and improves upon more qualitative fluids experiments.
Rapid merger is also observed for some large initial separations, because dynamical
instabilities can result in the vortices immediately drifting into each other.

Vortices injected onto stable equilibrium points at larger separations are
found to become unstable to merger on long time scales due to the column expansion
discussed in Chapter 3. The observed rates of expansion are consistent with those
measured for single columns. Lifetimes are anomalously low, however, for vortices

injected onto unstable equilibrium points. I believe this is due to a greatly enhanced




[

rate of column expansion that occurs when the column trajectories move periodically

in radius.

In Chapter 5, the merger of two vortices with differing radii, but equal in
peak vorticity, is quantified. This asymmetric vortex merger is a topic of current
interest due to its relevance to the problem of freely evolving 2D turbulence [46].
The two vortices merge rapidly when they are closer than a critical separation, but
stay separated for many orbits when the separation is slightly larger. Merger is
accompanied by the formation of filamentary arms, and results ultimately in an
axisymmetric central core surrounded by a low density halo. The peak vorticity of
the merged core is observed to be roughly the same as that of the merging vortices.
The vorticity profile of the core and halo, and the lifetimes of the two-vortex state,
are observed to be dependent on the initial placement of the two vortices.

The halo can be defined as that part of the merged profile sufficiently far
away from the core that it is not bound, i.e. far enough that subsequent encounters
with other vortices can advect it away. This suggests a simple, consistent algorithm
for defining the core and halo of a merged vortex. Using this algorithm, it is found
that the fraction of the total circulation entrained into the central core after a merger
varies from 70% to 90%, as the initial vortex radii are varied from 1:1 to 2:1. Addi-
tionally, the self-energy of the merged core is found to be roughly the same as the sum
of the self-energy of the merging vortices. The quantitative picture of asymmetric
merger which emerges from the experiments is consistent with some 2D turbulence
theories based on direct numerical simulations of the Euler equations 8, 69], but

inconsistent with results obtained from contour dynamics simulations [21].



Chapter 2

Background

2.1 Overview

In this chapter I present some background information on Malmberg-Penning
traps in general, and the Equilibrium Voltage (EV) trap in particular. Since research
on non-neutral plasmas has been going on for years, and much of this is of relevance
to my experiments, I include a fair amount of review of previous work. A useful

review of larger scope can be found in Roberson and Driscoll [60].

2.2 Description of EV Containment Device

The EV device is a trap which uses crossed magnetic and electric fields to
contain clouds of electrons within a cylindrical boundary [26]. The exterior is a
cylindrical vacuum vessel, constructed of low-permeability stainless steel and main-
tained at an operating pressure of ~ 4 x 107'° torr. Around the vacuum vessel is a
water-cooled solenoid, which provides an axial magnetic field B, of up to 470 Gauss.
This field provides the radial confinement of electrons by constraining them onto
small Larmour orbits about the field lines. Two small saddle coils provide magnetic
fields B,, B, perpendicular to the main field, for the purposes of cancelling out the
Earth’s magnetic field and aligning B. with the trap axis.

Within the vacuum vessel, and aligned with it, are a series of hollow, cylin-




drical electrodes. Electrons are injected into these electrodes from a filament source
consisting of an ohmically heated spiral of tungsten wire. After injection, axial con-
finement is ensured with negative confining potentials V, on ‘gate’ electrodes, whose
axial separation L. determines the length of the confined column. The confining
potential, V,, is chosen to be sufficiently negative to reflect electrons back to the
confined region when they move towards the gate electrodes. Since positive ions are
not confined axially, the electron plasma contains a negligible number of ions.

Fig. 2.1 is a schematic of the EV device interior, showing the arrangement of
the electrodes. Next to the filament source is a region consisting of eight cylindrical
electrodes of gold-coated OFHC copper. During confinement of a column, two of
these are used as confinement gates: the one nearest the filament is the ‘inject’ gate
and the other is the ‘dump’ gate. The electrodes all have an inside radius R,, = 3.81
cm and a length L. = 7.89 cm, except for one (L2) which is 4.07 cm long. The
electrode labeled ‘S’ is azimuthally divided into four 60° wall sectors and a frame,
which allows pickup and control of § — asymmetric waves.

At the opposite end of this region from the filament is a positively biased
collimator plate, with three holes of varying size spaced 120° apart. The collimator
can be rotated about its axis, which is offset from and parallel to the axis of the
containment, electrodes. This allows the desired collimator hole to be positioned
anywhere along an arc passing through the trap’s axis. Only the smallest hole, of
radius K. = 1.59mm, was used in this work.

Beyond the collimator plate is a velocity analysis region, consisting of four
electrodes. Concentric with and centered lengthwise on one of these electrodes (A3)
is a small magnetic solenoid. At the end of the analysis region is a charge collector,
biased to +158 V, which can be used to measure the number of electrons pass-

ing through the collimator plate and analyzer region. The analysis electrodes and
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secondary magnet allow a measurement of both the perpendicular and parallel tem-

perature distributions, Ty and Tj|, of the electrons which pass through the collimator

hole.

2.3 Operation of the EV Apparatus

A typical experimental cycle consists of several different manipulations and
measurements. There will be at least four phases: injection, manipulation (to achieve
the desired initial condition), experiment, and dump. These cycles are run in a
repetitive mode at ~ 1 Hz; density profiles and temperature profiles are then built
up from many measurements of plasmas with nearly identical initial conditions. Such
profiles rely on a high degree of reproducibility: typically, uncontrolled shot-to-shot
variations in density of less than 0.5% are seen.

For injection, the inject gate is grounded for ~ 100 usec, during which time
an electron column forms between the filament source and the dump gate. The
formed column will have a potential (due to space charge) matching that of the
source [45]. The inject gate is then ramped to a containment voltage V., which traps
the column and isolates it from the filament.

The source was designed to produce an electron column whose charge density
is radially uniform: the filament source is wound in an Archimedes spiral geometry,
giving (to lowest order) a parabolic radial potential across it. The column density is
mainly determined by this parab;)lic potential, which is set by the filament current
(normally 9.6 A). The temperature of the column is largely determined by the spacing
of the filament, i.e. the voltage drop between each winding. With normal operation
of the filament, columns with densities of n ~ 5 x 10°cm™3, and temperature 7’ ~ 0.3
eV, are formed. The radius of the injected column can be set by changing the bias

potential Vs at the filament center, since the potential at the column center must
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equal this potential and the column density is fixed.

The specific manipulations required to set up an initial condition will depend
on the experiment. One such manipulation, very often used, is electrostatic ‘tilt’.
To perform tilting, equal and opposite voltages are quickly (< lusec) applied to 2
wall sectors separated in 6 by =. The speed of the voltage rise time, relative to the
[ =1 period, gives rise to a substantial amplitude [ = 1 wave after the voltages have
reached their maximum value. The combination of the [ = 1 motion and the voltage
perturbations results in fast radial transport of electrons. This transport results in
a smoothing of the density profile and a quieting of density fluctuations. The speed
of the transport is dependent on the length of the column, and on the amplitude of
the { = 1 wave present. The smoothing and quieting is qualitatively similar to that
given by magnetic tilt [26], but faster by a factor of ten. After the desired density
profile is achieved, the perturbation is turned off and the I = 1 wave damped before
further manipulations. Other manipulations, such as multiple column creation and
adjustment of initial column positions, will be described later.

After the initial condition is created, an experiment phase takes place during
which a desired evolution time ¢ is allowed to elapse. Because measurements of the
charge induced on the wall sectors, Q)scctor, are relatively non-perturbative, observa-
tions of Qsector allow the evolution of the system to be monitored non-destructively.

In the dump phase, the containment voltage on the dump gate is quickly
(~ 0.1 psec) brought to ground, and the electrons stream out to either be collected
on the collimator plate, or to pass through the collimator hole and be collected on
the charge collector in the analysis region. By measuring the voltages induced on
these collectors, and knowing their capacitances, the charge dumped on them can
be obtained. For example, the total number of electrons within the trap, N, is

the sum of the charge dumped on the collimator plate and charge collector. In the
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next sections, I describe how electron density and temperature distributions can be

determined.

2.4 Density Measurements

The 3D electron density at a particular time, n.(r,6,z), is diagnosed with
both Gauss’ law measurements of the total charge within a conducting cylinder, and
with measurements of the charge that after dumping flows along B, and through a

collimator hole at the end.

2.4.1 Gauss’ Law Measurements

The line density Np.(z) of a density distribution n.(r,8,z) is defined by

Ry 27
Nie(2) = /0 dr /o rdf n.(r,0,z). (2.1)

Use of equation 2.1 requires precise knowledge of n.(r,0,z), however. The Gauss’
law measurement measures the total image charge induced on an interior cylinder to
obtain a quick determination of the average Ny, of a 3D column about its middle,
le. z =0.

To obtain this image charge measurement, a central cylinder is switched to
a high impedance amplifier. Since the cylinder was connected to ground previously,
the charge of the plasma within, Q.y, is balanced by positive image charge on the
cylinder. After the cylinder is switched, it is only capacitively coupled to ground. Its
capacitance C., is the sum of the capacitance of the lead connected to the cylinder
and the distributed capacitance of the cylinder to ground, and is known. When the
plasma is dumped, the cylinder’s voltage drops by a value Vgauss = Qeyi/ Ceyi- Careful
calibration of the amplifier gains and of the capacitances yields measurements of Q.

accurate to ~1%. The Gauss’ law line density is then given by

Qcyl

—€ eyl

Np = (electrons/cm) . (2.

o
o
p—
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This line density is used with the total number N, to define a column length L,:

Ne

L=5

I

(2.3)

2.4.2 Radial Density Profile Measurements

Taking many density measurements with the collimator hole at different po-
sitions permits a density profile n(r) to be constructed at any desired evolution time.
The basic measurement is the charge Q.u(r,#) which flows along B, through the

collimator hole of area Ay = 7.94 mm?. This is the z integral of the plasma density:

Qeou(r,8) = —eAh/dz ne(r,0,z), (2.4)

where —e is the electron charge.

The possible collimator hole positions are limited by the geometry to an
arc which transects the trap axis. Thus, the hole can be rotated to any radial
position, but. only two #-positions are available at each r. When the density profile
is #-symmetric Lhis restriction does not matter, and it is straightforward to construct
‘radial profiles’ consisting of Qcou(r). An example of such a radial profile is figure 3.19.
A z-averaged density is then obtained as n(r) = —Qcou(r)/eAnLy.

In order to image densities in both r and @, however, it is necessary to do the
scanning in 6 by varying the -phase of the electron column at the time of the dump.
The technique to make plots of Qu(r,0) at arbitrary 6 requires that the plasma
within the trap be rotating about the axis with a single frequency. This produces
a voltage signal on the sector probe at the same {requency (plus harmonics, which
can be filtered out). By triggering a computer-controlled pulse delay generator off a
specific phase of the signal, and then delaying a specific fraction of a period before
the dump, any desired #-position of the density distribution can be set [26], and
phased-locked 2D density plots can be constructed out of measurements of many

identically evolving plasmas.




3D Density Distributions

If the density profile’s temperature is known, it is in principle straightfor-
ward to calculate 3D density n.(r,8,z) and potential ¢.(r,8,z) distributions from
Qeou(r,0). In my data analysis, I have often used a code which does this calculation
for §-symmetric densities [26]. Assuming #-symmetry, and that the plasma maintains

a Boltzmann distribution along each field line, Poisson’s equation becomes

V2¢e(r,0,z) = dweny(r,0,2) = dmeno(r) exp (%) , (2.5)

with boundary conditions

Ge(Ru,0,2) =0 for —L.[2<z<+L./[2
¢e(Ry,0,2) =V, for L.f2<|z]

where L. is the length of the containment cylinders. The code uses an iterative
technique to find a function ng(r), and hence n.(r,0, z) and ¢.(r, 8, z), which satisfies
both Eq. 2.5 and Eq. 2.7. The solution also yields the 3D electrostatic energy Hg.

of the column from:

Hge = /ne(r,(),z)gbe('r,ﬁ,z) rdr2rdz. (2.6)

2D Density Distributions

Given the length L, of the column from the Gauss’ law measurement, I define
a z-averaged 2D electron density n(r,0) by

n(r,0) = Q—'(I_IA(':E@ (2.7)

With Poisson’s equation, V2¢ = drne, a 2D potential ¢(r,#) can be calculated. The

2D electrostatic energy H,; 1s given by
1
Hy = 5/71(7‘,9)¢(r,0) rdr 27 . (2.8)

These 2D quantities are important in my data analysis, as it is often not necessary

(or possible) to generate the full 3D density distribution.




2D Density Plots

Figure 5.2 is an example of a phase-locked 2D plot of n(r,8). This plot also
has dots indicating the points at which density measurements were taken, and a circle
which indicates the collimator hole size. The 2D plots in this dissertation have all .
been produced with the same format: there are 6 solid contours linearly increasing
from zero to the maximum density, with 4 grey scales between the solid contours.
Thus, the lowest grey scale indicates densities between noise and 4.2% of the peak
density. This format does a good job of revealing the details in the data, but note
that at large density gradients only the solid contours are apparent. The noise of
the density measurements is typically ~ 0.1% of the peak density. 1 calibrate the

density scale by indicating, in the caption, the density between solid contours.

2.4.3 Sector Probe Signals

Figure 2.2: Schematic diagram of the circuit connected to a sector probe.

The charge induced on the 60° wall sector probes reveals much about the
dynamics of the confined electron plasma. 1 measured the induced charge with .

the circuit shown in figure 2.2. High-impedance amplifiers were used exclusively,
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to give a capacitive coupling to the sector. Some previous work on non-neutral
plasmas [15, 38] used low-impedance (i.e. resistively coupled) amplifiers; however,
high-impedance amplifiers signals provide much greater signal-to-noise ratios and are
easier to interpret. The internal capacitance of the sectors is &~ 300 pF, and thus
including the added C = 2,500 pF and R = 1 M, the real part of the impedance is

given by:

R 1
1Z] = L~ —
(1+w?R20?):  wC

The approximation of the second term is a good one since 1 << w?R*C? = 310 at 1

(2.9)

kHz, which is the lowest frequency of interest. The voltage measured on the sector is
then simply proportional to the amount of charge induced on it: Vieror = Qsector/C-

The sector probe signals Viector (1) obtained from electron columns with finite
(r — 8) area are observed to be very similar to those that would be induced by ‘line’
charges with zero (r — 6) area. This is because the electric field outside a circular
column is identical to that of a line charge of the same N, positioned at the column’s
center. I has been observed that the narrow electron columns used in this work are
usually quite circular. A knowledge of the (Qsector induced by a line charge, as a
function of its position, is therefore useful. The calculation of this is straightforward
since the method of images can be used in this cylindrical geometry to easily obtain
the electric field at any point.

The image charge density (per unit length) on the conducting wall is propor-
tional to the clectric field E( R, ,8), and an integral over the sector probe’s angular
width then gives the total induced charge per unit length. For a sector with angular
width A0 and center at § = 0, the charge induced by a line charge of density N
and position (d, 8) is:

(1+ d)sin(d + %) )
1 —d) (_l + cos(8 + %Q))

Qscctor(da 07 ]VL) = M(arctan( (




16

+ arctan(

(1 + d)sin(6 — &%)
>)) : (2.10)

(1-4d) (1 + cos(6 — %ﬁ
Here, d is the normalized displacement of the column from the axis, i.e. d = D/R,,.
(Note that as a convention I define length variables normalized to the wall radius to
be the lower-case versions of the unnormalized variables.)

An alternative expression can be obtained from an integration of the Kape-
tanakos and Trivelpiece [38] result for the current induced on a sector probe, when
the right hand side of their Eq. 22 is corrected with a multiplication by 2 [26]. This

gives the equivalent result:

2Npe & !
Qsector (d,0, Np) = NL26A0 ekl 2 > sin (@) cos(lﬂ)fll—. (2.11)
T T = 2

The sector probe signals are easy to interpret in terms of the dynamics of
the electron column(s) inducing them. When only one vortex is contained, it either
remains on axis — resulting in no signal - or is displaced from the axis, where inter-
actions with its image produce a circular orbit about the axis at the /=1 diocotron
frequency fi=1 [26]. The @-variation, for all displacements, is thus 6(t) = 27 fi1t.

At small column displacements, Vieqor(t) is simply a sinusoid at the fun-
damental /=1 frequency, due to the d' amplitude dependence of the harmonics (see
equation 2.11). As d is increased the harmonics appear, but with capacitive coupling
these are in phase with the fundamental. (When the sector is resistively coupled,
the phases of the harmonics are a function of frequency, and interpretation becomes
harder.) In figure 2.3 I show observed Vi....(t) signals generated by a single col-
umn at three different displacements, along with the waveform predicted by the
equations 2.10 and 2.11.

Fine [26] has previously shown that measurements of the induced current for
various displacements d from the axis of an electron column are in good agreement

with the predictions of Kapetanakos and Trivelpiece [38]. 1 have found similarly
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Figure 2.3: Measured (o) and predicted'(—-)v waveforms for three normalized dis-
placements, d = .745, .547 and .23. The predicted waveforms were generated from
Eq. 2.11, using values of N}, and d from a fit of the waveform.
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good experimental agreement with the predictions of equations 2.10 and 2.11 and
measurements of induced charge. I therefore routinely use measurements of Viecior

to measure displacement. Equation 2.11 gives for the ratio of the fundamental’s

amplitude A,(l)l and the first harmonic’s amplitude Al(i)l the relation

AD sin(A0/2)d 1154 212
AP, sin(A0)(#/2) © d 2.

using A = 60°. Since these amplitudes can be measured from a Fourier transform
of a single Vieeror () waveform, this way of measuring the column displacement d is
much faster than the alternative method of creating a density plot of n(r,8).

When more than one column is present, the wall charge signal will (from
the superposition principle) be the sum of the signals that either column generates.
Thus, even when the dynamics of the motions are more complicated, a picture of how
the columns are moving can be deduced from the signal. Examples of such signals
and their interpretation are given in Appendix B. A quantitative method of analysié,
currently under development, obtains the positions of several contained columns
from instantaneous Viecior measurements taken from many different sectors. For n
columns there are 2n free variables (the position coordinates), which suggests that
the simultaneous measurements of 2n different V..., signals can yield the positions of
the columns at each point in time that the signals are digitized. Problems arise from
symmetries and measurement noise, however, so more independent sector signals are

required to obtain reliable position data.

2.5 Temperature Issues

As will be discussed in section 2.8, the dynamics of electron columns are
often well-described by equations of motion isomorphic to the 2D Euler equation.
This isomorphism breaks down, however, when the columns have different parallel

temperatures. Since most manipulations of the columns produce some change in
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their temperatures, it is important to have an ability to measure temperature, and
to predict how temperatures will change during manipulations. In this section, I
describe the various temperature diagnostics available on the EV apparatus, and

detail how some commonly used manipulations heat or cool the plasma.

2.5.1 Perpendicular Temperature Measurements

The T, diagnostic on the EV apparatus operates by measuring the change in
the parallel energy of the dumped electron when a secondary magnetic field causes
some perpendicular energy to be transferred to the parallel direction. This is com-
monly called a ‘magnetic beach’ analyzer [37]. After the end gate has been lowered,
the plasma expands (‘disassembles’) towards the collimator. During this disassem-
bly, the plasma electrostatic energy increases the parallel velocities in a complicated
fashion. However, since the time for a gyro orbit (~ 1 nsec) is small compared to the
disassembly time (~ lusec), the gyromagnetic moment p = mv? /2B, is conserved,
and the collimated beam that passes through the hole enters the analyzer region
with its perpendicular energy distribution unchanged.

The collimated beam then encounters a potential barrier caused by the sec-
ondary magnetic field B, of the analyzer solenoid. Since the space charge of the
diffuse beam is small, each electron conserves its total kinetic energy H, + Hy =
“m(v} + uﬁ) as well as the gyromagnetic moment. In order to conserve both quan-
tities, the average parallel energy must change by AHM) = —(B,/B.)kgT, within
the analyzer solenoid. This change is parallel energy is measured by applying re-
tarding voltages to the analyzer electrodes. If an electron’s v drops low enough,
it will not make it through cylinder A3. By measuring the density collected at the
end as a function of the voltage on A3, and repeating with different B; values, the

perpendicular energy distribution can be constructed to ~ 5% accuracy.
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2.5.2 Parallel Temperature Measurements

In many of the experiments of this dissertation, it was important to measure
the parallel temperature 7}, of two columns to ensure that they had the same value.
A Tj, diagnostic has been developed for Malmberg-Penning traps [23], which obtains
the temperature from measurements of the number of electrons sufficiently energetic
to escape past the end confinement potentials. However, this approach doesn’t work
for off-axis columns, since it requires that the columns being measured be stationary
for times longer than a diocotron period.

A different way of measuring T} is to measure T, at the time of interest, and
also to measure the final temperature T’ ., after the two temperatures have equilib-
riated. As described by Hyatt [37], temperature anisotropies relax on a collisional
timescale. Due to the conservation of thermal energy on the millisecond collisional

timescale, T}, 7, and T, are related by
fT“ —|- 2Tl = 3T_j_eq (213)

While this method yields accurately calibrated temperatures, it requires a
great deal of time - typically, 15 minutes for each temperature measurement. There-
fore, when creating an initial condition of two columns which had to have the same
(arbitrary) Tj, I used a method based on observations of the Tj-dependent finite-
length contributions to the /=1 frequency. This fast method will be discussed in

section 3.2.1.

2.5.3 Cooling/Heating from Expansions/Compressions

The electron column cools during a slow axial expansion of the column, and
heats during a slow compression [37]. ‘Slow’ is relative to the time Tyounce = 2L, /vy it
takes for an electron to ‘bounce’ once in z. This results in the axial bounce adiabatic

invariant /) = § v dz remaining a constant, as the electrons exchange encrgy with
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the confinement power supplies. A useful first order estimate of the new temperature
TIII as a function of initial and new plasma lengths is given by:
I\?
T~ T (—'—) . (2.14)
I i L;) .
2.5.4 Cascade Heating

I have often found it necessary to let a column expand beyond a ‘cut’ gate
into an electrode at ground potential. This manipulation, which I term ‘cascading’,
results in both adiabatic expansion and disassembly expansion of the column. Fig-
ure 2.4 shows a schematic of the process. A single plasma is confined in cylinder L3
by potentials on an end gate and on a ‘cut’ gate L4. Cylinder S, on the other side
of the cut gate, is at ground. When the cut gate is lowered, the plasma will initially
expand adiabatically into L4. When the cut potential is low enough, however, some
electrons will no longer be confined and will cascade into L3. This process does
not preserve the adiabatic invariant /), and some of the electrostatic energy of the
column will go into the v} of the escaping electrons. As the cut lowering continues,
more plasma spills over until ultimately L4 is at ground and the column is confined
in L3-S. The final state has had a mix of adiabatic cooling and electrostatic heating
of the parallel velocities.

Density transport can also occur during this cascading. A column being cas-
caded is often off-axis, so there are no symmetries during the cut, and the dissimilar
f-direction drifts on the two sides of the cut gate can result in a changed final density
profile.

Cascade heating has been experimentally studied ‘with a single on-axis col-

umn, and in Appendix A 1 discuss this study in depth. My main conclusions are:

e The amount of adiabatic cooling or cascade heating caused by expansion of a

column into a cut gate depends on the speed of the cut gate lowering time 7.y,




L3 L4 S

Column in L3 to be
D _
cascaded into grounded S
TTTTT
-V

Adiabatic expansion into L4
LI .
Falls over cliff’ into S

T T T T
- -V—)O -

Heated from exhange of

electrostatic,  thermal energy

Figure 2.4: Schematic of expansion into a grounded electrode, which will result in
cascade heating.

relative to Tyounce -

o 'or the column expansion past the cut gate, the amount of heating can be

predicted from energy conservation of the electrostatic and thermal energies.

e The presence of another column on the opposite side of the cut gate, at a

different #-position, is estimated to lower the amount of cascade heating done

by ~ 10%.

e Density transport from cascading can be reduced by decreasing 7., although




the transport can not be made negligible.

2.6 Transport Issues

In this section, I briefly review some of the results of previous experiments
on plasma transport in Malmberg-Penning traps. It is useful to conceptually di-
vide transport into externally-induced transport (where external torques cause non-

conservation of angular momentum), and internal transport.

2.6.1 Angular Momentum Conservation

Non-neutral plasmas have exceptional confinement properties, as compared
with neutral plasmas. One reason for this is that angular momentum conservation
strongly constrains the radial transport [52]. The total canonical angular momentum

P, is the sum of a mechanical and a vector potential contribution:

Po=Y [mevojRj + % = Rf)] , (2.15)
J

where R; is the distance of particle j from the axis, V; is its velocity in the 6-
direction, m, is its mass, and the summiation is over all particles. In my experiments,
the mechanical contribution (first term) is ~ 10* times less than the electromagnetic
part, and can be neglected. If there are no external couplings applying torques and
hence changing the angular momentum, the constraint on radial positions is then
2 Rf = constant, which implies that only a fraction of the contained electrons can
reach the wall and be lost.

Pg-conservation does not necessarily constrain the rate of expansion of an
off-axis column’s radius. This is because Pj-conserving processes can result in the
column expanding its radius while simultaneously moving closer to the axis. Experi-
mentally, ] have found that the rate of radius expansion dramatically increases when

the column is off-axis (section 3.2.2).
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2.6.2 Externally-Induced Transport

The operating parameters of the EV apparatus result in negligible couplings
with processes known to cause transport. These processes include electron-neutral
collisions [15], electromagnetic radiation [53] and finite wall resistances [71}. The
remaining observed transport is known as ‘anomalous’ transport, and is believed
caused by couplings with the small intrinsic electrostatic or magnetostatic field errors
of the apparatus. Applied field errors are well known to cause transport (25, 24]). EV
was designed with the goal of minimizing field errors in mind, and has anomalous

transport rates about 25 times less than those of the prior V/ apparatus [19].

2.6.3 Internal Transport

When the external couplings are small enough, electron-electron interactions
will result in an on-axis plasma evolving to a confined thermal equilibrium before
appreciable expansion of the column radius. This transport to global thermal equilib-
rium has been experimentally studied [60, 20], and the equilibration time was found
to scale roughly as B? for monotonic profiles, and as B! for short non-monotonic
profiles. These scalings are in general agreement with the predictions of theory
(54, 22].

When the plasma is unstable, however, much faster cross-field transport takes
place (100 psecs instead of seconds). Examples of such instabilities are the vortex

pairing instability (see section 4.5.1 and the Kelvin-Helmholtz shear-flow instability

[16].

2.7 Transport and Equilibration Timescales

The electron plasma has kinetic times, such as the time for an axial electron

oscillation, Tyounce, Which determine the times required for equilibriation or trans-
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port. Here I give expressions for these times scaled to the typical parameters of my
experiments, and then relate them to the time for approach to equilibrium.

The fastest time is that for an electron to make a cyclotron orbit about a

field line, 7.:
' _ 2mmec
Te =
eB

375 G)

= (2.16)

= 10"%secs (

The time for an electron to ‘bounce’ once axially through the column of length L, is

_ 2L, ( L, > ~1/2
Thounce = o =1 pusec Y= T” . (217

Here, T is measured in electron volts. The electron column will rotate about its 2
axis due to E x B drifts arising from its self electric field. At the low densities of

these experiments, a column of uniform density n. will have a rotation time of

B B 5 x 108cm™3
Trotation = E =5.2 HSeEC <375 G) ( 71 > . (218)

Finally, the time between electron-electron collisions [4], 7., is

(2.19)

. -
Tee = 6.8 msecs T3/2 (M) |

n
We can use these timescales to characterize the approach to equilibrium.
Suppose an electron column with no initial symmetries has just been contained by

the close of the inject gate electrode. The (8 — z) motions will quickly smooth

over the bulk of the (8 — z) density asymmetries through passive scalar advection,

leaving intact only those perturbations corresponding to stable modes or nonlinear
coherent structures [36]. Thus, the column will symmetrize in n(z) on a timescale of
~ 10 Tpounce » and in n(@) in ~ 10 Troation, perhaps leaving behind plasma or diocotron
waves which will damp on slower timescales.

The temperature distributions Tj(4, z) and T (0, z) will similarly be symme-

trized by this passive scalar mixing. These separate temperature distributions will




26

then relax to an equilibrium distribution 7%, on a collisional timescale of several 7.
[37].

Relaxation of monotonically decreasing density profiles n(r) to the confined
thermal equilibrium profile is much slower. Theory [54] predicts an equilibration

time 7.4, from transport steps caused by binary interactions, going roughly as

- B \? ;
Teq = 0.68sec T/ (3_7-5_6) Di. . (2.20)

where D, is a typical length for the radial asymmetry, in millimeters. Only pre-
liminary experiments have been done on this process to date, but a magnetic field
dependence of B?* has been found, in agreement with the predicted scaling [31].
Finally there is the ‘anomalous’ transport believed caused by the small but
inevitable electrostatic field errors present in the apparatus. Anomalous transport
has been quantified by measuring the ‘mobility’ time, 7,,, required for the central
density of an on-axis column to decrease by a factor of two. Driscoll, Fine and
Malmberg found that 7, scales as (VL,,/BZ)‘2 over five decades in L,/B,, with one

decade of scatter. The best slope-2 logarithmic fit to the EV data gave
110 ( B >2 20cm )’
T = se¢ | 32 L :

2.8 Drift Dynamics and the Fluid Analogy

(2.21)

The electron dynamics are observed to be well approximated by 2D guiding
center theory. The dynamics are 2D because the axial bouncing of the individual
electrons averages over any = variations at a rate fast compared to r — # variations;
typically, Trotation > DThounce- Guiding center theory is valid because the gyroradius
(typically ~ 30 microns) is smaller than the other lengths of the system. Deviations
caused by finite-length effects will be discussed in section 3.2.1, but these effects are
observed to result only in the 2D dynamics taking place in a rotating frame rather

than the lab frame.
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Using the 2D approximation, the unneutralized electron charges give rise to
electrostatic potentials ¢(r,8,t) through Poisson’s equation, V3¢ = 4men. These

potentials result in cross-field drifts, given by
v(r,8,t)=—-cVo x 2/B, . (2.22)

These velocities are well defined even where there are no electrons. Taking the curl
of the velocity gives the vorticity (2:

drmec,

=i (2.23)

N=Vxv = Vz(]ﬁ-g-é = n

The vorticity of the electron system is thus proportional to the density. Using this
fact, the continuity equation is also a statement that the convective derivative of the
vorticity is zero, which is an evolution equation for the system:

N - .
5 T va=0. (2.24)

These 2D drift-Poisson equations are isomorphic to the 2D Euler equations
for an inviscid fluid of uniform density p [41, 5, 17]. This is displayed in Fig. 2.5.
The electric potential ¢ is analogous to the streamfunction t, and the drift velocity
analogous to the fluid velocity. The momentum equation for fluids gives the same
evolution equation for the system, and the boundary conditions are also equivalent,
namely ¢ = const and @) = const on the walls. Thus, an initial distribution of
electrons n(r,#0) in a cylinder, having vorticity € o« n, will evolve exactly the same
as an identical initial distribution of vorticity (r,8) in a uniform fluid.

There have been many experimental results which have shown striking quan-

titative agreement with predictions of fluid theory. These include prior observations

of:
e elliptical distortions caused by wall interactions [28, 63],

and my observations of




28

2D Drift-Poisson 2D EUIQI‘, p = constant

Poisson i
V2¢ = 4ren
E x B Drifts Stream Function
v:—-%Vq&xé = -V x 2
Vorticity Vorticity i
(=Vxv (=Vxv ‘
|
A ~ 1
= V2¢ % z = VQ'(,/) 2 |
_ .. 4dnec 2
=n=p- ‘
Continuity ' Momentum |
i
1
%’%-{—V-Vn:O %—kv-Vv:—%Vp 1
aC . aC .
S Hv-ve=0 SrHv-v=0
|
electric potential ¢ — ¢ stream function
velocity v e Vv velocity
density, vorticity n,( <« ( vorticity
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symmetric vortex mergers [29, 48] (see section 4.5.1),
stability of equilibria of two vortices [50, 34] (section 4.3),

inviscid relaxation of distorted vortices via a decay instability [66] (section

3.2.3)

o [=3 surface wave instabilities of highly elliptical vortex structures [44] (sec-

tion 3.2.4).

There are, of course, aspects of the 3D physical system which are not within
the framework of the 2D fluid analogy, and plasma parameters where the analogy
does not hold. These can result in discrepancies between the observations and the
predictions of 2D fluid predictions. An example of a discrepancy is that Driscoll [16]
has observed an exponentially growing [ = 1 instability in a hollow column, where
2D fluid theory predicts only an algebraically growing instability. This ha.s. been
attributed to temperature-independent shears caused by the axial variation of the
3D column [65].

Another discrepancy is that there are temperature-dependent drifts caused
by finite-length effects. These drifts have been invoked by Peurrung and Fajans
[57] to explain observations of abnormally low growth rates of the Kelvin-Helmholtz
instability of an annular electron plasma [56]. The impact of the drifts on my exper-
iments is discussed in section 3.2.1.

Peurrung and Fajans [57] have experimentally investigated the question of at
which plasma parameters the finite-length drifts begin to produce deviations from 2D
fluid predictions. They found that a fast azimuthal smearing of the plasma column
begins to occur when 0.75 < A < 3.0, where
%

A=k
R.L,’
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with R, the radius of the column, Ap its Debye length, and £ a parameter near unity.
I note that the parameter A was less than 0.1 for all of the experiments discussed in

this dissertation, and that T did not observe any fast smearing of the columns.




Chapter 3

Single Vortex Studies

3.1 Overview

This chapter describes wave and transport experiments on a single confined
electron column. Some of the phenomena have 2D fluid analogues, so the electron
column will be referred to as a vortex when appropriate.

Low frequency plasma waves are observéd on non-neutral columns {14]. For
an infinitely long column, their dispersion relation is the same as that for a neutral
plasma column except for a Doppler shift due to the E x B rotation [12]. They are
characterized by potential perturbations of the form §¢ = ¥ (r) exp(ilf + ik.z — wt)
[58]. The modes with | # 0 and k., = 0, and thus 6E perpendicular to B, are known
as the diocotron waves. Modes with k, # 0 are called electron plasma waves.

Section 3.2 includes the results of experiments with diocotron waves. Dio-
cotron waves have been the subject of years of experimental and theoretical study (see
Davidson [13] and references therein). In fluid theory, the waves are known as Kelvin
waves [43]. In their small amplitude limit, they are those 2D density perturbations
whose E-field and consequent E x B drifts self-consistently rotate the perturbation
about the column (but always slower than the column’s E x B rotation).

I first present some results on the /=1 diocotron wave, which is a special case

among the diocotron waves. A cos(#) perturbation at small amplitude is equivalent
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to displacing a rigid column a distance D off axis. The displaced column theﬁ or-
bits about the trap axis due to the E-field of the asymmetric image charges [26].
However, finite-length and temperature effects will in general be substantial. Fine
has established that, to first order in displacement, these effects result in a con-
stant frequency offset to the infinite-length [ = 1 frequency [27, 28]. I have studied
whether the frequency offset varies at large displacements, and find that within the
experimental uncertainties, it does not (section 3.2.1).

The [ = 1 wave is also different from / # 1 waves in that it is not susceptible
to a spatial Landau-like damping where electrons in resonance with the wave are
transported out (5, 14]. The reason for this difference is that the resonant point for
the | = 1 is at the wall, where there is no density. However, there are other mecha-
nisms which could cause it to damp. One recent theory is that ‘rotational pumping’
will result in an angular-momentum (Pp) conserving expansion of the electron col-
umn’s radius R,ns, giving an exponential damping of the displacement from the axis
(i.e. the I=1 amplitude) [11]'.

In section 3.2.2, I present direct‘mea.surements of Ryms(t) and D(t) for a
variety of experimental parameters. 1 find that while both Pg-conserving and Fs-
nonconserving transport is taking place, the data is consistent with an exponential
damping of the [=1. My measured rates are higher, however, than those crudely
estimated for rotational pumping.

The | > 2 diocotron waves can be damped by the aforementioned resonance
damping [14]. 1 have discovered, however, that small amplitude { = 2 and [ = 3
waves, even when stable to resonance damping, are unstable to a decay instability.
In this instability, the [ mode wave decays to both an exponentially growing [ — 1
‘daughter’ wave and presumably to a resonant band of particles. When the decay

instability is suppressed, by negative feedback on the daughter wave, exponential




damping on slow ‘viscous’ timescales is observed to occur (section 3.2.3).

A final new diocotron wave result is an observation that [ = 3 perturbations

on highly elliptical vortex structures can grow exponentially (section 3.2.4). This

appears to be the first experimental observation of an instability predicted 100 years
ago by Love [44].
In section 3.3 I describe the use of a phased electric field perturbation to

drive electron plasma waves and couple angular momentum to and from the column.

Eggleston, O’Neil and Malmberg [25] have previously demonstrated radial density
transport with this technique, with the direction of the transport dependent on the
characteristics of the induced plasma wave, but were not able to demonstrate a
net )°; R? decrease. 1 have been able to cleanly demonstrate a transfer of angular
momentum to the column, but have also found that the heating associated with the
technique limits its usefulness.

In section 3.4 I describe an investigation of /=0 ‘sloshing’ modes. These are
z-dependent motions of electrons which occur when the magnetic field is not aligned
with the confinement walls, and the image fields from the /=1 diocotron orbit of an
off-axis column cause a time-dependent z-motion of the column density [33]. I have
made a detailed study on the EV apparatus of the signals induced on the confinement
rings by these modes, as a function of the misalignment of the magnetic field.

At large misalignments I see the features predicted for a single ‘sloshing’
mode [33]. At small misalignments, however, the signals from different rings lose
coherence, suggesting the existence of local sloshing motions. As a consequence, I
find that the magnet alignment given by minimizing the differential signal from the
two end rings does not correspond to that given by plasma transport minimization.
Better agreement with this latter alignment is given by minimizing the sum of the

signal power off all the rings.
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Figure 3.1: /=1 Diocotron Mode Coordinates

3.2 Diocotron Waves

3.2.1 [=1 Finite Length Effects

The (=1 diocotron is different from the other diocotron waves, in that it is
much better modeled as the dynamical equilibrium of a displaced column than as a

mode [26]. This permits an easy calculation of the effects of finite-length in 2 [27].

Infinite Length [ = 1 Diocotron

The variables of a diocotron mode are as shown in figure 3.1. A z-independent
column of line density Ny and radius R, is displaced a distance D from the axis of
the containment walls. When the column remains circular, its field outside is that
of a line charge at radial position D, and the image field is that of a line charge of

opposite sign and the same Nj, at radial position R2/D. The electric field at the




column center is then

E(r=D) = (—1—%—3:_/%)%%. (3.1)

The force F2, arising from the infinite length [ = 1 image field, and the resultant

drift velocity vg from this force, are

oo cFZ, xB
FZ,=NiEz1 and vg= m‘r : (3.2)
This gives for the infinite length /=1 frequency f=;:
w _ € FZ, xB cNpe 1
s = 5D NpeBr © #B R D3 (3:3)

Finite-Length Effects

Often, the predictions of equation 3.3 for fZ;, and the measured | = 1 fre-
quency fi=; are substantially different. The reason for this is that finite-length effects
are often substantial, relative to the forces from the image field. A first order model
for the finite-length effects have been developed by Fine [27]. The important effect,
for columns with my experirriental parameters, is a radial magnetron force which the
electrostatic end fields exert in addition to, and proportional to, the axial confine-
ment force. This radial force will produce drifts in the #-direction which, like the
axial force needed to contain the column, will have a component proportional to 7j.
The magnetron force for hot columns can be of the same order as image charge forces,
and can thus result in very substantial increases to the [ = 1 frequency, relative to
the infinite-length prediction.

Happily (for the use of electron plasmas to study 2D interactions), the mag-
netron force is found to be, to first order in displacement, proportional to displace-
ment. This is true both of the model and of experiments [27]. This proportionality
suggests that finite-length effects will only produce an orbit of the column about

the containment axis, at a constant frequency independent of D. Therefore, for any

o
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general configuration of charges with the same Tjj, the prediction of Fine’s model is
that the configuration will evolve as 2D vorticity would, only within a rotating frame

produced by the magnetron motion.

Finite-Length Effects At Large Displacements

I have experimentally tested whether this result, that finite-length effects
produce only a constant frequency orbit in g, breaks down at large displacements. I
find it to be valid out to displacements of d < 0.73. I moved a narrow (R,/R,, = .15)
and cold (7} ~ 0.25 €V) column with an on-axis line density N = 4.8 x 10° cm™!
to various displacements d, where its [=1 frequency fi—; and off-axis line density Ny,
were then measured. The measured d and Ny were then used in equation 3.3 to
calculate the infinite length f2°,, and the frequency shift A fi=; due to finite length
effects was thus known:

Afl:l = fl:l - flozol . (34)

I then repeated these measurements on a hotter (7}, ~ 2.0¢V) and less dense (N =
2.4 x 10%m™") column. I plot Af—, versus d, for both the hot and cold column,
in figure 3.2. No strong dependence of the frequency shifts on displacement in the

region .36 < d < .73 is seen.

Variations of Column Length vs. Displacement

The electron column changes its length L, when it is moved to a different
radial displacement. This is a finite-length effect due to the containment geometry of
Malmberg-Penning traps. The reason for it can be seen in figure 3.3, which shows the
vacuum confining potential surfaces. The cylinder walls are either at the confining
potential V; or grounded. The flat contour at the midplane between the grounded

rings and the gate ring is at V./2 (as it must be, from the symmetry). Unless the
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Figure 3.2: Finite length frequency shift Af;—; for two parameters of Ny and 7.

column is reflected at the potential V. /2, it seems clear that L, has to change as the
column is displaced from the axis.

I have measured this effect by moving a column off axis and measuring its
Gauss’ law line density Ny, which gives L, through equation 2.3. L, versus d, for
a column of on-axis length L, = 19.7 cm, is shown in figure 3.4. To first order, the
variation with displacement goes as d*: the line is a plot of 14.054d?, obtained from a
fit. Since the confinement potential used here was close to the lowest possible without
losses being observed, this resulted in the effect being small, with L, increasing only
about 4% at the largest displacements. Greater changes in L, were observed to
result when V, was increased relative to V.. I generally used the lowest possible

confinement fields in my vortex experiments to minimize this effect.
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Figure 3.3: Confining potential surfaces within a Malmberg-Penning trap. The
10 potential contours are linearly spaced between 0 and V.. There is no contained

plasma.



Figure 3.4: Measured Column Length L, vs. Displacement, for V, = -10V and Vi,
=-3.3V. L,(0) =19.7 cm. The line is a fit to d.

3.2.2 Column Expansion and | =1 Damping

An electron column in a Malmberg-Penning trap will be subject to various
types of transport, which will result in a gradual expansion of its radius. This
expansion is responsible for (among other things) limiting the lifetime of the two-
column state (section 4.5.2). In this section, I present some direct measurements of
the expansion, and establish that both Ps-conserving and P;-nonconserving transport
takes place. The transport rates are observed to be strongly dependent on the
displacement D of the column from the axis.

Figure 3.5 shows column expansion taking place at a low magnetic field of
B, = 94 Gauss. The column was displaced from the axis to D = 1.35 cm., and a
phase-locked n(r,8) plot was taken of it. It was then contained for 100 msecs, 'and
a second plot made using a phase-lock on the still-present ! = 1 signal. As can be

seen by eye, the column has expanded and moved slightly toward the axis during its
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Figure 3.5: Expansion of an off-axis column. B. = 94 Gauss, L, ~ 23 cm,

V. = =100 V and At = 0.1 seconds. Density between solid contours: 5.5 x 10°cm
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Figure 3.6: Displacement D and radius R,,,s versus containment time. B, = 94
Gauss, L, ~ 23 cm and V, = —100 V. The solid curve is D(¢) measured from wall
sector signal analysis.

confinement.

Figure 3.6 shows, for the initial condition of figure 3.5, the evolution of column
radius R,,s; and displacement D with ‘containment time. R,,s is defined below in
equation 3.7. D(t) was determined by both density plots (O) and wall sector signal
analysis (—-). The results of these two measurement techniques agree in shape but
are offset a small amount which increases with time. The expanding column begins
losing density to the wall at about ¢ = 0.5 seconds.

As can be seen, the rates at which D and R,,s; change vary with time.
I therefore focused on a study of the rates at early times, before any substantial
changes in the plasma parameters has occurred. The rates are measured by fitting
the early data points, where the change is linear in time, to a straight line. In
figure 3.6, for example, I have used the first 6 points of R,.,;(t) to calculate an initial

slope, shown in that figure with an arrow.
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Béfore proceeding, it 1s useful to consider how column expansion relates to the
angular momentum F;. When a column is off-axis, angular momentum conservation
does not restrict the rate of expansion of the column’s radius, since the column can
conserve Py by both expanding and moving towards the axis. One can thus separate
any observed column expansion into transport which does, and transport which does
not conserve P,. To facilitate this separation, I define the following quantities.

The sum over the j particles, of the square of their radial positions ZR?,

can be written in terms of Py (see equation 2.15) by

2
ZRj?:NeRi,—m(eg) . (3.5)
] z

As a consequence, . R? is conserved when Py is conserved (i.e. when no particles
are being lost to the wall). I therefore define a normalized angular momentum L of

a continuous 2D density distribution n(r,8) by :

fr2dr [rdf n(r,6)
fdr [rdf n(r,6)

L

(3.6)

It is useful to similarly define a root-mean-square radius K,.,s of the charge distri-

bution by

_([r%dr [r'd6 n(r',0)\?
ers_( Jdr [rdf n(r6) ) (3.7)

where the primed coordinates are about the distribution’s center-of-charge.
From these definitions, for a density distribution symmetric about its center

we have the relations
L=R: . +D* and L =2R.Rms+2DD, (3.8)

where D is the displacement of the center-of-charge from the axis. The column

radius and displacement are thus free to change while conserving L, as long as

RmsRms + DD = 0. Therefore, given measured values of R,,.s(t) and D(%), I can
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Figure 3.7: Expansion rate (QRTmsR,.ms), displacement rate (2DD), and their sum
(L) versus displacement, as measured from density plots. B, = 94 Gauss.
decompose expansion rates Qererms into a Py-conserving rate —9DD and a Ps-
nonconserving rate L= 2R7‘msR7‘ms +2DD. Such changes in R,,,s and D will not
necessarily, of course, conserve the energy of the system.

Returning to the B = 94 Gauss data of the previous figures, in figure 3.7
[ plot the initial rates QDD, QRTmSR,.ms and their sum L versus the displacement
d = D/R,, of the column. The general result is that the expansion rate 2ererms
increases very strongly with D. Expansion can be divided into three separate regions,
based on the displacement of the column.

On the axis, the expansion rate is at a minimum, and consists entirely of Pp-

nonconserving transport (as it must, since D = 0). The transport rates of this region
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have been studied previously by Driscoll, Fine and Malmberg [18], who dubbed the
transport ‘anomalous transport’. It is believed caused by the small residual electro-
static or magnetostatic field errors of the apparatus, which break the §-symmetry
and thus permit Py to change.

For small displacements, 2D D is found to increase at nearly the same rate
as QRTmSRTms, and thus there is little change in L from the on-axis value. To a good
approximation, therefore, the expansion rate for displacements of 0 < d < 0.36 is
given by the sum of a Pj-conserving transport process and a constant value L of
anomalous transport. The Pj-conserving transport is currently under experimen-
tal investigation by Cluggish et.al [10] and theoretical investigation by Crooks and
O’Neil [11]. It is believed to be caused by ‘rotational pumping’ of the column by the
confinement fields.

In the rotational pumping mechanism, column expansion is driven by thermal
heating of the column at the expense of its electrostatic energy, Hy. (See section 4.5.3
for a further discussion of this.) I have measured the H,(t) of the expanding columns
of figure 3.7, and observe that H, always decreases with time at rates increasing with
d. This result is consistent with rotational pumping.

For large displacements (d > 0.36), I find that while the expansion rate
continues to strongly increase with d, the movement of the column back towards
the axis slows or even changes sign. The result is large changes in the measured
values of angular momentum. The cause of this dramatic increase in L is currently
unknown, although a reasonable speculation is that it is related to the column’s
closer proximity to the wall and field errors [26].

I have repeated my measurements of expansion rates for 5 different initial
conditions, and with each have found a similar sharp increase of expansion Tates

with displacement. The measured expansion rates are plotted in figure 3.8, and the



parameters of the different data sets are tabulated at the bottom.

I have established that the expansion rates at small displacements are consis-
tent with other experimental studies. Previous studies have found an (L,/B)? scaling
for the on-axis L transport [18], and an exponential damping of D(#) for the Fp-
conserving transport [10]. This latter result implies the proportionality ererms x
D?. 1 have fit the data of figure 3.8, for small displacements of 0 < d < 0.36, to the
equation R,psRims = a + vD?. These fits are shown (solid curves) in figure 3.8. 1
find that the data at small displacements is consistent with the predictions: the fit
of the data to D? is reasonable, and the on-axis transport characterized by o scales
roughly as the square of the column length and magnetic field.

The measured damping rates v = —~D/D are tabulated below figure 3.8. A
comparison of these rates with values from a rough calculation of Crooks and O’Neil
[11] finds that the measured rates are between 6 and 38 times higher than predicted
for rotational pumping. I have tabulated this ratio as 4/4preq. Rates from data taken
at significantly higher densities and magnetic fields by Cluggish [9] are about 4 times
higher than predicted. Further studies on both the theory and experimental fronts
are begin undertaken, and I feel that it is likely that rotational pumping will be shown
to be the mechanism for the Py-conserving expansion seen at small displacements.

This still leaves the large Pp-nonconserving expansion seen at large displace-
ments unexplained. It is interesting that although it has been generally believed that
different mechanisms and scalings will characterize Py-conserving and nonconserving
transport, data sets 1 and 3 show almost identical changes in expansion rate ver-
sus d, in spite of their dissimilar magnetic fields. Further measurements of E.p.(t)
and D(t), preferably made with a phosphor screen and camera diagnostic to reduce

data-collection time, will be required to understand transport at large displacements.
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Figure 3.8: Expansion rates 2R7.m3ers versus displacement, for the tabulated
plasma parameters. The solid curves are fits of the 0 < d < 0.36 data to o + yD?.

The dots are continuations beyond d > 0.36.
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3.2.3 Damping of | >1 Diocotron Waves

I have studied the damping of the ! = 2,3 and 4 diocotron/Kelvin waves,
and found evidence for mode couplings which have not been previously reported
in the literature. At large amplitudes, the [ > 1 diocotron waves are damped by
a non-linear resonance damping process, where particles resonant with the wave
drift into low-density filamentary arms [14, 17]. On vortices with ‘sharp’ radial
vorticity profiles, however, small amplitude = 2 and | = 3 waves are stable to this
resonance damping. I have found that these small amplitude waves are unstable to
a decay instability, where the [ mode wave decays to both an exponentially growing
[ —1 ‘daughter’ wave and (presumably) to a resonant band of particles. This decay
instability can be suppressed with negative feedback on the daughter wave, and
exponential damping on slow ‘viscous’ timescales is then observed.

The experiments of this section were done on electron columns whose vorticity
profile was adjusted to ‘sharpen’ the edge and reduce the number of particles resonant
with the diocotron waves. The calculated position of the [ = 2 resonant layer was
beyond the edge where the density went to zero. The positions of the | = 3 and
[ = 4 wave resonant layers occurred where the density was nonzero, but the densities
at these layers were low enough that the waves were readily observable, presumably
because so few particles were resonant that the resonance damping mechanism was

saturated.

Calibration of the [ = 2 Wave Amplitude

The diocotron wave amplitudes can be measured with phase-locked plots of
the vorticity distribution, or with measurements of the signal V,=;(1) induced by the
= 1 diocotron wave on a wall sector probe. I have calibrated the | = 2 wave case,

and find that the amplitude of the wall sector signal Vj—; is proportional to the
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[ = 2 wave amplitude, at least until the resonance damping process has resulted in
significant transport.

The | = 2 wave amplitude can be characterized by the distribution quanti-
ties of eccentricity ¢, aspect ratio a/b, or quadrupole moment ¢,. These are easily
calculated from phase-locked plots of n(r,8) [26]. In the frame of the Cartesian coor-
dinates (z,y) where the origin is at the center of mass of the distribution, I calculate
the moments

1 1 1
EEEE/dAnwz ygzi/d/&ngﬂ Egzﬁe/dAna:y. (3.9)

These moments are used to solve for the angle ¢, where a Cartesian system (u,v)
with the same origin, but rotated from (z,y), satisfies 4o = 0. The eccentricity 1s

then

= ——0 (3.10)

where ¢, is the orientation angle of the quadrupole moment. A top hat profile (i.e.
step function radial profile) ellipse with an aspect radio of a/b has an eccentricity
given by €2 =1 —(b*/a?), so I define an aspect ratio a/b for an elliptical distribution
with a physical (non-top hat) radial profile by

-1/2

afb=(1-¢) ", (3.11)

and a quadrupole moment ¢z by

alb—1
afb+1"

(3.12)

g2 =

In figures 3.9 through 3.10 I show 2 phase-locked plots of vortices with an
[=2 wave, along with the measured aspect ratio and quadrupole moment. At low
amplitudes the [ = 2 is an elliptical distortion of the column. At large amplitudes,
the electrons at the tip of the ellipse do not rotate as fast as the rest, and fall behind

in §, forming distinctive arms. These can be seen in figure 3.10, where 0.23% of
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Figure 3.9: Density plot of an /=2 diocotron wave. Eccentricity ¢ = 0.44, a/b =
1.11 and ¢, = .052. Density between solid contours: 1.1 x 106cm™3.
the total density has been transported into the arms. This transport constitutes a
(spatia.l_Landa'u-type) mechanism for resonance damping of the mode [14, 17]. In this
case, the resonance only occurs at large elliptical distortions, so it would be termed
nonlinear damping. The details of the transport depend on the radial profile of the
vortex — top hat profiles are not susceptible to it, for example - and the damping
saturates when all of the resonant particles have been transported.

I find that the amplitude of the sector probe signal V=,(¢) is proportional to
the quadrupole moment ¢,. The linearity can be seen in figure 3.11, where I plot the
received (=2 signal amplitude versus ¢,. The proportionality begins to hreak down

at the largest amplitude shown, which had ~1.3% of the total density in the arms.

Decay Instability of Diocotron Waves

I find that the fastest damping of small amplitude I = 2 and [ = 3 waves

occurs due to a previously unknown decay instability, where an / — 1 ‘daughter’
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Figure 3.10: Density plot of an =2 diocotron wave of aspect ratio a/b = 1.38 and
quadrupole moment g, = 0.16. Resonance damping has transported 0.23% of the
total density to the arms.
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Figure 3.11: Amplitude of [=2 signal received on sector probe versus ¢,.
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Figure 3.12: Exponential growth of an /=2 diocotron wave during a decay insta-
bility of an [ = 3 wave. The | = 3 is grown at the time marked by the arrow.

wave grows exponentially at a rate 4 while the decaying wave'’s amplitude damps as
(1 —¢€™). Figure 3.12 shows an | = 3 wave decaying into an | = 2 daughter wave.
Presumably, transport of resonant particles is simultaneously occurring, and analytic
theory and simulation results by Smith support this idea [66].

The shapes of the decaying and daughter wave amplitudes in figure 3.12
differ because wall sector probes of angular extent Af couple as %sin(%) to waves
with an angular dependence of €"?. When this eflect is corrected for, a plot of the
wave amplitudes show that the decaying wave and growing wave amplitudes vary
symmetrically as (1 — €"*) and ! respectively. 1 define a time for the decay rates
by, using the [ = 3 decay for an example, 73y = 1/7.

The decay times are observed to be strongly dependent on the amplitude of
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Figure 3.13: Decay time 7,_,; for the decay process, versus the quadrupole moment
g2 of the damping [ = 2 wave.

the decaying wave. This can be seen in figure 3.13, where I plot some measured
decay times 75, versus the quadrupole moment of the damping | = 2 wave. 1
additionally found, although I don’t plot them, that the times 73_., for the decay of

an [ = 3 wave showed a similar dependence on the [ = 3 wave amplitude.

Exponential Damping of the Diocotron Waves

The | = 4 wave, whose resonance layer was deeper within the vorticity profiles
than the I = 2 and [ = 3 waves, was found not to be susceptible to the decay
instability, but rather to damp exponentially with a time constant 7,4 = 0.065
seconds. Similarly, I have also observed exponential damping of the [ =3 and [ =2
waves, with time constants at small amplitude of 73 = 2.7 secs and 7= = 5.1
secs. (With these waves, it was necessary to éuppress the decay instability with a
continuous application of negative feedback on the daughter mode. Filtration of the

feedback signal prevented any inadvertent growth or damping of the original mode.)
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I have measured the variation of the | = 2 exponential damping with its
amplitude, and found the démping to be independent of amplitude until resonance
damping at large amplitudes became effective. Figure 3.14 shows the logarithm of
the [ = 2 signal amplitude versus time, for 9 different initial amplitudes. Damping
rates were measured from the slopes of such wavesignals, and the time constant of the
damping 7j— is plotted versus the initial amplitude of the (=2 wave in figure 3.15.
The damping is observed to be roughly independent of amplitude with a 7= of
5.1 £ 0.5 seconds, until the amplitude reaches the resonance damping regime of arm
formation, where the damping rate becomes greater with increasing initial amplitude.

An explanation of the observed exponential damping consistent with previous
experimental work is that the wave is damped by interparticle (‘viscous’) interactions.
According to this view, velocity shears present in the initial profile and shears caused

by the [=2 wave relax exponentially due to collisional particle transport. Driscoll has
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measured the equilibriation time 7., at which monotonic profiles relax, and found
Teg of 10 £ 4 seconds [31]. The observed small amplitude /=2 damping time of
5.1 seconds is within the experimental uncertainties of this rate. If this hypothesis
holds up under further investigation, the (=2 damping rate (when decay damping
is inhibited) could serve as an easily measurable quantity with which to investigate

viscous interaction rates. |

3.2.4 Love’s Instability for Elliptical Vortices

I have observed | = 3 perturbations to grow exponentially on highly elliptical
vortex structures. The growth of these perturbations can be measured directly with
n(r, 8) plots. While the initial conditions required for this instability are those of a
very large amplitude [ = 2 diocotron wave, I was unable to simply grow an [ = 2

mode to large enough amplitudes because of resonance damping on the non-zero

edge of the vorticity profile. However, I was able to create highly elliptical initial
conditions by injecting two circular vortices next to each other and allowing them to
merge (section 4.5.1). |

Figure 3.16 shows the time evolution of an elliptical vortex with an aspect
ratio a/b > 4 and little initial [ = 3 perturbation. By ¢t = 76 psecs the [ = 3
component has saturated with an amplitude 80 times greater than that at ¢ =
20 psecs.

In figure 3.17 1 plot the measured [ = 3 amplitude versus time, for the same
data sequence. The solid symbols correspond to the two plots of figure 3.16. The
ratio of the ! = 3 growth rate to the I = 2 frequency is found to be v/ fi=2 = 4.9. (1
note that the instability would not be observed if it were significantly slower, because
the elliptical structure is heavily damped by resonance damping.) I have also found
that the instability can be seeded. Specifically, the phase of the /=3 wave resulting

after merger can be changed 7 radians by reversing the sign of an initial vorticity



Figure 3.16: Density plots of an elliptical vortex unstable to Love's instability.

Times: t = 20 and 76 psecs. Density between solid contours: 2.9 x 10%cm™3.
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Figure 3.17: Amplitude of an =3 perturbation versus time. Density plots corre-
sponding to the solid symbols have been shown in figure 3.20. The result of a fit,
giving a growth rate v/ fi=2 = 4.9, is also shown (dashed line). '
perturbation. This is done by slightly altering the containment voltages of the setup.
This appears to be the first experimental observation of an instability pre-
dicted 100 years ago by Love, who investigated the stability of top hat profile elliptical
vortices in 1893 [44]. (Ironically, he found the subject of elliptical vortices to be a
‘somewhat ancient matter’ since Kirchhoff [40] and Hill [35] had been working on it 10
years before.) He found that elliptical vortices were stable for aspect ratios a/b < 3,
and unstable to [ > 3 perturbations for /b > 3. In the range of 3 < a/b < 5.8, he
found that the I = 3 perturbation was the fastest growing. For aspect ratios of 4.2:1,
which is about the aspect ratio of the data of figure 3.17, Love’s predicted growth

rate for (=3 perturbations is v/ fi=o = 4.44.
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Figure 3.18: Experimental setup to investigate transport from 6-phased electric
field perturbations.

3.3 Rotational Compression from [ = 1 Phased
Perturbations

Eggleston, O’Neil and Malmberg [25] have established that transport induced
by asymmetric perturbing ﬁélds is enhanced by collective effects involving electron
plasma modes. Interestingly, they found that the characteristics of the induced mode
determined the transport; for example, modes rotating faster and in the same direc-
tion as the column transported density in. They were, however, only able to obtain a
maximum 25% increase in central density from this effect, and did not demonstrate a
net angular momentum increase (i.e. ¥; R? decrease). I have investigated the effect
further to determine whether it can be used as a technique for getting useful density
increases. 1 have been able to demonstrate a net transfer of angular momentum to
the column, but have also found that associated heating limits its usefulness.

Figure 3.18 shows the experimental setup. A frequency generator provided
a perturbation signal of variable frequency f,e,+ and peak-to-peak amplitude V.,

(Volts). In order to give the perturbation a direction of rotation, the signal was put
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through one 90° and two 180° phase splitters to produce 4 signals 90° apart in phase.
These were then connected to the four wall sectors, also 90° apart, to givean [ =1
perturbation rotating either in the +8 or —0 direction (where the +0 direction is
defined as being the direction that the column rotates about its axis).

The frequency response of transport caused by those [ = 1 perturbations was
scanned by measuring the central density as [, was scanned. This revealed the
presence of modes transporting density in or out of the center. The k, = 0 (diocotron)
modes were found to cause outward radial transport only. The k. # 0 plasma modes

were found to produce inward transport from perturbations rotating faster than the

“column in the 48 direction, and outward from those in the — direction.

I then focused on maximizing angular momentum transfer with the appli-
cation of perturbations at the resonant frequency of +9 plasma waves. To achieve
maximal radial transport, I found it necessary to adjust the frequency of the per-
turbation, since the plasma mode’s frequency shifts due to changes in the density
proﬁle.vln figures 3.19 through 3.21 I show the collimated density and temperature
profiles resulting from 1, 2 and 3 successive perturbations (of 0.5 seconds duration
each) at an amplitude of V,.,; = 0.35 Volts. The profile when the perturbation wasn’t
switched on is also shown. The temperature points shown were measured {rom the
perturbed column, and the initial (unperturbed) column had a temperature of 0.9
eV.

My conclusions about rotational compression are as follows. The general
idea that induced waves can impart angular momentum to (or from) the plasma is
correct — the figures show this happening very cleanly. However, there is a strong
correlation between the amount of transport and the amount of heating caused by
the driven wave. The large rate of heating - more than 4 eV /particle for a decrease

in 3; R} from .973 to .924 cm? ~ limits the usefulness of this technique, since at 10
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Figure 3.19: Radial collimated density and temperature profiles of column with
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Figure 3.20: Same as figure 3.2, with second perturbation of 0.35 V}.,; at 11.3 MHz
for 500 msec.
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Figure 3.21: Same as figure 3.3, with third perturbation of 0.35 V,..,; at 11.75 MHz
for 500 msec.

eV ionization of the background gas is appreciable.

3.4 B, Misalignment and /=0 ‘Sloshing’ Signals

Misalignments of the magnetic field with the axis of the containment region
are known to strongly impact transport and hence confinement times in Malmberg-
Penning traps [26]. The EV apparatus has two magnetic field correction coils to
create B, and B, fields, which enable the angle of the magnetic field to be changed.
Measurements of confinement time are normally used to find the best alignment. This
technique, ‘confinement alignment’, requires measurements of the plasma density
remaining (usually central density) after long times, as a function of the correction
field strengths. The correction coils are afterwards kept tuned to the fields which
maximize the confined density.

Misalignment is also observed to result in /=0 signals off the containment
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Figure 3.22: Density perturbation in Z when an /=1 mode is present and B, is
misaligned.

rings, at the [=1 diocotron frequency, when an (=1 mode is present [33]. The reason
that these signals are produced can be seen in figure 3.22, which is a schemémtic for
what is happening at one instant in time. The column has a displacement D, and
B, is misaligned by an angle . Due to the position of the wall surfaces relative to
the column, one expects a density surplus on one end, and a density deficit at the
other. (Because the | =1 diocotron frequency is so much smaller than the plasma
frequency or the bounce frequency, one can view the perturbation as a quasistatic
change in the eQuilibrium rather than as a driven oscillation [33].) When the column
has rotated about the trap axis by = radians, the perturbation will have changed
sign, and the amount of charge within a ring will have changed. Hence one expects,
as a consequence of the misalignment, to pick up an (=0 signal at the same frequency
as the [=1.

Because the signals are functions of the misalignments, it is plausible that
the best alignment of the magnetic field with the trap can be identified through their
analysis. Hart [33] has asserted that minimizing the difference between signals on
the end rings (next to the confinement gates) provides an easier and more accurate

way of aligning Malmberg-Penning traps than the traditional method of tuning the
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correction fields to minimize transport. He did not present any comparison between

confinement alignment and this ‘signal null’ alignment, however.

1 have made a study, on the EV apparatus, of the I = 0 signals as a function
of alignment, and have found that at small misalignments the signals from different
rings lose coherence. This suggests that local sloshings due to individual ring mis-
alignments are taking place, rather than the single sloshing mode observed at large
misalignments. This in turn suggests a technique for identifying the best alignment
through the minimization of the sum of the signal power off all the rings. Ifind that
this ‘summed power’ alignment technique yields closer agreement with confinement

alignment than the signal null technique does.

3.4.1 [ =0 Signals from Large and Small Misalignments

Figure 3.23 shows the ! = 0 signals measured from the rings for an /=1
amplitude of d = .06 and a B, misalignment of 2.2 x 1073 radians. The column, of
radius R, ~ 1/3R,,, was contained within the rings L3, L4, S, L5, G2; here listed
in order of increasing distance from the filament. The oscilloscope was typically
triggered off a specific phase of the I=1 signal, producing recordings of the (=0
signals phase-locked to the [ = 1 mode. This was not possible for the recording
of the S ring signal, as all its sector probes and its frame had to be connected
together to measure the (=0 signal off it. The rings were capacitively coupled to a
high-impedance low-noise amplifier.

These signals are consistent with the model shown in figure 3.22. The end
rings (L3, G2) have the largest amplitudes (being closer to the end of the column
than L4 and L5). There is little signal from the S ring, due to its central position in
2. Additionally, the signals from rings on opposite sides of S are of opposite phase.
In figure 3.24 I plot the (=0 signal amplitude from an end ring as a function of

displacement d. It is linear in d near the axis, as has been predicted by Hart [33].
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Figure 3.24: [=0 signal amplitude from an end ring, versus displacement of the
column

In figure 3.25 I show the ! = 0 signals resulting when the difference in the
signals off the end ring are minimized, i.e., the signals (L3+14) and (L5+G2) are
closest to being identical. This ‘signal null’ alignment has a small misalignment of
1.2 x 107* radians from the confinement alignment value. The [ = 0 signals here
show important differences from their behavior at large misalignments. The signal
amplitudes are smaller than those shown in figure 3.23, as expected, but are still
appreciable (> 20 dB above noise), and do not display the phase coherence seen
previously. Indeed, the amplitudes and phases of the signals are now observed to be
complicated functions of the geometry of the different rings and misalignment angle
.

I have concluded that there is a single ‘global’ mode of density sloshing only
for large misalignments, and that at small misalignments there are ‘local’ sloshings

between the individual rings. While this is hardly surprising — any containment
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region broken up into rings is bound to have small asymmetries in Z after it is
assembled — it suggests that ‘signal null’ alignment (at least on the EV apparatus) is
not a likely prescription to identify the alignment given by transport measurements
(confinement alignment).

An alternative alignment approach is to minimize the sum of the signal power
(i.e. signal amplitude squared) off all of the containment rings. The reasoning behind
this is that since the signal amplitude off a ring indicates the proximity of the electron
column to that ring, a minimization of the sum of the squared amplitudes should
give a ‘least-squares’ alignment within all the rings. I term this alignment technique

‘summed power’ alignment.

3.4.2 Quantitative Comparisons of Alignment Techniques

I have quantified the differences between the alignments which minimize
transport (confinement alignment) and those which minimize end signal differences
(signal null alignment). F01; one particular confinement geometry (rings L1 to S), 1
have measured these B,, B, zﬂignments as a function of B.. A linear dependence of
alignment values versus B, implies that alignment is given by a specific angle within
the trap. The measured values are plotted in figures 3.26 and 3.27, along with a
least-squares fit through the data. My conclusion is that the confinement alignment
and signal null alignment techniques both define angles, but that these are different
angles.

In figure 3.28 1 show the tuning curve given by the summed-power alignment
(line) along with that given by confinement alignment (dots). The dashed lines show
the measured signal power from individual rings. Each ring has its individual 6,
value at which its signal is minimized. The solid line is the sum of the signal power,
and the dots show the central density (arbitrary units) remaining after 10 seconds.

As can be seen, the minima of transport (i.e. the peak of the remaining central
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Figure 3.28: Remaining central density (dots) and summed signal power (solid
line) versus 6,. Also shown (dashes) is the signal power off each individual ring. The
confinement region was L3 to L5, and B. = 282 Gauss.
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density) and the minima of the summed signal power are at close to the same value
of 6,.

To quantify the differences in alignment between the summed power and
the signal null methods, with reference to the confinement method, I have plotted
(figure 3.29) their measured difference in angle (Ad,, Af,) from the confinement
alignment values, for three different confinement regions. I conclude that summed
power alignment is closer to confinement alignment than signal null alignment is,
by about a factor of two in angle. In terms of how big a difference this makes to
confinement times, I estimate that use of signal null alignment will result (depending
on which signals are nulled) in about a 5% reduction of remaining density, compared
to the confinement alignment values. Summed power alignment is about a factor of

2 better by this criteria, as well.
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Chapter 4

Symmetric Double Vortex Studies

4.1 Overview

This chapter describes experiments on two confined vortices which are sym-
metric in density and radius. At small separations, the vortices are observed to
merge by flowing towards and wrapping around each other. At larger separations,
the vortices orbit about each other until merger occurs at times up to > 100,000
orbit periods after merger. I have investigated both of these phenomena, and find
that the two vortex electron system can be well characterized by a combination of
results from both 2D fluid theory and plasma physics.

I describe the creation of the two vortex state, and its analysis, in section 4.2.
The electron vortices used here were relatively narrow (radius R,/R, ~ 0.15), hot
(Ty ~ 1.8¢V), and long (L, > 5R,). Their dynamics were investigated with two
complementary diagnostics, wall sector signals and time series of n(r,8) electron
density plots. The density plots give direct measurements of vortex motions, but
can usually only be taken within 500 psecs of the injection of the vortices. The wall
sector signals can be measured about 400 psecs after injection (the delay is due to a
voltage spike caused by injection), but are limited in what they reveal of the motions.

The dynamics of well-separated (i.e. not merging) vortices is described in

section 4.3. I find that there exists equilibrium orbits in which each vortex orbits

-1
o
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about the center of the cylinder at constant radius. Some of these equilibria are
linearly stable, and others are unstable. I have measured both oscillations about
stable equilibria and exponential divergence from unstable equilibria.

The equilibrium positions, oscillation frequencies, and instability rates for the
spatially extended vortices agree well with the predictions of a point vortex model
(section 4.4). In this model, the extended vortices are replaced with point vortices
of the same circulation T', positioned at their centers. Because this approximation
eliminates the degrees of freedom describing shape distortions and surface waves, the
good agreement of the model with the observations suggests that these effects do not
significantly couple to the center-of-vorticity motions. This is useful because, unlike
a system of 2 extended vortices, a system of 2 point vortices within a cylindrical
boundary is integrable. Because of this integrability, 2D phase space maps can be
constructed (section 4.4.4) which permit visualization of the fully nonlinear motions,
as well as provide an understanding of the overall stability of the system.

In section 4.5 I discuss the various 2D fluid and electron plasma effects which
cause the lifetime of the 2 vortex state to vary by 5 orders of magnitude. At small ini-
tial separations, immediate merger of the vortices into a single larger core is observed
(section 4.5.1). Merger is a fundamental vortex property which I find to conserve the
energy, angular momentum and vorticity of the electron vortex system, as predicted.
Immediate merger occurs when the separations between the vortices, dy2, is below a
critical value given by dis ~ 3.2p,, where p, is the vortex radius [29]. 1 present some
density plots of merging vortices in figures 4.10-4.11: these closely resemble plots of
vortex merger from simulations [48, 68]. Immediate vortex merger can also occur at
large initial separations (section 4.5.3), because the previously discussed dynamical
instabilities can result in the vortices immediately drifting into each other.

For initial conditions giving scaled separations di2/2p, > 1.8, the two vortex
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state can be terminated by either d;, decreasing or p, increasing. For vortices in-
jected onto stable equilibrium points (section 4.5.2), I find that Pj-conserving column
expansion of both vortices ultimately results in them being unstable to merger. The
observed rates of expansion are consistent with those measured for single columns
(section 3.2.2).

Lifetimes are anomalously low, however, for vortices injected onto unstable
equilibrium points. In section 4.5.3 I present the evidence for this, and argue that it
is due to a greatly enhanced rate of column expansion that occurs when the column
trajectories move periodically in radius. Simple rate estimates are given, in support

of a hypothesis that an effect I term ‘orbital pumping’ is responsible.

4.2 Creation and Analysis of Two Vortex State

I create the two vortex state by cutting a single electron column in half
axially, moving the two halves to different @-positions, and then cascading them
together. This procedure is required since only a single column can be injected from
the filament source. Figure 4.1 shows a schematic of the manipulations involved;
there are sometimes additional steps required to generate phase-locked plots.

A two vortex experiment begins with a slow (~ 200usec) lowering and rising
of the injection gate. After the rise pinches off a column from the filament, the column
is displaced a distance D from the axis, by the growth of an /=1 diocotron mode to
the desired amplitude. The wall sector signal induced by the ! = 1 rotation can be
used at this point to set the #-phase of the column, by, for example, phase-locking
to a zero-crossing of the waveform.

At the desired 8-phase, the column is cut in half longitudinally with a negative
voltage applied to the central ‘cut’ ring. Equal density of the two cut columns is

ensured by having the containment voltages on both ends equal. The #-position of
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Figure 4.1: Manipulations to create two vortices from one vortex.
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Figure 4.2: Measured plot of Z-averaged density (or vorticity) showing two vortices.
The small + marks the center-of-vorticity of the vortices, and the large + is the axis
of the cylindrical conducting wall. The arcs indicate the wall radius. For these
columns, L, ~ 21.8 cm. Density between solid contours: 5.6 x 10°cm™>.

one column with respect to the other is then changed so as to produce the desired
initial condition when the célumns are cascaded together. The position change is
accomplished either with additional [ = 1 feedback, or with a temporary reduction
of V, on an end ring, which will lengthen the column contained by it, thus lowering
its I = 1 frequency and resulting in dephasing between the columns.

Finally, the cut gate is quickly (~ 0.7usec) lowéred, and the 2 columns cas-
cade into the original containment region and begin interacting with each other. The
cascading results in.a heating of 7 to ~ 1.8 eV. Figure 4.2 is a contour map at one
time of z-averaged density n(r,6) (i.e. vorticity) for typical columns, showing hell-
shaped vorticity profiles extending over a radius R, ~0.5 cm. The density n(r,0)
gives rise to a potential @(r,8) through Poisson’s equation. This results in E x B

drift velocities vg(r,0) (see section 2.8). Mutual advection in this flow field results




(i

in the two vortices orbiting around the cylinder axis, with typical frequencies fo.; =
10 kHz. Additionally, each column rotates about its center of mass, at a frequency
frotation = 100 kHz.

Immediate merger of the 2 symmetric vortices is observed if they are put
together with a separation less than 1.6 times their diameter [29, 48]. At larger
separations, the vortices are observed to orbit about each other, in a complicated
fashion, until merger occurs at times up to >100,000 orbit periods after injection.
I have extensively studied these orbital motions of well-separated vortices, using 2
complementary diagnostics: measurements of wall sector signals and time series of
n(r,#) density plots.

The wall sector signals are measurements of the charge induced on the sectors
by the electron vortices. Their analysis gives a fast determination of the frequencies
of the two-vortex state, as well as useful qualitative information on the dynamics
of the two vortices. In Appendix B I describe the interpretation and analysis of
wall sector signals induced by two vortices. Unfortunately, solving for the 2 vortex
positions from the sector sigilals 1s a non-trivial exercise in signal processing and
calibration, and accurate position measurements have yet to be extracted from this
approach.

The density plots give direct measurements of the positions and shapes of
extended vortices. The basic measurement here is of the z-averaged electron density
which flows along B, through a collimator hole after the end gate has been quickly
brought to ground. As discussed previously in section 2.4.2, I build up plots of
n(r,6,t) from many measurements; the temporal dependence is obtained by varying
the evolution time ¢, and the spatial dependence is obtained by varying the position
r of the radially scanning collimator hole and the §-phase of the initial condition.

After the creation of the two vortex state, I am able to create density plots
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for several orbital periods, after which uncertainty in the initial conditions results
in loss of phase-coherence and consequent noisiness in the plots. In my analysis of
vortex motions using these plot, I reduce them by characterizing the positions of
the spatially extended vortices by the coordinates (ry,60y),(rq,#;) of the centers-of-
vorticity. A time series of vortex positions can then be examined and fit as desired;

the details of this analysis are in Appendix C.

4.3 Equilibrium Orbit Observations

I have observed equilibrium orbits about the center of the cylinder, with
either r; = rp or r; # 1y, but always with 6, = 6; + 7. In equilibrium, each vortex
orbits the center of the cylinder at a constant radius and with the same frequency
forb, so the two vortices remain diametrically opposed. For r; = r,, both stable and
unstable equilibria are observed. That is, if the vortices are initially displaced from
the equilibrium positions, they either oscillate around the equilibrium points with
frequency fosc, or diverge from the equilibrium points at an exponential rate .

Figure 4.3 shows the observed equilibrium points r;, 7, for two identical
vortices with 8, — 6; = 7. Both stable (o) and unstable (¢) equilibrium points are
observed. Two conventions are used here: the positions r; are normalized to R,
1.e. r; = R;/R,,; and for the equilibrium points with ry # 7, I specify 7, > r,. The
lines indicate the predictions of point vortex theory, discussed below in section 4.4.
The dashed line indicates stable r; = r, equilibria, the solid line unstable r; = r,
equilibria, and the dotted line stable r; > ry equilibria.

I plot 3 examples of observed center-of-vorticity positions, relative to a frame
rotating about the axis, in figure 4.4. The three classes of equilibria, two stable and
one unstable, are each represented. The positions have had the orbital motion about

the cylinder axis subtracted out as described in Appendix C. The directions (i.e. time
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Figure 4.3: Equilibrium points for two identical vortices in a cylindrical boundary.
The radial coordinates are normalized to R, and #; — 8, = 7. The symbols indicate
observed stable (o) and unstable (¢) points. The lines are the predictions of point

vortex theory, with the solid line indicating instability and the dotted and dashed
lines stability.

ordering) of the oscillations about, or exponentiation away from, equilibrium points‘
are indicated with arrows. The dashed line at radial position 7y = 0.462 marks the
theoretically predicted (and observed) boundary between stable and unstable r; = 73
equilibrium points [34].

I have measured the frequencies f,,. at which vortices oscillate about the
ry = 79 and r; > 7y stable equilibria. Similarly, for the r; = ry unstable equilibria I
have measured the rates v at which the vortices exponentiate away from the unstable
points. In figure 4.5 1 plot these frequencies and rates, as measured in the frame

rotating about the axis, versus 7;. Data points from both density plot analysis and
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Figure 4.4: Observed center-of-vorticity positions, in a rotating frame, of vortices
orbiting about three classes of equilibria. The lines are fits to the motions, as de-
scribed in Appendix C, and the arrows show the directions of motion. The dashed
line is ry = 0.4062.




Figure 4.5: Normalized measured oscillation frequencies f,..(0) and exponential
growth rates v(©). The curves are the predictions of an analytic point vortex model,
where the solid line indicates exponential growth and the dashed and dotted lines
indicate oscillation frequencies. The motions corresponding to the three marked
rates have been shown in figure 4.4.
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wall sector signal analysis are included, as are the predictions of point vortex theory
(dashed, dotted and straight lines).

The plotted frequencies and rates are normalized by the theoretical orbit
frequency f2%, defined below in eq. 4.2. For ry = 1y, f,s varies from approximately
fo, down to zero as 1y is increased from 0.23 to ry. (With separations r; = ry < 0.23,
merger occurs in a few orbits.) For small rq, f,s is approximately foo, because the
vortices orbit about the center of (total) charge, independent of where this center
is relative to the cylindrical wall. As r, approaches ry, f,sc approaches 0, since
the restoring forces go to zero as the influence of the images charges in the walls
becomes important. For ry = ry > rp, initial displacements Ax = (Ar,rAf) from
an equilibrium point are observed to grow exponentially as Ax = Ax e+ Bx_e™ ",
where x4 (x_) is the growing (decaying) eigenvector. Over the accessible range of
unstable equilibria, I observe growth rates /27 f>5, = 0.2 to 0.4, as shown by the
diamonds of figure 4.5. For ry # ra, fo. increases monotonically as r; increases, due

to the increasing forces from the image charges.

4.4 Point Vortex Model

The observed motions of the spatially extended electron vortices are well-
described by a point vortex model, where each extended vortex is replaced by a
point vortex of the same circulation I' placed at its center-of-vorticity. (A useful
review of point vortex dynamics, which has been studied for over 100 years, is given

by [1].) The circulation is given by

r= <27;3ce) N, . (4.1)

where the line density Nj, is obtained experimentally either from a Gauss’ law mea-

surement or an integration of a 2D n(r,#) distribution.

The point vortex model ignores the degrees of freedom describing extended
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vortex distortions and surface waves, since distorted vortices would have external
fields which differ from the fields of a point vortex. As can be seen in the figures of
the previous section, the agreement between the predictions of the point vortex model
and the observed equilibrium positions and frequencies/growth rates is quite good.
This suggests that surface waves and shape distortions of the extended vortices do
not significantly couple to the center-of-vorticity motion, at least when the vortices

are sufficiently well separated that they are not susceptible to merger.

4.4.1 Predictions for Equilibria

The equilibrium positions for point vortices in a cylindrical boundary of ra-
dius R, are easily solved for. For a point vortex of circulation I'; at position ( Ry, 6;),
the method of images says that the image charges on the cylindrical wall give the
same fields as those of a fictitious point vortex of circulation —T'; at (R2/R;,6,).
Thus, the velocities of the point vortices can be readily calculated.

In equilibrium there are no radial velocities, and both vortices have the same
orbit frequency about the axis of the cylinder. These requirements can only be
satisfled if the two vortices are at opposite sides of the axis, i.e. §; — 8; = 7. Using
this, one can solve for the radial positions which give the same orbit frequencies.

The orbit frequency f2, of point vortex 1 is given by

1 1 1 1 + 1
A R,?U Ty + 7o r + ]_/7‘2 ™ — 1/T1 ’

(>0]

r
arb(717 T2) = ‘2_7;2

(4.2)

where the three terms in the square brackets are the contributions from vortex 2,
vortex 2’s image, and vortex 1’s image respectively. The orbit frequency of point
vortex 2 i1s given by the interchange of the subscripts 1 and 2. The equilibrium

points are therefore those which satisfy f,(r1,72) = 155 (r2,71), or equivalently the




expression

L[ 1 L1 i 1 S
™M T + T2 71 + 1/']"2 r — 1/7’1 o | T2 + ™ 72 -+ 1/7‘1 Ty — 1/7‘2 B '
(4.3)

Putting the left hand expression over a single denominator gives the numerator
2 4 4.2 4,2 3.3
(r1—r2) (1 — vy — 277 — 215 + rfrg + r‘l‘ +ry — 2riry — 2ryr] — 37y r2) . (4.4)

and the roots of this expression are the equilibrium positions.

One set of roots is given by r; = ry, but there are additional equﬂibrium
points where ry # 7. All of the physical equilibrium points (ie. 0 < rpy < 1,
0 <r; <1, and ry,7; real) have been previously plotted in figure 4.3 as lines (solid,
dotted and dashed), with the convention r; > r,. To first order in z, these new roots

are given by ry = .4623 + z and r; = .4623 — z, where z is an arbitrary value.

4.4.2 Predictions for Frequencies and Growth Rates

The stability of circular orbits of two (or more) point vortices within a cir-
cular boundary was first analyzed by Havelock in 1931 [34]. He did a linear stability
analysis of the r; = ry equilibrium points. For two vortices, Havelock found oscilla-
tions about stable equilibria when r; = r5 < rgy, and exponentiation from unstable
equilibria when 7y = ro > rgy, where ry = 0.4623. Specifically, he found that

perturbations from the 7, = r, equilibrium points evolved as e, where

I \? 492 8 472
A2 = ( ) S . 1 4.
4T R, (1 (1 + r2)2 ! 1—rf + (1—r2)2)" (4.5)

which is negative (giving stability) for r; < .4623 and positive for r; greater than

this. Havelock’s predictions for frequencies and growth rates have been previously
shown, in figure 4.5.
I have extended Havelock’s analysis to the equilibria with »; # ro , and

find stable oscillations about these points. The details of the calculation are in
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Appendix D. While in ‘principle it is possible to display analytic expressions for

these oscillation frequencies, as in equation 4.5, it is not practical to do so here.
The reason for this is that the analytic expression for the r; # ry equilibrium points,
about which the analysis is done, is given by the roots of the fourth order polynomial
of equation 4.4. The analytic expression for these roots alone is too large to be worth
reprinting! However, the stable oscillation frequencies predicted by the linear analysis

are shown in figure 4.5.

4.4.3 Extension To Temperature Asymmetric Case

[ have found that T}, asymmetries between the two electron columns can have
a strong impact on their dynamics. For example, I have injected columns with an
asymmetry of ATy =~ 1.0 eV onto r; = r, = 0.36 stable equilibrium points. The
columns were found to oscillate not about these points, as would be expected for
point vortices and for Tj-symmetric columns, but about rcq = .319 and rpe; = .405.
The effect of temperature asymmetries can be incorporated into the point vortex
model, however, and good agreement is seen between the predictions of this extended
model and the observed dynamics.

As has been discussed in section 3.2.1, changing the T}, of a column will
change the frequency shift between the measured and infinite-length I = 1 fre-
quency, Afiz1 = fiz1 — f2,;, due to finite length effects. The simplest model for
Tj-asymmetric columns, therefore, is one which uses the point vortex approximation
but additionally gives the hotter vortex a frequency shift Af!, arising from the
difference in the orbit velocities of the columns.

The equilibrium points (7441, 7c01a) predicted by this extended model are

found, as in the Tj-symmetric case, by solutions to

fgfb(rhoia"*cold) - fg’(,("'cold: rhot) = Aflli—t)]t . (46)
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When the measured frequencies of the experimental example were plugged in, the
predicted equilibrium points were at reuq = .323 and rh: = .393, in reasonable
agreement with the measured values.

I have also checked the agreement of the extended model for the orbit shapes
about the new equilibrium points. This was done using a numerical simulator of point
vortex motions, which integrates the equations of motion forward in time using a
Bulirsch-Stoer algorithm [59]. I found that adding the measured frequency offset to
one of the two vortices results in orbit shapes very similar to the ones observed.

Temperature asymmetries can obviously play a large role in the dynamics,
and it is one which has no counterpart in the fluid analogy. In the experiments of this
dissertation involving several vortices, I have always been careful to put the vortices
together such that they both have the same frequency shifts. With the symmetric
vortices of this chapter, this is done automatically if the vortices have the same
lengths before and after they are cascaded together. With the asymmetric vortices
of Chapter 5, it was found necessary to measure the frequency shifts and equalize

them by adjusting the confinement potentials, which alters the column lengths.

4.4.4 Energy and Angular Momentum Plots

Interestingly, the fully nonlinear motion of 2 point vortices within a cylin-
drical boundary can be understood from 2D phase space maps, since the system is
integrable. This is because there are four variables (ry,6,,72,0;) and two constants
of the motion (Py, H), the angular momentum and the interaction energy per unit
length.

Angular momentum conservation [52] has been discussed in section 2.6.1.

One can define a simple scaled angular momentum P, for two point vortices by

Po=2t= Y (1-r), (47)
0 i=1,2

1=
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where Py = (eB/2¢)R? Ny, is the angular momentum of an on-axis line charge (point
vortex). Similarly, from the 2D energy Hy (equation 2.8) of point vortices one can

define a scaled interaction energy H with

2] — g2
=_7._(j_’_= > In(l1—7})+n 1+(1 7])2(1 r2) , (4.8)
Ho % ™12

where 713 = |r1 — ra2| and Hy = ¢2N? is a characteristic energy. H and P, are, of
course, also conserved for fluid point vortices [1].

The predicted motions of the point vortices can be visualized from repre-
sentations of H(ry,0, — 6,, Py). For a contour map at a given Py, the 2D contours
of energy H display the (1,02 — ;) values that a two-vortex system with that en-
ergy will trace out during its evolution. (There is no information on the absolute
6-positions, since as a consequence of the rotational symmetry of the system, only
the difference in the #-coordinates matters in H.)

There are three distinct map topologies over the accessible range of 0 < Py <
2. I display examples of these in figures 4.6 through 4.8. For P, > 2(1 — r¥),
there is a minimum energy étable equilibrium (an O-point) with the two vortices
symmetrically opposite each other, at 6, — 6, = 7 and r; = r,. There is also an
infinite energy point where the vortices are at the same radial and 6 coordinates.
This topology can be seen in figure 4.6.

When P; is decreased (i.e. the vortices are moved radially outward), the
O-point becomes shallower. For 1 < Py < 2(1 — r%), the symmetric equilibrium has
become an unstable saddle point (an X-point), with two new O-points existing at
r1 # 7 values (see figure 4.7). As Pj is decreased further, the O-points move further
from the X-point, until for Py < 1.0 there are no stable equilibria (as in figure 4.8).

Also plotted on the phase space maps are the experimentally measured center-
of-vorticity coordinates (r;, §; — 0;) for evolutions with the corresponding Fy. (When

these coordinates are plotted, the two sets of vortex coordinates are distinguished
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Figure 4.6: Contours of scaled energy H(r;,0; — 8;) for Py = 1.74. The contour
interval is AH = 0.05. The symbols (O, 4+) show measured center-of-vorticity values
for an inmitial condition of Py = 1.74. The O-point is also shown.
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Figure 4.7: Contours of scaled energy H(r;,0; — 0;) for P, = 1.53. The contour
interval is AH = 0.05, but one additional energy contour (dots) at the value of the
saddle point is shown. The positions of the two O-points and one X-point are shown.
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Figure 4.8: Contours of scaled energy H(r;,6; — 0;) for P, = 0.85. The contour
interval is AH = 0.05. The dashed line indicates the boundary of accessible regions.
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by using different symbols.) In figure 4.6, the centers are observed to oscillate once
around the stable equilibrium while the vortices orbit 2.7 times around the cylindrical

center, with a measurement error corresponding to H < .01. In figure 4.7, 3/4 of an

oscillation about an asymmetric equilibrium is observed, with a larger measurement

error of 6 H ~ .02 due to the additional uncertainties introduced while creating the
7y # 7 initial condition. In figure 4.8, the vortices exponentiate away from the
unstable equilibrium, with the displacements being largely in the #-direction. The

large measurement errors at long times reflect the difficulty in repeatably following

the exponentially unstable trajectories with density plots.

Distortion Energies

For spatially extended vortices, the 2D energy H, will include self-energy
and interaction energy terms which depend on the shapes of the vortices. Experi-
mentally, ] observe elongations away from circularity of < 10% in general, and up to
30% for r; = r ~ 0.23 (near merger). These time-varying eccentricities have not,
however, been observed to cau'se noticeable departures from the predictions of the
point vortex model. This result is perhaps because the energies involved in elonga-
tions are relatively small: using a moment model [48], I estimate §H ~ 0.002 and
0.02 for elongations of 10% and 30% respectively.

I have additionally found that intentionally induced elongations do not sig-
nificantly affect the orbit dynamics, as diagnosed by the wall sector signals. Before
putting the two vortices together, I grew an [ = 2 diocotron wave on one vortex,
on both, or on neither. The wave gave elongations of about 5%. 1 then looked
for changes in the sector signals depending on whether or not the | = 2 mode was
present. I failed to discern any changes in the wavesignal resulting from the | = 2

perturbation.
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Energy and Angular Momentum Manipulations

The double vortex state can be manipulated by external control of the overall
energy and angular momentum of the system. Previous work on the dynamics of a
single vortex has established that resistive destabilization [71] and active feedback
[70], which change Py and H, cause the observed motions to evolve accordingly. I
find similar effects for the double vortex state.

For example, a resistance between azimuthal sections of the wall will dissi-
pate the energy of the system. If a resistance is switched on when two vortices are
near stable equilibrium points, the vortices will remain near stable equilibria while
the equilibrium orbit radii vary with time. During an evolution with initial vortex
positions of 1y = ry ~ 0.3, the radii were observed to increase to ry = r, = ry,
after which ry increased until vortex 1 was pressed against the wall, while r, had
decreased to ry ~ 0.1. This technique has been used to shift two vortices from one

stable equilibrium to another with lower Pj.

4.5 Lifetime of.the Two-Vortex State

I observe that, depending on the initial conditions, the two-vortex state can
last anywhere from less than one orbit period to > 10° orbits. It is terminated by
merger of the two vortices, resulting in a single vortex core surrounded by filaments
which eventually form a low-density halo about the core. It is straightforward to
diagnose the time it takes to merge, Tmerge. For short merger times (< 300usec),
Tmerge 15 defined from density plots as the time where the vortex cores have fused; at
longer times, it is defined to be the time at which the f.., components of the sector
probe signal abruptly disappear.

In figure 4.9, 1 plot T,erge versus 7 for two symmetric vortices injected at

equilibrium positions r7; = 72, at a magnetic field of B. = 188 Gauss. For the
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Figure 4.9: Merger time versus separation for two vortices injected at r; = ro. The
observed statistical scatter was smaller than the symbols except for the separation
with the displayed error bar. B, = 188 Gauss.

smallest separations, the vortices are immediately susceptible to a pairing instability
(see section 4.5.1). As the separation is increased, the lifetime jumps up 4 orders
of magnitude, reaches a maximum near r; = ry, and then precipitously drops. At
these separations, the two-vortex state is terminated by the previously discussed
(section 3.2.2) column expansion, which results in the expanded columns becoming
susceptible to the pairing instability. The drop above rg is believed caused by a
strong increase in the rate of the expansion, due to motions of the columns in the
radial direction. These points will be discussed in section 4.5.2. At the largest separa-
tions, the previously discussed Havelock dynamical instability results in trajectories
which have the vortices quickly approaching each other close enough to merge. This
boundary effect, as well as other influences the boundary can have on merging, will

be discussed in section 4.5.3.
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4.5.1 Pairing Instability

Merger is a fundamental vortex property. When two like-signed spatially
extended vortices approach close enough, they are susceptible to a pairing instability
which causes them to wrap into a single larger core, accompanied by the ejection of
filaments. There have been many theory papers on this instability (see, for example,
[61, 64, 48, 49]), which have used analytic theory, moment models and numerical
simulations to investigate it. These have established that the equilibrium solution
of closely-separated vortices consists of them elongating towards and orbiting about
each other. As the separation between them is decreased, the elongation becomes
more pronounced until ultimately a separation is reached where there isn’t any stable
equilibrium. At this point, the two vortices flow towards and wrap around each other,
ejecting narrow filaments of vorticity in the process. This merger of inviscid vortices
is, in theory, predicted to conserve the energy, angular momentum, and all moments

of the density. The enstrophy Z, is the second moment, given by

, _ Jdrf rdf n®(r,0)
= [f drf rdf n(r,@)]2 ’

(4.9)

Figure 4.10-4.11 is a series of density plots showing the merger of two electron
vortices initially placed close together. There is close agreement between these plots
and the results of simulations [48, 68]. Note that the merger is a ‘wrapping around’,
and that the cores of the merging vortices at ¢t = 76 usecs still retain their separate
identities.

For these merging vortices, I have plotted the observed variations versus time
of total electron number N, angular momentum P, energy Hy, and enstrophy Z; in
figure 4.12. The solid symbols correspond to the density plots shown in figures 4.10
and 4.11, and the quantities have been normalized to the values measured at ¢t = 0.

The energy, angular momentum, and total density all appear to be conserved

within the scatter (£1%) of the experimental measurements — there is a hint that



Figure 4.10: Density plots of two symmetric vortices unstable to the pairing insta-
bility. Times: t = 0 and 16 psecs. Density between solid contours: 2.9 x 10°cm™3.




Figure 4.11: Pairing instability at t = 41 and 76 usecs.
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Figure 4.12: Total density, angular momentum, energy and enstrophy variations
during merger. The solid symbols indicate values measured from the plots of 4.10 to

4.11.
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total density drifts upward a percent or two, but this is certainly instrumental. The
enstrophy, however, decreases to 82% of its initial value. Much, if not all, of this
decrease is due to the ‘coarse-graining’ of the increasingly fine spatial scales by the
collimator hole. The size of this hole is indicated in figure 5.2; its size sets the
minimum spatial scales resolved. The evolution of enstrophy in electron vortices
undergoing instabilities is an interesting topic which I do not have the space to go
into here - see, however Huang {36].

Two simulations of vortex merger, with very similar initial conditions to those
of figure 4.10, have been published in the literature. They are figure 1 of Melander
et. al. [48], from a high-resolution direct numerical simulation, and figure 1 of
Waugh [68], from a contour dynamics simulation featuring 8 contour levels. These
simulations closely resemble figures 4.10-4.11.

While vortex pairing has been often obsgrved in conventional fluids experi-
ments, with perhaps the first clear evidence for it from Freymuth [30], viscous and
boundary effects have usually resulted in non-ideal behavior being observed. One
example of this is the experiments of Cardoso, Marteau and Tabeling [7], who used
thin layers of electrolyte to study decaying quasi-2D turbulent flows and found strong
dissipation of energy and _peak vorticity to occur. Another example is the rotating
water tank experiment of Griffiths and Hopfinger [32], where for one sign of vortic-
ity merger was observed to occur for all initial separations. In contrast, a merger
experiment with electron vortices has found significantly better agreement with the
predictions of theory [29].

This experiment, which studied the onset of the pairing instability for electron
vortices, injected vortices of varying radii onto Havelock-stable (i.e. r1 = r, < 0.46)
equilibrium point, and measured Tp,egc as the separation was increased. The vortices

were observed to merge immediately for separations of less that 1.4 vortex diameters,
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Figure 4.13: Typical measured radial profile of an electron vortex before merger,
plus top hat (dashes) and Gaussian (dots) profiles fitted to it.

and to orbit for more than 10° orbits for separations greater than 1.8 diameters. The
theory work has predicted critical separations for this instability in the range of 1.43
to 1.7 vortex diameters [64, 62]

The experiments also established that the vortex diameter was the relevant
lengthscale, since the merger curves for vortices with different radii overlay each
other when the separation between them was scaled by their radius. Before showing
this result, it is necesséu‘y to discuss how the radius of a vortex is determined. In
figure 4.13 I show a typical measured radial profile, plus the top hat (step function)
and Gaussian profiles that are the best fit to this profile. One can see that the
observed profile is neither Gaussian nor top hat; 1 call it a ‘bell-shaped’ profile.

There is no obvious uniformly applicable definition for the radius of a vortex

with a profile like the one shown. The vortex radius R, definition of a 2D distribution




n(r,6) decided upon by Fine et.al [29] is
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where the (r — ) integral is over the area of the vortex and 7’ is centered on the
center-of-vorticity of it. This is simply a density-weighted radial integral from the
center of the vortex, ending at r..:, defined to be the vortex edge. With sharp-edged
profiles the position of r.,; is given as the point where the density goes to zero; in
Chapter 5 I discuss 7, for less sharp profiles. The factor of 3/2 is included to ensure
that a top hat profile with radius R has R, = R. The symbol I use for R, normalized
to R, is not r,, but p, = R,/R,, since 7, could be confused with center-of-vorticity
positions, and since p is a symbol which has been commonly used for vortex radius.

Figure 4.14 shows merger curves for vortices with different values of p,, where
the separation D;; between the vortices has been scaled by 2p,. I define d;; to be the
(normalized) distance between vortices z and j, i.e. di; = D;;/R,,. The vortex radius
is indicated by the different symbols. The data shown had B, = 375 Gauss and
ry = 19 < 0.46, except for the circles, which is the 11 = r2 < 0.46 data of figure 4.9,
and had B, = 188 Gauss.

It is apparent that the scaled merger curves for different p, overlay each
other, and give a critical separation for immediate merger of dyz ~ 1.6 - (2p,). As

the separation is increased, the two-vortex state lifetime increases dramatically until

it reaches a maximum and levels off. In the next section I discuss the lifetime of

vortices not immediately unstable to the pairing instability.

4.5.2 Column Expansion and Lifetime of the 2 Column
State .

1 have determined that the lifetime of columns injected into stable equilibrium

points opposite each other is limited by expansion of the individual columns, which




Figure 4.14: Merger time versus separation dyz, scaled by vortex diameter 2p,. The
vortex radius of each symbol is indicated. B, = 375 G and ry = r; < 0.46 except for
the circles, for which B, = 188 G.

ultimately causes them to be susceptible to the pairing instability. The process can
be directly imaged under certain conditions. For stably orbiting vortices, the sector
probe signal is a sinusoid at frequency 2f,.; (as shown in figure B.1). By switching all

sectors and containment rings to ground, and only at a later time switching a sector

to an amplifier, it is possible to monitor the evolution of the wall signal without
unnecessarily perturbing the two-vortex state. I have found that no other frequency
components develop, which means that it is possible to extend the density imaging
technique to late times by phasing off 2f,,.

Figure 4.15 show a plot of two vortices injected at ry = r, = 0.33, and
the same vortices 3 seconds later. During the containment time, column expansion

and movement towards the axis has occurred to the vortices, exactly as has been
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Figure 4.15: Density plots showing the long-time evolution of the stable two vortex

state. The first shows the vortices after injection, and the second is 3 seconds later.

Density between solid contours: 7.3 x 10°cm™3.
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described for single columns in section 3.2.2. At ¢t = 3 seconds, low-density arms and
a ‘bridge’ between the vortices have formed, characteristic of vortices barely stable
to the pairing instability. Measurements of the scaled separation dy3/2p, show that
it has decreased from 2.24 at t = 0 to 1.60 at t = 3 seconds. Merger was observed
to take place ~ 3.15 seconds after injection.

The observed rates of column expansion for the stable 2 column case are
consistent with those measured for one column. Since column expansion was found
to increase very strongly with ry, it is to be expected that the stable two-vortex
lifetime curve will show the leveling off it does beyond immediate merger. This
is because columns further apart will have a greater initial separation, inhibiting
merger, but the d;, increase will be more than offset by the faster radius expansion

rates.

4.5.3 Boundary Effects
Merger From Point Vortex Motions

The presence of a cylindrical boundary in the experiment can greatly decrease
the lifetime of the two-vortex state. For example, vortices injected near Havelock
unstable equilibria may move on trajectories which bring the two closer together.
The vortices essentially drift into each other.

The phase space plots of H(ry,0; — 6,1, Ps) discussed in section 4.4.4 allow
one to visualize an example of this. Figure 4.8 showed the energy contour map for
point vortices injected at r; = r, = 0.758. After injection at 8, = 0+ 7, the vortices
will move along the energy contour passing through the X-point. When the vortices
drift in @ towards 0, = 6,, the separation dy, between the two will drop from the
initial value of di; = 1.516 to dj2 = .36. With vortex radii of p, = 0.12, one then

has dy2/2p, = 1.5, so one expects that merger will occur; in fact, this was observed
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to happen in the data set of figure 4.8. It is thus the Havelock dynamical instability
which is responsible for the short (< 1 msec) lifetimes seen at large initial separations

in figure 4.9.

Merger From ‘Orbital Pumping’

I have found strong, but indirect, evidence that the rate of column expansion
is greatly enhanced when the column trajectories move periodically in radius. Evi-
dence for this can be seen in figure 4.9, where Tpeg. drops by a factor of 70 when the
initial placement of two columns is shifted from ry = r; = .46 tory =7, = .5. As we
have seen, single column expansion rates increase strongly with radial displacement,
but not enough to account for this factor of 70. Similarly, the dynamical instability
can not account for it: the point vortex model predicts that the columns will exe-
cute large orbits from their initial points, but in such a way that the minimum d;,
decreases only 9%, as compared to the r, = r; = .46 initial condition.

Similar evidence can be seen in figure 4.16, which shows Tyerge versus scaled
separation d;,/2p, for two different initial conditions. The circles were measured
for columns injected at stable equilibrium positions, i.e. ‘equilibrium placement’.
The squares were injected with one column on-axis (r; = 0) and the other at a
variable displacement r; = dy,, i.e. ‘on-axis placement’. While the circles display a
normal equilibrium placement 7,,e,4e curve, the on-axis placement vortices never had
lifetimes greater than 10 msecs. 1 have fleshed out the on-axis placement curve from
memory (dotted line). The point vortex model again predicts that the separation as
the vortices orbit about each other will not change that much, certainly not enough
to explain decrease in lifetimes seen.

I believe that the effect causing this is an enhancement of column expansion

produced by ‘orbital pumping’. As was discussed in section 3.2.2, the cause of single
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Figure 4.16: 7. vs. minimum scaled separation for vortices injected with r; = 7
(o) and r, = 0 (O).

column expansion is believed to be ‘rotational pumping’ [11]. Rotational pumping
occurs with single off-axis columns because as an electron rotates about the column
center due to the self-field, ﬂle electrons confinement length will change due to the
curved shape of the electrostatic confinement fields. This oscillatory change by an
amount AL once each Trotation Will result in heating [2]. The heating can only come
from the electrostatic energy H, of the column, which implies that column expansion
should occur.

Radius expansion rates from rotational pumping have been calculated by
Crooks [11] to go as (AL/L,)?. An examination of the dependence of L, on dis-
placement (see figure 3.4) reveals that a column orbiting from 7, = 0 to r, ~ .5
will have a pumping of its length given by AL/L, ~ .013. This is roughly a factor
of 5 increase in AL/L, compared to that experienced by a stationary column at
r9 ~ .25, which according to theory would increase its expansion rate by a factor

of 25. This is the sort of increase in expansion rate which is required to explain
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the experimental data. While my evidence for orbital pumping to date is indirect, I
find the mechanism for it plausible, and believe it will shortly be proved to have an

important effect on 2 vortex lifetimes.




Chapter 5

Asymmetric Double Vortex
Studies

5.1 Introduction and Overview

In this chapter I describe experiments on two vortices which have different
radii but equal central vorticity. The focus here is more on merger and less on
equilibria, in large part because no discrepancies from point vortex theory were
noted in these experiments on vortices asymmetric in circulation but symmetric in
Tj. The object was not just. to study the dynamics of two interacting asymmetric
vortices, but also to obtain predictions about the more complicated system of many
interacting vortices.

Experiments and simulations have long established that vortices can emerge
from both laminar flows [30] and structureless initial conditions [46]. When sufficient
time has passed, an undriven 2D turbulent state can therefore evolve to a conceptu-
ally much simpler system of many vortices (of both sign), sufficiently well-separated
that merger takes place relatively infrequently. The subsequent evolution of this sys-
tem will then be dominated by the dynamics of the vortices, which includes merger
of like-signed vortices and mutual advection.

Recently, studies of this many-vortex state, using direct numerical simula-

tions of the Euler equations, have supported the hypothesis that the essential fea-
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tures of the evolution are contained in a simple ‘punctuated Hamiltonian’ model
[8, 3]. In the punctuated Hamiltonian model, the motions of the spatially extended
vortices are calculated by the point vortex approximation, and simple rules are used
to replace two vortices with one bigger one when they occasionally approach close
enough to merge. These models have resulted in predictions for timescales which are
in qualitative agreement with the results of simulations [8, 3, 69]. However, the as-
sumptions of the punctuated Hamiltonian model have not previously been supported
by detailed studies (experimental or theoretical) of the validity of the point vortex
approximation, or of the details of the asymmetric merger process. On the contrary,
one recent paper [21] on this subject, where contour dynamics simulations of top
hat (i.e. uniform vorticity) profile vortices were used to study the merger of vortices
asymmetric in radius, found that the conditions for and the products of merger are
very different than has been assumed in the pungtuated Hamiltonian models.

In Chapter 4, I showed that the point vortex approximation results in accu-
rate predictions for the equi]jbrium positions, oscillation frequencies, and instability
rates of two spatially extended identical vortices. This result provides some support
for the vortex motion hypothesis of the punctuated Hamiltonian model. In this chap-
ter, I present the results of experiments on merger, where 1 have varied the radius
of the vortices and studied both the time to merger and the final state produced by
merger. | find that merger, once started, quickly results in a central core surrounded
by a diffuse halo. The peak vorticity of the core is observed to be roughly the same
as that of the merging vortices. The fraction of the total circulation entrained into
the central core varies from 70% to 90% as the initial vortex radii are varied from 1:1
to 2:1. This fraction, as well as the time required before merger (Tierge ), depends on
the initial placement of the two vortices. 1 also find that the self-energy of the central

core is roughly equal to the sum of the self-energies of the merging vortices. These
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results are in reasonable agreement with the premises of the punctuated Hamiltonian
models, but disagree with the contour dynamics results in that partial merger events
(where two cores persist after merger) are not observed.

The chapter is organized as follows. I first show density plots of two asym-
metric vortices undergoing rapid merger, and a radial profile of the final merged
state. Section 5.3 presents results on merger time versus initial position. I display
merger curves (i.e. Tmerge VS. separation dys) for vortices with different relative
radii. Very long lifetimes (> 10* orbit periods) can be achieved for well-separated
vortices injected at stable equilibrium positions, but as was seen in the symmetric
case (section 4.5.3), the placement of the initial condition impacts the time required
to merge.

The evidence that merger events are complete and not partial is discussed in
section 5.4. In section 5.5 I quantify the evolution of the two-vortex system during
merger. Since the vortex profile after a merger is monotonic but does not have a
sharp edge, it is necessary to determine a cutoff length for the purpose of calculating
the quantities of interest for the merged core. In section 5.5.1 I present a simple
algorithm for establishing this cutoff, and present experimental evidence that this
algorithm yields radii that are physically reasonable. Then, in section 5.5.2 T show
how the central vorticity, self-energy and bound circulation of the vortices change

after a merger.

5.2 Example of Asymmetric Vortex Merger

In figures 5.1 and 5.2 I show an example of two vortices, asymmetric in radius
but with the same peak vorticity (peqar, merging. The initial placement is ‘vortex on-
axis’, and the ratio of radii is 2:1. The final plot has dots which indicate where the

data has been taken — the plot is then generated by interpolation between the data
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grid. I've also indicated on that plot the size of the collimator hole. These plots are
quite similar to those of figure 7 of McWilliams [46], which shows a numerical sim-
ulation of an asymmetric merger event where, however, the (,e.x of the two vortices
is not the same.

After the merger had taken place, I allowed the system to evolve for 5 msec,
then damped the [=1 wave for 15 msec to move the merged core on-axis. (I have
established that this movement does not appreciably affect the radial profile.) The
resultant radial profile of n(r) versus radial position is shown in ﬁgﬁre 5.3. Thisis a
typical example of the profile resulting from an asymmetric merger event.

Several features should be noted about these merger pictures. First, the
smaller vortex is strained out into a filament whose observed width is about the
same as that of the collimator hole. This observed filament width is the result of
convolution, by the hole, of a substantially narrower filament. Although the actual
structure of the filament is not resolved, when deconvolution is done on the 2D plots,
it has been found that the data is consistent with filaments being as narrow as a
delta function. It is clear that the effects of the collimator hole size and of the density
of data points have to be taken into account when interpreting the 2D plots.

Second, it is apparent that the smaller vortex has been pretty well dissipated
(i.e. merged) by 60 psecs. The largest vorticities measured in the filamentary struc-
ture at this point are about 12% of the initial (peqr. There is no indication of a
long-lived secondary core in the subsequent evolution, either in the later-time radial
profiles (which would reveal the presence of a large (,eqr core) or in the observed
sector probe signals. This result is in disagreement with the prediction of Dritschel
and Waugh [21] from contour dynamics simulations of isolated top hat vortices. For

the initial conditions of figure 5.1, they found that a secondary core with a radius

65% that of the smaller vortex’s radius persisted after merger. 1 will return to this
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Figure 5.1: Density plots of two asymmetric vortices merging. Times: t = 0 and
15 psecs. Density between solid contours: 4.9 x 10°cm™3.




Figure 5.2: Asymmetric merger at t = 30 and 60 pusecs. The positions where the
data has been taken, and the collimator hole size. are indicated on the t = 60 usecs
plot.



Figuré 5.3: Non-phase-locked radial profile taken 20 msecs after merger shown in
figures 5.1 and 5.2. 21 measurements of density were taken at each radial position.

0,

question of the completeness of merger again in section 5.4.

Finally, note that the final profile (figure 5.3) consists of a core surrounded
by a low-density halo. If this profile were surrounded by many other vortices, the
halo would l;é,stripped away by vortex interactions, while the core would remain
intact unless merger takes place. To answer such questions as how much circulation
is bound in a merged profile, it is necessary to have an algorithm for defining what

constitutes the core. This problem is addressed in section 5.5.1.

5.3 Merger Times for Asymmetric Vortices

Merger curves (Tmerge VS. separation djz) have been measured for five dif-
ferent, initial conditions. The initial conditions are tabulated in table 5.1, where
the corresponding symbol is also indicated. As was seen in the symmetric merger

case (section 4.5.3), the initial placement of the vortices has an important impact



[ p2/p1 | p1 | initial placement | symbol ||
1.0 0.147 equilibrium O
0.92 |0.173 equilibrium
0.65 | 0.228 equilibrium
0.85 |0.176 | vortex on-axis
0.67 | 0.181 | vortex on-axis

D <+ =

Table 5.1: Initial conditions for merger curve data.

ON Tmerge- Vortices injected in stable equilibrium positions have significantly longer
lifetimes than those injected with the same separation, but with one vortex on-axis.
Two of the initial conditions have the same radius asymmetry of p2/p; ~ .66, but
differ in the initial placement, which permits the effect of the placement to be iso-
lated. As previously discussed, the decrease in lifetime is conjectured to be from
orbital pumping.

In figure 5.4 I plot the measured Tyerge versus diz/(p1 + p2). These merger
curves clearly do not overlay each other. The great difference in lifetime caused by
the initial placement can eésily be seen here - for the same scaled separation of
~ 2.4(p1 + p2), vortices with pa/p1 ~ .66 injected into equilibrium positions had a
lifetime 350 times greater than vortices injected with one vortex on-axis.

In two papers on the punctuated Hamiltonian model, the critical separation
d. for immediate merger used was d. = 1.7(p; + p2) by Benzi et. al [3] and d. =
1.65(py + p2) by Carnevale et. al. [8]. These criteria for merger are indicated (dashes
and dots) on figure 5.4. A more recent paper by Weiss and McWilliams [69] has used
an elliptical moment model to determine the critical separation d. for merger, and

found a good fit to the results of the numerical integrations with

d, o
=16 (1 + u) : (5.1)

pr+ p2 P+ p2

I can use my data to compare these competing predictions for d. directly.
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Figure 5.4: Merger curves, where the separation dj; has been normalized to
(p1 + p2). The radius ratio p2/p; is indicated.

Experimentally, I consider the critical distance to be that which results in merger

in about one orbit. In figure 5.5 I have plotted the measured separations, as a

function of relative radii, wh.ich bracket the critical distance. The smaller distances
(at each py/p; value) resulted in merger in less than one orbit period, while the
larger distances resulted in at least one orbit before merger. The merger predictions
of Weiss and McWilliams, Carnevale et. al. and Benzi et. al. are shown, and the
data shows better agreement with Weiss and McWilliams’ prediction than with the

others.

5.4 Completeness Of Merger |

The question of whether there are significant differences between merger of
symmetric vortices and merger of vortices asymmetric in radius 1s an important

and controversial one. Dritschel and Waugh [21] recently used contour dynamics
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Figure 5.5: Separations giving merger in less than an orbit period (O), and in more
than an orbit period (o), versus relative radii p;/p;. The merger criteria used by
Weiss and McWilliams (line), Benzi et. al. (dots) and Carnevale et. al. (dashes) are
also shown.

simulations of two isolated top hat profile vortices to investigate this, and found that
many unexpected interactions were seen. The picture of asymmetric merger expected
from the symmetric studies was that either two vortices would stably orbit about
each other (elastic interaction) or merge, forming a merged core larger than either
vortex (complete merger). Dritschel and Waugh found that for some separations,
partial merger took place where vorticity would be exchanged, but both vortices
survive and elastically interact after the partial merger event. In addition, they also
found that there could be both partial and complete straining out events, where the
vorticity ejected by the smaller vortex does not become associated with the larger
vortex. They thus found that smaller vortices were often produced by asymmetric
merger, and concluded that it “is therefore inappropriate to talk of the ‘merger’ of

unequal vortices, since over a large range of initial conditions the two vortices do not




join together to form a single compound vortex.”

The electron vortex experiments obviously have many differences from the

ideal theoretical system investigated by Dritschel and Waugh. To enumerate some

of these:

1. The electron vortices are not isolated, but are contained in a circular boundary

and thus interact with image forces.

2. The vortices do not have top hat profiles, but rather have bell-shaped radial

profiles (figure 4.13).
3. The system is bounded (contained) in Z.
4. The individual electrons execute Larmour orbits about their guiding center.

Because of these differences, little correspondence is seen between the ex-
periments and the predictions of Dritschel and Waugh. In particular, I have found
little evidence for partial merger events resulting in two altered and stable vortices.
Additionally, while I do find that the structure of the merged vortex core depends
on the initial separation, I have always found merger to result in the merged core
being larger than the larger vortex, and hence do not observe ‘straining out’ events.
Merger of asymmetric vortices thus is not observed to be significantly different from
merger of symmetric vortices.

Since the EV apparatus does not have a camera diagnostic, our knowledge of
merger will be improved when merger is studied on the new Cam-V machine. The
evidence from EV, however, appears fairly conclusive that our asymmetric vortex
merger is a quick and complete process. The density plots are able to follow merger
for several orbit periods before they become too noisy to be useful. These plots always
show merging vortices to join, and any filaments to rapidly become strained and

reduced in (peok- Occasionally, small coherent patches of vorticity become ejected: an
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example of this for symmetric merger can be seen in figure 4.10, where the filaments
show maxima. These maxima, however, are observed not to persist as the filaments
wind about the merged core.

If persistent vortex cores were common stable structures of the post-merger
system, I would expect to detect them on the non-phase-locked radial profiles, where
they would show up as higher values of density seen intermittently in the halo. Such
anomalously higher values have not been seen, either in the many profiles taken to
characterize the final state of merger (i.e. after ~ 20 msecs), or profiles taken just
after merger specifically to look for this effect.

Finally, I would expect the presence of persistent cores after a partial merger
to show up on the sector probe signals. What is actually seen on the signals is the
complicated but unevolving waveform of the two asymmetric vortices orbiting about
each other, followed by a single =1 frequency after merger. The transition between
the orbit waveform and the /=1 waveform occurs in about one orbit period, and the
waveform after merger only rarely shows frequencies in addition to the /=1 frequency.

In figure 5.6 1 have replotted my asymmetric merger data, along with the
predictions of Dritschel and Waugh. The symbols mark my data, with the squares
indicating (complete) merger with one orbit period, and the diamonds indicating
merger at time greater than one period. The curves are from figure 5 of [21], trans-
formed to my variables, showing the predicted region of non-merger events. One

can see that many of my data points are in regions where partial merger or partial

straining out is predicted, yet only complete mergers were observed.
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Figure 5.6: Merger curve data plotted with the predictions of Dritschel and Waugh
for top hat isolated vortices from contour dynamics simulations. Squares (O) indicate
complete merger observed within one orbit period, and diamonds (o) lifetimes greater
than this.

5.5 System Evolution During Merger

5.5.1 Definition of Vortex Radius

The density plots of merger that I have taken, of which figures 5.1 and 5.2
are an example, reveal that the detailed evolution during merger sensitively depends
on the initial conditions, but alwa_,ys results in a central core surrounded by filaments
winding about it. This distribution then axisymmetrizes, on a timescale of tens of
rotations (msecs), into a core surrounded by a halo. Figure 5.3 1s an example of a
typical merged profile.

In order to quantify the evolution of the system during merger, for each initial
condition detailed in table 5.1 above I have taken radial profiles of the vortices both
before and ~ 20 msecs after the merger. (This particular time after merger was

selected because the noise then was sufficiently low to allow a good average of the
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merged profile to be taken with 20 shots at each radial position.) This approach to
studying the merged state can be contrasted with the method used by Waugh [68],
who quantified the efficiency of symmetric merger by integrating contour dynamics
simulations of top hat profile merger forward in time until the filaments began to
‘pinch off’ the central vortex. He then considered the filaments to have been ejected
from the core, and removed them. I feel this procedure adds an arbitrariness to the
measurement, since the filaments can be seen to wrap tighter around the core as
time progresses, and can reattach.

The final state profile depends on the sizes and separations of the two vortices.
In figure 5.7 I show the radial profiles resulting from merger with py/p; = .67 and
three different initial separations (with one vortex on-axis). The initial radial profile
of the larger vortex before merger is also shown by the dotted line. One can readily
see the effect of the initial separation: the smaller d;, is, the more compact the
merged profile.

It is useful to concept.ually divide the profiles into a ‘core’ and a lower density
‘halo’. The distinction between the two is that fluid in the core is bound, while the
fluid in the halo is sufficiently far from the core that it may be advected away by
subsequent near encounters with other vortices. Merger will result, therefore, in
some initially bound vorticity being ejected into the background. To quantify this
process, it is necessary to define an algorithm for determining the cut-off point (7cu¢)
between the core and halo. The profile resulting from Dy, = 2.67 in figure 5.7 1s
a case where one could perhaps determine a cut-off point by inspection at about
1 cm. In general, however, the merged profiles do not have obvious cut-off points,
and inspection for minima is therefore an unsatisfactory prescription. However, a
self-consistent algorithm has been developed for determining r¢y;.

The algorithm uses the idea that the onset of the pairing instability can be
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used to define the dynamically important regions of vorticity. In section 4.5.1, the

vortex radius R, was defined by

3 1

@ 1 Tcut N ) ‘
Ro= 55 /U v dA n(r,8) (5.2)

where 7., was defined to be (for sharp profiles) the point where the density went
to zero. With this definition, symmetric vortices were observed to be immediately
unstable to the pairing instability when the separation dj; < 3.2p,. Given this
fact, it seems intuitive that fluid at separations greater than 1.6p, from a vortex
center should not be considered bound: a second like-signed vortex can pass by at
a separation greater than would cause merger, but such that it will be close enough

to advect or capture the distant fluid. I therefore define r.,; for a haloed profile by
Tewt = 1.6p, . (5.3)

Of course, since p, depends on r,; through equation 5.2, equations 5.2 and 5.3 must
be self-consistent.

While this definition is based on considerations of merger with other vortices
symmetric in (peqr and radius, and an evolving many-vortex system will in general
have vortices of arbitrary (,e.x and radius, this algorithm is perhaps the most logical
one which yields a single value for the vortex radius.

Figure 5.8 shows a determination of p, {and r.,) for a haloed profile which
has itself resulted from a prior merger. The solid line is the vorticity profile, and the
dashed line 1s p, from equation 5.2, where the integration is done out to normalized
radius 7 = r.. The dotted line is r/p,, and is a monotonically increasing function
which has the value 1.6 at the point where the arrow is. The arrow is thus at r.,,.
Using this cut-off, we find that this particular profile has about 85% of its vorticity

in the core.
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Figure 5.8: Determination of cut-off between core and halo for a haloed vortex
profile.

Experimental Test of Vortex Radius Definition

As a test of the vortex radius definition, I have measured the Tyerge Vs.
separation curve resulting frém using the haloed vortex with the profile of figure 5.8
as the initial condition. This profile has a radius of p, = 0.192 for 7., = 1.6p,,
and would havé a radius of p, = 0.303 for ro; = oco. In figure 5.9 I have plotted
the measured merger curve with the separations scaled by both of these values. In
addition, I’ve also included the merger data of figure 4.14. It can be seen that the
voriex radius algorithm leads to an accurate prediction of when a haloed vortex will
be susceptible to the pairing instability, as the merger curve overlays the other data

for short Tperge values when the cut-off is imposed.

5.5.2 Measurements of Asymmetric Vortex Merger

In this section I discuss how peak vorticity Cpeqk, core circulation I', and core

electrostatic self-energy Hg are observed to change after a vortex merger event. The
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Figure 5.9: Measured merger curve using a haloed profile as the initial condition.
The diamonds ¢ are the separations scaled to a vortex radius calculated without
using a cut-off. Use of r.,; = 1.6p, generates a smaller vortex radius which shifts the

merger curve, as indicated by the arrow.
values are quantified from radial profiles measured before and after merger. The

data set is the same as discussed in the previous sections on asymmetric merger and

tabulated in table 5.1.

Peak Vorticity Measurements

In figure 5.10 I plot the ratio of the measured (pe.r after merger to its value
before merger. (Before merger, the two vortices had the same (yeqr.) While there is
a fair amount (up to 8%) of scatter, there is no strong evidence that it is anything
except measurement noise, as the average of the data yields 0.994 + .026.

A theory prediction for the evolution of (,eqi for asynumetric merging vortices
is that (peak should be the same after merger. In a study of merger using both

numerical and contour dynamics simulations, Melander et. al. [47] found that the
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Figure 5.10: Ratio of peak vorticity (peqak, measured after and before merger, versus
p2/pr.

core after symmetric merger has a ‘jelly roll’ structure with entrained lower vorticity,
as can be seen in figure 4.11. However, for asymmetric merger the larger vortex
(which they dubbed the ‘victor’) becomes the central region of the core, which implies

that its original (pesr Will be the final (peqr of the core.

Bound Circulation Measurements

The line density Np(r) contained with r is given by the total line density /Ny,

of a z-averaged density n(r,8) profile is given by
Np(r) = /271’1"(]7" n(r') (5.4)

and the circulation is T'(r) = (2wce/B)2NL(r). For the merged core, I designate
the circulation within r = 1.6p, by I'core, and the total circulation by I'iar. Hence,
Lhato = Ttotat = Leore-

In figure 5.11 1 plot the ratio of the measured circulation after merger with
the value before merger. The data marked by (X) indicate I'ipar/(T1 + I';), and

are thus expected to be equal to 1, since vorticity (charge) is well conserved. The
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measurement of I'je; is noisy because the final profile has a significant amount of
charge at very low densities. The average of the data is 1.00 £ .02, which suggests

that the scatter is random noise.

1.1

X Tyt / Ty + T)

1.0

$R8x
P28

Bound Circulation (merged/initial)

0 0.2 0.4 0.6 0.8 1
Pz / Py

Figure 5.11: Ratio of the circulation measured after and before merger, versus
p2/p1- The line is a prediction used by Carnevale et.al. and Benzi et.al.

The data marked by circles indicates '.ore /(I'1 + I'2), and thus indicate how
much circulation is bound by the core after merger. I find that between 70% and
90% of the circulation remains bound in the core after merger, with some indication
that this percentage increases as p,/p, decreases. The scatter at each ps/p; value is
systematic, depending on the initial separation of the vortices.

These results can be compared with the merger rules used by Carnevale et.

al. [8] and Benzi et. al. [3]. Using arguments involving conservation of kinetic energy
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per unit area [8], or involving enstrophy dissipation [3], these authors independently

came up with a simple merger rule of

Phore = P13 - (5.5)
This gives that the ratio of circulation bound in the core is given by p2,../(p?+ p3). 1

have plotted this prediction (solid line) in figure 5.11, as well as a prediction (dashed

line) based on a merger rule of

Peore [;11- —lnpm] = E —lnm] + B “lnﬂ2] : (5.6)
This latter rule takes into account the effect of the wall on the energies of top hat
vortices.

While the data shows a large amount of scatter, it is apparent that the
measured values are systematically higher than those predicted by the merger rules

for top hat vortices. I discuss a possible reason for this discrepancy in the next

section.

Self-Energy Measurements

Merger is observed (and predicted) to conserve the total electrostatic energy
Hy of the system. Before merger, the energy can be conceptually broken into ‘self-
energies’ of the vortices, Hy and Hy, and terms due to their interaction with each
other and with the image charges, summing to Hgyi,,. After merger, there are no
interaction energy terms between vortices, but we can consider both a total electro-
static energy of the merged system Hy., and a core self-energy Hgcore Where roy 1s
used to discard the halo.

Carnevale et.al. [8], in order to derive their above merger rule (equation 5.5),
used as a conserved qugmntity the self-energy of the merging vortices, i.e. Hgy +
Hy = Hyeore- This is equivalent to asserting that the interaction energy between

the merging vortices gets dispersed into the halo.
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Figure 5.12: Ratio of the electrostatic self-energy H; measured after and before
merger, versus pa/p;.

I have tested Carnevale’s conje'cture with my data, by calculating the self
energies of the merging vortices, and of the merged profile with and without using
reut to discard the halo. The self-energies are calculated as described in section 2.4.2:
the 3D potential ¢(r,0, z) and density n(r,0, =) distributions were solved for using
the measured on-axis axisymmetric density profiles, and the energies were then given
by eq 2.6.

In figure 5.12 I plot the quantities Hy./(Hg1 + Hy2) and Hycore [(Hpr + Hg2).
As in the bound circulation data, the scatter at each py/p; value is systematic. As
expected, the initial interaction energy is missing: from all the points, Hg./(Hg1 +

Hy,) = 1.20 £+ .07. 1 find, however, that the mean of the Hpcore /(Hg1 + Hg2) points is
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1.02 £ .07. While the measurements show a great deal of scatter, and are of course
dependent on my particular definition for the core and halo, this result seems to
indicate that Carnevale’s conjecture is not an unreasonable one.

Returning now to the question of the amount of circulation bound in the
halo, I note that merger rules 5.5 and 5.6 are derived from the principle that the
self-energy of top hat vortices is conserved during merger. Since self-energy is found
experimentally to be roughly conserved, this suggests that the discrepancy seen in
figure 5.11, between the measurements and predictions based on these merger rules,

might be simply due to the non-top hat profile of the electron vortices.




Appendix A

Heating from Cascading

A.1 Introduction

In this appendix I present the results of studies on the heating done by
‘cascading’. The objective was to understand the heating done as a function of the
cut gate rise time (7.4 ), and of the length of the region the column has been cascaded
into.

Cascading has been described previously in section 2.5.4, and a schematic
of the process is shown there in figure 2.4. In order to put two (or more) columns
together when only one filament source is available, it is necessary to lower a cut gate
between them and let them stream into a common containment region. Unless the
two are at the same f-position (which will result in only one column after cascad-
ing), they freely expand into the vacuum beyond the cut gate. This free expansion
causes heating of the parallel temperature, and can additionally cause » — 0 density
transport. This heating is acceptable for vortex interaction experiments as long as
the same heating occurs for all the columns, since the fluid analogy breaks down
when the electron columns have different parallel temperatures.

Figure A.1 shows the experimental setup used to study cascading. The col-
umn is initially confined in electrode S, with temperatures T} ~ T, ~ 0.3 eV, density

n ~ 6.5 x 10°cm™ and length L, ~ 5.3 cm. The cut gate L4 initially is at a con-
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Figure A.1: Experimental setup for study of cascading.

fining potential -18 V, and can be linearly raised to ground with any desired rise
time greater than ~ 0.23u sec. The electrodes G1 through L4 are either at confining

potentials or grounded, while the front grid is at -80 V.

A.2 Variations with Speed of Expansion

This first study examined the effect of the speed of expansion by varying the
cut gate rise time (Teyt). L1-L3 were kept at -20V, so the column expands only from
S to S-L4. (This is not a cascade because the column does not ‘fall’ into a grounded
ring beyond the cut gate.) After expansion, the column was held until 7jj and T, had
equilibrated, and then T ., was measured. Since T, is known at the beginning of
the equilibriation, knowledge of T\, permits a calculation of 7}, from equipartition
of energy: T = 3T, — 27

There are two extremes of rise time where simple predictions can be made.
For 7.4 very long compared to Tyounce, the axial bounce adiabatic inyariant is good,
and the column will adiabatically expand (and cool) such that [37]

2
Tl'lzT“(%—’> . (A.1)
P

At the other extreme, for 7., very short compared to Typunce there should be no work
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done on or by the electrostatic gates. In this case, energy conservation requires that
Hge + H)) = constant, where Hye is the electrostatic potential energy and Hy =
%mvﬁ = %kBT“ is the thermal energy in the parallel direction. Since the initial
plasma has about 10 times more energy in Hgy. than in its initial H|, a great increase
in T} will occur as Hy, decreases.

In figure A.2 I show the measured total thermal energy (2kT'.,) of the ex-
panded and equilibriated column, as a function of 7. The dashed line marks the
estimated Tyounce. The behavior of the curve is as expected: for short 7.,; the column
has been greatly heated, while for long 7., the thermal energy reaches a plateau at
a low thermal energy consistent with the column adiabatically expanding into S-L4.
The bend between heating and cooling occurs for a 7., near the estimated Tyounce of
0.47 psec. 1 note that the shortest 7., (0.23 usec) still resulted in some expansion
cooling of the column, since energy conservation from the initial state would have

resulted in a thermal energy of ~ 2.4 eV /electron.

A.3 Energy Conservation during Free Expansion

This second study sought to verify the idea that beyond the cut gate the
columnn freely expands, and thus Hg. and H}; will be conservatively exchanged. The
initial conditions were as described ahove, with the shortest 7.,; (0.23 usec) possible
used to minimize density transport. Selected cylinders on the other side of the cut
gate (G1-L3) were grounded to provide a progressively longer confinement region for
the column to expand into. After expansion, the column was held long enough for the
temperatures to equilibriate, and then its thermal energy (%kgTLeq) was measured
with the perpendicular temperature diagnostic. The electrostatic energy (Hge) after
the expansion was calculated using the 3D density solver previously described in

section 2.4.2.
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Figure A.2: Thermal energy (2k7..,) of column after expansion from S to S-L4
and equilibriation of T'.

Figure A.3 shows the measured electrostatic and thermal energies before and
after expansion to different final containment regions. The expansion from S to S-L4
does work on the confinement gates, resulting in some loss of total plasma energy.
The final states S-L4 to S-G1 all have roughly the same total energy %kBTJ_eq + Hge,
however, corroborating the idea that the free expansion into grounded cylinders

beyond the cut gate conserves energy.

A.4 Cascade Heating When Two Columns Are
Present

When setting up an initial condition for a two-vortex experiment, it is im-
portant to adjust the confinement gates such that the same amount of heating is

done to both columns. For experiments with symmetric columns the setup is also




Electrostatic Energy (eV/electron)

Thermal Energy (eV/electron)

Figure A.3: Thermal energy (2kpT..,) and electrostatic energy (Hge) of column
before and after cascading from containment S to S-X, where X is as indicated. The
line through the data has a slope of unity.
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usually symmetric, which automatically results in equal heating. For experiments
with asymmetric columns, such as those with different radii, it is necessary to adjust
the confinement gates because the potential energies of the two columns will be dif-
ferent. The way this is done is by discarding one of the columns and measuring the
[ = 1 frequency offset of the other. By doing this repeatedly for different confinement
voltages, these voltages can be adjusted to values which give both columns the same
frequency offset and hence the same 7).

One problem with this procedure is that during the actual experiment, the
columns will be expanding into containment regions with another column present. In
this section, I use a simple model to analytically estimate the reduction in the amount
of heating done. I find that there is a decrease in heating of at most 11% (where
the columns are put together very closely). While this is a significant correction,
breaking the symmetry of the two columns line density or position does not break the
symmetry of the reductions in heating, and I conclude that the presence of another
column during cascading shopld not result in significant changes to the balancing of
the parallel temperatures.

The three stages of the model are as shown in figure A.4. Before cascading,
the two columns are in different cylinders, and do not interact with each other
(shown in A). They have line densities Ny and radii p,, and are circular and of
uniform density. B shows one of the columns having freely expanded into the full
containment region, when the second column has been dumped. The line density is
now N /2, and the difference in potential energy between A and B gives the increase
in thermal energy resulting from the expansion. € shows both of the columns having
been cascaded together. The presence of column 2 increases the potential energy of
column 1, thus lowering its increase in thermal energy. It is this difference in heating

between B and C that I wish to estimate.
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G2

Figure 2.6: Model of Cascading. A: 2 columns before expansion. B: Final state of
1 column. C: Final state of 2 columns.

It is necessary to make some approximations in order to get a simple analytic

estimate of the amount of heating done by cascade heating, and the effect on this

of another column. 1 first make the approximation that the energy which goes into

heating, as a result of a 3D cascade, is equal to the energy lost when the line density

is halved. The idea behind this is that when the cut gate lowers in a time 7.,, = 0.75

15eCs ~ 2Tpounce, the column will adiabatically expand until it is halfway through the

cut gate, and then freely expand until its length doubles. This picture is consistent



with the above measurements.

This approximation greatly simplifies things by changing the problem into a
2D one. It is now merely necessary to calculate the electrostatic energy (per unit
length) of a 2D column as a function of the relevant variables, and the amount of
heating is given by the energy differences before and after cascading. For the one
column case, the energy difference will be given by simply halving Np. Tor the
general two column case, however, there will be interaction terms hetween the two
columns after (but not before) the cascade, which will have to be taken into account.

I model the columns as circular, constant density columns of radius p, and
line density Ni (hence density n = Np/mp2). The notation for lengths is the same
as used in the previous chapters, and summarized in Appendix E. I use subscripts
1 and 2 to designate the two columns, and I use primes to designate their images.
Normalized distances are labeled by d;;, and displacements from the axis are labeled
by r;. With the density and shape constraints, it is straightforward to do the integrals

to calculate the 2D electrostatic energy Hy of a single displaced column:
1
Hy = 5/(11“/1‘ df n(r,0)é(r,0)

1
= N2, “Z ~ln(py)] + [In(1 - 7"12)” . (A.2)
The prediction of the amount of energy AHy going into heating of 1), therefore, is

N
AHy = Ho(Nia) — Ho( =) =

3

ZezNzl “i - ln(pl)] + [ln(l - 73)]] . (A.3)

Since the containment voltages are adjusted to give both columns the same T,
after cascading without the other column present, it is the value AH, of equation A.3
which has been equalized for both columns. I now estimate the effect of cascading
into a containment region with a second column present, to check both the magnitude

of the effect and its asymmetry.
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The first column after cascading will have an additional energy term Hygio

due to interaction with column 2 and its image:

N
AHy = Hy(Npa) ~ (HA%) + H¢12> (A.4)
where
2 NLl] {Nm] dio :
= e~ . A-5
Hoz = c [ 2 2 In rodyy (A-5)

Similarly, column two will have an additional term Hgoy given by

Hypy = € [N”] [NLz]ln[ ot ] . (A.6)

2 2 ™ dgll

An examination of these terms reveals that the change in the amount of cascade
heating will be the same for both columns, independent of either line density or
displacement. The symmetry in r; and r, follows from the identity rodior = rir2+1 =
r1dyy, which is valid when 6, = 6, + 7. As an estimate of how large the effect can be,
when r; = r; = 0.26 and p, = 0.15 (i.e. the columns are near merger), the columns

are heated about 11% less than predicted by equation A.3.

Impact of Electron Plasma Waves

In a recent relevant study, Moody and Malmberg [51] studied the free ex-
pansion of a single on-axis column with similar plasma parameters to mine. They
observed that a rarefraction front propagates through the plasma, eventually emp-
tying the confinement region, at the phase velocities of long wavelength electron
plasma waves. I have observed that naturally damped electron plasma waves are set
up in the final confined state by free expansion during cascading. However, I found
that the dynamics after cascading were not changed when resistive damping of the
plasma waves was added, and have concluded that these waves do not impact the

subsequent 2D dynamics. Driscoll [16] has similarly studied the plasma waves set up
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during the hollowing of a column, and found no impact on the subsequent instability

evolution to be caused by the waves.

Density Transport During Cascading

Rearrangement of the r — 8 density profile was often observed to occur as
a consequence of cascading, with the amount dependent on the experimental pa-
rameters during the cascading. The mechanism, presumably, is that z-dependent
drifts occur while part of the column is spilling over the cut gate. This suggests that
increasing B, or decreasing 7.,; should reduce the amount of transport, which has
been seen to be the case. This is why a value of 7.,y = 0.75usecs was used for the
experiments of this dissertation: it is fast enough to keep the transport low, while

slow enough to avoid unnecessary heating.




Appendix B

Analysis of the Wall Sector
Signals From Two Vortices

I have described the sector probe signals resulting from a single vortex in
section 2.4.3. The signal when two vortices are contained is simply the superposi-
tion of the signals from each. The more complicated dynamics of the two vortex
system result in the signals being harder to interpret, yet with practice a qualitative
knowledge of the state of the system can be had with a glance. In addition, spectral
analysis of the signals permits a quick quantitative measurement of the frequencies

of the motions.

Oscillations About Stable r, = r, Equilibria

Figure B.1 shows 2 examples of wall sector signals induced by vortices at

or near stable r; = 7, equilibrium points. The top signal is from two vortices -

very near the equilibrium points. In the rotating frame of the orbit motion, these
vortices are stationary, and the resultant waveform is a sinusoid at twice the orbit
frequency, 2f,5. The second signal is produced by two vortices injected somewhat
away from stable equilibrium points. These then oscillate at frequency f,s. about
the equilibrium points, and their oscillatory radial motion produces the amplitude

modulation visible on the 2f,., signal.

140
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Below the second waveform is a Fourier transform of it; the two largest
components are the 2f,., peak and a peak at fo.p — fosc. Fourier transforms of sector
signals thus provide a fast determination of f,., and f,;.. The values determined
by this method have been compared with those derived from time series of density

plots, and found to be consistent with them.

Oscillations About Stable r; > r, Equilibria

I have also observed equilibrium points where r; and r; are not the same.
I use a convention that r; is the larger radial position, and term these r; >
equilibrium points. Figure B.2, analogous to figure B.1, shows the sector signals
resulting from unperturbed and perturbed motions about these equilibria.

The Fourier transform (also shown) of the perturbed motions has a large
component at f,., because of the asymmetry of the radial positions of the vortices.
The oscillatory motions at frequency f,s. appear in the spectra here as as sidebands
about the f,.; frequencies. lThe reason for this difference from the spectra of the
ry = 1y oscillatory motions it that the vortices oscillate differently in the rotating
frame; this can be seen in figure 4.4 where 1 have indicated with arrows the directions

of the oscillations.

Exponential Growth From Unstable r, # r, Equilibria

I show an example of a sector probe signal from vortices injected near unstable
Ty = 7o equilibrium points in figure B.3. As the H(ry,0; — 65, Py) plots described
in section 4.4.4 show, such vortices execute large orbits away from the unstable
equilibrium points. Fourier transforms of these waveforms show many frequencies,
but can not be used to determine the rates v at which the vortices exponentiate

away. | have marked the peak belonging to one of the vortices: the large changes in
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Figure B.1: Sector probe signals and Fourier transform, for two vortices at and
near stable r; = r, equilibrium points. A: signals from vortices on equilibria. B:
signals from vortices oscillating about equilibria. C: Fourier transform of B.
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Figure 2.6: The sector probe signal when two vortices are injected onto unstable
1y = ry equilibrium points.
r and 6, — 0; of the system are apparent.

The wall sector signals permit a determination of the position of the unstable
equilibrium points. As the §-phase of theinitial condition is varied, the signals change
accordingly. At a specific §-phase, it is observed that the signal randomly displays
one of two forms. This initial condition corresponds to the vortices being injected
at the X-point of the energy contour plots; the shot-to-shot noise of the system
determines which vortex moves out and which moves in radially. When the initial
condition of this state is measured, it is found to be at r; = ry and 8, — 6; = m,

within the measurement uncertainty.




Appendix C

Analysis of Vortex Motion Data

The most direct way of investigating vortex motions is to take a series of
phase-locked plots showing the vortices at various times t;. The 2D plots are then
reduced to yield a set of center-of-vorticity positions [r;(tx), #:({)], where the sub-
script ¢ denotes vortex 1 or 2. This has been done for a wide variety of initial
conditions with a focus, however, on vortices with small perturbations from known
equilibrium points (r;, ;) orbiting about the center with a frequency for,. The po-
sition data sets have then been analyzed to determine the time evolution of the

perturbations é7;(t) and 66;(t):
ri(t) =r;,+ 57‘,‘(t) Hi(t) =0, + Q‘Wforbt + (59,(t) . (Cl)

The analysis (as shown above in section 4.3) reveals that the evolutions of
the perturbations are well-described as either oscillations about stable equilibrium
points at a frequency f,s., or as exponentiation at a rate :E’y from unstable points.
This is in agreement with the predictions of point vortex theory. In this appendix I
describe the reduction of the position data to yield frequencies and rates, and display
examples of evolution about stable and unstable equilibrium points. The analysis
consists of fitting a trial function to the data set, using a non-linear fitting subroutine
(DNLS1) from SLATEC. DNLS1 uses a modification of the Levenberg-Marquardt

algorithm to minimize the sum of the squares between the data set and the trial
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function.

C.1 Oscillatory Motion Analysis

An example of data showing oscillatory motion about stable equilibrium
points is shown in figure C.1. (This data set has previously been plotted in (r,8)
coordinates in a rotating frame in figure 4.4a, and on contours of H[r;(t), 8:(t)—6;(t)]
in figure 4.6.) The vortices were initially injected at the same radial position r; =
ry = .36, but with a #-perturbation from the stable equilibrium point at 6, = 6; + 7.
Oscillatory motion can clearly be seen.

In fitting an oscillatory motion at a single frequency f,s to the data, there
will be 18 unknowns since each of the four variables will have its own frequency,
amplitude, phase, etc. However, an examination of the raw data suggests that the
perturbations at each of the four coordinates are oscillating not only at a single
frequency, but also with specific amplitude and phase relations between each other.
It has in fact been found that a fit to a more constrained function, which imposes the
symmetries seen in the data, results in residuals not significantly larger than those

when these symmetries are not imposed. The constrained function is

ri(t) = ri + A;cos (27 foset + TPi)

04(1) = 0, + 27 fost + Bicos (27 fusel + 76+ 7 (C.2)
with the constraints A; = —A,, By = —B,, and ¢; = ¢,. This is then a fit to

9 unknowns, the four equilibrium position variables (ry,1,72,82), two frequencies
(foses forb), 2 amplitudes (A, By) and one phase (¢1). The function resulting from
the fit has been plotted (lines) in figure C.1. I have also plotted there the 6;(t)
position residuals when the orbital motion and equilibrium positions are subtracted

off. (This subtraction allows easier viewing of the 8 oscillation motion.)
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vortices oscillating about stable equilibrium points. The lines are fits to the data, as
described in the text.
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I can now make comparisons between the fitted motion and the predictions
of point vortex theory. Let me first note that several point vortex predictions have
automatically been incorporated into the fit by the constraints, such as the predic-
tions that radial and 6 perturbations will oscillate at the same frequency and be 7 /2
out of phase with each other, and that the two vortices will have equal perturbation
amplitudes. For these predictions, the goodness of the fit (of the constrained trial
function to the data) is the evidence that they are valid. When the constraints are
relaxed, the resultant decrease in the fit residuals is not sufficiently great to indicate
that the constraints are not appropriate.

One prediction of point vortex theory is that the equilibrium positions will
be at r; = ry and 8, — 6, = w. The measured values are r; = .362, r, = .358, and
6, — 6, = 1.0007. These values agree, within the measurement uncertainties, with
the theory prediction.

Another point of comparison is of the relative size of the perturbation am-
plitudes ér; and 66;. The ﬁ‘p gives a value 67;/60; = 0.4114, which agrees with the
point vortex theory prediction of 0.4109. In general, the experimental agreement of

the measured eigenfunctions with theory is good.

C.2 Exponential Motion Analysis

In figure C.2 1 show an example of two vortices moving away from unsta-
ble equilibrium points. This particular data set has previously plotted, in (r,6)
coordinates in a rotating frame, in figure 4.4c. The initial condition consisted of
ry =7y = .572, and 0, — 0; = 0.9237.

When using an unweighted least-squares algorithim to fit an exponentially
growing function, it is not feasible to keep the values from which the perturbations

grow as free parameters: the fitter will typically reduce the residuals by moving the



Time (usec)
Figure C.2: Radial positions, 6 positions, and @ residuals versus time, for two
| ~ vortices exponentiating away from unstable equilibrium points. The lines are fits to
the data, as described in the text.
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solution away from the known initial values. However, the (unstable) equilibrium
points have previously been determined to be at ry = r, and 0; — 6, = 7 from other
observations, as discussed in Appendix B.

The constrained fit function is then
ri(t) = ri + Aiexp (vt) + Ciexp (—71)

Hi(t) =0; + B; exp (’7t) + D; exp (——’7t) + 27Tforbt . (C?))

In addition to not fitting to r;, 8;, an additional constraint has been applied by setting
A;/B; = C;/D;. This constraint causes the growing and decaying eigenvectors to
have the same form, which is a prediction from point vortex theory is seen to be
valid in the data. The fit is thus to 5 unknowns, A;, B;, C;, fors and . The function
resulting from the fit is shown (lines) on figure C.2. Examining the eigenfunctions

again, the fit shows that ér;/66; = 0.274, while point vortex theory predicts 0.299.



Appendix D

Linear Stability Analysis of Two
Vortices in a Circular Boundary

In this appendix I determine the stability of perturbations about the equi-
librium points of two point vortices in a circular boundary. The analysis for the
equilibria with 7; = ry has been done previously by Havelock [34]. Here, I extend
the analysis to include equilibria where r; # r5. At the end, I additionally discuss two

cases where workers have found results contradicting Havelock’s. 1 have investigated

these cases numerically, and find Havelock vindicated on both counts.

Point Vortex Statics

The velocity field generated by a single point vortex of circulation I', with no
boundaries, is everywhere in the azimuthal direction d about the vortex, and with

the magnitude inversely proportional to the distance d to the vortex:
r
vy |= — . D.1
|ve |= 5— (D.1)

The direction of the velocity vector is as given by the right hand rule. In the case of

- a line charge of line density Ny, in a magnetic field B, the velocity field is similarly
given by
* 4recNy 1
= -— D.2
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which displays the analogy between circulation and line density of I' = (4wecNy) /B.

It is straightforward to include the effects caused by a circular boundary of

radius R,,. The method of images provides a simple analytic way of calculating the

fields required by the boundary condition, which requires an equipotential surface at

R = R,. It can be shown [26] that the image fields induced by a vortex of circulation
I' at an interior position (R, §), are the same as those produced by an image vortex

of circulation —TI' at a position (R%/R,6). Here, the origin of the coordinate system

is at the center of the boundary.

Equilibrium Positions

I have previously discussed the equilibrium positions of 2 vortices in sec-
tion 4.4.1. Equilibrium for a vortex configuration requires that there be no net
radial velocities V., and that the vortices have net azimuthal velocities ¥, which give
the same orbit frequency for both vortices about the center. This results in the vor-
tices remaining in the same relative positions while the configuration orbits about
the central axis.

An examination of the geometry makes it clear that the only possible equilib-
rium positions for two vortices must be on opposite sides of the origin, i.e. 8, = ;+r.
The positions of such equilibria are easily solved for, and in addition to the R, = R,
equilibria, equilibria with R; # R; are also found to exist. These equilibrium posi-

tions have been plotted in figure 4.3, using the convention Ry > Rj.

Stability Analysis: Definitions

With the equilibrium positions known, one can do a linear stability analysis

to determine their stability. I use the following conventions in the analysis:
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The indexing between vortices is done with subscripts, where images are indi-

cated with primes on the respective index (i.e. 1,1',2,2').

The equilibrium positions are given by R;,0;, and §R;, 60; indicate perturba-

tions about these positions.

I designate distances between vortices/images by D;; where the subscripts indi-
cate which distance. An example is Dj;+, which is the distance between vortex

1 and its image.

I decompose the velocity vector V. = V.7 + V,6 into components where the first
subscript indicates which vortex has that velocity component, and the second
indicates which vortex or image is causing that particular contribution. An
example i1s Vpyo, which is the azimuthal velocity of vortex 1, as caused by the

presence of the image of vortex 2.

e The first order velocity components are distinguished from the exact ones by

being lower-case, e.g. vp1 is the same velocity as above, but to first order in

ér and 66.

e In the analysis, lengths are normalized to the wall radius R,,. This normaliza-

tion 1s similarly indicated with the use of the relevant lowercase variable.

" Vortex I Radial Position | Azimuthal Position ”

1 1 + 6ry 0, + 66,
1’ (image) (ry + 67‘1)_I 0, + 66,

2 ) + 67‘2 0] + Vs + 592
2’ (image) (rg + 6797 0, + 7 + 60,

Table D.1: Positions of perturbed vortices and their images.
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The perturbed vortices and their images thus have the (normalized) positions

tabulated in table D.1. I show the two vortex system coordinates in figure D.1.

Figure D.1: Coordinates for the linear stability analysis of equilibria.

A needed quantity is the angular orbit frequency w,,, with which vortex 1

will orbit about the origin:

( ) ' 1 1 1 + 1
Worp(T1,72) = —— — ,
b T2 2rry [ri 41y 1fre+r 1/rp — 1y

(D.3)

where the 3 terms are from the velocity contributions of vortex 2, image 2 and image
1 respectively. The orbit frequency of vortex 2, which must equal that of vortex ‘
1 at equilibrium points, is given by wys(r2,71). This is a general feature of the
formulas calculated below: as a consequence of the symmetry of the vortices in T,

the equations for the velocities of vortex 2 are given by interchanging the subscripts i

1 & 2. Therefore, I won't display the equivalent vortex 2 equations.
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The strategy of the analysis is to work out the rate of change of the pertur-
bations as a function of the relevant variables. I first work out the azimuthal velocity
components of vortex 1, and then (taking into account the above orbital motion) its
-perturbation will evolve (to first order) as:

86, = ;:1‘1'[(11012 + vg11 + vgrar) — (71 + 071) worb} . (D.4)
Next, I calculate the radial velocity components to get the first order evolution of
the radial perturbation:

0y = V12 + Ve + V1 (D.5)

In order to decompose the velocities into radial and azimuthal components,
it is necessary to first solve for the angle 8., which is the angle a line between the
relevant vortices makes with the radial vector of the moving vortex. The angle is
pointed out in figure D.1, for the case where the velocity components of vortex 1,

resulting from vortex 2, are being calculated. I find

(ry + 6r1) — (r2 + b72) cos (7 + 602 — 86,)

cos(,) = (D.6)
dy2
and
8rq) si 66, — 60
Slﬂ(@l) — (T2+ 72)S1n (7T+ 2 1) ) (Dr-(-)
di2
Azimuthal Velocity Components
The azimuthal contribution from vortex 2 is then
I' cos(d, I' (ry + 8ry) — (ro + ér3) cos (7 + 60, — 66
Vip = — ( ):__(1 r1) —(r2 ;) ( 2 1)’ (D.8)
27 dig 27 di,
and to first order in ér and 68 this is
ér br .
Vg12 L. - — T (D.9)

2wy 4+ 1o rtry 11472
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Similarly,

1 r 1
WIII T o dyy [7'1 + 57‘1

-1
o i —(n —{-57"1)] (D.10)

and

Vo111 =

_I:_ T n (1 + 7'12)57'1
2 |1 —ry? (1- r12)2 '

The Vp19 term is similar to the V4o term:

—T (ry +6r1) — (r2+ 5r2)—1 cos (7 4 60, — 66,)
Voror = —— 2 ’
27 diy

but the first order expansion is larger:

r 1 1
Vo1 = 7T |— : Pt
N on mi4+ry72 4 '2;]‘ (r12 + 712 4 272'-) T2
27"126'{'1 67‘1 2(57'1 n
(7"12 + 72+ ’2;7'2")2 ri? T+ %L (7‘12 +ry7? 4+ 2721)27“22
47‘157‘1 267’2 47’167'2
— - —
(ri24m2+ 27’;)27*2 (ri2 42+ %)2r24 (ra2+ o724+ 22) rp2
27‘12(57’2 67"2
2 2 2r, )2 2 2 -2 2ry 2] (Dll)
(Tl + 77 + T;—) T2 (7‘1 + T+ ) )
Radial Velocity Components
The radial components of the velocity are given by:
‘/7'11' - O 3 (Dl?)
I' (ry +éry)sin(m + 66, — 606,)
/ —_— ——
V12 or & ) (D.13)
r T2 (601 — 602) .
g = — : D.14) .

Uz = o 712+ 2ryry + 1o ( )

_ =T (ra+6ry) "sin (7 + 66, — 60,)
‘/7‘12’ - 27]' deI ? (D’15)

and
r 00, — 60

Vg = — 2 ! (D.16)

2 .- 2 .
27 (ry2 172 4 )y
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When the first otder velocity components are assembled as shown in equa-
tions D.5 and D.4, we have expressions (which I will not write out) for the pertur-

bations of the form
évy = f(ry,72,86,,680;) and 66, = f (r1,72,671,673) (D.17)

and similar equations for the second vortex. We thus have 4 equations and 4 un-
knowns.

Angular momentum conservation, however, requires (to first order) éry =
—6r3(re/r1) and therefore 67y = 672 (r2/71). When the two radial velocities expres-
sions are written out it is found that they are indeed dependent, and so there are 3

equations and 3 unknowns.

Symmetric (r; = r;) Equilibria

These equilibria were first considered by Havelock in 1931 [34]. For these
equilibria, the equations give 61y = —ér, and 50, = —80, , which implies symmetric

perturbations of the form
66, = =660, and ér, = —br . (D.18)

Writing out the equations for vortex 1 using r; = ry = d, we find

60, 11 242
o | 2| = D.1¢
67 d [2 (1+ d2)2] 664, (D-19)

and
. o (Td° — 3d* + 52 —
56, = S =345 —1) _ g p (D.20)
2(d —1)2d3 (1 +d)* (1 + &?)

where A and B are functions of d only. Equations D.19 and D.20 are the same as

Havelock’s equation 24, when the typographical errors noted by Campbell [6] are

corrected.
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Taking the time derivative of one of the relations, and plugging in the other,

we find
8§71 = 6riAB  and 86, = 66, AB . (D.21)

These have trivial solutions of the form
§r1(0)e4B1? and  §6,(0)el4B” (D.22)

The stability of the perturbations is easily found: if AB < 0 the perturbations will
oscillate about the equilibrium points, with the ér and 66 oscillations 7/2 radians
out of phase with each other, and the oscillation frequency given by | AB |V/2. If
AB > 0, however, the perturbations will exponentially grow from the unstable points
at a rate v = (AB)1/2. The quantity AB is negative for 0 < d < .4623 and positive
for .4623 < d < 1. The eigenfunctions are found from plugging the solutions of D.22

into equation D.19, which gives

5r1(0) [AB)/? = 60(0) A, (D.23)
indicating the relative size of the radial and azimuthal perturbations as a function
of d.
Asymmetric (r; # r;) Equilibria

If we do not have the condition 7y = r;, then the general result for the

velocities of the perturbations is
6 = (60, — §0,)C 6, = 6rD and 6, = ériE (D.24)

where I have used ér; = —6ri(r1/r2) to reduce the equations, and where C,D and &
are functions of r; and ;. (I do not print these here because they are fairly large.)
The same eigenfunction stability analysis applies here as in the r; = ry case,

with C(€ — D) the relevant quantity instead of AB. As discussed in section 4.4.1,
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the analytic expressions for the r; > r; equilibrium positions are large, but the
positions are easily found to arbitrary precision numerically. Plugging in these values
in order to evaluate C(€ — D) establishes that this quantity is negative for all r; >
ry equilibrium points, indicating stability. 1 have previously plotted the predicted
frequency | C(€ — D) |'/? of these oscillations, in figure 4.5.

In terms of the eigenfunctions, the symmetry of the oscillations is broken (as
it must be to conserve angular momentum), and vortex 2 executes larger orbits than
vortex 1. In addition, these oscillations also differ in having 66, and 60, of the same
sign. An example of an r; > ry oscillation, as viewed in a rotating frame, can be seen
in figure 4.4b, where both the theory (line) and the experimental results (symbols)

are shown.

Subsequent Discrepancies with Havelock’s Results

Havelock [34] worked out the stability of vortices in r; = 7, equilibrium
positions in a general form valid for an arbitrary number N of vortices. Among
his findings was that a symmetric ring of vortices (with no boundary) is stable for
N < T, neutrally stable for N = 7 and unstable for N > 7. This particular result
has relatively recently (1979) been contradicted by Katyshev et. al. [39], who using
both linear perturbation theory and numerical simulations found the N = 8 case to
be stable (and /N > 8 to be unstable). Katyshev’s results are erroneous, as will be
discussed helow. A previous similar discrepancy - Thomson’s [67] finding that the
N =7 ring is unstable — has been found to be a consequence of a slight error.

Havelock also worked out the general forms, for the same ring stability prob-
lem, of the case where circular boundaries are present either inside or outside the
ring. (The latter condition, with N = 2, is the 7y = r, problem I worked out above

in explicit form.) He found that the outside boundaries resulted in making unstable
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the otherwise stable N <'8 cases, when the radii of the rings exceeded a critical value
(normalized to R,) Tcriticat- The critical value for the N = 2 case is ry = 0.4623.
Some of his predictions for r.cq; disagree with the 1981 results of Campbell [6],
who found agreement with Havelock for the reisica of even number of vortices, but
“for odd N Havelock’s formulas predict larger critical radii than are found by the
eigenfunction calculations. The source of this discrepancy, which far exceeds nu-
merical uncertainty, is not known.” The largest discrepancy cited was for 3 vortices,
where Campbell found 7. isicar = 0.55142, while Havelock found 7¢iticas = 0.56682.
To investigate these two discrepancies (and other issues), I wrote a vortex
dynamics simulator utilizing a Bulirsch-Stoer algorithm integrator [59] to follow the
evolution of an arbitrary number of vortices forward in time. The integrator has been
checked by making sure that the usual conserved quantities, angular momentum and
electrostatic energy, were conserved. I found that for the N = 3 ring within a circular
boundary, vortices put at equilibrium points at radii up to and including d = 0.56682
remained there for (at least) tens of orbit periods, while vortices placed at d = 0.5690
had their perturbations from the equilibrium points grow quickly and exponentially.
I concluded that these results support Havelock’s prediction, and not Campbell’s. I
then removed the effects of the boundary, and examined the evolutions of N =7
and N = 8 rings. [ found that a ring of 7 vortices will stably orbit for (at least)
many tens of orbits, while a ring of 8 vortices quickly breaks up. I concluded that

Havelock had again been vindicated.




Appendix E

Frequently Used Symbols

oskook ok ok ok ok koK K Energies >k ok ok sk ok ok ok ok ok ok

Ho Eq. 2.8 2D electrostatic energy
Hy Eq. 4.8 scaled 2D electrostatic energy
| Hepe Eq. 2.6 3D electrostatic energy
Hi kinetic energy perpendicular to magnetic field
Hy kinetic energy parallel to magnetic field
T plasma temperature
Ty temperature parallel to magnetic field
T, | temperature perpendicular to magnetic field
Teq | (2T +Ty)/3 ~ equilibrium temperature
Sk sk sk ok ok ok ok kb ok Derlsities K 3k 3% ok %k ok ok ok koK
ne(r,0,z) 3D density
n(r,8) | Eq.2.7 2D (z-averaged) density
Npe(z) | Eg. 2.1 line density
Nyg, Eq. 2.2 line density at Z-center of column
N, total number of electrons
Qsector charge induced on a sector
Q coll Eq. 2.4 | z-integrated density dumped through collimator hole
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SYMBOLS continued

skokokok sk okok ok ok Frequencies and Times ok ok fofok ok okok

fi=i [ = 1 diocotron frequency
2 Eq. 3.3 infinite length [ = 1 diocotron frequency
Afiz1 | fiz1 — 2 finite length | = 1 frequency shift
Sorb observed orbit frequency of two vortices
o) Eq. 4.2 infinite length orbit frequency of two point vortices
fosc oscillation frequency about a stable equilibrium point
0% exponential growth rate
t time
Thounce Eq. 2.17 oscillation time for an electron along 2
Te Eq. 2.16 time for electron to make a gyro-orbit
Teut time for a cut gate to ramp between V. and ground
Tee Eq. 2.19 time for an electron-electron collision
Teq Eq. 2.20 | time for monotonic column to reach thermal equilibrium
Timsj e-folding time for decay instability
Ti=i e-folding time for a damping [ = ¢ diocotron wave
Tm Eq. 2.21 mobility time: central density of column down 50%
Tmerge time for two vortices to merge
Trotation | 1q. 2.18 time for column to rotate about 1ts own axis
sk ok oKk %k ok ok k Lengths 3% 3k 3k 3k ok kook ok ok 5k
Ay ©R?%,, collimator hole area
D;; di; distance between column (or image) ¢ and j
L. containment length
Ley | 7.89 cm. length of EV apparatus cylinder
L, N, /Ny, electron plasma column length
Reon | 1.59 mm. collimator hole radius
Ry 104623 R, TH stability boundary for ry = r,
R; i displacement of column ¢ from cylinder axis
R, Eq. 3.7 Trms column radius (root-mean-squared)
R, Eq. 410 | p, = R,/R, | column radius (radially-weighted integral)
R, 3.81 cm. Ty =1 cylinder wall radius

= Lower case length variables are normalized to the wall radius R,
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SYMBOLS continued

Fhooorsxt - Velocities and Forces **xxxssor
vy electron velocity perpendicular to the magnetic field
) electron velocity parallel to the magnetic field
VE Eq. 3.2 E x B drift velocity
r circulation

((r,0) | (4mec/B)n(r,0)

2D vorticity

Cpeak peak vorticity (normally at vortex center)
% 3ok koK 3k Kok K K Other K 3% 3k 3k ok ok koK kK
% applied or measured voltage (e.g. V., Viias, Vsector)
de(r, 0,z 3D electric potential
o(r,0) 2D electric potential
E electric field
B B.+ B, + B. main magnetic field
1 mv? /2B gyromagnetic moment
I $ vy dz axial bounce adiabatic invariant
Ps Eq. 2.15 Canonical angular momentum
Py Eq. 4.7 Scaled angular momentum for point vortices
L Eq. 3.6 Normalized angular momentum per particle
€ Eq. 3.10 eccentricity
o Eq. 3.12 quadrupole moment
alb Eq. 3.11 aspect ratio
—e electron charge
c speed of light
kg Boltzmann constant
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