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Variations in magnetic or electrostatic confinement 

fields give rise to trapping separatrices, and standard 

neoclassical transport theory analyzes effects from 

collision-induced separatrix crossings. Experiments and 

theory have now characterized novel transport effects 

arising from “chaotic" separatrix crossings, which occur 

due to equilibrium plasma rotation across q-ruffled 
separatrices, and/or due to wave-induced separatrix 

fluctuations.  

 

I. INTRODUCTION 

 

Neoclassical transport due to axial asymmetries is 

ubiquitous in magnetic fusion plasma confinement. These 

plasmas typically have several locally-trapped particle 

populations (either by chance, design, or due to magnetic 

coil discreteness), partitioned by separatrices from one 

another and from passing particles. The drift orbits for 

particles trapped in the two separate regions may be 

displaced radially from one another due to a global 

asymmetry, leading to the standard neoclassical ripple 

transport as particles collisionally change (at rate n) from 
trapped to passing and back. Neoclassical transport theory 

analyzes the particle transport and wave effects arising 

from collisional separatrix scatterings in a variety of 

geometries 
1-4
, and experimental corroboration has been 

obtained in some regimes of strong collisions 
5, 6.
 

This situation is dramatically modified when the 

separatrices are themselves q-asymmetric (ruffled), or 
when they fluctuate due to waves propagating in plasmas. 

In such a case the drifting particles see a time-varying 

separatrix barrier, and without needing strong collisions 

they can chaotically transit from trapped to passing and 

back. This mechanism has previously been taken to be 

ineffective because of presumed symmetries of such 

transitions
7
.  

 In our experiments these chaotic separatrix crossing 

lead to significantly enhanced neoclassical transport in the 

low collisionality regimes associated with fusion plasmas. 

The experiments have externally controlled ruffles or 

fluctuations on the separatrix, and can thus identify the 

novel chaotic neoclassical ripple transport scaling as 
n0B-1

 as distinct from collisional neoclassical ripple 

transport scaling as n1/2B-1/2
.  

II. EXPERIMENTAL SETUP 

 

The pure electron plasma columns utilized here are 

confined in a cylindrical Penning-Malmberg trap
8-10
. 

Electrons are confined radially by a nominally uniform 

axial magnetic field 0.4 < B < 20 kG; and are confined 

axially by voltages Vc = -100 V on end cylinders of 
radius Rw = 3.5 cm. The electron columns have length 

Lp = 49 cm, and radial density profile n(r) with central 

density n0 º 1.6ä10
7
cm

-3
 and line density NL = pRp

2
n0 º 

6.1ä107cm
-1
. The unneutralized charge results in an 

equilibrium potential energy Fe(r) with Fe0 º +28 eV at 
r = 0 (here, all F 's are in energy units). This gives an EäB 
drift rotation fE (r) which decreases monotonically from 

fE º 230kHzä(B/1kG)
-1
. The electrons have a near-

Maxwellian velocity distribution with thermal energy 

T d 1eV, giving axial bounce frequency fb º 430 kHz and 

rigidity � ª  fb /fE º 2BkG. 

 
 

Fig. 1. Schematic of electron plasma with tilt εB and a 
trapping barrier in a cylindrical Penning-Malmberg trap. 

 

 An electrostatic trapping barrier fs (r, q) is created 
by a “squeeze" wall voltage Vsq (see Fig. 1) with 

adjustable q-components ≤DVm. This gives interior 

separatrix energy fs (r, q) = fs0(r) + Dfm cos[m(q - qm)]. 
Here we focus mostly on the m = 2 ruffles, created by 

voltages ≤DV2 applied to four 60± sectors, extending over 
Dz = 3.8 cm near the z = 0 center. At every radius, low 
energy particles are trapped in either the left or right end, 

whereas higher energy untrapped particles transit the 

entire length of the column. Ruffles spread the 
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characteristic separatrix energy by Dfm(r) d DVm (r/Rw)
m
, 

reduced  by plasma shielding. 

Particles change from trapped to untrapped (and vice 

versa) due to collisions, due to drift-rotation across 

q-ruffles, or due to temporal fluctuations Df(t) in the 
separatrix energy. The electron-electron collisionality of 

the present experiments is relatively low (n ~ 100/sec); 
collisions acting for a drift-rotation period spread parallel 

velocities at the separatrix by an energy width 

DWc ª T(n/2pfE )
1/2
(fs0 /T)

1/2
 º 0.02eVä(B/1kG)1/2. The 

chaotic collisionless (de)trapping processes will be 

important when  Dfm(r) ¥ DWc , or when Df(t) ¥ DWc . 

 We diagnose the bulk expansion rate n<r2>  defined as 
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Fortunately, it can be accurately and readily obtained 

from the continuous frequency shift f2(t) of a small 

amplitude m = 2 diocotron mode, as n<r2> = (1/f2)df2 /dt. 
The bulk expansion rate n<r2> is an integral measure of the 
full radial flux that includes both mobility and diffusive 

contributions, both being proportional to the radial 

diffusion coefficient Dr(r). 

 

III. ASYMMETRY-INDUCED TRANSPORT 

 

Radial particle transport is conveniently driven by a 

small magnetic tilt asymmetry with controlled magnitude 

εB ª B⊥ /Bz d 0.001 and gradually chosen tilt direction 

qB ª tan
-1 
(By /Bx). The left-right asymmetric ( )L Rδφ δφ≠

interior potential perturbations (caused by the tilt) provide 

that left- and right-end trapped particles have different 

drift orbits, giving neoclassical radial diffusion coefficient 
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where FM  is the Maxwellian distribution of energies. Both 

the collisional bounce-Averaged transport coefficient DcA 

and the m = 2 ruffle coefficient D2A are shown in Fig. 2, 

calculated as functions of the normalized ruffle strength 

Df2 /DWc . While the ruffle-induced transport coefficient 

D2A is nearly independent of Df2 /DWc , the collisional 

coefficient DcA shows a fast decline as collisionless 

particle transitions smooth out the discontinuity of FM. 

Figure 3 shows how in theory the transformation 

from predominantly collisional neoclassical diffusion to 

the chaotic regime (ruffle dominated, ∂ Df2D2A) occurs. 
For a quick comparisons with the experiments it can be 

rather conveniently approximated as 
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Fig. 2. Calculated collisional DcA and ruffle induced D2A 

coefficients versus the normalized ruffle strength. 

 
Fig. 3. Combined neoclassical transport coefficient D* 

versus the normalized ruffle strength. The dashed line 

shows used approximation. 

Fig. 4. Measured expansion rate as a function of the ruffle 

voltage DV2 at the wall. 
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Figure 4 shows the measured expansion rate n<r2>  for 
the case sin

2a = 1 as a function of ruffle voltages ±DV2 at 
the wall. It has essentially the same fitting function as in 

Fig. 3, giving the normalized “radially averaged” ruffle 

strength as 〈Df2/DWc〉r º (4/3)DV2 /1V, which is close to 
the calculated value. Thus, at B = 6 kG and DV2 = 3V the 
effective ruffle width Df2 º 4DWc, and the transport rate 

has changed by 4ä accordingly. 
 

 
Fig. 5.  Measured expansion rate n<r2> at fixed DV2 = 1.1V 
showing chaotic part of neoclassical transport varying as 

εB
2
sin

2a, and a-independent collisional transport. 
 

 
Fig. 6. Measured expansion rate n<r2> at fixed εB = 0.001, 
showing chaotic part of neoclassical transport varying as 

DV2 sin
2a, and a-independent collisional transport. 

Figure 5 is a plot of measured expansion rate n<r2>, 
taken during step-by-step rotation of the magnetic tilt 

orientation angle qB, for various tilt strengths εB  at the 
fixed wall ruffle DV2 = 1.1V. The ruffled-induced part 
shows an unambiguous sin

2a dependence on relative 
angle a ª qB - q2, with magnitude proportional to εB

2
; and 

varying q2 in steps of p/2 (not shown) verifies the 
dependence on relative angle only. 

 Figure 6 is a plot of measured expansion rate n<r2>  
versus magnetic tilt orientation angle qB, for various 
applied wall ruffle strengths DV2, now at the fixed tilt 
strength  εB = 0.001. Once again, the ruffled-induced part 
shows unambiguous sin

2a signature, but now with 
magnitude proportional to DV2. 

The distinctive εB
2 
sin

2a signature, together with 
separate control of DV2 and εB, enables experimental 
identification of the transport processes as 
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where CcA and C2A represent the radial integrals of 

Eqn. (1.2); CcK1 and CcK2 represent collisional Kinetic 

(bounce-resonant) transport driven by εB
2
 and DV2

2
 as 

z-dependent “error" fields11,12; and small n<r2>
(bkg)
 arises 

from uncontrolled background tilts, separatrices, and 

omnipresent ruffles. Here, for dimensional simplicity, 

εB ª εB /(1mRad) and DV2 ª DV2 /(1Volt). 
 

 
Fig. 7. Measured εB

2
 scalings for the C2A and CcA(DV2) 

neoclassical transport terms at B = 6kG. Every marker 

here (not shown for CcA(0)) is the result of  (a + b sin
2a) 

fit as in Fig. 5. 

 

 C2A and CcA(DV2) are readily obtained from the sin
2a 

dependences as those shown in Figs. 5 and 6, and varying 

εB gives the expected εB
2
 scaling, as the one shown in 
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Fig. 7 for DV2 = 1.1V and B = 6kG (C2A º 0.056/sec). 
Data taken with DV2 = 0 define CcA(0) º 0.033/sec, and 
just by comparing it to CcA(1.1V) º 0.019/sec and using 
the DcA(Df2/DWc ) data from Fig. 2, one can get another 

estimate on the “radially averaged” ruffle strength as 

〈Df2/DWc〉r º (4/3)DV2 /1V, which is consistent with the 
previous conclusion based on the results shown in Figs. 3 

and 4. 

Data taken with εB = 0 show a n<r2>
(bkg)
 offset and a 

parabolic dependence on a varied DV2, giving CcK2. 

Varying εB then selects CcA and CcK1; these terms are 

distinguished by their B-scaling (discussed next), and by 

the fact that the z-antisymmetric bounce-averages in CcA 

require the separatrix, whereas the kinetic CcK1 depends 

only weakly on the applied squeeze voltage. In Fig. 6, 

CcK2(4kG) º 0.03, giving elevated sin
2a minima for large 

DV2; the depressed minima for DV2 = 0.33 are from ruffle-
suppression of DcA (see Fig. 2);  and n<r2>

(bkg)
  º 0.007/sec. 

 
Fig. 8. Measured transport rates Ci versus B at Vsq = 6V, 

with empirical scalings. Solid lines are theory predictions. 

 

Figure 8 shows the measured transport rates C2A, CcA 

and CcK1 versus magnetic field with empirical scalings 

(dashed), compared to theory (lines). At high B, the 

chaotic and collisional separatrix transport processes 

agree closely with theory, scaling as B
-1
 and B

-1/2
 

respectively. Here the accuracy of comparison is limited 

by temperature uncertainty, sensitivity to edge density 

gradients, and induced modification of FM (fs0). At low B, 
the kinetic transport labeled CcK1 is observed to depend 

strongly on field (∂ B-2.7 
), but no simple power law is 

expected theoretically as bounce-rotation resonances 

become dominant. Prior scaling experiments have been 

confused by the presence of uncontrolled separatrices and 

ruffles, and by overlapping transport regimes
8
. 

 

 

III. CONCLUSIONS 

 

Most plasma confinement devices have trapping 

separatrices, arising from variations in magnetic field 

strength or external potentials. These separatrices are 

never perfectly symmetric, or perfectly aligned with other 

asymmetries. If the separatrix itself is asymmetric or 

temporally perturbed, the drifting particles collisionlessly 

change from trapped to passing and back, leading in the 

case of low collisionality to enhanced transport (∂ n0B-1
) 

in comparison to the standard neoclassical ripple transport 

(∂ n1/2B-1/2
). When the separatrix layer collisional width 

becomes less than its (symmetry) perturbations, this new 

loss mechanism is the dominant bulk transport process in 

our non-neutral plasma experiments, and it could have 

important implications for similar low collisionality 

regimes in other magnetic conferment experiments. 
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