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Abstract. Pure electron plasma experiments characterize a novel form of algebraic diocotron
mode damping, distinct from the usual exponential damping. This algebraic damping occurs when
trap asymmetries cause a weak outward particle flux Γ(r) through the diocotron mode resonant
radius rm. The m = 1 and m = 2 diocotron mode amplitudes are each observed to decay as
d(t)= d(t∗)−γ ·(t−t∗), where t∗ is the time at which the outward particle flux reaches rm. Moreover,
with appropriate amplitude normalization, we find that γ∼ Γ. A theory model based on conservation
of momentum agrees qualitatively with experiments, but some aspects remain puzzling.
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The study of diocotron modes has a venerable history dating back more than a half
century to early work on magnetrons and hollow electron beams [1–4]. More recently,
these modes have proven to be dominant features in the low frequency dynamics of
nonneutral plasmas in long cylindrical Penning-Malmberg traps and toroidal traps [5–
13]. In shorter hyperbolic traps, spheroidal charge clouds exhibit analogous center-of-
mass “magnetron” and higher-order shape-distortion modes [14].

For the longish Penning-Malmberg traps considered here, exponential diocotron mode
growth can be caused by a non-monotonic plasma density profile [5]; by a resistive
boundary wall [15]; and by the axial transit of oppositely-charged particles [16]. In con-
trast, exponential diocotron mode damping may be caused by electron-neutral collisions
[11]; by a spatial Landau resonance [17]; by negative resistance (feedback) on the wall;
by plasma viscosity acting on length changes due to rotational pumping [18] or magnetic
pumping [19]; and by z-kinetic dissipative effects at an internal plasma separatrix [20].
These processes all evolve exponentially with time, as d(t) = d0 exp{±γet}.

Here, we observe a novel algebraic damping of the m = 1 and m = 2 diocotron
modes, which occurs when trap imperfections cause a weak flux of particles through
the mode’s resonant radius. For m = 1, the mode amplitude d ≡D/RW (off-axis column
displacement D normalized by the wall radius Rw) is observed to decrease in time as

d(t) = d(t∗)− γ1(t− t∗) (1)

as soon as (t ≥ t∗) there is a flux of particles Γ to the cylindrical wall, with γ1 ∝ Γ. The
algebraic damping seems to be due to a “one-sided” spatial Landau resonance at r = RW .

In general, the spatial Landau resonance for a mode with frequency fm occurs at
a radius rm defined by fm = m fE(rm), where fE is the plasma drift-rotation rate. For
m = 1 with r1 ≈ RW , algebraic damping is observed only after some plasma particles



have expanded out to the wall. For m = 2 with r2 = 1.9 cm >∼ Rp, the initial condition
may have non-zero plasma density n(r2), in which case exponential damping and/or
trapping-induced amplitude oscillations are observed. However, when an initial density
profile is created with n(r2) = 0, then there is no exponential damping, and experiments
show algebraic damping once weak transport processes generates a flux Γ(r2) through
the resonant radius.

As adjunct to the damping measurements, we note that the m = 1 diocotron mode
frequency is a sensitive diagnostic of plasma temperature and mean radius changes.
Supported by finite-length and finite-amplitude theory, the mode frequency shifts give a
self-consistent picture of the plasma evolution.

CORE PLASMA AND HALO FLUX

The experiments utilize a cylindrical Penning-Malmberg trap to confine quiescent, low-
collisionality pure electron plasmas. Electrons are confined radially by a nominally
uniform axial magnetic field B = 12 kG; and are confined axially by voltages Vc =
−100 V on end cylinders of radius RW = 3.5 cm. The electron columns have length
Lp = 49 cm, and radial density profile n(r) with central density n0 ≈ 1.6× 107 cm−3

and line density NL = πR2
pn0 ≈ 6.1×107 cm−1. The unneutralized charge results in an

equilibrium potential energy Φe(r) with Φe0 ≈ +28 eV at r = 0. This gives an E ×B
rotation frequency fE(r) which decreases monotonically from fE0 ≈ 20 kHz.
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FIGURE 1. (Left) Measured density profile n(r) and calculated fE(r) at 6 times, as a low-density halo
propagates to the wall, driven by a magnetic tilt of εB = 1 mRad. The small ripples at 107 are an artifact of
a phospor burn, and the baseline at 3×104 represents background signal. The central (r ≤ 0.2 cm) clump
is typical at these high fields, but negligible for our purposes.

FIGURE 2. (Right) Measured number of particles remaining at late times with a 1 mRad tilt, with and
without an additional quadrupole Va2.

The bulk electrons have a near-Maxwellian velocity distribution with an initial ther-
mal energy T <∼ 1 eV. At 12 kG, the cyclotron cooling time for electrons τc ' 2.7 sec, so



in about 10 sec the bulk electrons cool down to a room (wall) temperature T ' 0.03 eV.
Typical e−e collision frequency in the bulk at this temperature νee≈ 2 ·104 sec−1≈ fE0.
Diocotron mode frequencies are f1 ' 2 kHz and f2 ≈ 15 kHz.

From this cold plasma core, we generate a weak outward flux

Γ(r)≡−
d
dt NL(r)
NL(r)

and a consequent low density “halo” of particles nh(r) which propagates outward on
a 20–100 second timescale. To control this flux, we apply a tilted magnetic field,
εB ≡ B⊥/B‖ ∼ 10−3, or a quadrupole electrostatic asymmetry Va2 ∼ 1 V to one of
the sectored confinement cylinders, or both at once [20]. The quadrupole asymmetry
is preferable here, as it does not change the original plasma alignment, and thus does not
produce an offset to the m = 1 diocotron mode.

Figure 1 shows a late-time evolution of plasma density profile n(r) obtained with
an applied tilt of εB ≈ 1 mrad. In the first ten seconds, as bulk electrons cool down to
ridigity R≡ fb/ fE >∼ 1, a low-density halo is formed outside of the bulk plasma, which
then propagates slowly to the wall. Here, the halo reaches the wall at about 50 sec, and
after that its shape remains nearly constant while transporting particles from the bulk
plasma boundary to the wall. The flux estimate based on this halo propagation gives
Γ≈ 1.2 ·10−3 sec−1.

Figure 2 shows examples of more accurate measurements of the loss rate Γ[εB,Va2]
taken by varying shot-to-shot confinement time well beyond the wall touch time
t∗[εB,Va2]. Here, the open symbols show the normalized total number of confined
electrons consecutively dumped to the CCD detector with no m = 2 asymmetry applied
(εB = 1 mrad, Va2 = 0). This case is consistent with Fig. 1. The closed symbols show
evolution of the total number of confined electrons for (εB = 1 mrad, Va2 = 1V) case,
when the loss rate Γ is increased manyfold.

m = 1 FREQUENCY SHIFTS

Figure 3 shows a typical evolution of the m = 1 diocotron mode frequency f1(t) and
amplitude d1(t) evolution. While the mode amplitude stays nearly constant before the
halo touches the wall, the frequency evolution has four generic parts (from I to IV),
which can be classified on the base of different terms in the finite-length diocotron
frequency expression [21, 22], given by

f1 =
ceNL(t)
πBR2

W

{
1+

RW

Lp

[
1.20

(
1
4
+ ln

RW

Rp(t)
+

T (t)
e2NL

)
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]}
[1+σd2]. (2)

Here, the end confinement fields contribute a “magnetron-like” frequency increase pro-
portional to the plasma electrostatic and thermal pressures. The finite amplitude [22]
corrections σd2 are generally negligible for d <∼ 10−2. For t <∼ 1 sec of plasma confine-
ment, there is some (small) increase of the mode frequency due to collisional relaxation
of (the partially beam-like) initial velocity distribution (I), including some ionization



of the background gas. However, in short order this peak dives into exponential de-
cline due to cyclotron cooling [23] of electrons from ∼ 1 eV to Twall ∼ 25 meV, as
∆T (t)≈ ∆T (0)e−t/τc (II).

When the electron temperature gets close to Twall, this exponential dive levels off,
leaving only a slow linear frequency decrease due to the Rp increase as the halo expands
to the wall (III). Finally, when the halo touches the wall at t = t∗ (stage IV), the plasma
column starts losing particles, and the main term (d/dt) ln f1 = (d/dt) ln NL ≡ −Γ

comes into play. We note that Eq. (2) necessarily needs modification when the plasma
extends to RW .
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FIGURE 3. (Left) Measured diocotron frequency f1(t) and amplitude d(t), showing four phases of
frequency shifts (Va2 = 0 case).

FIGURE 4. (Right) Measured diocotron amplitude d(t), showing a varying onset time and varying rate
for algebraic damping, as the controlled Va2 causes more rapid transport to the wall.

m = 1 ALGEBRAIC DAMPING

Figure 4 shows examples of the mode amplitude evolution d(t) for various strengths of
applied asymmetry Va2. Note that the amplitudes d(t) remain nearly constant during the
f1(t) frequency evolution stages I, II and III. However, as soon as the halo touches the
wall (stage IV), a fast linear decline (algebraic damping) d(t) = d(t∗)− γ1 · (t− t∗) is
observed over two orders of magnitude. Note that although in general the amplitudes of
the wall signals shown in Fig. 4 are proportional to the product of NL ·d, here the losses
in NL are negligible (<3%) during the time needed to wipe out these small d ≤ 0.02
modes.

By repeating these procedures at several applied Va2 we obtain the set of points γ1
versus Γ shown in Fig. 5. These points give a linear fit for the algebraic damping rate
γ(Γ) ≈ Γ. Thus, the observed algebraic damping rate γ of the fundamental diocotron
mode is closely proportional to the particle loss rate Γ.
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FIGURE 5. Algebraic damping rate γ1 versus flux rate Γ, where Γ is controlled by Va2.

For modes excited in the beginning of the confinement cycle, the algebraic damping
occurs only after the plasma halo reaches Rwall, and this may introduce some additional
uncertainty if the transport rate changes with time. To obtain the damping rate γ1(Γ)
regardless of corresponding halo-wall contact time, we have excited the diocotron waves
at t1 = 100 sec, i.e., when the halo has already touched the wall even in the best aligned
plasma column case. Moreover, we restrict our measurements of the wave evolution
time to a 25 sec window. This window is long enough to observe complete damping
of small amplitude waves (d <∼ 0.02); but complete damping of waves with moderate
initial amplitudes (d ∼ 0.1) would require a 100 sec window, possibly accompanied by
significant change in plasma parameters.

Figure 6 shows the damping of several m = 1 waves launched at t = 100 sec with
different initial amplitudes d0. All these different shots are well fitted by the same
damping rate γ1 ' 1.2 ·10−3 sec−1 as d(t) = d0−γ1 · (t−100). Damping of the smallest
wave from Fig. 6 is also shown separately in Fig. 7 to illustrate the precision of its
linear decrease. Overall, Figs. 6 and 7 demonstrate alegbraic damping over two orders
of magnitude in d, spanning 0.001≤ d ≤ 0.1.

m = 2 ALGEBRAIC DAMPING

Surprisingly, we have observed similar (linear-in-time) algebraic damping for m = 2
diocotron waves as well. Figure 8 shows the evolution of the m = 2 mode amplitude
q2(t) after the expanding halo reaches the m = 2 resonant layer at t = 20 sec. The
linear damping is observed over a 10-fold drop in the plasma quadrupole moment
q2(t) = q2(t∗)− γ2 · (t− t∗). Figure 9 shows this algebraic damping of the m = 2 mode
versus tilt angle εB, with εB determing Γ. Taking a series of such evolutions, we find that

q2(t) = q2(t∗)− γ2 · (t− t∗) , with γ2 ≈ 6Γ. (3)
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FIGURE 6. (Left) Four measured diocotron amplitude evolutions d(t) showing algebraic damping. The
waves are launched at different amplitudes at t = 100 sec, i.e. after the halo has contacted the wall.

FIGURE 7. (Right) Measured diocotron amplitude d(t) for the smallest wave in Fig. 6, showing
damping which is accurately linear in time even for d <∼ 10−3.

It is instructive to note here that if we change the m = 2 metric from the quadrupole
moment q2 to the wall-radius-normalized “displacement” of the plasma edge

d2 ≡
D2

RW
≡ q2

Rp

2RW
' q2

6
, (4)

then we obtain
d2(t) = d2(t∗)− γ̃2 · (t− t∗) , with γ̃2 ≈ 0.5Γ. (5)

Unlike exponential damping rates, algebraic damping rates vary with parameter normal-
izations, and the most “theoretically natural” normalization is yet to be decided.

CONCLUSIONS

In conclusion, the linear-in-time algebraic damping of both m = 1 and m = 2 diocotron
modes has been observed in our experiments. This damping begins when an outward
flux of particles reaches the spatial Landau resonant radius rm, and the flux is directly
proportional to the particle flux Γ through the resonant layer.

For the m = 1 diocotron mode, this resonant radius coincides with the cylindrical
wall, so the flux rate Γ is equivalent to the particle loss rate (d/dt) ln NL. Here, the
observed linear-in-time damping seems to be a quite natural result of simple models
based on conservation of angular momentum. For the m = 2 diocotron waves this linear-
in-time damping is somewhat surprising, since the resonant layer trapping width scales
as q1/2

2 . These models are currently being developed, and compared to simulations and
experiments.
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FIGURE 8. (Left) Measured amplitude q2(t) of the m = 2 diocotron mode, showing the same algebraic
damping −γ2t for times after the halo flux has reached the resonant radius r2.

FIGURE 9. (Right) Measured amplitude q2(t) for three different magnetic tilts, showing different onset
times and different (non-exponential) damping rates.
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