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Abstract. Experiments and theory on electron columns have characterized a novel algebraic damping of diocotron-like 
modes, caused by a small flux of halo particles through the resonant layer [1]. The damping rate is proportional to the 
flux. We have also investigated the diocotron instability which occurs when a small fraction of ions is transiting the 
electron plasma [2]. Dissimilar bounce-averaged E B drift dynamics of the ions and electrons polarizes the diocotron 
mode density perturbations, developing instability analogous to the classical flute instability. The exponential growth rate 
is proportional to the fractional neutralization and to the phase separation between electrons and ions in the wave 
perturbation. Here, we have shown that the flux-driven algebraic damping eliminates the ion-induced exponential 
instability of diocotron-like modes. Physically, the electric field from the resonant particles in the low-density halo acts 
back on the dense plasma core, causing E B drift motion of the core back down toward the trap axis, resulting in a 
damping of the mode. 

FLUX-DRIVEN ALGEBRAIC DAMPING OF DIOCOTRON MODES 

Nonneutral plasmas confined in Penning-Malmberg (PM) traps have been, and continue to be, the subject of 
comprehensive studies, driven in a large part by a broad range of applications. Diocotron modes in a PM trap are the 
E B drift orbits of the plasma arising due to the electric field from the image charge induced at the surface of the 
confining walls (electrodes). They can be described as surface modes propagating azimuthally around the core of 
nonneutral plasma columns, or as the orbit of a column displaced off-axis by a distance . The plasma column 
consists of a high-density core ( ) surrounded a relatively low-density halo ( ) of outward 
drifting particles. At the critical radius in the halo, the azimuthal E B drift rotation velocity of the halo matches the 
phase velocity of the mode potential, and their resonant interaction gives rise to (first exponential in time) Landau 
damping [3]. For many years, it was thought that there can be no wave-particle resonance for the first azimuthal 
( ) diocotron mode, since its resonant radius is at the wall ( ) and the unperturbed density is zero at 
the wall. 

However, recent experiments have observed a novel algebraic damping of the  diocotron mode when a 
weak transport process sweeps a low density halo of particles out from a dense central core to the wall [1, 4]. This 
new flux-driven damping mechanism is also observed for diocotron waves with higher azimuthal wave numbers 

. The algebraic damping begins at a time  when the halo reaches the resonant radius of the mode 
, where . Here  is the mode frequency,  is the E B drift rotation 

frequency, and  is the mode amplitude. Then the damping proceeds as 
 
    (1) 

 
where the algebraic damping rate  is proportional to the flux of halo particles 
 
    (2) 
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through the resonant layer , i.e., 
 
    (3) 

 
This gives 
 
  ,  (4) 

 
which is quite different from an exponential decrease. 

Figure 1 shows the cross section of an electron plasma column that has been displaced off the trap axis through 
the excitation of a  (displacement) diocotron mode. The displacement has magnitude  in the direction of 

. The gray lines are equipotential contours as seen in the mode frame. In this frame the E B drift flow is along 
the equipotential curves. The black-to-yellow shaded region represents the relatively high density plasma core. In 
this region the equipotential curves are essentially displaced circles, until the resonant region near the wall. 

Near the left edge are the “cat’s eye” orbits, which show the equipotential contours for particles that are trapped 
in the wave trough. In order to make the “cat’s eye” orbits easier to spot in Fig. 1, the ratio of the displacement to the 
wall radius (i.e., ) was taken to represent the largest of experimental values, i.e., . The green 
dotted-dashed equipotential contour in Fig.1 is a critical path just inside the (presumptive) blue dashed scrape off 
layer (SOL) at . The SOL is at least as thick as a cyclotron radius, but not modelled in any detail. When 
transport moves a particle through this critical contour, the particle hits the SOL and is absorbed by the wall before 
returning to . The red solid curve in Fig. 1 shows the trajectory of such a particle. 
 

 
FIGURE 1. Instantaneous cross section of an electron plasma column in the diocotron displacement . The black-to-orange 

filled region is the dense plasma core. The gray lines are the equipotential contours in the mode frame. The green dotted-dashed 
curve is resonance contour. The red solid curve is a resonant particle trajectory. The blue dashed curve is the scrape-off layer. 

 
As particles are swept across the resonant layer, there is an up-down asymmetry in the distribution of resonant 

particles and corresponding image-charges. This asymmetry creates a component of electric field which is transverse 
to the displacement  and causes the E B drift motion of the dense plasma core back toward the trap axis, that is, a 
damping of the mode. A much more detailed description of the experiment and theoretical considerations can be 
found in Refs. [1, 4 6], correspondingly. Physically, the electric field from the resonant particles in the halo acts 
back causing E B drift motion of the plasma core, and this motion produces a slow rate of change of the diocotron 
wave amplitude  [5]. 

In our experiments we have quantitatively measured this novel algebraic damping of the first two azimuthal 
diocotron modes [1, 4]. In principle, this flux-driven damping would also apply for  and higher modes, but 
their resonant radii are much closer to the plasma core radius  by , 
and such modes typically already suffer large ordinary Landau damping. 
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ION-INDUCED INSTABILITY OF DIOCOTRON MODES 

Instabilities of diocotron modes are commonly observed when small ion fractions are introduced to pure electron 
plasmas. For many years, it was thought that these instabilities are driven by the different drift rotation frequencies 
caused by inertial effects (mass difference). However, in past experiments [2, 7] we have shown that an ion 
contamination of pure electron plasmas leads to the ion-induced diocotron (IID) instability, determined by the 
differences in z-bounce-averaged  for electrons and ions with different z-bounce regions (as in “nested” or 
double-well traps configuration). Quite often, an ion fraction is continuously produced in warm(ish) electron plasma 
experiments, and special arrangements need to be made to prevent those ions from being trapped. 

Broadly speaking, the dissimilar bounce-averaged E B drift dynamics of the ions and electrons polarizes the 
diocotron mode density perturbations, developing instability analogous to the classical curvature-driven flute 
instability. The resulting exponential growth shows  , with growth rate  proportional to the fractional 
neutralization  and to the phase separation  between electrons and ions in the wave perturbation, i.e., 
 
    (5) 

 
where  (see [2]). 

Figure 2 shows the measured growth rate of the  IID instability as a linear function of the background 
pressure. Here the primary ions are coming along magnetic field lines as a result of ionization of a residual gas by 
the 30 eV electron beam continuously emitted by the electron injection filament. Thus the acquired fractional 
neutralization is proportional to the background pressure . As one can easily estimate, a typical ion fraction formed 
at these ultra-high vacuum conditions is indeed very small, namely  (here, at magnetic field 

 we have ). The evident “offset” at the zero pressure asymptote is due to ionization of 
neutrals absorbed by the entrance (injection) grid. 
 

 
FIGURE 2. Exponential growth rates  of the ion-induced diocotron (IID) instability as a function of the background pressure P. 

FLUX-DRIVEN MITIGATION OF THE ION-INDUCED DIOCOTRON INSTABILITY 

In Fig. 3(a) the solid blue line shows an example of the IID instability growing exponentially from the noise 
level amplitude of  over 3 decades in 300 sec confinement time. Here, the exponential growth rate is 

, which is close to its maximum value in Fig. 2. For amplitudes  the mode behavior becomes 
highly nonlinear. In this particular evolution the electron temperature is kept above  by continuously 
applying a non-resonant wiggle heating. 
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When the wiggle heating is turned off, cyclotron cooling of electrons (with time constant sec) 
drives plasma temperature down to its room (wall) values . For ill-understood reasons, a low density 
halo then starts to leak out of the core, rather than the whole core expanding slightly. In about 30 sec after the 
cooling, the front of the halo reaches the wall radius (equal to the Landau-resonance radius for the  diocotron 
mode), and the flux-driven algebraic damping starts to contribute to the mode amplitude evolution, as 

exp( )   . If one has  , then the instability is suppressed (mitigated) down to the noise level. 
Figure 3(a) shows several IID instability evolutions with different halo flux “turn-on” times followed by the fast 
algebraic damping of the mode. 

However, if the instability growth rate  and/or the acquired amplitude  are already big enough, so that the 
algebraic damping rate  , then the flux of charged particles through the Landau-resonant layer leads only 
to a moderation of the instability growth rate , as shown for comparison in Fig. 3(b). By its very nature the 
algebraic damping of exponential instabilities is most effective at low wave amplitudes , so this new mitigation 
mechanism can be highly effective at preventing the exponential ion-induced instability, even for seemingly small 
particle fluxes through the resonant layer. Any algebraic damping wins over exponential instabilities from the noise. 
 

 
                                       (a)                                        (b) 

FIGURE 3. Flux-driven mitigation of the IID instability: 

(a) The solid (blue) line shows exponential growth of the  diocotron mode from the noise level for over 3 decades in 
amplitude when no halo particles flux formed. The dotted (red), short-dashed (green), and long-dashed (purple) lines show the 
IID instability evolutions with different growth rates  and 160 sec, 60 sec, and 20 sec halo initiation times, respectively. 

(b) Examples of the  IID instability evolutions near the mitigation threshold  . Flux-driven damping for 
 lessens the instability, or causes only a moderate damping. 

CONCLUSIONS 

In summary, the linear-in-time algebraic damping of both  and  diocotron modes has been 
demonstrated in our experiments. This damping begins when an outward flux of E B drifting halo particles reaches 
the Landau-resonant radius , and the damping rate  is directly proportional to the flux value. This flux-
driven damping effectively eliminates the ion-induced instability of diocotron modes, and one may suggest that a 
similar flux-driven damping might be used to mitigate the classical flute instabilities in cylindrical (quasi-)neutral 
plasmas confined in non-uniform magnetic fields [8 10]. 
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