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ABSTRACT OF THE DISSERTATION 

Measurement of the Anisotropic Temperature Relaxation 

Rate in a Magnetized Pure Electron Plasma 

by 

Alan Walter Hyatt 

Doctor of Philosophy in Physics 

University of California, San Diego, 1988 

Professor John H. Malmberg, Chairperson 

The anisotropic temperature relaxation rate is obtained from 

the measured time evolution of Tl and T
11 

in a magnetized plasma 

consisting of only electrons. The magnetic field defines the parallel 

axis. The velocity space anisotropy is induced in a plasma which has 

evolved to a quiescent Maxwellian state. An essentially one-dimen­

sional axial compression (or expansion) changes T
11 

while T
1 

re­

mains essentially unchanged. The time scale over which the compres­

sion occurs is short compared to the electron-electron collision time. 

The nature of the compression is such thc.t the parallel velocity dis­

tribution remains approximately Maxwellian after the compression, 

albeit with a different temperature. The perpendicular velocity 
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distribution remains essentially unaffected during the compression 

since few momentUlll exchanging collisions occur. 

After the compression is completed the temperature anisotropy 

relaxes to a £mal equilibrium on the collisional time scale. The relax­

ation rate is obtained from measurements of Tl and Tfl as functions 

of time. The relaxation of the anisotropy is found to be nearly expo­

nential. 

The relaxation rate is obtained as a function of the measured 

plasma density and the final equilibrium temperature. The measured 

rate is compared with the absolute (no adjutable parameters) predic­

tion of a Fokker-Planck theory calculated in the weak field regime by 

Ichimaru and Rosenbluth, and which is modified by a strong magnetic 

field approximation due to Montgomery, Joyce arid Turner. The 

measured rate is also compared with the theoretical prediction of 

Ichimaru and Rosenbluth without the strong magnetic field approxima­

tion. The measured rate and the prediction of the modified theory are 

found to statistically agree to about So/o. The unmodified theory pre­

dicts a rate which is over 20% larger than the measured rate. 
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I. Introduction 

In this thesis I describe a simple and direct experiment which 

measures the rate at which an experimentally induced velocity space 

anisotropy in a magnetized pure electron plasma relaxes to equilib­

rium via electron-electron collisions. This anistropy is character­

ized by T
1 

:/; T
11

, the temperature associated with the degrees of 

freedom perpendicular and parallel to the applied magnetic field. 

This anisotropic temperature relaxation is a specific case of 

collisional velocity space transport in plasmas. The study of velocity 

space transport in plasmas involves investigation into how the mutual 

interactions of a system of cha:'ged particles modify the particles 1 

distribution of velocities in time. Collisional transport refers to 

particles interacting with particles, or more properly, with properties 

of the plasma which reflect the discrete particle nature of the plasma, 

such as the electric field fluctuations caused by the random motions of 

the particles. Collective transport, the interaction of particles with 

averaged, fluid properties of the plasma, can also change the distribu­

tion function in time. 

Collisional velocity space transport is of fundamental interest 

to plasma physics. A few of the areas of plasma physics in which this 

transport can play a dominant role are in determining the rate at 

which equipartition of energy occurs in plasmas, the rate at which 

particles are scattered into the velocity space loss cone in a magnetic 

1 



mirror confinement device, and in determining the momentum trans­

fer between electrons and ions. This momentum scattering underlies 

the concept of plasma resistivity, and hence is important to the Ohmic 

heating schemes employed in tokamaks. Each of these effects depend 

upon the collisional transfer of momentum aniong the plasma particles. 

A theoretical description of collisional velocity space trans­

port in plasmas has been the subject of continuing interest for over 

70 years. Small momentum transfer collisions are thought to domi­

nate, which has led to a Fokker-Planck formulation of the transport 

process. Such a formulation neglects the effects of the (assumed) 

rare large momentum transfer collisions. In fact, there are many 

assumptions and approximations made of necessity when rates ;;i.re 

analytically calculated for specific cases from general Fokker-Planck 

theories. 

While there have been many experimental measurements of 

configuration space transport, there have been only a few experi­

mental measurements of collisional velocity space transport rates in 

plasmas. For the most part, these experiments have uncertainties of 

the order of unity or larger. Hiskes and FUtch
1 

present measure­

ments of the rate at which ions are transported into the loss cone of a 

magnetic mirror for several devices, and find that at best the agree­

ment with collisional theory is in the factor-of-two range, The theo­

retical rates are generated by a Fokker-Planck code which requires 

2 
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the input of initial conditions, and in some cases, there are free 

parameters which are adjusted to bring the output of the code into 

agreement with some measured quantity. 
2 

Burke and Post present the 

results of their experiments on fast test ions slowing in a neutral 

plasma, and contrast these results with those of other similar experi-

ments. Their results differ from theory by a factor of 3 with uncer-. 

tainties of order unity. The other experimental results referred to by 

Burke and Post differ from theory by factors of 1/3 to 8. 

3 
The resistivity measurements of Lin et al. and Mohler to-

gether agree quite well with the theoretical predictions o~ Spitzer and 

.• 4 
Harm, over a reasonable range of temperatures and densities, with 

experimental accuracies on the order of 10-20o/'1J. They measure the 

average conductivity in the shock wave front of a gas. This shock 

wave is produced in a shock tube. The average charge density and 

shock wave temperature are calculated from the measured Mach num-

ber. Although a resistivity measurement does not measure a trans-

port rate per se, it does measure one of the bedrocks of collisional 

velocity space transport in plasmas - the effective cross -section for 

momentum transfer between charged particles in a plasma. 

In our experiment we directly measure the relevant parame-

ters of charge density, and the temperatures Tl and T
11 

as they 

relax to a common equilibrium. F\lrther, the experimental conditions 

are contrived so that both the density and total thermal energy remain 

3 



essentially constant in space over the measured volume and constant 

in time over the relaxation to final thermal equilibrium. To my 

knowledge, this experiment is the first measurement of this relaxa­

tion rate, and is the first unambiguous precision measuremer.t of 

collisional velocity space transport. I compare the experimental re­

sults, obtained over a two decade range of measured relaxation rates, 

with a Fokker-Planck theoretical calculation of those rates, ar.d find 

absolute (there are no adjustable parameters) agreement to about 5'7o. 

This thesis is organized as follows. The second chapter dis­

cusses the basis of the Fokker-Planck approach and the relevant 

theory, i.:-.cluding the anisotropic temperature relaxation rate calcula­

tion. This rate is calculated in the weak: magnetic field limit. The 

approximation which suitably modifies this rate for application to the 

strongly magnetized regime of our pure electron plasma· is also dis­

cussed. The third chapter describes the experimental apparatus, its 

operation, and the equilibrium pure electron plasma it produces. The 

diagnostics for the density and temperature T
1 

and Tl! are also dis­

cussed. The fourth chapter describes the experiment and how the 

anisotropic temperature relaxation rates are measured. The method 

of analysis whereby the raw relaxation data is reduced to yield a rate 

which can be compared with theory is also discussed. The fifth chap­

ter presents a summary of the results, compares those results with 

theory and states the conclusions. 

4 
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II. Theory 

A general theory of collisio~al velocity space transport in 

magnetized plasmas has been developed by Ichimaru and Rosenbluth.
5 •6 

(I-R). A similar theory, addressed to a single species plasma in a 

uniform neutralizing background, has been developed by Montgomery, 

dT 7,8 ) Joyce an urner (M-J-T • 1-R calculate the rate for our specific 

anisotropy, although only for a weak magnetic field, M-J -T have 

proposed an approximation that in general will allow the use of 

non-magnetized rate calculations to be applied in the strong field 

regime. Both theories are based upon the Fokker-Planck formalism. 

The Fokker-Planck formalism calculates the statistical 

evolution of a particle's (or a distribution of particles') phase 

space coordinates in time as the particle is subjected to rapidly flue-

tuating forces. ¥Then applied in configuration space, the Fokker-

Planck formalism gives rise to Brownian motion, such as that of a 

heavy particle in a fluid, first theoretically described by Einstein. 9 

This motion is determined by two effects: a frictional opposition to 

the particle motion due to the relative wind of fluid the particle sees in 

its own frame, and a diffusive 11 random walk 11 in space dUe to the ran-

dam accelerations produced by the fluctuations. Particles also display 

Brownian motion in velocity space; the particle's velocity undergoes a 

frictional slowing, and a diffusive random walk in velocity space. 

These two effects tend to drive an ensemble of Brownian particles 

5 
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into equilibrium with the fluid: the average relative velocity of the 

Brownian particles wiJ:h respect to the fluid tends to zero, and the 

average kinetic energy of the Brownian particles tends to that of the 

.fluid particles. 

A. The Maxwell-Boltzmann Formalism 

Historically, transport in gases of particles (including particles 

with interact via a l/r potential, such as unmagnetized plasmas and 

stellar clusters) was first treated theoretically by the Maxwell-

Boltzmann formalism. This formalism, embodied in the Boltzmann 

. 10 al" equation, gener 1zes the Liouville equation to calculate the rate of 

change of the single particle distribution function in a volume element 

of phase. space due to particle interactions which are treated as iso-

lated two-body collisions. Individual collisions can move participants 

into or out of the phase space volume element. The Boltzmann equa-

tion calculates the rate of change of the distribution function due to 

these collisions by summing over probabilities of occurrence of all 

collisions which transport particles into or out of the volume elementQ 

This probability is parameterized by the impact parameter b, the 

distance of closest approach in the absence of any interaction. 

The Maxwell-Boltzmann formalism should work very well in 

calculating transport coefficients for gases of particles whose inter-

actions are such that the average interparticle separation is much 

larger than the interaction range, and whose average kinetic energy is 

6 



::nuch larger than its ave rage potential energy. Ol.apman and 

II 
Enskog devised a general method of salving the integro-differential 

Boltzmann equation, and show that the Boltzmann equation is well 

verified experimentally for several molecular gases, where the inter· 

action potentials drop off quite sharply. 

A plasma (or a stellar cluster) is a gas of particles which 

undergo long range interactions. One aspect of the long-range inter· 

action is the Debye shielding effect, which sets the effective range 

over which thermal particles can interact at about the Debye length, 

A0 • · By definition, the plasma param.eter A = n/..~ (the number of 

particles within the interaction range of a given particle), where n 

is the particle density, must be much larger than unity for a charged 

gas to be a plasma. (In our pure 
6 

electron plasmas A =-- 10 
8 - I 0 , ) 

All particles within a Debye length about a given particle are some-

what correlated in position with that particle, and are more or less 

simultaneously interacting with each other and with the given particle. 

At first glance, it would appear that the Maxwell-Boltzmann 

formalism is ill-suited to describe transport in: l/r potential gases. 

However, by estimating the cumulative effect of all the two body colli· 

sions (as if each occurred in isolation) on a thermal particle which 

traverses a Debye sphere, it can easily be shown that the net effect of 

this traversal (excluding the rare single large angle scattering colli-

sion) is only a very Small change in the particle 1s velocity. From 

7 



classical mechanics and the Coulomb potential, we see that, in the 

center of mass frame, the relative velocity vector, v, is rotated by a 

single collision through an angle 

(Z.A.l) 

in a plane defined by the initial conditions. The q. 1s are the respec-
1 

tive charges, m is the reduced mass, and b is the impact paranieter. 

Ever.. for the relatively rare case 

b ....... n- 113, then 9 ...... A-Z/
3, which is still quite small. Assume /\. 

separate collisions with random 9-plane orientations, and neglect the 

effect of the relatively rare 11. . "th b -l/ 3 b . co is1on Wl s: n y assuming 

-1 
S ,...., A for all collisions. The individual S1s statistically add to 

l/Z a A , which gives ar.. estimate of GcT, the total deflection a thermal 

particle suffers in crossing a Debye sphere, as A-l/
2 

s: ST. To this 

-3 
approximation, the total deflection is then on the order of 10 radians 

(less than 1 °} for most plasmas. 

(Slightly more rigorous estimates of ST lead to an estimate 

of the 11mean-free path 11 (the distance a thermal particle must travel 

• 
before the effects of distar:.t collisions add to give ST ,..... unity) of 

m. f. p. ,...., A t..
0

/ln /\.. A similar estimate of the mean free path tra-

veled before a single large angle scattering collision occurs gives a 

m.f.p.,...., AAD. Since ln A ..... 10-20, large scattering collisions can 

be neglected to an accuracy of ,....,lOo/o or so.) 

8 



The fact that a particle 1s trajectory is hardly perturbed by all 

its surrounding neighbors as it passes through their mutual inter-

action region means that to good approximation the interaction be-

tween any two particles may be treated as if it occurs in isolation~ 

This, in turn, implies that the Maxwell-Boltzmann formalism should 

be adequate to describe the transport properties of a plasma with a 

sufficiently large A, providing the interaction is somehow cut off at a 

range of about AD • This can be done either by invoking the dielectric 

tu fth 1 . d t dif th. ti t ·1
12

•
13 

na re o e p asma in or er o mo y e interac on po entia , 

or by simply setting AD as the upper limit of possible impact param-

eters in the 
14 

Boltzmann equation .. 

B. The Fokker-Planck Formalism 

The fact that the sum of many individual collisions in a plasma 

leads to only a small deflection of a particle's trajectory (i.e., a 

~ 
small Av), and that large angle collisions are relatively rare, has 

led to the development of a Fokker-Planck formulation of transport in 

a plasma. This formalism should be more generally valid in that 

transport need not be calculated from considerations of isolated two-

body interactions. In practice, however, the complexity of calculating 

the friction and diffusion coefficients has led to essentially the same 

assumption of isolated tr.ajectories, either in assuming only small de-

flections are important and expanding the Boltzmann equation in powers 

Of small 
A h" h . ld kk Pl ck ti 7,8,13,15-17 
~v, w ic yie s a Fo er- an equa on, or 

9 



in the calculation of total force field fluctuations at the particle posi-

. 5,6,18,20-23 . tion. Calculations from either approach have led to 

identical results for ·the friction and diffusion coefficients, at least 

when there is no magnetic field. The main utility of the Fokker-

Planck formulation, as presently applied to plasmas (and gravitating 

particles), seems to be in the display of the frictional and diffusive 

(Brownian) nature of the transport. 

The Fokker-Planck coefficients for an unmagnetized plasma 

with an arbitrary velocity distribution were first derived by 

17 22, 23 
Rosenbluth, McDonald and Judd, and Thompson and Hubbard, 

using the Boltzmann and net force approaches, respectively. The 

. 24, 25 ( . a1· Lenard-Bales cu equation the Vlasov equation gener ized to 

include two particle interactions) can be put into Fokker-Planck form. 

The Fokker-Planck equation is usually derived from the fol-

lowing assumptions: 1) the particle velocity changes only infinitesi-

mally on a time scale T, which is much longer than characteristic 

time scale of a force field fluctuation; and 2) the fluctuations felt by 

the particle depend only upon the particle's phase space coordinates, 

not on its past history (a Markov process). (See ref. 6 for a deriva-

tion of the Fokker-Planck equation from these assumptions.) The 

Fokker-Planck equation, in the absance of external fields and spatial 

gradients, is 

JO 
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af(;.!) = 
at - g-; 

v 
~-+ ...,. 1 

• (F(v) f(v)) + 2 (2.B.l) 

.. ...,. ...,. ...,. ...,. ...,. 
where f(v) is the velocity distribution function, and F(v) and D(v) 

respectively, are the coefficients of friction and diffusion in velocity 

spaceo These coefficients are given by 

.... 
F(v) = 

.. 
( L>v) 

T • (2,B,2) 

(2. B. 3) 

.. 
The 11

{ )
11 indicates an ensemble average of the resulting net !::J.v .... 

and !::J.v !::J.v calculated from the effects of the fluctuating force on the 

particle over the (relatively) long time r. When the fluctuating force 

approach is taken, the calculation of b.~ is performed by integrating 

the fluctuating forces on the particle along its trajectory. This calcu-

lation is fairly straightforward when a magnetic field is absent; the 

trajectory is then calculated by expanding the force about the unper-

turbed trajectory, which is a straight line. The unperturbed trajec-

tory becomes a helical path when a magnetic field is present; this 

increases the complexity of the calculation considerably, except when 

the field strength is such that r , the particle gyroradius; is much 
g 

greater than A.D. In t:.1is small field limit, the trajectory can be 

approximated as straight. In addition, the dielectric shielding prop~ 

erties of the plasma are modified by the magnetic field. 

II ' 
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26-29 
Several workers, as well as I-R and M-J-T, have 

developed Fokker-Planck approaches to transport in magnetized 

plasmas. The rest of this chapter, however, is devoted to the theory 

of I-R, and a discussion of an approximation proposed by M-J-T use-

ful in simplifying the evaluation of the Fokker-Planck coefficients 

when the plasma is strongly magnetized. 

C. The Theory of Ichimaru and Rosenbluth 

Rather than re-deriving the general magnetized theory of I-R, 

which can be found in detailed form in refs. 5-6, the discussion is 

limited to some of the features and approximations within the theory. 

The method of calculating energy relaxation rates is given, and the 

results of the specific calculation of tl1e relaxation of the anisotropic 

temperature distribution, assuming a bi-Maxwellian velocity distribu-

tion function, is discussed. 

4 4 4 
The 1-R procedure for calculating (.6v(T)) and (.6v(T) .6v(T)) 

4 
is to calculate v(t) from the time integration of the Taylor expanded 

4 4 

total electric field ET(r
0

(t), t) about the particle's unperturbed tra-

• -4 ••• -4 __,....,,. 
Jectory, r (t). By def1n1t1on, .6v(t) = v(t) - v(O). This expansion is in 

0 

4 

accord with the Fokker-Planck assumption that .6v(1') becomes 

infinitesimal as 1' becomes small. The total electric field is approx-

imated as 

...,,. -lo ...,,. 4 

= E. d (r (t), t) + Ef(r (t), t) 
1n o o (2.C. l) 

12 
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.. .. . 
E. d(r (t), t) is the polarization field the particle induces in the 

lD 0 

plasma. This field is calculated from all the rest of the particles 

treated as a dielectric medium responding to a moving 11test 11 charge. 

This medium cannot respond infinitely fast, since it too is composed 

of moving particles. Therefore, as the medium attempts to shield the 

moving test particle, the test particle has moved away from the syni-

metry center of the shielding. The test particle thus sees a 

retarding electric field induced by its own motion through the dielec-.... 
tric medium. On the other hand, the fluctuating field, Ef(r

0
(t), t), is 

calculated at the position of the test charge as if the test: charge was .. 
not present; Ef is then due or.ly to the statistical fluctuations in the 

dielectric medium. The spectrum of Ef is assumed to be stationary 

in time and space. I-R calculate the fluctua~ing field at a particular 

point due to the motion of all the particles. each acting as a test 

particle moving along unperturbed trajectories and interacting with 

the dielectric medium. 

From the above discussion it is easy to see that 1:E. di ~ o 
lil .. 

for any test particle with nonzero velocity, and (Ef) = O, as long as 

the plasma has no spatial gradients • The brack:ets refer to an en-

semble average. 
.. 

The ensemble fluctuations of E. d can be neglected 
lD 

in favor of the average value. 

.. 4 

The quantity l:::.v is then calculated as an integration of ET by 

4 4 

expanding ET(r(t), t) to second order along the unperturbed trajectory 

13 



... ... ... 
and integrating from t=O to t=T. -(6v(T)) and ~6v(T) 6v(T 1

)) are. 

then calcul~ted from the lowest surviving ensemble averaged order in 

the expansion. 

that 

::t ... 
tensor D(v). 

18 
Using an argum.ent due to Hubbard, who concluded 

1-R neglect 
... 2 

[E. d[ 
m 

in the diffusion 

... ... ... 
E. d is retained in the friction coefficient, F{v). 

m 

Since (Ef) = 0, the lowest surviving term of the ensemble averaged 

+ + 
The time integral of (EfEf) is then seen as the 

+ 
autocorrelation function of Ef. 

... 
and E ind are calculated assum-

ing: 1) the fluctuations are longitudinal, which simplifies the form of 

... ... 
(EfEf) to the product of a unit diagonal tensor times a function; and 

2) that the dielectric medium can be calculated in the electrostatic 

approximation, in which a scalar dielectric response function describes 

the linearized longitudinal response of the magnetized plasma to a test 

charge. The simplified Fokker-Planck coefficients then take the form 

... 
~ ... 
D(v) = 

... ... 
F(v) 

... ... ... 
D(v) 

q ~ ... 
+ -E. d (v) m rn 

(2.C.2) 

(2. c. 3) 

\.Vhere the magnetic field defines the parallel direction. The terms 

~ 

and E 
ind 

are calculated from the plasma distribution 

... 4 ... 

function, f(v), from which (EfEf) 
... 

and E 
ind 

are calculated. Since 

the Fokker-Planck coefficients are calculated from the linearized 

14 



dielectric response of the plasma, Debye shielding is retained in the 

coefficients; an impact parameter cutoff at t.. 0 appears naturally. 

However, an imposed cutoff at small impact parameter must be 

adopted to avoid a logarithmic divergence in the coefficients. This 

divergence can be traced to the calculation of the dielectric 

response function. This calculation is made in the plasma fluid 

- 1 
limit (essentially an expansion in powers of A ), and doesn't 

correctly describe the plasma response when the test particle closely 

encounters a plasma particle. The small impact parameter cutoff is 

chosen to be the classical distance of closest approach, b
0 

;=:: q 1q 2/T. 

This value of b produces a large angle collision, and can be viewed 

as the point where a Fokker-Planck formulation breaks down. 

Energy relaxation rates are calculated from the expression 

for the rate of change of an ensemble of test particles with the same 

velocity: 

which is then multiplied by the test particle velocity distribution and 

integrated over all velocities. Equation (2. C. 4) can be put in terms 

of the Fokker-Planck ..::oefficients: 

~-· F(v) 

where 11Tr 11 is tl".ie.trace operation, 

15 

m 
+-

2 

~ 

~ -Tr D(v) (2. c. 5) 



D. Anisotropic Temperature Relaxation Rate 

This procedure of I-R for calculating energy relaxation· 

rates is applied to the calculation of the rates at which the parallel 

and· perpendicular energy {referred to the magnetic axis) changes: 

_, 
d I . 2) _, (6v

11
) 

m ·" --). 
dt (zmvll = m'r +z;: (t>v11 t>v11 ) II T 

(2.D.l) 

_, 

.!!_ (2-mv 2 ) 
_, (t>v

1
) 

m -" . -" = m\· + 2T (6vl6vl) dt 2 1 1 T 
(2.D,2) 

which in terms of the Fokker-Planck coefficients are 

~(2'mv 2 ) = 
dt 2 11 (2.D.3) 

(2.D.4) 

Equations (2. D. 3) and (2. D. 4) are then multiplied by a bi-Maxwellian 

velocity distribt1tion 

(2.D.5) 

and integrated over v
1 

and v
11 

, The friction and diffusion coeffi­

cients are also determined from the bi-Maxwellian distribution. The 

values of Tl and T 11 need not be close to each other, since this method 

is not dependent upon an expansion about equilibrium. 

The velocity integrations can, in prin~iple, be carried out for 

any value of magnetic field. However, in order to actually integrate 

the resultant product of (2. D. 3) or (2. D. 4) with (2. D. 5), the limit of 

16 
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small magnetic field is taken by I-R. This approximation (essentially 

one of performing the calculation in the weak field regime rg >> A
0

), 

along with the· assumption of Maxwellian v1 and v 11 distributions, 

leads to a series of terms involving the impact parameter. Only one 

of these terms, ln( AD/b . ), diverges as b . -7 a. The other 
mtn min 

terms are hence neglected in its favor by I-R. This is the well­

known 11dominant term 11 approximation of Chandrasekhar. 
30 

Adoption 

of this approximation renders the calculation of the rate uncertain at 

the I/In A level (about lO'~o). A further simplification is made by 

assuming only a single species plasma neutralized by a static dielec-

tric background. (The equivalent back.ground is provided by the mag-

netic field in a pure electron plasma.) 

With thes:e approximations, the coupled collisional anisotropic 

temperature relaxation rate equations are given by I-R as 

d Id 8(")l/
2 

dt Tl= -zdt" Tll = lS ;;;_ 
4 

nq ln A 
3)2 

Teff 

(2.D.6) 

Here A is given as 
2 

A.
0

/b 
0 

, where b 
0 

= q /T is the average classi-

cal distance of closest approach; /I. is t11us seen as the plasma parame-

ter nA 3 
D The effective temperature, T eff' is given by 1-R as 

-3/2 
Teff = 15 

4 

2 
dx x (1 

[(1 - x2)T 
l 

17 

2 
- x ) 

(Z.D.7) 
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This integral can. be solved by parameterizing the anisotropy as 

-3/2 
T eff 

15 -3/2 -2 
= 4 Tll A 

( -1 
) tan .[A/.[A ; A> 0 

-3 + (A+3) 

l -I 
tanh ~/..J-A; A< 0 

(2.D.8) 

Equations (2.D.6) and (2.D.8) are seen to give the same anisotropic 

31 
temperature relaxation rate as is given by Book ; there is no 

reference given by Book for this rate. 

The I-R rate equations (2. D. 6) can be decoupled if there are no. 

external sources or sinks of thermal energy. T!\ and T 
1 

are then 

I 2 
related through 3T11 + 3T1 = Tf =constant. Then the two rate equa-

tions become identical, with T 11 and T
1 

interchangea_ble, as 

where the rate, \/l , can be written as 

v = ! (2'..)1/2 
.L 5 m 

4 
nq ln A 

3)2 
Tf 

H(A) • 

(2. D. 9) 

(2.D.10) 

The function H(A) is then found from (2. D. 8) and the definition of A to be 

H(A) 

f tan-
1

,.,/A/c.JA; 

-3 + (A+3)) 

ltanh- 1~/~; 

18 

A>O 

(2.D.11) 

A< 0 



H(A)--!' 1 as ±A--) O. The evolutivn in the limit of vanishing anisotropy 

is seen to be exponential with a rate 

= !!_ (.12..)1/~ 4 
nq ln f\. 

5 m 3/2 
Tf 

(2.D.12) 

For comparison purposes, the rate at which an isotropic 

Maxwellian distribution (at temperature Tt) of test particles comes 

into equilibrium with an unrnagnetiz~d isotropic Maxwellian plasma at 

6 
temperature T is 

32, 33 
given by Spitzer, as well as I-R, as 

v 
0 

4 
nq ln A = 5 

T:/2 6 
(2. D. 13) 

in the limit Tt--) Tf. The two rates \J
0 

and VJ_ are not identical 
0 

in the limit of vanishing anisotropy because the functional forms of -_..,,. - 4 --) 
F(v) and D(v) are different, even in the limit. 

The rate given by (2.D.10) as it stands is unsuitable to 

describe the relaxation process in a strongly magnetized plasma, 

defined by the parameter regime AD>> r g However, using a general 

result of M-J-T, 7 ' 8 equation (2.D.10) can be applied inthe strongly 

magnetized regime to good approximation as long as the Coulomb 

logarithm, ln A, is modified by the substitution of Z:-g for A.D in A; 

i.e. ln A -:i. ln(r /b ). r is the thermal velocity gyroradius. 
g 0 g 

This substitution im?lies that the largest effective impact 

para~eter is != g , not the De bye shielding length. Physically, this 
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result is seen to be in agreement with the concept of adiabatic invari-

ance as applied to the gyromotion of the particle around its guiding 

center. The gyromotion is viewed as the motion of an oscillator of 

I 2 . 
energy E = z mvJ. and frequency w = qB/rnc. According to adia-

b . h 34 at1c t eory, such an oscillator has an adiabatic invariant, I= E/w, 

which remains constant so long as the parameters (which includes .. 
field quantities) of the oscillator are changed slowly compared to w. 

In a constant magnetic field B, the invariant I (with all constants 

suppressed, I is usually referred to as µ = 
2 . 

vJ_/B, the particle gyro-

moment) will result in a constant perpendicular energy even in the 

presence of slowly varying electric fields. 

A Coulomb collision involves the action of just such varying 

electric fields upon a particle. The electric field of each particle in 

a magnetized plasma can be thought of as the swn of three parts; an 

average monopole term, which falls off as r
2

, a dipole term due to 

the gyrornotion, which falls off as r
3

, and higher order ?Oles. Con-

sider a test particle interacting with the first two field terms of 

another particle, i.e. a "collision. 11 If the particles pass each other 

at a distance much larger than r , but smaller than i..
0 

, then the 
. g 

monopole field at the test particle position will vary only slowly dur-

ing the passage, and the dipole term •Nill have been greatly reduced 

-3 
by its r dependence. The perpendicular energy of the test particle 

will thus hardly be affected, and although the particles may exchange 

20 



parallel energy, such two-particle exchanges do not contribute to 

isotropization. Only when the particles pass by ea.ch other on the 

scale of r does the monopole field vary rapidly enough to break the 
g 

adiabatic invariant of the test particle and affect its perpendicular 

energy. This exchange of perpendicular and parallel energy does 

tend to isotropize both the perpendicular and parallel degrees of 

freedom. 

The component of the friction coefficient in the parallel direc-

tion that is due to the collective response of the fluid (E. d), however, 
m 

may well continue to have an interaction range of f..D , since it is 

essentially due only to the monopole terms of the interaction, Never-

theless, approximating an effective impact parameter cutoff at r 
g 

seems physically reasonable, and recent numerical studies of this 

anisotropy by Hjorth
35 

indicate that in the 

the M-J-T approximation is correct. 

regime b 
0 

<< 

The theoretical predictions of I-Rand M-J-T are not without 

some controversy. Kaiser
36 

ha.s disputed the 1-R method of calcu-

la.ting energy loss rates in magnetized plasmas, due to oversimplifi-
4 
44 4 

cations in the evaluation of D(v) and in the expansion of E along the 

unperturbed orbits. He concludes, however, that the final expression 

is valid, basically because the magnetic field does no work on the 

particles. Matsuda 
37 

has questioned the validity of the M-J -T 

approximation, and suggests that, in the strongly magnetized regime 

(such as that of our plasma), corrections to the Coulomb logarithm 
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may be as large as ln A for certain velocity classes. No Maxwellian 

averaged correction was quoted, and from the few numerical predic-

tions, it is not clear what form such a correction would take. 

The magnetized pure electron plasma used in this study of the 

anisotropic temperature relaxation rate is in the magnetized regime 

.r g << \D. The appropriate theoretical rate calculation is then 

given by the I-R calculation (2.D, 9) with the argument of the Coulomb 

logarithm suitably modified to ln A = ln 'i=' /b as per the M-J -T 
e g o 

approximation. 
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Ill. The Experimental Device 

A. The Equilibrium Plasma 

The experimental device used for this study is the third gen-

eration of a family of devices pioneered 
. 38 

by Malmberg and deGrass1e. 

These devices produce and confine a nonneutral plasma consisting of 

only electrons within a series of conducting coaxial cylinders. The 

basic geometry of these devices is cylindrically synimetric. The 

radial confinement of the plasma is provided by a uniform axial mag-

netic field produced by a concentric external solenoid. The axial 

confinement is provided by applying sufficiently strong potentials to 

conducting cylinders whose axial separation fix the plasma length. 

This creates potential energy barriers that are sufficiently large 

enough to reflect any electron back into the confinement region. 

Malmberg and O'Nei17 9 d O 'N .140, 41 an e1 , have shown that in 

the absence of external torques applied to the plasma (such as those 

caused by collisions with neutrals or interactions with fields which 

break cylindrical synimetry), these nonneutral plasmas can, in 

principle, be confined indefinitely. 

The key to indefinite confinement of a pure electron plasma is 

the conservation of total canonical angular momentum of the electrons, 

(3. A. I) 
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where r. , v9 J • 
J 

are h 
.th 

t e J electrons radial coordiP.ate and azimuthal 

velocity, respectively, and A 9 (r)' = Bzr/2 is the vector potential of 

the uniform axial magnetic fielci. The electron charge and mass is -e 

and m , respectively, and c is the speed of light in a vacuum., For 

B z sufficiently large, the diamagnetic field can be neglected in A
9

, 

and the electron angular momentum., mr. ve , can also be neglected 
J . 

2 J 
in the surri. Thus Pe """' -(mO /2) l: r. , where 0 = eB /me is the 

j J z 

electron gyrofrequency. Conservation of P 9 implies conservation of 

the mean square radius of the plasma, and hence in the abSence of 

torques the plasma can be radially confined indefinitely. The pres-

ence of i.Inage charges on the confining cylinders doesn't materially 

41 
change this result. 

It is easy to show that the mrv9 component of the Pe surri 

may be neglected with respect to the field component. Let Vee ( e 
is the azimuthal direction in cylindrical coordinates) be composed of 

-> 
two parts. One part is the gyrocenter d~ift velocity v d , which is 

~ 4 4 2 ,, 
given by vd = cE(r ) x B /B = wd(r ) r 9 It is caused by the n c z z c c 

coltun11 1s radial electric field E(r ) X at the electron gyrocenter, r , 
c c -The other part is the 9 component of the electron gyrovelocity, 

about the gyrocenter, 
-> -> -> 
v = r x 0 , where 

g g 
-> 
r is the gyro.radius. 

g 

After some manipulation, (3.A. l) can be rewritten as 

-> 
v 

g 

Pe= m2 L (o - 2 '~d(r .l)(r
2

. - r
2

.) . 
• CJ gJ CJ 

(3.A.2) 
J 
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z 
For our plasmas, w (r .) .... UJ /Q << 0, where w is the plasma 

d J p p 

frequency, and the mean squared gyI-oradius is much smaller than the 

mean squared radius of the plasma., and hence P
0 

""" - ~ L r
2 

2 j cj • 

If the plasma can be confined long enough, the interactions 

among the electrons will eventually drive the system to a global. 

thermal equilibrium. The distribution of such an equilibrium state 

is given by 42 • 43 

-I> -I> -1 
f(v, r) = Z exp [ - (H - w P

9
)/T] (3. A. 3) 

where H is the Hamiltonian for the electrons in a magnetic field, 

and Z is the partition stun. Such a distribution is stable against 

all fluctuations and hence is quiescent. These distributions describe 

a rigid body rotating with angular frequency W (i, e., no shear in 

azimuthal velocity) about the axis of symm.etry, a global Maxwellian 

velocity distribution (of temperature T) in a frame rotating with the 

body, and a density distribution which is a monotonically decreasing 

function of radius. This density function is characterized by a 

central density n extending out to some radius, after which the 
0 

density rapidly decreases to zero over the scale of a few Debye 

lengths. The values of W, T and n are set .by the initial condi­
o 

tions of the plasma: N electrons, total energy E, and total canoni-

cal angular momentum P
9

• 

44 
Prasad and 0 1Neil have shown that when a local coordinate 

which is perpendicul~r to the surface is employed, the equilibriwn 
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plasma density monotonically decreases to zero on the scale of a few 

Debye lengths over the entire plasma surface. Thus, while the de­

tailed shape of the end of the plasma can be quite complicated, in 

general the z-dependence of the density distribution for long plasmas 

is straightforward; n(r, z) is essentially constant along z until near 

the end of the plasma, where the density decrea.Ses to zero over the 

scale of a few Debye lengths. 

These thermal equilibrium. distributions can be completely 

realized in an ideal device: one that is characterized by a perfect 

vacuum (no neutrals or contaminating ions) and perfectly e sym­

metric fields, Such a device cannot be constructed. However, if the 

torque input to the plasma can be kept small enough so that the rate 

at which the mean plasma radius changes (external transport proc­

esses) is much smaller than the rate at which the plasma moves 

towards thermal equilibrium (internal transport), then states closely 

approaching thermal equilibrium can be observed. 

A plasma in such an equilibrium state is very interesting 

experimentally. Internal transport processes become more amen-

able to experiment as the external transport processes decrease in 

magnitude. The pursuit of the equilibrium state has, in part, driven 

the evolution of the pure electron containment devices. Better vacuurn 

systems and construction techniques allowed more precise control of 

neutrals. More attention to maintaining the cylindrical symmetry of 
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the group of confining cylinders reduced electrostatic field asym-

metries. Using nonmagnetic materials where possible, and requiring-

symmetric geometries where magnetic materials (such as stainless 

steel) mu.st be used, reduced magnetic field asymmetries, Taking 

great care with the design and construction of both the main solenoid 

and the axial alignment 11trimming 11 coils also reduced inagnetic field. 

asymmetries. 

The third generation device was designed and constructed so 

as to reduce external transport enough to allow observation of the 

thermal equilibrium state. It was therefore given the appellation 

11 EV 11 
- ~quilibriurn ,Yoltage confinement - following the nomencla-

ture of its predecessors. EV's diagnostic capabilities include the 

ability to scan both the density and the plasma kinetic energy compo-

nent perpendicular to the field as a function of radius. Transport 

can then be measured by obtairlng the density and energy profiles as 

functions of time, 
45 

Driscoll et al. have done this for spatial trans-

port of electrons and thermal energy. They have shown a confined 

electron plasma approaching the global thermal equilibrium state 

in EV. 

Such an equilibrium. plasma is an ideal subject for the produc-

tion of velocity space anisotropies characterized by two different 

Ma.X\Vellian tem?eratures, Tl±. Tl\ (the magnetic field provides the 

reference axis), and the measurement of the subsequent collisional 
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relaxation. The characteristic relaxation rate can be much larger 

than the rate of external transport, depending upon B , and thus the 
z .. 

relaxation can be measured under conditions of temporally constant 

total thermal energy and density. Furthermore, by measuring the 

rates in a radially localized region about the axis, the radial gradi-

ents of density and temperature are also essentially zero. 

B. The Experimental Apparatus - EV 

The confinement and analysis regions of the EV apparatus, 

46 
which has been previously described, are schematically shown in 

Figure 1. The confinement region consists of eight electrically iso-

lated coaxial cylinders of inner radius R = 3. 81 cm; all have a 
w 

length of 7. 62 cm except for LZ, which is 3. 81 cm long. One cylinder 

has four electrically isolated wall sections evenly spaced around the 

cylinder; these sections can be used to launch and/or detect plasma 

waves but for these experiments are interconnected to emulate a uni-

form cylinder. There is also a spirally wound tungsten filament, 

which when heated by a D. C. electric current provides a source of 

electrons. An accelerating grid is placed just in front of the filament. 

Another grid is placed just behind the filament and is electrically 

connected to the filament center. 

The analysis region includes an electrically isolated circular 

collimator plate whose axis is offset from and parallel to the confine-

ment region's symmetry axis. The collimator plate is free to rotate 
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Figure 1. The EV apparatus. The confinement region extends from the source to 
cylinder G2, The analysis ·region extends from the collimator plate to 
th.e collector. 



about its axis. This plate has three small holes of.various diameters 

{l/8 11
, 3/16 11

, 1/4 11
) spaced 120° apart on a radius of 1. 9", which is 

equal to the axial offset. In principle, any hole can be rotated to co­

incide with the device's symmetry axis, or to any desired radius from 

that axis. In practice, a stepping motor (400 steps = 2TT) can move the 

desired hole to one of the many possible incremented radial locations, 

with an estimated uncertainty of about one half step. Behind the plate, 

coaxial with the confinement region's symmetry axis, are four elec-

trically isolated cylinders with Rw = 3. 81· cm; all have lengths of 

12, 70 cm except for A
4

, which is 7, 62 cm long. Behind these is an 

electrically isolated charge collection electrode, All confinement 

and analysis cylinders, as well as the charge collection electrode 

and the collimator plate, are made from OFHC copper. All cylin­

ders, the collimator plate, and the collection electrode are gold­

plated after ma.chining to control oxidation. Concentric with and 

centered lengthwise upon cylinder A
3 

is a small solenoid of length 

20. 45 cm. This solenoid is water cooled, and is placed in a stain­

less steel jacket. It provides a secondary magnetic field used for 

energy analysis. 

The confinement and analysis regions are supported within a 

concentric cylindrical vacuum vessel constructed of low permeability 

stainless steel. The system is initially roughed out by LN
2 

cooled 

absorption pumps, A 500 1. /s ion pump, a LN
2 

cold trap, and a Ti 
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-11 -10 
sublimation pump maintain an operating pressure of 10 -10 torr 

after the complete system is baked to 200 ° C. Surrounding the vacuum 

vessel is the water-cooled main solenoid, which is precision wound 

on aluminum coil form. This solenoid is capable of producing uniform 

axial magnetic fields from 0 to 470 Gauss. The solenoid has a 

40. 3 cm diameter and is 217. 3 cm long. In addition, there are two 

sets of rectangular trimming coils outside of the main solenoid. They 

produce magnetic fields, B and B , which are perpendicular to the 
x y 

main field and each other. They were originally intended to provide a 

precision method of aligning the resultant B field direction with the 

confinement region symmetry axis, but, as will be noted in Appendix B, 

they also can be employed to provide a very effective means of reduc-

ing the level of density fluctuations in the confined .plasma. Fluctua-

tion reduction can lead to enhanced statistical accuracy of density and 

temperature measurements. 

A microcomputer was used to monitor, direct, and analyze the 

experiment, although a purely manual mode of operation was often 

used when new experimental configurations were tried, since it was 

usually easier to turn a knob than modify a program. Utilizing the 

computer during a data set run was a necessity, since each tempera-

ture or density measurement required computer analysis of a large 

amount of data generated by hundreds of individual shots. Each shot 

requires the generation of a nearly identical plasma upon which the 
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same experiinent is conducted. At an appropriate point during t}:J.e 

experiinent, a destructive measurement is made. 

C. Operation of EV 

The anisotropic temperature relaxation rate measurement 

requires the creation of a known anisotropy and measurement of the 

subsequent temporal evolution of that anisotropy. The anisotropy is 

measured by measuring the perpendicular temperature of the plasma. 

and the average plasma density (averaged along the magnetic field 

line) to an accuracy of about So/a at any radius. The parallel tempera­

ture can easily be measured only on the plasma axis, and only for the 

energetic tail of the parallel velocity distribution. The accuracy of 

this measurement is on the order of lOo/a. Each of these measUre­

ments require many individual destructive shots, each of which in­

volves a dump of the plasma to measure the charge (sometimes as a 

function of energy) along field lines at a chosen plasma radius. 

This means that the operation of EV is geared toward cyclic 

operation; each cycle must produce an identical plasma, create the 

identical anisotropy, and m.2.ke a measurement at the same time of 

evolution. Each cycle consists of four phases: (1) an inject phase, 

where the plasma colurn11 is formed and captured; (2) a "sample 

preparation11 phase, where the plasma is manipulated to the desired 

density and temperature in a near equilibrium. state; (3) an experi­

ment phase where the desired thermal anisotropy is created and then 
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allowed to relax for a fixed amount of time; (4) a ndump and measure 11 

phase, where a charge measurement is made as the plasma is de­

stroyed, which leaves the-device ready for the next cycle. 

When enough individual measurements have been made to en­

able a density or temperature measurement of sufficient accuracy, the 

fixed time of evolution in the experiment phase can be changed and· the 

process begun again. The amount of data (number of shots) required 

by each measurement varies; up to hundreds of individual identical 

shots may be required to measure a density or temperature with suffi­

cient precision. Thousands of shots are required to monitor enough 

of the temporal evolution of a given anisotropy to· calculate its relaxa­

tion rate. 

All of these shots must be performed with nearly identical 

plasmas. Since they cannot be exactly identical, the fluctuations in 

the amount of charge, and the energy distribution of the particles 

along field lines at any given plasma radius will, to an extent, deter­

mine how many shots will be required for a given accuracy level. 

Since each shot takes from 1-2 seconds, and hence the measurement 

of a rate can take hours, a technique which lowers the level of fluctua­

tions was investigated and then put into service for some of the rates 

measured in the latter stages of this study, Appendix B describes this 

technique. It permits measurements of greater accuracy for a given 

time spent. 
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C. 1. The Inject Phase 

The inject phase starts with all confinement cylinders held at 

ground potential except for the two cylinders chosen as the confine­

ment barriers (GI and LS, say), which have large negative potentials 

applied to them. The inject gate (Gl in this case) potential is rapidly 

switched to ground and held there. Elecfrons thermionically emitted 

from a negatively biased tungsten filament then form a colurntl that 

extends from the source through the grounded cylinders to the poten­

tial barrier formed by the large negative potential applied to the 

dump gate (LS), 

The dynamics of the colum.11 formation are not well understood, 

and such understanding seems a formidable problem, but the equilib­

rium characteristics Of the column have been addressed by a simple 

model of ~alm.berg and deGrassie. 
38 

The essence of the model is 

twofold: electrons do not significantly move across field lines, and 

the potential within the column (due to space charge) far from the 

source matches that of the source to lowest order. The column is 

assumed long enough so that the potential is independent of z. The 

EV device employs a tungsten wire filament with a planar Archimedes 

spiral geometry perpendicular to and centered on the confinement 

axis. The filament is resistively heated by pa<:ising a D. C. current 

through the wire. This source geometry produces, to lowest order, 

a parabolic radial potential across the filament. This potential is 
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then matched by the potential of a column whose charge density is 

radially uniform out to at most the maximum radius of the filament. 

The radius of the plasma is determined by the requirement that the 

potential at the column axis match that of the filament center, which 

can be adjusted with an independent bias supply. The magnitude of 

the charge density is set by the ratio of the potential drop across the 

filament to the square of the filament radius. The narrow range of 

applied D. C. fi,lament current which yields sufficient thermionic 

~mission yet doesn't cause structural weakness results in a charge 

density of about 10
7 

electrons/cm
3

. In principle, this density can be 

raised by applying a short duration voltage pulse to the filament, in 

addition to the D, C. heating current. This increases the potential 

drop across the filament for the duration of the pulse. Capture could 

then be effected once the colurnn is established at the enhanced dens-

ity determined by the voltage pulse. The pulse duration must be kept 

·short in order to limit the heat load on the filament. This technique 

has not as yet been implemented on EV. 

Once the column is established, the inject gate potential is 

raznped from ground to the final confinement potential, V . This . c 

pinches off the column from the source and traps it between the inject 

and dump gates. Figure Za s}tows a captured plasma schematically. 

The time required to establish the colum11 is on the order of a few 

electron transit times - approximately 10 µsec. The inject gate 
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potential is usually ramped to V on a time scale that avoids the 
c 

occurrence of the diocotron wave of lowest azimuthal mode number, . . 
47-49 . 

£. = I. The ramp time scale must be much longer than the 

diocotron period, With an appropriate choice of inject and dump 

gates, and by varying the magnitude of V , confi'ned plasma lengths 
c 

over the range 4 ::;; L S" 40 cm can be attained, The plasma radius 
p 

is about that of the filament (R """ 2 cm) and the plasma density is 
p 

7 -3 
about 10 cm • 

C. 2, The Sample Preparation Phase 

The captured plasma can be axially expanded or compl.-essed 

7 -3 
if densities other than 10 cm are desired, Assume the initially 

confined plasma is trapped between Gland GZ, i. e, is contained in 

Ll through LS. If the potential on Ll-L4 is then ramped to V , the 
c 

electrons of the plasma, which are continually bouncing along field 

lines between GI and GZ, will eventually be unable to penetrate the 

rising potential barrier within Ll-L4. Figure 2b schematically 

shows an axially compressed plasma. The plasma is then axially 

confined in LS and S only, which means the density will approxi-

mately triple. If we reverse the process, then the plasma will 

eventually reenter Ll-L4. This axial expansion will then lower the 

density by approximately a factor of 3. We attain our measured 

. 6 -3 7 -3 
dens1tyrangeof3Xl0 cm <n<3.SX10 cm fromcompress-

ing or expanding the initially captured plasma. In both compression 
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(a) Captured Plasma 

Source G1 L1 L2 L3 L4 s L5 
0 
0 
0 
0 
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Figure 2. (a) The captured plasma is axially confined between the 
inject and dump gates by applied potentials. (b) An axial 
compression is accomplished by slowly ramping the 
potential V c applied to the compress gates (Ll-L4) until 
all electrons are excluded from the compress volume. 
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and expansion cases, there will be a polarization drift in the radial 

direction due to the net change in the column's ra'.dial space charge 

electric field as the density increases or decreases. This effect is 

discussed in Appendix F, and is shown to be negligible for the range 

of compressions used in this study. Hence, these compressions are 

essentially axial, as is shown in Figure 3, 

Figure 3 shows three plots of measured projection density, 

Q(r), where Q(r) is the total charge along field lines that pass 

through the collimator hole (see section 3. C. 4, iii), taken (a) just 

before an expansion; (b) 0. 3 msec after an expansion, and (c) 50 msec 

after the expansiotl, when the initial anisotropy has relaxed to equilib­

rium. Also shown are measurements of T l)r) at various radii· 

(isolated crosses). T1 is measured in eV with the full vertical scale 

equal to 5 eV. The vertical extent of the cross is an estimated R..MS 

error bar. Q(r) is measured in volts with the full vertical scale 

equal to 10 volts. The solid curve is drawn between average values 

of Q(r) at given values of r; the individual measurements of Q(r) 

are given by the short horizontal lines. The horizontal axis is the 

radius in units of O. 5 cm; r = 0 is the vertical solid line at the center 

of the graph. The dashed vertical lines represent the confinement 

cylinder wall radius. The data is taken as a function of collimator 

hole position, which is varied along an arc which passes through the 

confinement axis. The data is not exactly symmetric about the r = 0 
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Figure 3. Three plots of Q(r). the num.ber of electrons along field 
lines (measured in ·volts), and Tl.(r), the perpendicular 
temperature, taken at various radii: (a) just before an 
expansion; (b) O. 3 msec after the expansion, and 
(c) 50 msec after the expansion, when the anisotropy 
has relaxed to equilibrium. The solid line connects 
averaged values of Q(r). The vertical extent of the TJ_(r) 
cross denotes an estimated RMS error bar. Full vertical 
scale is 10 V for Q(r), and 5 eV for T1 (r}. The solid 
vertical line is the approximate position of the r = 0 axis; 
the two vertical dashed lines represent the cylinder wall 
radius. 
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line due to both the fluctuating nature of the individual measurements 

and the uncertainty in hole position relative to the confir_ement axis. 

The true synunetr)r axis may vary from graph to graph; the r = 0 line 
' 

is just a guideline. There are two important points to be drawn from 

these figures. One is that Q(r) is unchanged by the expansion, which 

implies no net radial transport of electrons. The other is that T 
1 

(r) 

is essentially independent of r in the vicinity of the syn.rnetry axis 

during the relaxation of the anisotropy. 

The desired temperature is obtained by cyclically compressing 

and expanding the plasma axially in such a manner as to perform a 

net amount of work on the plasma each cycle. At the end of each 

cycle, the density has returned to its initial value, and the tempera-

ture has increased due to the net amount of work done on the plasma. 

This process is described in Appendix A. The essential feature is the 

utilization of a one dimensional axial compression. Such a compres-

sion heats only the parallel degree of freedom. It must be accom-

plished on a time scale small enough so that there are no collisions 

which transfer energy into the perpendicular degrees of freedom. 

The power supply which provides the compressing potential does work 

on the plasma, and the amount of work it does depends, in part, on 

T 11 , the temperature of the parallel motion, This work raises T
11

, 

but Tl., the perpendicular temperature, remains unchanged. By 

keeping the plasma compressed for a time comparable to a collision 
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time, the parallel and perpendicular degrees of freedom relax 

towards a common va.lue. This lowers T
11 

(and raises T 
1

), and thus 

when the plasma undergoes a 1-D expansion back to its original vol-

urn.e, the amount of work done by the plasma on the power supply in 

expansion is less than the amount of work done by the supply on the 

plasma during compression. There is thus a net amount of work done 

on the plasma over one cycle. 

Neither the density nor temperature can be increased arbi-

trarily, since raising either increases the total energy of each elec-

tron. If the applied potential barriers are insufficient to reflect these 

electrons, then they are no longer axially confined. The currently 

available high voltage operational amplifier electronics limit V c to 

about -300 V. Figure 4a shows an idealized schematic of the potential 

energy as a function of z. Also shown is a Maxwellian parallel 

kinetic energy distribution measured at z = 0, the plasma center. 

Electrons cannot be confined when the swn of their parallel kinetic 

energy and potential energy exceed the confining barrier height. 

If the radial electric and pressure forces on a charged fluid 

element of the plasm<-l. are too great, the axial magnetic field cannot 

radially confine the element. The maximum. charge deO.sity (which 

produces the radial electric field) that can be confined by a given 

. f" ld . d . d b th B ·11 · 1· · 5o. 51 Tb" magnetic 1e 1s eterm1ne y e r1 ou1n 1m1t. LS maxi-

mwn density is decreased by the presence of radial pressure 
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Figure 4. Axial or radial deconfinement can occur if temperature 
or density limits are exceeded. (a) shows axial de confine­
ment when excessive thermal energy exceeds the height of 
the confining potential energy well. z is the axial co­
ordinate and the ordinate is the potential energy as a func­
tion of z. A Maxwellian parallel kinetic energy distribu­
tion is schematically added to the potential at z = 0; the 
sum of this potential and the parallel kinetic energy of an 
electron is the relevant total energy of the electron. The 
electrons in the cross hatched tail region are not confined 
by the well. (b) shows a radial force diagram on a charge 
fluid element. The azimuthal velocity, v¢ , is due to the 
sum of the radial electric field and pressure gradient 
drift velocities. 
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(temperature effects). The Brillouin limit can easily be derived from 

consideration of the radial forces on a charged fluid element, shown in 

• 
Figure 4b, The electric and pressure forces cau,se an azimuthal drift 

of the fluid element. This azimuthal movement of charge in a mag-

netic field in turn causes a radially inward magnetic force. It is the 

sum of these radial forces which determine the orbit of the 'fluid ele-

ments about the axis, The Brillouin limit is reached when the net 

centripedal force required for circular orbits, .which increases as the 

square of the azimuthal velocity, can no longer be provided by the 

me.gnetic force, which increases only linearly with the azimuthal 

velocity. At this limit, the sum of the electric and pressure forces 

is exactly half of the magnetic force. The angular velocity of the 

fluid element, UJ, is equal to 0 /2 at the Brillouin limit. This limit 

can be rewritten as Thus the pure electron plasmas pro-

duced in these electrostatic/magnetic confinement devices are always 

in the strongly ma.gnetized regime, r g < A
0 

, of trans port theory. 

If the temperature is elevated to a level at which a significant 

fraction of the electrons are energetic enough to ionize the back-

ground neutrals at a sufficiently rapid rate, then the additional physics 

of ionization can complicate the data analysis of the processes under 

study. The temperatures used in this study ranged over O. 7 eV S: 

TS: 8,5 eV. The densities and temperatures studied were not limited 

by the effects described above, which tends to limit high density and 
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temperature combinations. Rather, low density and high temperature 

combinations were limited by experimental conditions. The basic 

scaling of the collisional velocity space equilibration rate is density/ 

(temp)
312

-low densities coupled with high temperatures yield low 

rates. A desire to keep this rate much larger than other background 

transport rates limited the combinations of densities and temperatures 

chosen, as did the available compression/expansion ratios. 

Once the desired density and temperature are attained, the 

plasma is then allowed to evolve to a state of near thermal equilibrium. 

The time scale of this evolution is on the order of 1 "sec at 281 Gauss, 

the magnetic field strength primarily used in this study. 281 Gauss 

was chosen so as to minimize the thermal equilibration time - which 

seems to increase linearly with B 
49 

- and yet maintain an acceptably z 

large characteristic external transport time - which increases as the 

46 
square of B . At the end of this holding period the plasma is 

z 

ready for the experiment phase to proceed. 

At some point during this sample preparation the fluctuation 

reducing technique described in Appendix B may be employed to im-

prove shot-to-shot reproducibility. This technique is most effective 

when the plasma is long and B is greater than about 150 Gauss. 
z 
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C. 3. The Experiment Phase 

The experiment phase begins with a 1-D axial compression 

(or expansion) that creates the initial anisotropy in velocity space. 

This anisotropy is characterized by two essentially Maxwellian veloc­

ity distributions with temperatures T 11 f=. T J.. The compression typi­

cally takes approximately 1 m:3 to complete. After the compression 

is finished, the induced anisotropy relaxes for an amount of time 

determined by a timing circuit which is started at the end of the com­

pression. The timing circuit triggers a plasma dump and measure­

ment at the end of the desired time interval. 

The compression (or expansion) which produces the initial 

anisotropy also changes the density, and it could be asked whether or 

not this change in parameters, which certainly moves the state of the 

plasma away from the original thermal equilibrium., would also 

initiate further transport which might complicate the relaxation 

process by providing sources or sinks of energy and/or density. 

However, the fact that the large density and temperature fluctuations 

have already been smoothed out during the holding stage tends to keep 

any such transport rates small. See Figure 3, which shows the nUITI­

ber of electrons along field lines and temperature data taken just be­

fore an expansion, just after, and after the induced anisotropy has re­

laxed. To within the accuracy of the charge measurements, there 

has been no net radial particle trans port over the time of relaxation. 
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Also, temperature measurements taken after the anisotropy has re­

laxed are essentially constant over time scales comparable to the 

relaxation time, Figure 5 shows a typical anisotropy relaxation data 

set, which is comprised of temperatures taken just before the velocity 

space anisotropy is created, during its relaxation, and after it has 

decayed, Note there is no significant temperature change following 

the relaxation over several relaxation time periods. These two exper­

imental results allow the deduction that the relaxation occurs in condi­

tions of essentially constant density and thermal energy. 

The essence of the measurement of the anisotropic tempera­

ture relaxation rate is in following the time evolution of the anisotropy 

after it has been created, This is done by measuring the anisotropy 

repeatedly at various times after the anisotropy is induced. These 

intervals are chosen to adequately cover the relaxation throughout the 

decay and well into the final equilibrium. The measured time evolu­

tion of the anisotropy is then analyzed to yield a relaxation rate. 

The dump and measure phase is triggered after the desired 

time interval of relaxation has been counted out by a digital clock cir­

cuit which has a fundamental clock rate of 10 MI--Iz provided by a 

crystal-controlled oscillator. Interval timing uncertainty is of the 

order of 1 µsec with this circuit. The interval starts at the end of the 

compress (or expand) potential ramp. The initial anisotropy is de­

fined to be that which exists at the end of the compress ramp. 
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Figure 5. The relaxation of a given anisotropy to equilibrium is 
shown by a plot of (E.i) and Tue measurements made as 
functions of time, The plasma is in equilibrium. for times 
t < O. Note the Tne: value measured at t < 0. The expan­
sion which induces the initial anisotropy starts at t = 0 
and continues for roughly 1 msec. The solid lines repre­
sent the best fit of a simple exponential decay model to the 
data. The rate best fit to the (E .l} data is v

1 
= 146 ± 

10 sec-
1

; the rate best fit to the Tue data is v.l = 90 ± 
6 sec· 1. Tf = 1. 07 eV and ti= 0. 54 x 107 cm-3, Charac­
teristic error bars are shown at t = 10 msec. 
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C. 4. The Dump and Measure Phase 

The dump and measure phase depends upon which type.of 

measurement is to be made - perpendicular tempera,ture, T.l' 

parallel temperature, T 11 , or density, n, In all cases, triggering 

the dump and measure phase initiates a process which allows the con­

fined plasma to escape past the dump gate by reducing the dump gate 

potential energy barrier. The escaped electrons then travel axially 

down the field .lines, where they eventually encounter the positively 

biased collimator plate. Most of the electrons are stopped and col­

lected by the plate, but some will be on field lines that pass through 

the hole in the plate. These electrons pass through the collimator 

hole to ente_r the analysis region. Figure 6 schematically shows the 

trajectories of the dumped electrons. 

Depending upon the particular measurement desired, some or 

all of these electrons will pass through the analysis region to en­

counter and be collected by the positively biased collector electrode. 

~he amount of collected charge is calculated from the measured rise 

in voltage at the input of the first stage amplifier (Figure 7 shows the 

charge measurement circuit diagram) due to the increase in charge 

on the total distributed capacitance of the input to the amplifier. This 

distributed capacitance and the gains of the amplifiers are carefully 

calibrated to an accuracy of about 3o/o, 
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Figure 6. The dumped electrons travel axially down the field lines. 
Most electrons encounter the collimator plate, but those 
on field lines which pass through the collimator hole enter 
the analyzer region. 
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Figure 7. Block schematic of the charge collection and measurement circuit. An initial input 
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time. The three output pulses generated by the measurement circuit are timed so that 
sample and hold 11A 11 holds the signal measured just before the electrons are dumped 
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This charge induced voltag·e is measured by a differential 

sample and hold circuit which is triggered by a 11 predump 11 pulse after 

a specified evolution time. The sample and hold circuit then measures 

the output of the collector amplifier chain both before and after the 

plasma is dumped, and subtracts them. This differencing scheme is 

helpful in that it filters out noise whose frequency is much lower than 

the inverse difference time (about 30 kHz). 

(i} Perpendicular Temperature Measurement 

The perpendicular temperature measurement measures the 

average perpendicular kinetic energy, (E
1
(r)), of the plasma at any 

chosen radius to an accuracy believed better than So/o. The average 

is over the distribution of perpendicular velocities along the field 

lines which pass through the collimator hole. 'We assum.e there is no 

z dependence to this distribution. The measurement of (E.l) is 

accomplished by first measuring the change in the number of col­

limated electrons which pass through an electrostatic potential energy 

barrier as the barrier height is varied about a chosen value. Second, 

the barrier height is fixed at that value and the change in the number 

of electrons which pass through both the barrier and an additional 

secondary magnetic field as that additional field varies about zero is 

measured. This extra field forms a magnetic mirror (or cusp) field 

which subtracts {or adds) an amount of parallel kinetic energy from 

each electron within it. This amount is in proportion to the electron 
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perpendicular· energy as measured before entering the mirror, The 

ratio of these two measurements yields (E1 ) directly. 

The perpendicular temperature measurement requires many 

individual shots to acquire the data necessary for analysis. These 

shots are taken with plasmas that are as similar as possible. Each 

shot [:irdvides one charge measurement. The analyzer parameters 

under which each charge measurement is made, such as analyzer 

cylinder potential or secondary magnetic field strength, are adjusted 

between shots, 

The basic measurement is initiated when the potential applied 

to the dump gate is abruptly switched to ground. The now unconfined 

plasma then axially expands under the combined influence of its un­

opposed axial electric space charge field and kinetic energy. Far 

downstream from the original confinement volume, the unconfined 

expanded plasma has a greatly reduced space charge potential energy. 

The lost potential energy has gone into parallel kinetic energy. Con­

sequently, the parallel kinetic energy distribution, f(E 11), of the un­

confined plasma contains a complicated mix of the original confined 

parallel kinetic energies and space charge potential energies, which 

is determined by the dynamics of the disassembly process. Since 

plasmas in EV usually have space charge potential energies which are 

much larger than kinetic energy, f(E
11

) bears little resemlJlance to 

the confined distribution. 
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The perpendicular kinetic energy distribution, h(EJ_), of the 

disassembled plasma remains essentially identical to that of the con-

fined plasma. This is due to a wide separation of characteristic fre-

quencies: the relatively large gyrofrequency, the inverse time 

period over which the space charge ele~tric fields change during dis-

assembly, and the relatively low frequency of collisions. 

The characteristic time scale over which the electric fields 

change during the dump disassembly is estimated by measuring the 

time interval over which electrons, which have passed through the 

collimator, encounter the positively biased collection electrode after 

a dwnp. This time is on the order of 1 µsec. Collision frequencies 

-1 
are typically 10-1000 sec ·. The electron gyrofrequency at 281 

Gauss, on the other hand, is approximately 5 X 10 9 rad/sec. This 

separation of frequencies insures that the electron gyromagnetic mo­

ment, here written with all constants suppressed as µ = v~/B, re-

mains an adiabatic invariant throughout the disassembly process. 

Since Bz remains fixed, v~ is also unchanging, and thus h(E .l) 

remains unchanged by the disassembly process. Also, there is no 

time for collisions to affect h(E.l). 

The measurement technique used to probe h(E.l) was first 

employed by 
52 

deGrassie, and was based on previous work by Hsu and 

Hirshfield. 
53 

The following theory discussion is similar to that of 

deGrassie. Assume the collimated beam of escaped electrons has a 
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kinetic energy distribution which is separable, i.e., g(E
11

, E 1.) = 

f(E
11

) h(Ej_). Let cylinders Al, AZ and A4 be grounded, and let 

cylinder A3 have an applied negative potential VA. Further assume 

that the beam has essentially no space charge. Finally, let the 

secondary magnetic field solenoid induce field strength B
6

(z) in the 

same direction as B 
z 

We ask what the parallel kinetic energy of 

an electron must be in order to pass through A3 to reach the collector. 

We find that it must be greater than -eV A plus an amount proportional 

We calculate the change a dumped electron's parallel kinetic 

energy suffers in traveling from well outside of the secondary field to 

the axial position of maximum. secondary field (i. e,, well within the 

mirror). The magnetic field varies over this path from B = B to 
z 

B = B + B , where B denotes the maximum. of B (z), We assume 
z s s s 

that µ remains a good adiabatic invariant over this path. Then, the 

2 
constancy of µ = vj_/B over this pa.th coupled with the conservation 

of total energy ( 
1 2 2 ) zm(vj_ + vll) =canst. leads to 

where .6.E
11 

is the amount the electron parallel energy changes over 

the path, El. is the electron perpendicular energy as measured well 

outside of the secondary field (which is its value in the confined 

plasma), and y is the ratio B /B s z 

Since any electron of energies E
11

, El well outside the field 

* will have p'3.rallel energy E II= Et! - y E 1 in the center of the field, 
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we may think of the secondary field as providing an additional, addi-

tive 11effective 11 energy barrier to the electron. This effective mag-

netic barrier height is equal to y E 1 • It adds to the electro-
max 

static potential barrier provided by VA , Since the solenoid and A
3 

are designed so that the individual barrier maxim.a are achieved at 

the same axial position, the maximum barrier height presente.d to an 

electron of initial perpendicular energy El. is -eV A + y El.. Thus 

an electron must have a parallel energy E
11 

> -eV A+ yEl. in order 

to pass through the barrier to reach the charge collector. 

In fact, the solenoid -A
3 

combination is designed so that the 

maxim.urn total barrier height is given by -eV A+ y El. even for nega-

tive values of .y (a cusp field configuration), This requires sole-

noidal field extension past both ends of the potential barrier. There-

fore the design of the solenoid is such as to require it to be longer 

than and axially centered upon A 3 . Were this not the case, then 

negative values of y might only cause a local dip in the barrier 

height, leaving the maxi.mum independent of y. In the subsequent 

discussion, it will be assumed that the maximum barrier height is 

always dependent upon y. Figure 8 schematically shows the two 

barrier components presented to an electron of energy El. as func-

tions of z for both positive and negative Y, as well as the total 

barrier height. The axial extent of both the solenoid and A
3 

is long 

enough so that the barrier heights are to good approximation inde-

pendent of radius near the axial center. 
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Figure 8. The analyzing section is shown in schematic form, along 
with graphs of the electrostatic and effective magnetic 
barriers as functions of axial position z. The dashed lines 
represent barriers generated by values of y < 0. The 
solenoid and cylinder A3 are axially positioned so that the 
maximum effective barrier height is given by the sum of 
the individual barrier maximums. 

56 

• 



• 

Figure 9 graphically shows the region of energy space for 

which an electron will be transmitted through the analyzer region to 

the collector. The boundary between transmission and reflection is 

derived from E
11 
~ -eV A + y El.. Integrating the energy distribution 

function over the region of transmission then gives the total number 

of electrons which reach the collector: 

00 00 

N(VA, y) =NT 1 dEl J dE 11 f(E 11 )h(E1 ), 

0 -eVA +y El 

(3.C.i.1) 

where NT is the number of electrons which have passed through the 

collimator hole. Both f(E
1

) and h(E
1

) are normed to unity, i.e., 

N(O, 0) =NT • Two simple partial derivatives with respect to the 

lower limit of integration of the E
11 

variable yield: 

8N(V A' Y) 

av 

8N(V A' y) 

av 
A 

= NT f00 

dEl El. h(E1 ) f(-eV A+ YE/ 

0 

00 

= eNT 1 dEl h(E1 ) f(-eV A+ yE1 ) 

. 0 

If these derivatives are evaluted at Y = 0, then 

8N(V A' 0) 

ay 

00 

= -NT f(-eV A) 1 dE1 E 1 h(E1 ) 

0 
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Reflected 
E11 + eV, 

EJ_ = ~; 

E_l_ 

Transmitted 

E;; 

Figure 9. Reflection and transmission regions in energy space. 
E1, E11 are the electron perpendicular and parallel 
kinetic energies an electron has after it is dumped but 
is still far from the secondary solenoid. -eV A+ y E 1 
is the maximum effective barrier height presented to 
an electron of energy El.. 
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aN(V A' 0) 

av A 
(3. c. i. 5) 

and thus, ii both derivatives are evaluated at the sam~ value of 

VA= VA chosen such that £(-eV A} is not zero), then 

(3,C.i.6) 

where (E.L) is the average perpendicular kinetic energy of those 

confined electrons which are at the same radius as the collimator 

hole. This result is independent of the form of h(E
1

), and of VA 

as long as f(-eVA) ;to and g(E!l,E.L) is separable. Of course, if 

h(El.) is a Maxwellian distribution, then {E
1

}::: Tl. The experi­

mental details of how (E
1

) is ~easured are give~ i~ Appendix C. 

If the energy distribution function g(E II' E 
1

) is not separable, 

then the measured value of (El.) will be a function of VA , A true 

measurement of (E1 ) will then require an average of measured 

(E 1 ) over all VA • Measurements of (El) at various VA values 

lead to the conclusion that to good approximation (E
1

) is independent 

-
of VA and hence g(E

11
,EJ.) is separable. Figure lOa shows 

N(V A' 0), the transmitted electron charge (when y =O) as a function 

of VA , for a plasma which is not yet in thermal equilibrium but was 

held long enough to be Maxwellian in kinetic energy. All measure-

ments were taken on axis (r = 0), Figure 1 Ob shows (E 
1

) measured 
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Figure 10. The transmitted portion of the total electron charge divided 
by the total charge is plotted against the maximum electro­
static barrier length, -eV A, for the condition y = 0 in (a). 
(b) shows (El) plotted as a function of relative transmitted 
charge, which is a function of VA. The (E 1 ) values h3ve 
errors of_approximately ± So/o. VA is usually set to VA , 
where N(V A, 0)/N(O, 0) = D. 5 for all measurements of 
(El). 
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as a function of VA The x-axis is the relative signal, 

N(V A' O)/N(O, 0), It can be seen that (El.) is indeed independent 

of VA over a wide range. Measurements of (E.l) made as VA__,,. 0, 

-(i.e. N(V A' O)/N(O, 0)-> 1) and as VA (i.e. N(VA,0)/N(O,O) ->O) 

were not made since each limit requires measuring two very small 

(a'!'.-d hence uncertain) slOpes and then dividing them. We believe that 

the (El.) measurement is to good approximation independent of VA 

when N(V A' O)/N(O, 0) - l/Z. 

Although we expect E 
11 

and El. to be somewhat coupled during 

the evolution of a velocity space anisotropy (due" to the velocity depend-

ence of the Coulomb cross-·section), we also expect that the dis-

assembly process wou.ld act to decouple Ell and El. . This is due to 

the fact that the spatial separation of two electrons with the same 

E
11

, E .l will most likely result in different parallel energies after the 

disassembly, which is dominated by space charge potential energy 

conversion. A study of the possible dependence of (E.l) as a function 

of VA during the collisional relaxation v1as not undertaken, We be-

lieve that the net effect any residual coupling would have on our meas-

ured rates is small. However, this effect remains as a possible 

source of a small systematic error. 

61 ' 

J 



(ii) Parallel Temperature Measurement 

The Tl! measurement technique described here is not well 

suited for a precision measurement of the anisotropic relaxation rate 

since only the temperature of the energetic tail of the velocity distribu-

tion is actually measured. The average parallel kinetic energy of the 

entire distribution can be inferred if the distribution is Max-

wellian. Hence the T
11 

measurement does serve as an independent 

check of the Tl. measurement when the plasma is in equilibrium, 

Also, Cata obtained with both the T
11 

and TJ.. measurements at various 

times during the evolution of the anisotropic relaxation give striking 

evidence of the creation and subsequent relaxation of that anisotropy, 

as is shown in Figure 5. Thus, while the T
11 

data is not used in the 

. 
analysis which yields the relaxation rates, the T

11 
measurement 

served a useful purpose in this study. 

The measurement technique gives an experimentally simple 

method of measuring T 
11 

, the p3.rallel temperature of a Maxwellian 

plasma, to an accuracy of about lOo/o. The method consists of slowly 

decreasing the dump barrier height, thus allowing the most energetic 

electrons to escape first. The rate at which charge escapes as the 

barrier height is reduced then yields T
11

, at least within the confines 

of several rather severe restrictions, These restrictions are mostly 

due to considerations of theoretical tractability and simplicity. Neces-

sary corrections to the simple model are discussed, The experi-

mental procedure and the analysis of the data is described. 
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The parallel temperature diagnostic used in this study is a 

result of the contributions of many in the Malmberg group. Measuring 

T 11 by measuring the parallel ~inetic energy of the dumped plasm.a 

must contend with the complications of the dump process itself con­

verting the relatively large space charge energy of the plasma into 

parallel kinetic energy. The measurement technique used here repre­

sents a partial solution to this problem. It has the advantage of meas­

uring T 11 in one shot, but also has some disadvantages. These dis­

advantages are: T 11 can be measured only on axis (r = O); the value of 

T 11 measured must be corrected for factors that vary with different 

plasm.as, and each correction can be of the order of lOo/o; and, most 

importantly, the actual measurement is made only over the energetic 

tail of the parallel velocity distribution, f(vll). If f(v
11

) is not Max­

wellian, then this measurement technique gives only an average energy 

scale characteristic of the energetic tail of f(v
11

). See Appendix D, 

A technique which allows a more comprehensive measurement of T
11

• 

including measurement at r f:. 0 and effective measurement over the 

entire distribution, 54 
has been developed by Eggleston. However, this 

technique is very computationally involved and time consuming, and 

was not used in this study . 

The T 11 measurement deals with the space-charge energy to 

kinetic energy conversion problem in a straightforward way. By 

employing a technique which allows a simple model.of the dump 
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process to be made, a straightforward analysis of that model, at 

least during the initial stages of the dump, can be accomplished. The 

technique which simplifies the dump process is to slowly reduce the 

confining potential energy barrier by ramping V d , the potential 

applied to the dump gate, to ground. This ramping is done on a time 

scale which is very slow compared to an electron axial bounce time, 

yet which is very fast comp:i.red to a collision time. This is the same 

time scale ordering required for the 1-D compression, see Appendix A. 

The relatively large bounce frequency insures that electrons in the 

plasma will encounter the dump gate barrier at a given barrier height, 

since the barrier doesn't essentially change over the time required for 

any electron to travel the length of the plasma. For simplicity, further 

assume that the dump gate is very long in comparison to its diameter. 

Then the maximwn potential barrier height is given by -eV d , and is 

essentially independent of radius. (It turns out that a quadratic radial 

dependence doesn't affect the measurement.) At some point during the 

slow reduction of the barrier height, the most energetic electrons will 

begin to escape past the barrier. We can then ask how many electrons 

escape as a function of V d • 

In the absence of any collisions, the sum of the potential and 

parallel kinetic energies of each electron remains essentially fixed 

thxoughout the process. We can then evaluate this sum at any axial 

position, and it is simplest ~o do so at z = 0, the axial center of the 

plasma. Each electron will escape past the dump barrier when this 
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surn exce_eds -eV d, the barrier height: 

-e¢(r, 0) ;;:: -eV 
d 

(3. c. ii. 1) 

is the condition for the escape of any electron at radius r. We ex-

pect the first electrons to escape will be on or near the axis (r = O), 

where the space charge potential energy is the most negative. 

We can now calculate the escaped charge as a function of the 

barrier voltage, V d • Several simplifying assumptions and restric-

tions will be necessary to keep the calculation analytically tractable. 

Within these assurnptions, we will find that at least initially the charge 

escapes from a region of a few AD about the axis and that the total 

escaped charge displays (to an accuracy of about lOo/o) an exponential 

dependence upon the barrier height -eV d with T
11 

as the character-

istic scale. One of the restrictions necessary to derive this result is 

that T
11 

be measured only over the energetic tail of f(v
11

), the 

p.arallel velocity distribution of the confined plasma. 

Assuxne that f(v
11

) is independent of r and z, and is normed 

so that its integral over all v
11 

is unity. The total nuxnber of escaped 

electrons, Q (r ; r ), which pass through the collimator hole (of 
e o c 

radius r centered on position r ), is then calculated as a function 
c 0 

of V d by integrating f(v
11

) n(r, z), the initial confined electron di~-

tribution function, over all z; the collimator hole area; and v
11

, 

using equation (3. C. ii. 1) as the lower velocity limit: 
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= f da n(r,z) J dv11 f(v 11 ) 

collimator / 
2 

area [-: (Vd -¢(r,o))Jl 

where ¢(r, 0) is the self-consistent potential: 

2 
'i/ ¢(r, z) = 4TTe n(r, z) J 

0 

[- 2e 
m (Vd - J

!/2 
¢(r, 0)) 

(3. c. ii. 2) 

(3.C.ii.3) 

Equation (3. C. ii. 3) simply adjusts the value of ¢ to reflect the 

diminished space charge as electrons escape. Strictly speaking, the 

instantaneous value of V d must form part of the boundary condi-

tions, but for long plasmas, end effects are unimportant and an 

infinite length plasma calculation of ¢ (r, z) suffices. 

We restrict the analysis Of equations (3. C. ii. 2) and 

(3. C. ii. 3) to the regime of approximately Maxwellian distributions 

of temperature T 11 , and for V d such that -e(V d- ¢}/T
11 

>> 1. Then 

to good approximation the upper limit of the vl! integral in equation 

(3. C. ii. 3) can be set to infinity. So few electrons have escaped that 

we can approximate the potential by the initial potential, ¢ , so that 
0 

¢ (r, 0) ~ ¢
0

(r, 0) =constant independent of V d. Let the escaped 

charge calculated using this assµmption be Q' (r ; r ). We assUille 
e o c 

a given f(v 11 ) n(r, z) and ask when Q~ significantly diverges from 

Q calculated using the fully self-consistent ¢ (r, z). This has been e 
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done on a 
55 

computer for a plasma with a Maxwellian f(v
11

), a density 

n(r, z) that is constant in radius over several A.
0

, and a length that 

• is independent of r. The condition that Q 
1 

:::.. Q is then found to be 
e e 

that the central density may only decrease by about 1 o/o. -Further, 

within this limit, electrons only escape from a region which is a few 

Debye lengths in radius about the axis. Thus the approximation 

¢ (r, 0) :::.. ¢ (r, 0) is valid for the near Maxwellian velocity distribu-
o . 

tions expected in this study, as long as: l) the analysis is done 

only on the axis, and 2) the analysis is limited to observation to the 

first l o/o of the escaped electrons. These electrons have velocities 

larger than about two thermal velocities (2V
11

). 

(The above discussion is valid only for plasma columns wl1ose 

radii are greater than a few Debye lengths, that is, plasmas whose 

space charge potential energy is much larger than its kinetic energy. 

For very dilute or very hot plasmas whose column radii are much 

smaller than a De bye length, temperatures can be measured at any 

radius, and ¢(r, 0) """' 0 is a good approximation which remains valid 

for most, if not all, of the disassembly.) 

With a few more reasonable assumptions, equation (3, C. ii. 2) 

·can be analytically integrated to give the dependence of Qe upon V d. 

We assume 1) a density that is constant over the collimator hole area, 

which is centered on the axis; 2) the plasma is long enough to neglect 

end effects; 3) the tail of the parallel velocity distribution is 
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Maxwellian with a temperature, T
11

, that is independent of radius. 

·[ 2e ]1/2 We write the escape condition as Ve= - m (V d- "/Jo(r, 0)) • 

and rewrite equation (3. C. ii. 2) as 

(3. c. ii. 4) 

where 

2m )1/2 

= ( nT~ 
We find ¢ (r, 0) from assumptions (1) and {Z) and Poisson's equation 

Q 

(3. c. ii. 5) 

over the range 0 s: r s r c , where Rw is the cylinder radius and W> 

is the constant contribution to the inner regio,n (r < r c) potential due 

to all charge outside of r . Note ¢(r, 0) = ¢ + nen r
2 

in the 
c Q Q 

region of interest, where ¢ is the space charge potential on axis. 
Q 

(See Appendix D for an alternate form of equation (3. C. ii. 4) suitable 

for an arbitrary velocity distribution). 

Equation (3. C. ii. 4) can then be integrated to give; 

(3.C.ii.6) 
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where erf(x), erfc(x) are the error function and its complement, 

and is the smallest scaled energy of any of the 

escaped electrons on the axis. Since \3 P 2 by restriction (i.e., 

the electrons which have escaped on the axis have stayed within the 

restriction v 11 IV\1:?: 2), we use the asymptotic expansion of erfc(x) to 

obtain the approximate solution 

-
0 p TT (2 A ) 

(
n eL ) z 
2 ,/TI D 

2 
-B e . 

s 

·As r c/Z \D-+ 0 (small collimator hole limit), 

Q(O,r)-+-
0 

Prrr 
(

n eL ) 2 
e c z~ c 

and as r c/2 AD-+ ai (large collimator hole limit), 

Q (O,r )~ 
e c 

2 
-8 

e ---r 

(3.C.ii.7) 

(3. c. ii. 8) 

(3. c. ii. 9) 

We then find that, upon taking the natural logaritlun of 

-Qe(O,r ) in equation (3.C.ii.7), and differentiating with respect to Vd c . 

.!. dd ~n ( -Q (0, r )) 
e V d e c 

(3.C.ii.10) 
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2 2 2 
where P(r c /4A.

0
, ~ ) gives a small 

-2 
('""' 10 maximum.) correction 

due to finite collimator hole size, and can be neglected. 2 -1 
The (2~ ) 

term can be 
-1 

neglected at the 10 accuracy level (lOo/o), 
2 

since ~ ~ 4. 

The T 11 measurement is implemented by digitizing the out-

put of the collector amplifier, the gain of which is chosen so that the 

digitizer saturates when about 2%-So/o of the total possible charge has 

escaped through the axially centered collimator hole. The clock rate 

is typically 1 M::iz; the digitizer resolution is 10 bits; and there is 

BK of digitizer memory, Another digitizer, which is driven by the 

same clock as the first digitizer, is used to measure V d • The 

clock is triggered by a timing pulse which also starts a linear 

ramping of V d towards ground. The ramping rate is chosen so 

that the 1-D expansion conditions are met. The digitized informa-

tion is supplied to the system computer, which searches the Q data 
e 

for the point of saturation, brackets this point with a window, and 

displays the Qe and V d data within this window on a monitor screen. 

Also displayed is the natural log of the Q data. The 
e 

window is chosen to be large enough so that a properly zeroed 

baseline for the Q data can be calculated. If necessary, a linear 
e 

slope can also be removed from Q • These manipulations (prior to 
e 

taking the log) may be required to remove low frequency (acoustic) 

noise generated by micro phonics in the EV device and its associated 

cabling. The logarithm of the treated Q is then taken (a very small 
e 
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arbitrary lower bound to Q is enforced to prevent divergence of 
e 

the log), and a linear regression algorithm is used to least-squares 

fit a straight line (between two experimenter chosen end points) to the 

logarithm of the Q data. The end points are visually chosen to 
e 

cover the log data which is most nearly straight, and to include as 

many decades of Q data as possible, within the 11 nearly straight 11 

e 

restriction. This is typically 1.0-2.5 decades of Q ; 3 decades of 
e 

data can be displayed with 10 bit resolution. Figure 11 shows a 

sample of the Qe and ln[Qe] data, along with V d data, as seen on 

the compute?" monitor screen. 

The slope of V d is similarly measured, using the same 

window. Since each slope is measured with respect to time (or 

clock rate) as the independent variable, it is easy to attain the de-

sired slope by evaluating the ratio: 

(3.C.ii.11) 

The brackets denote the least-squares fitting of a single slope over the 

. 2 
chosen region of ~ ; the value of Tl! thus measured is about lOo/o 

lower than the actual T
11 

as can be seen from equation (3, C.ii. 10). 

A word should be said about the pas sibility of the measurement 

of Q being contaminated by a diocotron instability caused by the in­
e 

creasingly hollowed out radial density 
56 

profile.· This instability 

could cause a local increase in plasma potential, which would in turn 

allow an excess of electrons to penetrate V d . No obvious signature, 
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Figure 11. Plot of digitized Qe(t), ln [Oe(t)[, and Vd(t) as functions 
of t. Imposed upon the ln [ Qe I data is a fitted straight 
line in the region of significant Qe • The vertical logarith­
mic s1:ale covers 4 decades. As can be seen, the behavior 
of ln!Oel is essentially linear over about 3 decades ofQe 
data. 
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such as staircaSing, is observed in the restricted region ~z '2. 4, 

although staircasing has been observed when the central density has 

decreased by more than lOo/11 or so. Since the conditions of the meas-

urement restrict the hollowing to a very sm<:.'1.ll amount, we believe 

there is no contamination due to the diocotron instability. 

This constitutes the basic measurement of T
11

• As has been 

noted here, and is shown further in Appendix D, this measurement is 

really only a measure of the energy scaling of the high velocity 

{v
11 

'2. 2V
11

) tail of the parallel velocity distribution. Unlike the (E .l) 

measurement, it does not measure the average energy of the entire 

distribution, and thus we expect it to be an increasingly inaccurate 

description of the distribution as it further deviates from a Max-

wellian. 

Due to the relitive unimportance this diagnostic has in obtain-

ing the measured relaxation rates, a special effort to improve 

the accuracy was not undertaken. A short list of those correc-

tions which were made is: (1) the fitted T
11 

was increased 

by approximately 10% (depending upon the range of 
2 

8 actually 

fitted) to correct for the (Z~Z)-l term in equation (3.C.ii.10); (2) the 

potential at the center of the finite length dump gate was used 

instead of the applied potential V d {giving a reducing correction to 

T
11 

of approximately -10%, depending upon dump gate length); and (3), 

a correction of approximately +lOo/11 to +40% (depending upon the 
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confined plasma length and V d) to T
11 

is made to account for the in­

evitable Tll cooling the fully confined plasma suffers as the plasma ex-

pands while V d is ramped to g:round. The correction is calculated by 

utilizing the density measurement to determine the fully confined axial 

path length, L(ZV11>· of those electrons with Vil= zvll. and then esti-

mating the correction from a 1-D axial expansion. The electrons are 

assumed deconfined when they cross the geometrical boundary sepa-

rating the durop gate and confinement cylinder. The percentage car-

rection, e:, is then calculated as a 1-D expansion (see Appendix A): 

(3.C.ii.12) 

where Lgeo is the geometric length of the confining volume. 

There are additional effects which could conceivably also gen-

erate ....... lOo/o corrections to the value of T
11

• These include: (1) the 

effect of a finite Vd potential ramp rate, which can cause electrons 

at the far end of the plasma to exit at a lower potential barrier than 

expected, thus broadening the class of velocities that escape at a given 

V d; (2) the effect of the plasma space charge on the analyzing poten­

tial (the effective barrier height); (3) the effect of the space charge on 

the axial position of deconfinement. There are probably others. 

We conclude this section on the T
11 

diagnostic by noting that 

the many corrections to the basic measurement, both kmwn and 

74 

• 



unknown, argue against success in improving the accuracy beyond the 

lOo/o level, Fortunately, the measurement of relaxation rates does 

• 
not depend upon an accurate measurement of TU. In this study, the 

• T 11 measurement was utilized only to provide an independent check on 

the T 1 temperature of a plasma in equilibrium, to illustrate the relax-

ation of the tail of the distribution, and as an initial indication of the 

validity of the 1-D compression model (see Appendix A}. When used 

as a check of T1 (with all corrections made}, T
1 

= T
11 

to within about 

10%, and the error in Tl is believed to be about 5%. Figure 12 shows 

a comparison between measured values of T
1 

and T
11 

and shows the 

values of T
11 

when all corrections are made, Finally, in order to 

avoid confusion, the symbol 11 T 118 
11 

, meaning the 11temperaturen of the 

energetic tail of f(v
11 

}, is used to denote a rneasu.ied value using the 

T!l measurement technique. 

(iii} Density and Potential Measurement 

This measurement involves the use of a computer code to cal-

culate the density and potential as functions of r and z from the 

measured data set. This data set consists of measurements of Q(r), 

the amount of charge in a tube centered at radius r, whose cross-

sectional area is that of the collimator hole and whose length extends 

axially through the plasma, and T(r), the temperature. The compu-

tational technique was previously employed by Prasad to check theo-

1 d . f 1 ·1·b 44 Th h . 1 retica pre ict1ons o p asma equ1 l ria. e tee mque was ater 
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Figure 12. The measured values· of (E 1 ) and T lie: are plotted on 
semi-log axes as a function of time, The raw Tiie: data 
are given by the open boxes; each is the measured value 
!:::. ln jael /t:::.V d. The solid boxes represent corrected 
T 11 e: values. 
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modified to accept experimental data by Fine and Driscoll. 
57 

The 

code computes the density, n(ri z), and the potential, ¢ (r, z), self-

consistently using a 2-D form of Poisson's equation. Cylindrical sym-

metry is assumed, The confinement geometry and applied confine-

ment potentials supply the boundary conditions. The measured Q(r) 

and T(r) data, when coupled with an assumption of local thermal 

equilibrium along field lines, provide equations of constraint from 

which n(r, z) and ¢(r, z) are uniquely determined, 

There is one Q(r) measurement made per plasma shot. Q(r) 

is a measurement of the total charge that passes through the colli-

m.ator hole (area =A ), which is centered at radius r. Q(r) is typi­
c 

cally measured at 30 to 50 different radii. By neglecting the small 

radial polarization drift caused by the dump process (see Appendix F), 

we assume that the electrons remain at the same radius when dumped, 

and thus Q(r), the number of electrons which pass through the col-

limator hole positioned at radius r, can be calculated from the con-

fined plasma density n(r, z) as 

Q(r) = -•ff dxdy f dz n(r, z) ~ 
A all z 

c 

-eAc f dz n(r,z) (3.C. iii. 1) 

all z 

The collimator hole radius is 0, 32 cm, which is typically one De bye 

length or smaller. 

Applying the assumption of local thermal equilibrium along 

field lines, which can be written as 
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n(r,z) = C (r) 
0 

-e¢(r, z)/T
11

(r) 
e (3. c. iii. 2) 

where C (r) is determined by insertion of (3. C. iii. 2) into (3.C. iii. 1), 
0 

requires knowledge of T
11

(r). We can deduce a value for T
11

{r) by 

measuring T 1 (r) when the plasma is in equilibrium.. In equilibrium, 

T 11 (r) =Tl. (r), The T
11

E: measurement employed in this study cannot 

be directly used since it is valid only on the axis. Tl. (r) is typically 

measured at 8-12 different radii. The large number of shots required 

to measure T 1 usually has the effect of keeping the number of T 
1 

(r) 

data points smaller than the number of Q(r) data points. Figure 3c 

shows a typical set of Q(r) and T 
1 

(r) measurements for a plasma 

near equilibrium. 

A computer program takes the Q(r), Tl. (r) data as input and 

self-consistently solves the 2-D Poisson equation, 

2 
'V ¢(r,z} = 4TTen(r,z) , (3. c. iii. 3) 

The program uses a fast Fourier transform to calculate an initial 

potential ¢(r, z) from the boundary conditions and an initial density 

ti(r, z) calculated on an r, z grid from the assumption that ti(r, z) is 

uniformly distributed in z between the confining end cylinders, and 

from the requirement that measurements of this initial density re pro-

duce the measured Q(r). The grid typically has 64 X 128 cells. 

(Care must be taken to insure at least two cell lengths per Debye 

length in both r and z,) With °¢(r, z) calculated, a new ti.(r, z) is 
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calculated using (3. C.iii. l) and (3. C.iii. Z). A variable percentage 

-of the new ti(r, z) is added to the old ti(r, z) and a new ¢(r, z) is 

calculated. This process is iterated until the new and old densities 

have a maximum percentage difference of less than O. lo/o in any cell. 

At this point the final densities and potentials are self-consistent to 

about O, lo/o; these are the measured values of n(r, z) and ¢(r, z). 

A couple of points concerning the Q(r) and T .l (r) data should 

be made. The solution to (3.C, iii. 3) using 64 cells in the radial direc-

tion requires values of Q(r} and T .l (r} = T
11 

(r) at 64 different radii 

to fill these cells. The measured Q(r) and T .l (r) data set does not 

usually fit this requirement. Also, the exact location of the colli-

mater hole center relative to the cylinder axis may_be in error by up 

to about 1 mm. This means the actual positions of the Q(r), T .l (r) 

data displayed in Figure 3c could be shifted as a group to the right or 

left by up to 1 mm. 1 nun is greater than one cell length when a grid of 

64 radial cells is used, The program l1andles this possible shift by first 

calculating the radial offset to the Q(r) data that results in equal 

numbers of electrons for both r < 0 and r > 0, and then fitting 

smoothed curves through the average of the offset Q{r), T .l (r) data 

and the offset Q(r), T .l (r) data reflected through the axis, The 

values of Q(r), T .l (r) at the appropriate radii are then taken from 

these adjusted curves and supplied as input to the subprogram that 

calculates the self-consistent n(r, z) and ¢(r, z), 
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The accuracy of the n and ¢ measurement de pends critically 

upon the accuracy with which the charge, Q{r), is measured by the 

charge collection circuitry and the collectio:-i- efficienCy of the 

charge collecting electrode. (The T 1 and T 
11 

measurements are 

not critically dependent upon the charge measurement accuracy, since 

the T .1 measurement involves ratios, and the T!I measurement in­

volves the derivative of the log of Q.) The collecting electrode is 

typically biased from +100 V to +180 V, with cylinders Al-A4 biased 

from +9 V to +45 V, in order to enhance collection efficiency. The 

gain and total effective capacitance of the charge collection circuitry 

were carefully calibrated to about ± 3!1/1) overall. 

The accuracy of the n and ¢ measurement depends upon an 

accurate measurement of Q(r). A check of the accuracy of the Q(r) 

measurement is made by integrating the measured n(r, z) over the 

entire confinement volume and comparing the resultant total charge 

with a measurement of that total charge by utilizing the collimator 

plate, which has a separate charge collection circuit {similar to the 

circuit of the collecting electrode), as a collector. These agree to 

within about lo/I) to 2%. An independent check can be made by meas­

uring the iinage charge on one central confinement cylinder when a 

long plasma is confined. Fr.om Gauss' Law, this measured image 

charge should be equal to the integral of the measured n(r, z) over 
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the volume of the cylinder. This check also agrees to within 5o/o. 57 

We thus consider the density n(r, z) and potential ¢(r, z) to be 

accurate to within 5% . 
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IV. Measurement of the Anisotropic Temperature 
Re laxa ti on Ra.te 

The anisotropic temperature relaxation can easily be measured 

after the initial anisotropy is created in the sample Plasma. The 

temperature on axis is measured as a function of time after creatiot:i 

of the anisotropy. The density is measured after the plasma has re-

laxed. The difference between the instantaneous measurement of the 

mean perpendicular energy. (E
1

(t)), and the final equilibrium tern-

perature, Tf, displays an essentially exponential relaxation behavior. 

The measurement of the 11 temperature 11 of the tail of the parallel dis-

tribution, Tiie (t), is likewise analyzed, and shows similar relaxation 

behavior but with a longer characteristic time scale. This discrep-

ancy in rates is explained by the energy dependence of the collisional 

Coulomb cross-section. 

The data is also analyzed by applying a non-linear least-

squares fit of the solution to the Ichimaru-Rosenbluth relaxation 

model equation (2.D. 9). This equation is shown to produce near-

exponential relaxation over the range of anisotropies utilized in this 

study. The rates obtained by this analysis statistically agree with the 

theoretical prediction of Ichimaru-Rosenbluth modified by the 

Montgomery-Joyce-Turner approximation to within about 5o/o, which 

is well within the approximate 1 Oo/o uncertainty in the theoretical rate 

calculation. 

82 



Pos:aible sources of systematic errors are analyzed, and an 

upper limit to overall system.atiC error of approximately 1 Oo/o is es ti-

mated. 

A. Raw Data Measurement 

A relaxation measurement is made in the following sequence: 

1) The plasma sample is prepared with the desired initial density and 

thermal equilibrium temperature T
11 

= T
1 

=Ti. 2) The desired 

anisotropy is induced by a 1-D compression or expansion. 3) (E
1

(t)). 

and Tue: (t), are measured on the axis at various times after the 

anisotropy is created. The times are chosen to cover the relaxation 

from the initial anisotropy to the equilibrium temperature Tf . 

4) The density, n(O, z), is measured after the anisotropy relaxes to 

equilibrium. 5) The raw data is then analyzed to reduce the measured 

relaxation to a single rate for comparison with theory. 

The plasma sample preparation may include the use of the 

density fluctuation reduction technique; this allows the measurement 

of (El (t)) , etc., with greater statistical accuracy for a given number 

of shots. The technique was discovered by K. Fine 57 late in the game, 

however, so there are many rates measured without its benefits. 

From theoretical considerations we would like to keep the 

initial anisotropy as small as possible (T
11 

""" T 1.); this would keep the 

v 11 and v1 distributions very close to Maxwellian throughout the relax-

ation. Practical considerations of the- uncertainties involved in 
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measuring the temperatures would argue for large anisotropies 

(T 11 >> T .l or T 11 << T .L) so that they ~an easily be observed, The 

relevant quantity is the measured relative anisotropy defined as 

((E1 (t)) - Tf)/Tf, where Tf is the final equilibrium temperature. 

The initial anisotropy can be estimated from the 1-D approximation 

z 
(T

11 
/T1 ). :::.. (L /L ) • where L • L are the plasma lengths esti-

1 u c u c 

mated by the axial separation between the chosen confinement barrier 

cylinders wh.en the plasma is uncompressed and compressed. 

All relaxation rates are measured on the plasma axis (r = 0) 

using the 1 /4 11 diameter collimator hole. The reasons for choosing 

the axis are twofold. First, the Tile; measurement is valid only on 

the axis. Second, the radial density and temperature variations are 

smallest on the axis, and, in fact, for all of the rates measured the 

density and temperature variations over one collector hole radius are 

negligible. For example, see Figure 3. 

The density is easily measured after the anisotropy has re-

laxed and T
11 
= T1 = Tf. A density measurement made during the 

relaxation of the anisotropy is more difficult to achieve, since 

T
11
(r) I= T 1 (r), and Tll cannot be measured off the axis by the Tile: 

measurement. We would like to know if the density ·at r = 0 changes 

during the relaxation, and by how much, An estimate of the initial 

density is made by calculating T
11

(r) from the measured values of Tf 

and T 1 (r), and supplying those calculated values along with the 
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measured Q(r) data as input to the density solving computer code. 

A comparison of the average initial density (see equation (4. B. 5)) 

estimated this way with the average density measured after the relax-

ation shows a difference -on the order of 1 o/o. The density is thus 

assumed to be constant during the relaxation. The average densities 

used in the analysis are therefore measured after relaxation to 

equilibrium. 

The anisotropic temperature relaxation rate of a plasma with 

a given density and Tf is derived from an· analysis of the time evolu­

tion of (E 1 ) measured at various times during the relaxation. 

Figure 5 shows a typical data set of measured temperature evolution. 

For completeness, and to graphically show that both the vl. and v
11 

distributions do relax to equilibrium, both (E .L) and T lie: data are 

plotted as functions of time. On this graph, the time, t. starts at the 

beginning of the plasma expansion. During times t < 0, the plasma 

is captured and prepared so that just before the expansion the plasma 

is close to global therm.al equilibrium. at temperature T. ::: 1. 47 eV. 
1 

At t::: 0, the expansion begins and lasts for approximately l msec. At 

the end of this expansion, the parallel temperature is lowered by 

approximately a factor of three, while the perpendicular temperature 

is only slightly affected. Note the two T
118 

measurements at t < 0 

and t::: 1 msec. (All of the T 118 measurements incorporate all of the 

corrections discussed in section 3. D. ii,) 
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The time evolution of the relaxation is then measured at 

various times t ;;:: 1 msec by the (E 
1

) and T lie: measurements. 

Each (El.) value requires hundreds of shots, and each Tue: value 

plotted is the average of a few hundred individual measurements of 

Tile: • Characteristic error bars are shown on the t = 10 msec data 

points. The two solid lines are given by a simple exponential relaxa­

tion model least squares fitted to the data. ·This model is discussed 

in the next section. Note that there is data taken well after the relax­

ation has decayed which clearly shows that the final temperature, T £ , 

is essentially constant over a time comparable to the relaxation time. 

The. relaxation to equilibrium displayed by the (E1 ) data is 

clearly more rapid than that displayed by the Tile data, This differ­

ence is explained in the next section as due to the fa.ct that the Tile 

measurement extends only over the energetic tail of the parallel 

velocity distribution, The relaxation rate analyzed from Tiie data 

is then the rate at which a portion of the distribution relaxes, The 

rate dis playe~ by the (E .l) data is due to a.n average of such rates 

over the entire distribution, It is for this reason that only rates de­

rived from (E .l) evolution are compared with theory. 

B. Sim.ple Analysis of the Relaxation Rate 

The relaxation data displayed in Figure 5 shows that the relax­

ation seem:> almost purely exponential. One is tempted to assUille 

that the relaxation is indeed exponential and to then reduce the data to 
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a rate under this assumption. Such a course of action has the benefit 

of producing a rate which fairly accurately describes the experimental 

data without requiring an analysis of the data based upon the theoreti-

cal model of the relaxation proposed by 1-R. This section discusses 

the analysis of the data using the simple exponential assumption. The 

data can also be reduced with the assumption that the theory of 1-R 

describes the relaxation, and this procedure is followed in the next 

section. 

We reduce the (E
1

) data to a single rate by assuming a 

silnple model of exponential relaxation of the anisotropy: 

(4.B.l) 

A weighted least squares fit of (4. B. 1) to the data, with S and a as 

the fitting parameters, yields the rate. The data points are weighted 

by their calculated statistical errors. 

The fitted value of 13 then gives the best fit value of the initial 

anisotropy. The fitted value of the p3.rameter a is 'Vl, the meas-

ured relaxation rate. The statistical error in the value of 'V.1 is 

estimated by rewriting (4.B. l) as 

(4.B. 2) 

The error in the fitted slope ('V.1) is calculated from the statistical 

errors of two experimental points (one at t = 0 and one in the vicinity 

of t = - I 
~ .L ) • This serves as an estimate of the statistical error of 

87 

J 



the fit. If there are other experimental points, the statistical error 

in v.L is decreased as the square root of the number of points. 

The same analysis procedure can also be applied to the 

T 118 (t) - Tf anisotropy. As can be seen from the T
118

(t) data of 

Figure 5, the measured value of v.L using the T
11
e(t) data is signifi­

cantly lower than the value found from the (E .L (t)) data. This is 

explained by the fact that the measurement of T
11

e is measured only 

in the energetic tail of the v
11 

distribution. The collisional relaxa-

tion of this high energy portion of the distribution is expected to be 

slower than that of the entire distribution. 

This expectation comes from simple arguments. The relaxa-

tion rate is in some sense a measure of the collision frequency aver-

aged over the distribution. The collision frequency, v, is dependent 

upon the density and the velocity of the electrons: 

v coll "" cr nv (4.B.3) 

where a is the collisional cross-section, and v is the relative 

velocity between two electrons, The Coulomb cross-section, cr, has 

50 
the approximate form 

cr -
16TI e 

4 

2 4 
m v 

In h (4.B.4) 

where In A is the Coulomb logarithm. The collision frequency is 

proportional to the inverse cube of the relative velocity between two 
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electrons. Therefore, the electrons in the energetic tail of the .. 

velocity distribution, which all have relatively large v, should relax 

at a slower rate than the bulk of the distribution, and this rate should 

become even slower as the measured portion of the distribution begins 

at higher energies in the tail. 

A rough estimate of how much slower the Tile measured 

anisotropy relaxes can be made by noting that the T
11

E: measurement 

covers only parallel velocities greater than or equal to about two 

parallel thermal velocities (ZV\
1
). We approximate (4.B.3) as v1 , the 

bulk relaxation rate (as measured from (E
1

) data), by calculating 

(4. B. 3) for the average relative velocity of thermal particles inter-

acting with a scattering background of thermal particles. The tail 

relaxation rate, Vt, is similarly approxi~ated for particles which 

have thermal perpendicular velocities and a parallel velocity of zvll 

The important quantity is the relative speed between the scat-

tering background particles and the given scattered particle. We first 

calculate this relative speed by choosing the scattered particles 1 

direction of travel as the polar axis and finding the square of the aver-

age relative velocity between the scattered particle (of speed v ) and 
0 

the background particles (of speed V and random orietnation). The 

coordinate system is shown in Figure 13. When averaged over all 

angles, we find that the average relative speed is given by vr = 

.jyz +v2 
0 
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Figure 13. 

x 

v 0 

z 

+ 
v, 

y 

The coordinate system used to calculate the average 
relative speed. (l/4rr)/ dO l~rl , between a particle 
with speed v

0 
and background of particles uniformly 

distributed in velocity space with thermal speed 
V = 3T/m. 
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The ratio of the energetic tail relaxation rate to the bulk rate 

is then roughly estimated as 

(vz +vzl3/z 

(vz + z>/)3/z 
(3T + 3T) 3 /Z 

= = 
(3T + 6T) 3 /Z 

0.54 (4.B. 5) 

The data displayed in Figure 5 yield exponential relaxation rates 

'\Jl"""' 146 sec and 'I.It""' 90 sec-
1

, which gives a ratio of 0.61 -

reasonably close to the estimated ratio considering the rough approx-

imations used, 

We wish to compare our measured rates with the predictions 

of the theory of lchimaru and Rosenbluth. Their predicted rates are 

calculat;d over the ~ntire (Maxwellian) distribution of v 11 and v l.. 

We therefore compare with theory only the relaxation rates which 

result from analysis of (El (t)) evolution. The T lie (t) evolution 

d~ta is used only to display the overall relaxation to a common equilib-

rium, as in Figure 5. 

In Figure 14 we plot the simply derived rates (all measured at 

B z = 281 Gauss) against the (n/T:/z) ln Ae scaling expected from any 

rate which at root depends upon the basic electron-electron collision 

rate given by (4,B. 3) and (4.B.4) plus the M-J-T approximation. For 

comparison purposes, the predicted rate of Ichimaru-Rosenbluth in 

the limit of small anisotropy (2.D, 10) is plotted as the solid line. The 

two different types of anisotropies have different symbols. Open 
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Figure 14. A plot of relaxation rates analyzed using a simple expo­
nential model. The x-axis is the theoretically expected 
scaling of the relaxation rate: v1 o:: ii ln Ae/Tf3 /Z. A is 
the anisotropy parameter; A ;o' Ti/T 11 - 1. Open symbols 
have statistical errors of ...... 15o/o, solid symbols ,.., 3% . 
The solid line is the absolute prediction of 1-R with the 
M-J -T approximation in the limit of vanishing anisotropy. 
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symbols have estimated relative errors of about 15o/o, solid symbols 

about 3o/o. 

We plot the data in Figure 14 using an average density, ti, in 

order to account for plasma end effects. The measured rates are 

derived from the evolution of the average perpendicular energy of all 

electrons along magnetic field lines at r = 0, The density along the 

field lines is not constant, at least in the end sheaths. The measured 

rates are then an axial average over rates at all axial positions. For 

comparison with theory, we assume the anisotropy remains inde-

pendent of the axial coordinate, z, and compute an average density as: 

n(O) = f n(O, z) n(O, z) dz / f n(O, z) dz 

all z / all z 

(4.B, 5) 

This average is essentially the average density in the vicinity of each 

electron, Using this averaging method is valid when the two velocity 

distributions are cohstant in z; this seems reasonable as long as the 

electron axial bounce frequency is very much larger than the collision 

rate. Equivalently, one can think of (4. B. 5) as an axial average over 

collision frequencies when temperature is independent of axial posi-

tion, This average density, ti(O), is generally about 1-lOo/o less than 

the central density n(O, 0), depending upon the plasma length and 

temperature. 
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C. Data Analysis Using the Ichima-ru-Rosenbluth Rate Equation 

In this section we show the relaxation predicted by 1-R is 

approximately exponential, with the instantaneous rate only weakly 

depende·nt upon the value of a suitably parameterized anisotropy. The 

predicted behavior is then used as a model, which is least-squares 

fitted to the relaxation data. One of the fit parameters of this model 

is shown to be the relaxation rate in the limit of vanishing anisotropy. 

Rates measured with this model are then compared with the predicted 

rates of I-R. 

The finite anisotropy evolution data is more properly compared 

with the theoretical prediction of that evolution when the data is re­

duced using the theoretical model of evolution. Strictly speaking, the 

I-R prediction of the evolution of a temperature anisotropy character­

ized by Tl! -f. T .l was calc~lated only for Maxwellian v
11 

and v1 

distributions, The rate prediction of I-R is not self-consistent in the 

sense that it assl.lllles the distributions will stay Maxwellian as the 

relaxation proceeds. Properly speaking, 1-R calculate a prediction of 

the instantaneous rate presl.lllling the distributions are Maxwellian. 

If we assume that the distributions remain Maxwellian during 

the relaxation, then we can use the instantaneous rate prediction of 

I-R to describe the entire relaxation process, We believe that the 

actual experimental conditions are such as to make the approximation 

(E 1 (t)) =-- T 1 (t) (i. e,, the distributions remain Maxwellian} a 
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reasonably good one. First, the anisotropy starts off with essentially 

two Maxwellians that are not radically far from equilibriUin {the initial 

anisot;ropy is not large). Second, thermal energy i-s essentially con­

serVed during the_ relaxation. This implies that there is no external 

source or sink of energy which could locally disturb the distribution. 

Third, we believe there is no important collective process (waves) 

which is transferring energy via resonant electrons between the two 

distributions {see section D). This lack of resonance effects implies 

that there are no peaks or valleys generated in the distributions, and 

that the collisional process dominates the relaxation. Finally, since 

the electron-electron collision frequency is a smoothly decreasing 

function of speed {o:: v-
3

), we expect that the initial Maxwellian will 

smoothly deform in time until equilibrium is reached. During this 

deformation the shape of the distribution should then be reasonably 

close to an intermediate Maxwellian characterized by a temperature 

Tl. (t) = (E l.(t)): We therefore assUine (E l.(t)) = T 1(t) is essentially 

Maxwellian for comparison purposes. 

(There exists a method which could, in principle, experi­

mentally verify the assumption of the distributions remaining nearly 

Maxwellian during the relaxation by measuring the v l. distribution. 

It is discussed in Appendix E, At the present tilne, its development 

as a measurement of the vl. distribution function is insufficient to 

allow an experilnental verification of the assumption. The problem is 
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basically one of noise (fluctuations); the recent advent of the 11noise 

killer'' technique may allow further progress on this measurement.) 

We deduce that to good approximation the thermal energy is a 

cc;instant during the relaxation, i.e. 

(4. c. !) 

This deduction is based upon the measured constancy of (EJ. (t)) and 

T
118

(t) after equilibration. For example, see the right side of Fig-

ure 5. The data from which Figure 5 was plotted extends in time for 

another order of magnitude. Analysis of this behavior yields an ex­

ternal thermal input source of approximately 10-
4 

eV /msec/el. This 

gives a correction to the simply analyzed relaxation rate that is less 

than 1 o/o, and we neglect it. All rates are analyzed with the as sump-

tion (4. C. I). 

We therefore use the constant energy form of the Ichimaru-

Rosenbluth anisotropic rate equation written in terms of the measured 

quantities (EJ.(t));:; TJ.(t), Tf, ti(O) ;:; ti, and Bz as our model of 

relaxation: 

Here 

= 85 (mTTe)! /2 'VJ. (T J., T f, B z , ii) 
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, 

where A= T1 /T
11 

- 1 is the parameterization of the anisot-

ropy, which can be written as A = 3(T l - T f)/(3Tf - 2T .l) under the 

constant energy assumption. H(A) is given by (2.D.11). The modi-

fied Coulomb logarithm, ln A , contains the B dependence as per e z 

the M-J-T approximation. 

For convenience, we restate (2,D.11): 

(
2 )3/2 

15 3 A+l 

= 4 AZ [ {

tan-
1

.JA/,JA; A> 0 (expansion) }] 

-3+(A+3) 

tanh - l,,,J-A/...[:A; A< 0 (compression) 

H(A) 

(4. c. 4) 

Note that H(A) behaves slightly differently for Tu < T 1 (A> 0) 

anisotropies than for T
11 

> T 
1 

(A< 0) anisotropies. In the limit of 

small anisotropy, H{A) -:i- 1 for both cases. 

We restate equation (2. D. 12.): 

and rewrite (4. C. 2) as 

- 4 
n e ln A 

3/Z 
Tf 

d 
- (T - T ) = -~ H(A) (Tl - Tf) • ili l f lo 

(4.C.5) 

(4.C.6) 

If H(A) varies slowly enough as the finite anisotropy relaxes, then 

(4. C. 6) indicates nearly exponential relaxation should be observed. 
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We use a computer to numerically integrate equation (4. C.6). 

We first note that (4. C. 6) can be written in terms of scaled variables 

'T = 'V.L 0 t and e =(T.L-Tf)/Tf, and rewrite (4.C.6)as 

= -H (~)e 1-ze (4.C.7) 

\ 
where A = 3e/(l-2e). Figure 15 shows a plot of the time evcilution. 

of the logarithm of \ e[, for both compression and expansion anisot-

ropy cases, over a range which encompasses the largest experi-

mental anisotropies encountered in this study. The dashed line rep-

resents the evolution of Je[ assuming H(3e/1-Ze) is identically 1 

(i.e., the evolution is purely exponential). The slope of log(] e(r)!) 

at any T is the instantaneous relaxation rate scaled to \J.Lo • As can 

be seen from Figure 15, this rate does not change much over the 

range of anisotropies measured, and therefore the relaxation is pre-

dieted by I-R to be nearly exponential. 

We use the numerical solution to (4. C. 7) as the model of relax-

ation written in scaled variables e, T. The scaled time, T, is given 

by T = a. t + S . This parameterization of T is completely analogous 

to the parameterization used in the simple exponential model (4. B. 1) 

discussed in the previous section. The only differences between the 

models are that the anisotropy is scaled in this model, and the expo-

nential function is replaced by a numerically generated function. The 

value of the fitted parameter a. gives \J.Lo , the measured relaxation 
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A=5 

0 
A= -.65 

-1 

0.5 1.0 1.5 

Figure 15. The predicted relaxation of the scaled energy e =(Tl. -Tf)/Tf 
plotted as a function of scaled tiine T = \!lot. The relaxation 
of both positive and negative anisotropies are shown as solid 
lines. The dashed line represents pure exponential relaxa­
tion. The slope of the ln I e I line at a given 'T is the scaled 
instantaneous rate v1 {r)/v10 • 
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rate, for comparison with the theory prediction of I-R. Note that 

v
10 

is the relaxation rate in the limit of vanishing anisotropy; that is, 

A plot of the measured values of 'V10 is given in Figure 16. 

This figure represents the most important result of the investigation 

described in this dissertation. The measured values of v
1 

are 

plotted against the expected scaling of rates predicted by the theory of 

1-R as modified by the M-J-T approximation. The plotted rates haye 

members of both types of anisotropies: A> 0 {plotted as circles) and 

A < 0 (plotted as triangles). The characteristic errors of rates 

measured with the fluctuation reduction scheme (solid sym.bols) is 

about 3o/o; the others (open symbols) have errors of about 15o/o, The 

v.Lo prediction of the modified theory of I-R is given as the solid line; 

there are no adjustable parameters. It should be restated that the 

theoretical prediction is calculated using the "dominant term11 approx-

imation, which neglects terms of order l/ln A , For these mag-
e 

netized pure electron plasmas, l/ln A ,..., lOo/(). Hence the theoretical . e 

prediction (the location of the solid line) is also uncertain to about lOo/!I. 

An error weighted least squares fit of the measured rates to a 

model that keeps the scaling of the modified I-R theory but allows the 

coefficient to vary, i.e. 
fit I-R 

\)lo = a. \)l 0 • gives a. '°""' a. 95 as the best 

fit value. This would give a line parallel to and only 5% below the 

solid line of Figure 16. This shows that the measured rates and the 
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Figure 16. Plot of fitted relaxation rates using the solution to the I-R 
rate equation as the model, The x-axis is the theoretical 
1-R rate scaling: 'J « n ln A e/Tf3/Z , A is the anisotropy 
parameter; A = T 1./f>\l - 1. Open symbols have '""'!So/o error; 
solid symbols ....... 3o/1J, The solid line is the absolute prediction 
of I-R with the M-J -T approximation in the limit of vanishing 
anisotropy. 
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absolute prediction of the modified theory of 1-R agree to about 5o/o 

over two decades of measured rates. 

We can also plot these measured rates, appropriately scaled, 

to display either the density or temperature scaling. Figure 17 shows 

the rates multiplied by T:/z ln Ae plotted against the measured dens­

ity n, and Figure 18 shows the rates divided by n ln Ae plotted 

. 3/2 
against the temperatur~ dependence Tf • In both cases, the pre-

diction of Ichimaru-Rosenbluth is plotted as the solid line. 

The measured rates unfortunately have too much scatter to 

clearly delineate the logarithmic tempeiature dependence expected 

3/2 
from ln Ae ( Aeo:. T · ). The dashed line of Figure 18 shows the 

dependence the. plotted data would take assuming there is no logarith-

mic temperature dependence. Since there is no theoretical prediction 

which incorporates this assumption, the dashed curve was vertically 

adjusted to coincide with the 1-R prediction in the center of the data. 

While the data does seem to better conform to the solid line, the data 

is not good enough to exclude the dashed line as a correct model. 

The question of whether or not the Montgomery-Joyce-Turner 

approximation is valid can be somewhat more clearly answered by the 

data, although the absence of B scaling data and the experimental 
z 

uncertainty in the data makes the affirmative indication less than com-

pelting. Figure 19 shows a plot of the measured rates vs the scaling 

dependence of the weak field I-R theory {i.e., ln A = ln AD/b
0 

). The 

102 

• 



• 

~ 

* ' ~ 100 

•• • mod~/ fit 
--IR+MJT 

T!1eory 

1+------------1----------~+ 
106 10' 10• 

Figure 17. 
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The measured rates are scalec:_by Tf /lnAe and plotted 
against the measured density. n. The theoretical prediction 
of 1-R and M-J-T is the solid line. 
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The absolute theoretical prediction of I-Rand M-J-T is the 
solid line. The dashed line is the dependence the scaled 
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prediction of I-R is shown as the solid line. The prediction clear~y 

lies above the ffieasured data; the weighted best-fit line lies over ZOo/o 

below the prediction. 

Given that both the theoretical prediction of I-Rand the best-fit 

line have uncertainties of the order of lOo/o, the indication of Figure 19 

does not rule out ln/\ = ln A
0

/b
0

, Since the separation behveen rate 

predictions using and A = :i..
0

/b approximations for 
. 0 

this plasma is only in the range of 2Do/o or so, a clear delineation could 

be made only by demonstrating the logarithmic scaling of B . The EV z 

device has a usable magnetic field that can be varied by about a factor 

of 5, This means a total deviation in rates of about 15% from the high-

est field to the lowest. Inasmuch as the fluctuation reduction technique 

doesn't seem to work as well at the lower.fields, measuring this 15% 

deviation in the EV device will probably require a large number of 

measured rates for statistical analysis, (This is the same order of 

difficulty as delineating between the solid and dashed lines of Figure 18.) 

As of now, the best that can be said is that the M-J-T approximation in 

the magnetized regime (.rg << i'..D) is indicated by our measured rates, 

but is not proven. 

D. Sources and Estimates of Systematic Errors 

There are several candidates for systematic error sources in 

the measurement of the anisotropic temperature relaxation rate and 

the comparison of those measured rates with theory. Setting 
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d 
dt Tf = 0 (the constant thermal energy assumption) during the relaxa-

tion, for instance, is a deduction_ based upon some measured rates of 

change of Tf after equilibration. 
. . -4 

Theae rates all give Tf,..., 10 eV/ 

msec, which would result in less than a lo/o error in measured rates.· 

. 
However, Tf could conceivably be different during the relaxation. 

Linear systematic errors in the measurements of (E
1

) and ti (i.e., 

error proportional to (E 
1

) and n) wouldn't necessarily change the 

value of the measured rates, but would affect the comparison between 

experiment and theory. Both the density and temperature measure-

ments are believed to be better than So/o. 

Another neglected effect that could affect the measured rate is 

electron-neutral collisions .. Such collisions can exchange parallel 

energy with perpendicular. We estimate the electron-neutral colli-

sion rate of using the simple rate equation 

\J ""'crnv 
e-n n e (4. D. !) 

-15 2 
where cr """ 10 cm is the approximate neutral cross-section, n 

is the neutral density in EV at pressures of 10-lO Torr (n =-­
n 

6 
3. 3 X 10 neutrals/cc), and v is the electron thermal speed (the 

e 

room temperature neutrals are essentially at rest). This crude 

n 

model gives \J ....., 0.1-1.0 sec-
1

, increasing with the electron tem-
e-n 

perature, and thus electron-r~eutral collisions could give significant 

corrections to the measured rates only for those few rates measured 
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at the lower left of Figure 16. For most of the.rates measured this 

effect should contribute less than 1 o/o. 

Collective effects could also affect the measured rates by pro-

viding alternate routes to equilibrium. The free energy associated 

with Tl> T 11 • for instance, co·uJ.d drive a collective instability wl1ich, 

in turn, could release the energy of the !nstability bacl< in::o the parallel 

motion via resolla.nt electrons. 

Instabilities driven by features of the particle distribution 

in velocity space are often termed microinstabilities. Micro:'..nstabili-

ties can be major SO'..l.Xces o.f velo;;:ity space transport in magnetic 

mirror confinement devices. However, most of the m,icroinstability 

problems associated with magnetic mirror devices are driven by pe-
• 

culiar velocity space distributions not usually found in electrostatic 

confinement devices such as EV, This peculiar distribution is charac-

terized by a lack of low v1 particles (due to the loss cone of the mir-

ror). The relative abundance of high perpendicular energy particles 

gives a system with a lot of available free energy. The electrostatic 

confinement of EV has no similar loss cone. 

Some of the microinstabilities associated with velocity space 

anisotropies have been treated by Davidson59 in the linear approxima.-

tion, Most are not applicable to the EV plasma for the reason given 

above, i.e. 8f(v1 )/8v~ ::; 0 throughout the relaxation. The three 

different cases which might apply are all found to predict suppression 

of instability rather than growth. 
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The first case is the electromagnetic Whistler (also known as 

the electron cyclotron) instability . Suppression of this instability is 

predicted for any reasonable anisotropy T
1 

> T
11

, due basically 

2 2 
to the fact that LU << 0 for any plasma studied in EV. The 

p 

second case, called the electrostatic ordinary mode instability, is 

suppressed by the low ~;::: SnnT/B 
2 

of the studied plasmas. The 
z 

third case, called the Weibel instability, is suppressed by the finite 

length and the low densities of the plasmas studied, at least for any 

reasonable T 1 > T
11 

• There could, of course, be other linear insta-

bilities, as well as non-linear ones, which are present in the EV 

plasma during relaxation. 

We believe that there is no significant enhancement of our 

measured rates due to instabilities. Our argum.ent is a simple 

one, although it is· not definitive. Our measured rates include 

both types of anisotropy, T 
1 

> and < T
11 

Each of the cases 

of instabilities studied above predict growth of only one or the other 

type of anisotropy (the 0-mode case can only go for T
11

>T
1

). We 

argue that this holds true for any relevant instability. In that case, we 

would expect Figure 16 to show a marked deviation between expansion 

and compression generated rates at any given value of n ln A /T 3 /Z . 
e f 

None are seen, wh,ich argues against rates contaminated by instability. 

Any collective instability which is capable of changingµ= vf /B, 

the gyromotion adiabatic invariant, must have a frequency on the order 
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of 0. or higher. EV was not designed for diagnostics in this range 
c 

( 0. ,.., l GHz), and the experimental evidence argued against expending 
c 

the considerable effort that would be required to measure such phe-

nomena with precision. From the evidence of Figure 16, we estllnate 

that instability constitutes a systematic error source of So/o or less in 

the comparison between experiment and theory. 

The last possibility considered as a source of systematic error 

was discussed in section C. This is the deviation of the two distribu-

tions from their respective Maxwellians Tl. and T 11 • We consider 

this deviation to be the most likely source of systematic error in the 

comparison between experllnent and theory. Although it is difficult to 

esti.Inate the magnitude of this error, we can make a very rough esti-

mate of that magnitude. We note that v l.o is the rate when T i1 = Tl. , 

and that in theory the instantaneous rate, vl. , dis plays at most a 30%-

40o/o deviation from vl.o when the two temperatures differ by a factor 

of 6 (A = +5 or -5/6). This suggests that v.1
0 

is fairly insensitive to 

deviations of the entire velocity distribution from a Maxwellian of 

temperature Tf. Anisotropies of A""" +5 or -5/6 are typical of the 

initial stages of the relaxation where the distributions are approxi-

mately Maxwellian. We would expect the distributions to have the 

greatest deviation from Maxwellian form at about one collision time 

into the relaxation process, Figure 15 shows the deviation of v
1 

. from v10 to be about 10% at that time, and we expect the deviation of 
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the actual distributions from Maxwellian to change vl by at most the 

same percentage. We thus estimate the deviation of the measured 

'V10 (measured from all values of v
1 

during the relaxation) from the 

ideal v10 (as would be measured if the distributions remain Max­

wellian) to be at most about lOo/o. We thus estimate the ove·rall sys­

tematic error in our comparison between experiment and theory to be 

on the order of lOo/o. This is the same order of error as that given by 

the statistical (random) measurement error of the best-fit line to the 

measured rates. 
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V. Summary of Results and Conclusions 

A. Summary of Results 
• 

This section is a sum.mary of the i.m.portant results of this 

• 
investigation into anisotropic temperature relaxation in a magnetized 

pure electron plasma. A finite temperature anisotropy can easily be 

initially induced in the plasma by an axial compression or expansion 

that is approximately one dimensional, The initial anisotropy is 

described by two approximately Maxwellian electron velocity distribu-

2 tion functions which have different temperatures T 1 r T \1. The mag-

netic field direction provides the parallel axis reference. 

The initial anisotropy and its subsequent relaxation to equilib-

rium are measured on the plasma axis (where radial density and tern-

perature gradients are small) by a technique which measures (E
1
), 

the average energy of the perpendicular velocity distribution, for all 

electrons on the axis as a function of time. For comparison to theory, 

(E
1

) is assum.ed to be the perpendicular temperature; that is, the 

perpendicular velocity distribution is assumed to be always Maxwell-

ian during the relaxation. 

The relaxation is shown to take place under conditions of 

nearly constant density and thermal energy. Hence the measured 

anisotropy can be characterized by the difference between (E
1

) and 

the final equilibrium temperature, Tf . A typical initial anisotropy 

is graphically shown to relax approximately exponentially in Figure 5, 
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which plots (E1 ) measurement~ as_ functions of time. 

Also plotted in Figure 5 are Tlte: measurements. The Tiie 

data also display the exponential decay of the anisotropy (here defined 

as Tiie: - Tf), but this decay has a longer time scale than that of the 

(E1 ) data. The different rates of relaxation-for the (E
1

) and T
11

E: 

mea.surements of the same anisotropy are explained by the fact that 

the Tile measurement only measures the temperature of the energetic 

tail of the parallel velocity distribution. These more energetic tail 

electrons have a smaller average frequency of co_llisions with an 

-2 
average thermal electron, due to the (energy) dependence of the 

Coulomb cross-section, Thus the relaxation of the energetic tail 

electrons measured from Tiie: data is expected to display a slower 

rate than the relaxation of the entire distribution measured from 

(E 1 ) data. The difference in the two measured rates is shown to be 

in approximate accord with a simple collisional estimate of those two 

rates. 

For comparison with theory, the relaxation rate is found from 

the measured (E 
1

) data by using the 1-R theoretical prediction of 

that relaxation as a model, which is least-squares fit to the data to 

yield the measured rate. The relaxation rate is measured in this man-

ner from relaxations of anisotropies initiated by both compression 

( (E 1 ) - Tf::; O) and expansion ( (E 
1

) - T f ~ 0) in plasmas of varying 

densities and final equilibrium temperatures. These rates are plotted 
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in Figure 16 against the theoretic.8:1 scaling (n ln Ae /T:/Z) predicted 

by I-R using the M-J-T approximation which allows the prediction of 

I-R to be used in the strongly magnetized regime. The measured 

rates statistically agree with the absolute theoretical prediction 

(there are no adjustable parameters; all variab"ies are measured) to 

about So/o. The solid 'line plotted in Figure 16 is the absolute theoreti-

cal prediction (see equations (2. D, 9) to (2. D. 12)), The rates are 

measured over two decades in the expected parameter scaling. Both 

the density and final equilibrium temperature are individually varied 

over one de ca de. 

The rates are also plotted in Figures 17 and 18 to show scaling 

with density and equilibrium temperature, respectively~ The theoreti-

cal prediction of 1-R plus M-J -T is plotted as the solid line in each 

figure. The dashed line of Figure 18 is the path the data would be 

expected to follow if there was no logarithmic temperature de pend-

ence. Although the data does seem to fit the solid line slightly better 

than the dashed line, statistically the dashed line dependence cannot 

be ruled out. 

Finally, the data are compared with the weak field theory of 

1-R; i.e. the Coulomb logarithm (ln A) is used instead of the M-J -T 

approximation (ln A ). A plot of the measured rates against this 
e 

theoretical scaling (n lnfl./Ti
12) is given in Figure 19. The solid line 

is the absolute prediction of the theory. The data.clearly lie· below 
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the prediction, and in fact, the data statistically give a value which 

is over 20o/o below the prediction. 

Estimates of the uncertainties in the measurements and the 

theory must be made before conclusions may be drawn from the 

comparison between experiment and theory. The rate prediction of 

I-R is calculated using Chandrasekhar's 11 dominant termTT approxima-

tion, in which terms of relative order ( l /ln A) are neglected. The 

M-J-T approximation (ln A ~ ln A ) is then applied to the I-R rate 
e 

calculation, and for our experiments l /In A - l /ln A - l 0%. 
e 

Thus 

a more rigorous calculation of the theoretical rate may result in a 

change in the value of the rate prediction which is on the order of 10%. 

The statistical nature of the measured rates is such that any 

best-fit line to the data is statistically accurate only to about lOo/o, 

The absolute prediction of I-R + M-J-T (see Figure 16) falls within 

this range, while the absolute prediction of I-R alone (see Figure 19) 

does not. There is also the possibility of systematic error, which is 

estimated to be at most on the order of 1 Oo/o, 

B, Conclusions 

Our conclusions address two questions. The first, and most 

important, is whether or not the anisotropic temperature relaxation 

rate calculation of Ichimaru and Rosenbluth as modified by the approx-

imation of Montgomery, Joyce and Turner correctly predicts the 

values of those rates measured in a magnetized electron plasma. The 
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excellent statistical agreement between the absoltite prediction and 

the measured rates ( to about 5o/o) over two decades leads unequivo­

cally to the conclusion that the I-R + M-J-T calculation does indeed 

correctly predict the rate of relaxation. Agreement to So/o is remark­

able, considering the number of approximations involved in the rate 

calculation (and in the general theory from which it is calculated), and 

considering the rates are measured from the relaxation of anisotropies 

which are only approximately Maxwellian. 

The second question is whether or not the data is statistically 

accurate enough to verify the M-J-T approximation. A more rigorous 

rate calculation (one in which the dominant term approximation is not 

employed) could possibly lowel" the rate prediction of I-R by a.n amount 

on the order of lOo/o. This would bring the prediction into the range of 

statistical agreement with the data without requiring the M-J -T 

approximation. Thus we conclude that the data can neither conclu­

sively verify nor reject the .M-J -T approximation, although the data 

strongly supports the validity of the approximation. 
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APPENDIX A: l•D Compression and Expansion 

An, essentially one dimensional compression is used to create a 

particular velocity space anisotropy from an initial Maxwellian 

equilibrium. This anisotropy is characterized by two different approx-

imately Maxwellian distributions, f(v
11

} and h(v l ), which, in turn, are 

characterized by unequal temperatures T 11 # Tl, The parallel direc-

tion is along the magnetic field and confinement geometry symmetry 

axis. This unusual compression is made possible by exploiting the 

wide separation of two fundamental frequencies of the plasmas studied -

the relatively large axial bounce frequency, UlB, and the perpendicular 

and parallel energy exchange rate, V.l. In the plasmas studied, UlB,....., 

1 µsec and v.l ,..,, 10 msec. 

( i} Theory - a simple model 

A very simple conceptual model is first used to describe a com.-

pression applied to an electron plasm.a which initially has an equilib-

rium Maxwellian velocity distribution, Fi (v11 , v1 } 

C. exp 
l 

2 2 

(
- m(vll + vl) 

ZT. 
l 

) . (A I) 

where Ci is a normalization constant, and Ti = T 11 i = T li in the initial 

equilibrium temperature. The following discussion refers to Figure 

20. The electrons are initially trapped in cylinders Ll and L2 be-

tween two en.d plates held at potential V 0 . All electrons are assumed 
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L1 L2 

Piston [ Plasma I 
--:r- \7 '7 -r 

Figure 20. The movable plate on the left and the fixed plate on the 
right are held at potential V 

0 
• The plasma length is 

assunied to be the separation between the plates. 
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to have their parallel motion exactly reflected by the plate potential at 

the plate face regardless of the inagnitude of v 11 ; the length of the 

plasma is then unambiguously given as the separation between the end 

plates. This approximation becomes more valid as the plasma length, 

LP, to Debye length, ).
0

, ratio increases. We can now ask how the 

electrons respond as L , which by assumption is the plate separation, 
p 

is decreased from LP = (L
1 

+ L 2) = Li to LP = L 2 = Lf by moving 

the piston towards the fixed plate. To further simplify the model, 

\!l is assumed to be zero. All of the following discussion is equally 

valid for an expansion as well. 

The bounce parallel motion of any electron can be thought of as 

an oscillator of frequency WB =TT v I /L , where v 
I p II 

is the parallel 

speed. If the parameter L is changed slowly compared to 
p 

-1 
w , then 

the axial bounce adiabatic invariant f v
11
dz = 1

11 
remains a constant 

during the change. For this simple system the integral is trivial; 

1
11 

= 2v
11
Lp at any point during the compression. By equating the values 

of I\\ at the start and end of the compression, we find the ratio of 

final to initial velocities is vllf /viii = Li /Lf · Thus the parallel 

I 2 ;1 2 kinetic energy of the electron is changed by the ratio z mv11 f z mvlli = 
2 

(Li/Lf) . Since there are no collisions, v1 f = vli . Since all final 

parallel kinetic energies are scaled by the same factor, 

final velocity distribution is then 
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Ff(vll' vl) = ff(vll) hf(vl) = c exp [- mv~ - mv~J 
f 2Tllf 2Tli ' 

(A2) 

where 

(
L. )

2 

= T .2.. 
Iii Lf 

(A3) 

is the final parallel temperature and (Li/Lf) is the compression ratio 

of initial to final plasma lengths. This model of compression then 

produces, to within the model approximations, an anisotropic velocity 

space distribution characterized by two Maxwellians of unequal tern-

perature Tll *- T 1 • 

The temperature relationship (A3) can also be derived using 

thermodynamic arguments with an ideal gas approximation and the 

assumption of no collisions which transfer energy between the per-

pendicular and parallel degrees of freedom. An ideal gas which 

undergoes a quasistatic and adiabatic compression (adiabatic here 

60 
means no heat transfer into or out of the gas) obeys the relationship 

yY·l T 
f f 

= v'!-l T. 

where V is the gas volume, and 

y = 
c + R 

v 
c 

v 

l l 

where c is the molar specific heat at constant volume and R is 
v 

the gas constant. 

124 

(A4) 

(AS) 

• 



For an ideal gas, 1 
each degree of freedom adds z R to c 

v 
The 

standard ideal gas then has. y = 5/3; there are three degrees of free-

dam. In the absence of any communication (collisions) between the 

.perpendicular and parallel degrees of freedom, however, the parallel 

motions of the electrons can be thought of as the motions 0£ a one-

dimensional ideal gas. Then y = 3, and (A4) becomes 

z 
- (TTA L.) T. 

pi l l 
(A6) 

which is identical to (A3), since A 
p 

the cross sectional area of the 

plasma, doesn't change. 

(ii) Theory - a more complicated model 

The above discussion misses any end effects associated with the 

Debye sheath at the plasma ends. The effect of a finite Debye sheath 

at the plasma ends will be considered in this section. The compres-

sion process will be assUilled to preserve the axial bounce adiabatic 

invariant, but the details of the process will be left unspecified. A 

more realistic model of the compression process than the simple 

moving piston model will be considered in section (iv). 

The following discussion refers to Figure 21. Consider the 

plasm.a to be initially confined in cylinders L
1 

and L
2 

with V c , the 

potential applie~ to L
1 

, initially set to ground. L
2 

is always 

grounded. The confinement gate potentials are fixed at V 
0 

. The 

plasma is assumed to be in an equilibrium state; this means the 
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(a) 
L1 L2 

(b) 
[Ve= 0] 

Vt -------------- ------

z 

~, ---------------

Figure 21. A 1-D compression is shown in (a); Ll and LZ are the 
lengths of the two confining cylinders, Simple phase 

. space plots of the trajectory of a given electron when the 
plasma is uncompressed and compressed are shown in (b), 
along with the idealizations L, the length of the canst 
potential region, and A (vi), the stopping distance. The 
cross-hatched areas of both phase-space plots are equal, 
since phase space voluxne is conserved for a 1-D com­
pression. 
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potential ¢(r, z), is essentially constant in z except in the plasma 

end sheaths, where ¢ becomes more negative with a scale length of 

l.D • V is then slowly lowered in such a way as to adiabatically c 

compress the plasma into L
2 

only; the compression is completed 

when V c = V 0 • There are assumed to be no collisions during the 

compress, and the axial bounce invariant, 1
11

, is assumed to be pre-

served. 

Regardless of the mechanism of compression, the phase space 

plots of a given electron in the initial and final configurations will 

look similar to the respective phase space plots in Figure 2l(b}. In 

this figure and throughout the rest of this section, the 11 subscript is 

suppreSsed. The cross-hat~hed areas Il).ust be equal, since 

j vdz ::: I is constant. From the approximation that ¢ is constant 

in z over some plasma length L, the area, ¢, enclosed by either 

curve in Figure Zl{b) can be written as 

I 
0 

2 
=vL+2GvA(v) = constan,t (A7) 

where A (v) is the distance an electron of velocity v travels into an 

end sheath. G is the ratio of the cross-hatched area in one end 

sheath region to the larger area ZvA(v). G is, of course, deter-

mined by the details of the potential dependence in the end sheath, and 

could in general become a complicated function of v when V 
0 

is 

only barely sufficient to confine the plasma. For simplicity, we 

127 



assume that V 
0 

is sufficiently negative so that G is essentially 

independent of v. (For example, if the sheath potential varies as 

z
2 

, then the electron motion considered solely over both end sheaths 

is that of a simple harmonic oscillator. The electron's path in phase 

space is then hali of an ellipse in a sheath region, and G = TT /2.) 

Then {A7) can be rewritten as 

const = v (L + ZG). (v)) = v L efr'vl , (AS) 

For thermal electrons, i\.{v) """''-n. The effective length, 

Leff(v), is now a function of electron velocity. Leff(v) is not equal. 

to the distance between the electron's turning points (unless G = 1), 

nor is it equal to the geometric length of the containment volume. 

Leff(v) can also be a function of radius. 

Since L eff(v) is now a function of velocity, any given com­

pression of an initial Maxwellian will not result in a final Maxwellian. 

·A crude estimate of ratio of the final velocity, v
2 

, to the initial 

velocity, v
1 

, is found by equating (AS) for two different effective 

lengths: 

(A9) 

L
1

, L
2 

are now the respective constant ¢ region lengths, not the 

geometrical confinement lengt.11.s. The initial distribution is Max­

wellian at temperature T 
1 

, and the plasma has an initial De bye length 

We estimate the end sheath penetration distance as 

1 ZS 



• 

• We further assume L 
2 

>> ZG AD 
2 

(in 
I, 1, 

our plasmas, A. 
0

/ L ,...... 10-
2

}. By assuming the compression r.esults 

in an approximate Maxwellian at T
2 

, we estimate ADZ ~ 

1/2 2 ~ 2 A
01

(L
1
/L

2
) , and v

2
/T

2 
v

1
/T

1 
for the purpose of calculating 

Z(v
2

). Thus we approximate A(v
2

) in terms of v
1

, L
1

, L
2

, >..
01 

and T
1 

as 

(AlO) 

Within these approximations, v
1
/v

2 
is found as 

( 1 + 2G (All) 

For thermal electrons 1 

2 
mv

1
/T

1
=1. The percentage devia-

tion of v
2 

from the corresponding v~ obtained if the compression 

were described by the simple piston model of compression ratio 

L [(~~ )3/2 
l]) 

eff2 L2 (1 + 2G 
'01 

= 
L Ll Ll eff1 

(Al2) 

is given by 

v2 ).Dl [( Ll )/Z 
l] [1 -m;1~] .....,.. === 2G 

V2 LI L2 
(Al3) 

For LI= ZL2 , 

v2 /v~ = 0, 04 (I 

I 
-2 

G,...... 1, A.
01 

L
1 

,...., 10 , (Al3) is evaluated to be 

2 
- mv

1 
/T

1
). Thus, over a range 0 ~v 1 ~ ZV

1
, the 

resultant v
2 

distribution is estimated to be within about !Oo/o of the 
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Maxwellian distribution of velocities v ~ determined by a simple 

pistonlike compression between tWo effective lengths 

(LI+ ZG).D!) and Leffz = (Lz + 2G).D2). 

Although this model of compression is admittedly crude (G, 
• 

for instance, may also be a function of velocity, and A(v) may not 

simply scale with the kinetic energy), the estimate of the resultant 

velocity distributio111s deviation from a Maxwellian (about lOfo over 

the bulk of the distribution) is probably close to the actual case for 

the studied range of compressions and lengths. Thus the approxi-

mation that an initial Maxwellian results in a final Maxwellian after 

compression is seen to be reasonably good. 

(iii) Experimental measurement of y 

An experimental determination of y was made from T
11 

€ 

data in order to see if an essentially 1-D compression was indeed the 

result of a compression of the studied plasmas. This determination 

is not meant to be an exact analysis of the compression, but rather 

it is to be viewed as a confirmation of the 1-D compression as sump-

ti on. 

An experimental measurement of y can be made from meas -

urernents of T
11 

€ (parallel tail energy scale) just prior. to and just 

after a compression. These measurements must, of course, be cor-

rected for the cooling experienced as the dump confinement voltage 

is reduced {see section 3. c. ii and equation (3. C. ii. 12).) The 
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effective lengths were estimated from the density and potential meas -

urement data. The results are given in Figure 22. The plot shows 

the data points (Tlte:f/Tlle:i) vs (Leffi{2Vi)/Lefff(2Vf)). The solid line is 

the 1-D prediction of y = 3. The data points are best fit by. y = 2.88 • 

That the mea_sured y is very near 3 suggests that the one-dimensional 

adiabatic compression is a reasOnably good model, at least for the 

higher energy electrons. 

Because the collisionality of the electrons decreases with 

increasing energy as the 3/2 power, one can worry that the bulk of 

the electrons (v s::V = (T 11 /m)
112

) may significantly depress y when 

it is determined from measurements over the entire distribution • 

.An indication of this averaged y can be given by measuring· T
1 

just 

before and well after the compression, when the induced anisotropy 

has decayed to the final equilibrium. Then, assuming that there are 

no collisions during the compression and that there is conservation 

of energy during the anisotropic decay, the final temperature, 

is found from 

(Al4) 

where TU and T 1 are measured at any time after ·the anisotropy is 

induced. With these assumptions, a 1-D compression will result in 

the following relationship: 
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Figure 22. Tllei data is taken just before the compression, and T 118 £ 

is taken at the end of the compress potential ramp. The 
ratios are corrected for dumcp cooling using the estimate 
(3. D. ii.12), and are plotted against the estimated effective 
length ratios. The point at Tf/Ti "'"" 4. 6 is considere_~ 
unreliable due to the large cooling correction required. 
The estimated errors in both..±he measured length and 
temperature ratios is about LOo/o for the other points. The 
dashed line is the y = 3 theoretical prediction. 
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3 (:•qr)- 2 = (~~J 
' eqi 

(A!S) 

where T and L. f are the equilibrium temperature and effec-
e~ f i, 

• 
tive lengths before and well after the compression. 

Figure 23 shows a plot of some data points (for both com-

pression ~d expansion), where Li/Lf is figured from lengths cal­

culated using the density and potential diagnostic to find the region of 

essentially unchanging potential. The solid line is the relationship 

(A!S ). A best fit line through the origin gives * * y = z. 62, but y 

is not a measurement of y since a straight line in these. variables 

presupposes a 1-D compression with no collisions. Nevertheless, 

this plo~ indicates that y ....... 3, and that both perpendicular and parallel 

distributions will be approximately Maxwellian after a compression 

albeit with different temperatures. 

(iv) T = 0 compression in long cylinders 

In this section we discuss a simple model of the process 

whereby a very long plasma, such as the plasma occupying Ll and 

L2 in Figure 2l(a), is excluded from Ll by the application of a slowly 

changing potential, V , to Ll. We will find that, for a long, cold 
c 

plasma, the plasma is axially excluded from the L
1 

region in thin 

cylindrical shells of successively smaller radii. These shells en-

hance the density in L
2 

at their respective radii. - This model of 
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Figure 23. Plot similar to Figure 22, but using (E 
1

) data. The 
dashed line is the 1-D prediction of theo::y. 
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axial compression is shown to conserve the adiabatic bounce invai-iant 

If! , and thus leads to the same general results as those of section 

(i) - (ii). 

We insure a simple model by assuming that the plasma tern-

perature is so low that R
2 

, the radius of the plasma, is very many 

Debye lengths in extento In the limit R
2

/A
0 

_,. ""', the kinetic energy 

of the electrons can be neglected. All electrons are assumed to re~ 

main on field lines. 

The potentials ¢ 
2

(r) in L , L
2 

are assumed to have neg-
!, I 

ligible z dependence (long cylinders and plasma), at least when cal-

culated well away from the ends of L
1

, L
2 

• We assume that the 

plasma will act in such a way as to keep the potential functions ¢
1 
{r), 

¢
2

(r) equal where possible; this means matching the potentials 

¢
1 
(r) = ¢

2
(r) at all radii where n

1 
(r) and n

2
(r) f. o. When V = 0, 

c 

this requirement is trivially satisfied. As V slowly changes from 
c 

zero, however, the potential ¢
1 

(r) is then given by the solution to 

the 2-D Poisson equation with V as the boundary condition and 
c 

P
1 

(r) as the density function: 

I d d ) r - ¢
1
(r) = 4TTe P

1
(r , 

r dr dr 
(A J 6) 

By integrating in r twice, an integral equation for the potential at 

any radius is obtained: 
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R r' 

J w dr,' f r"p (r")dr" + V 
r 1 c 

r 0 

(Al?) 

R is the cylinder wall radius and V is the boundary condition w c 

applied to L
1 

• As can be seen from (Al7), changing V c only changes 

the overall potential level of each electron in L
1

, at least near the 

axial center of L
1

; the functional form of ¢
1 

(r) is unchanged. The 

potential ¢ 2(r) well within Lz can be similarly found: 

r' 

d~: l r" P z<r") dr" 

0 

(Al8) 

We then equate ¢
1
(r) = ¢

2
(r) wherever p

1
(r) and P

2
(r) are both 

non-zero. Before the compression starts, V c = O, and P
10

{r) = 

p
20

(r) = p
0

(r) for all r is the initial condition which satisfies 

When V 'f O, 
c 

P
1 

(r) = P
2

(r) over some range 

rs R
1 

< R
2 

where R
1 

and R
2 

are the plasma radii in L
1 

and L 2 , 

respectively. This is because the detailed balance of ¢
1 

(r) = ¢2 {r) 

over this range requires the same radial dependence where there is 

plasma; this balance is only satisfied if P
1 

(r) = P
2

(r) in this region 

regardless of V . 
c 

Thus changing V causes the plasma in a cylindrical shell 
c 

between R
1 

and R
2 

to be moved from L
1 

into L
2 

• This causes 

p
1 

(r) in the remaining plasma to be uniformly lowered (by some 
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factor less than V c), and ¢
2

(r) to be identically lowered over the 

same radius (by the additional charge outside r = R
1

). 

The potential equality condition, ¢
1 

(r) = ¢
2

(r) for rs R
1 

and the particle conservation eq.uation, -AP
1 

(r) L
1 

= Ap
2

(r) L
2 

for 

r > R
1 

, can be written as one integral equation by equating (A17) and 

(AI8) to yield 

(Al9) 

where H(x) is the Heaviside step function; i.e. H(x) = 1 for x > 0, 

H(x) = 0 otherwise. Equation (Al9) can, in principle, be solved for 

R 1 as a function of V c for a given initial density profile p
0

(r). 

For exa.inple, a constant density p
0

(r) = p
0 

gives the transcendental 

equation for R
1 

: 

The prediction of the analysis is simple. 

v 
c 

= PoTTe(l +L/Lzl. 

(A20) 

As V is slowly 
c 

changed, the radius of the plasma in L
1 

shrinks. The density within 

that radius in L
2 

stays constant, but the dEnsity in the outer radial 

regions is increased. Although the result (A20) neglects a..."l.y tern-

perature effects, i.e. particles have no parallel kinetic energy in this 

model, (A20) is expected to be approximately correct when the plasma 
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·is many Debye lengths in radius. 

Since this model of axial compression assumes that the elec-

tron 1s kinetic energy is negligible, it cannot directly ad.dress the 

question of compressive heating. We therefore look at an individual 

electron, and consider its kinetic energy as a function of V • In the 
c 

spirit of the above compression model we start this electron at 

velocity V , in L and follow it as V slowly changes from zero. 
z 1 c 

We will find that the bounce adiabatic moment, I fl , will again remain 

conserved if V is changed slowly enough, and that eventually the 
c 

electron will be unable to enter L
1 

from L
2 

• 

The mechanism which changes vzl is found in equation (Al7). 

Asswne an electron has velocity v zl after it enters the radial 

De bye sheath region of the plasma in L
1 

, which has already been 

partially compressed. (See Figure 24.) The De bye sheath is, of 

course, due to a distribution of parallel velocities; the electrons \vith 

relatively large velocities will be able to surmount the axial potential 

gradient at the L
1 
-L

2 
boundary, while slower ones won't. The elec-

trons which do reach L
1 

will remain in L
1 

for approximately 

2L
1
/v sec. During this time, V will change by an amount 

zl c 

D.V 
c 

dV 
c 

dt 

This means the potential energy of the electron has increased by 

(A21) 

-et:::.V c when it is ready to re-enter L
2 

• Since there are no axial 
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L1 L2 

(~~~~~~~~-------
Plasma 

------·--~----------- - - - - - - -

- Figure 24. Partially compressed long plasma in the vicinity of 
the compress boundary. 
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electric fields in L
1 

(except at the reflecting end and at the LI -:L
2 

boundary), v zl remains constant while the potential energy of the 

electron incraases. To the approximation that there has been no 

change in density in L
2 

(i.e. neglect the change in space charge 

from the particle compression), all of the gain in potential energy 

gained in traversing L
1 

will appear as an increase in v zZ , the 

electron velocity in L
2 

• 

If V is changed slowly enough, then the oscillatory descrip­
c 

tion of the electrons' motion in LI and L
2 

will contain a conserved 

bounce adiabatic invariant, f v z dz In this case, the slowly varying 

parameter of the motion is the field ¢
1 

(r). The conservation of 

the adiabatic bounce invariant in turn means that all the compression 

results of sections (i) and (ii) will apply to this hybrid model as well. 

Thus this simple model of long plasma compression can also result 

in a 1-D compression providing the collision rate is also sufficiently 

low. 

(v) Cyclic heating 

The method of adjusting the initial temperature (before the 

anisotropy is induced for evolution studies) of the plasma is described 

by a simple model of alternate 1-D expansions and compressions inter-

spersed with waiting periods which allow collisional equilibration be-

tween T 11 and T 1-. The final volume of the plasma is the same as 

the original, but final temperature has been increased due to the net 

increase in entropy caused by the two collisional processes, Since the 
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plasma lengths accessible to the EV device are limited, fine control 

of the final equilibrium temperature is provided by adjusting the 

amount of time available for collisions during the equilibration phase 

of the cycle. Many cycles can be put together to attain a large in-

crease in t4e fmal temperature. 

For simplicity, the 1-D adiabatic ideal gas compression model 

of sections (i) and (ii) is assumed, along with a long plasma assump-

tion that compressions take a Maxwellian v
11 

to a new Maxwellian. 

figure 25 shows a plot of parallel temperatures vs the L, the effec-

tive plasma length, around one heating cycle. An initial expansion 

was chosen: similar results are obta:ined for an initial compression. 

State (a) starts in equilibrium T
11 

= TL= T 
0 

with length L
0 

• . . 
A 1-D (collisionless) expansion to length L

1 
takes the plasma to 

The plasma is then 

allowed to remain at length L
1 

while collisions bring T 11 and TL 

into equilibrium. The new equilibrium temperature at state (c) is 

calculated to be T 
1 

Similar calculations can 

be made in taking the plasma to state (d) via a 1-D adiabatic com-

pression, and to state (e) via collisional equilibration, which causes 

a further increase in entropy. In the final state (e), the plasma has 

returned to its original volume, and has an increased equilibrium 

' temperature T 
0 

: 

T' 
0 (A22) 
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(d) 

' Ta 
I 

(e) • 

t 
T 

Ta (a) 
(c) 

f (b] 

L-

Figure 25. The parallel temperature, T, plotted as a function of 
plasma length L over one full heating cycle. Full 
equilibration is assumed going from points (b) - (c) and 
from (d)-- (e). The final temperature, T;, is given by 

T~ = (T
0

/9) [2 + (L/L0)
2
)[ 2 + (L

0
/L

1
J
2

] • The differ­

ence T / - T can be adjusted by reducing the time 
allowecffor ~quilibration. 
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This increase in temperature is a result of net work done on 

the plasma by the compress potential1s power supp~y. Figure 26 

shows a p-V plot for the cycle; the net work done on the plasma is 

given by the cross -hatched area and is equal to f pdV around the 

cycle. By using the ideal gas relationship pV = NT, the net work 

done on the plasma is given by 

(A23) 

where N is the total number of electrons. There is no net work 

done associated with the plasma potential energy in this approxima­

tion. Equation (AZZ} is easily recovered from (A23) by using 

.:l.Wnet = Cv.:l.T = (3/Z)N(T~ - T 0 ), 
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Figure 26. The pressure as a function of length for the same case 
as Figure 25. The total work done on the plasma, l:::. W, 
is the cross ~hatched area. 
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·APPENDIX B: Density Fluctuation Reduction Technique 

This appendix describes a technique which drives down the 

level of fluctuations of the basic measurement, Q(r), by as much as a 

factor of five. (Q(r) is the number of electrons which pass through 

the collim.ator hole.) This in turn allows up to a fivefold decrease in 

the random error in the measurement of T 
1 

(and the relaxation rate 

derived from the T 
1 

evolution) for the same amount of data. The 

same decrease in random error would require up to 25 times as much 

data if the technique was not employed. This would take a prohibi-

tively long tim.e. The technique itself is a very simple one. 

The technique is simply to tilt the magnetic field away from 

the axis defined by the confinement geometry after the plasma has 

been injected and confined. The technique, and some of its conse­

quences, was first investigated by K. Fine. The field is tilted by the 

trimming coils, which were _designed to remove the earth's magnetic 

field, and align the total field with the confinement geometry axis. 

These coils produce essentially uniform fields within the confinement 

volume that are perpendicular to the main solenoidal field and each 

other. By ~pplying more perpendicular field than is necessary for 

alignment, the total field can be precisely tilted away from alignment. 

This additional perpendicular field is applied for several tenths of a 

second, starting just after the plasma is confined, The level of fluc­

tuations in Q(r) decline during the tilt period at an enhanced rate. 
61 
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At the end of the desired tilt period, the field is realigned with the 

confinement axis, and the rest of the experiment proceeds normally. 

Part of the tilt period is devoted to the time the changed perpendicular 

field requires to fully penetrate the stainless steel vacuwn jacket. 

This time is on the order of a tenth of a second. 

Figure 27 shows measurements of-the root mean square per-

centage deviation of the fluctuations, CJ, made on the axis as a function 

of the tilt angle in degrees, t:.B = t:.B /B , where t:.B is the per-
x z x 

pendicular field magnitude. The RMS percentage deviation is defined 

as 

cr = [~ L (Q.(O) - O.(O))z] 
112 

I o.(O) 
. l 1 I 1 
1 

(B !) 

where Q(O) is the average value of the total number of electrons to 

pass through the axially centered collimator hole, ~nd N is the 

nwnber of measurements of Qi(O). B is 281 Gauss, and the plasma 
z 

is contained within Ll-L4. .6B is turned on 30 msec after injection 
x 

and is kept on for O. 8 sec. The plasma is dumped and 0. (0) is 
1 

measured at l sec after inject. The line shown is the result of a fit 

by eye to the measured CJ (t:.B) data taken at various values of 60. 

There is a fivefold reduction in CJ when t:.0 ;;;, o. 5 degrees; increas-

ing t:.9 beyond that doesn 1t yield much more improvement. 

The technique becomzs less effective as the length of the 

plasma is decreased. Therefore the technique was always employed 
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Figure 27. Plot of cr {.6.9), the percentage RMS deviation in individually measured Q(r), as a 
function of A9 = B i./Bz , the tilt angle between the magnetic field and the confine­
ment symmetry axis. The 1/4" collimator hole is centered on the axis, and 
Bz = 281 Gauss. The solid line is determined by an eyeball fit to the 0(.69) data. 



when the plasma length was a maximum.; the effect is not destroyed by 

subsequent axial compression, The tilt angle which produces the 

minim.um cr is a function of B Figure 28 shows curves similar to 
z 

that of Figure 'l:7 for several values of B 
z 

The time the tilt was on 

is 1. 9 sec for this series, Note that for the two lower fields O' dis-

plays a minimum at some particular value of .69 = .60 
m 

Figure 29 

plots .60 as a function of B ; where no minimum. is found .69 
m z m 

is set to be where cr no longer changes rapidly with .69. 69 
m 

seems to scale like B 
2 

z At present, it is not known why there is 

not a well defined minimum of cr(.69) for B = 281 Gauss. Presum­
z 

ably the lack of a minimum can also be found at higher values of B 
z 

The overall effect of this technique on the plasma can be seen 

in Figure 30, which shows the plasma radial profile at 2 sec both with 

and without utilizing the technique. There is a striking difference in 

the two profiles, This difference appears to be brought about by an 

enhanced internal rearrangement caused by the tilted field, along with 

an enhanced external transport (increased mean square radius). The 

temperature has risen and become more uniform, most probably due 

to a transformation of electrostatic energy to thermal energy as the 

plasma density profile changes. 

There is as yet no theoretical model which describes the 

effect of the tilted field upon cr, although existing theories of resonant 

particle-wave interaction may eventually explain the transport features 
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Figure 28, Plots similar to that of Figure 27 for various values of Bz, The three fitted lines 
representing cr(~9) data for Bz ~ 281 Gauss are plotted out to the maximum .6.0 
attainable with the Bz power supply. 
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Figure 30. Radial density profiles (with 4 (EL) data points also 
shown) taken at 2 sec both without any tilt (a), and 
with 1. 9 s of ti.9 = O. 35 degrees of tilt (b), See 
Figure 3 for an explanation of the graph structure and 
scales. The total number of electrons is the same for 
graphs (a) and (b), 
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and the damping of the density fluctuations. Since the plasma is 

rotating in the lab frame, the static tilted field appears to oscillate in 

a frame rotating with the plasma, and therefore this "wave 11 could 

interact with both plasma collective modes and particles {wave-wave 

and wave-particle interactions if linear, or a more complicated inter-

action if non-linear). This effect has not been studied beyond the 

amount necessary to utilize it as a means of reducing O' and verify­

ing that such reduction does indeed result in improvements in the 

measurement of T1 and relaxation rates. Since the tilted field is 

realigned with the confinement axis several collisions times before an 

anisotropy is induced, any lingering disturbance to the velocity dis­

tribution should be removed by electron-electr.on collisions. Thus 

this tilted field technique should not affect any of our measured relax­

ation rates. 
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APPENDIX C: T 
1

: First Order Correction Technique 

Figure -lOa shows a typical curve of N(V A' y = O)/N(O, 0), the 

fraction of incident electrons which pass through the analyzing cylin-

der A3, as a function of the negative potential, VA' applied to A3. The 

secondary field, B , is equal to zero, Also shown is the relative s 

fraction chosen for all (El.) measurements, N(V A' O)/N(O, 0) = O. 5, 

In general, the VA so chosen will depend upon the confined plasma's 

space charge potential and parallel kinetic energy distribution. VA 

is experimentally found by first measuring N(O, 0) and then N(V , 0) 
A 

on successive shots as VA is decremented, until the desired ratio is 

bracketed. VA is then estimated by interpolation, and checked by 

measurement, and if necessary iterated until N(V A' O)/N(O, 0) is 

-within So/o of the desired value, Greater accuracy in the choice of VA 

seems unnec~ssary. 

The two derivatives, 8N(V A' 0)/8V A and 8N(V A' 0)/8y, are 

then measured, 
52 

Historically, each was measured using a two-point 

method, 

8N(V A' 0) 

av A 

N(V A+ 6.V A' O) - N(V A' O) 

6.VA 
(Cl) 

and similarly for the y derivative. N(V A' 0) is typically not a linear 

function of VA, and so !:::.VA must be very small for an accurate slope 

measurement. Repeated measurements of N(V A, 0), etc., in general 

display statistical variations about some average value. If we assume 
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a "normal" or Gaussian distribution of values of standard deviation cr 

about the mean value, that !::::.VA has no associated measurement error·, 

and that each point, N(V A+!::::. VA' O) and N(V A, O), are measured J 

times, then the statistically derived standard error in the measure-

ment of the slope is 

Std. Er. 

where the [ 
2 ]1/2 

standard deviation, cr VA , is measured as 

= 

and 

N(V A' 0) 

I 
J-1 

J 

I 
i = 1 

[ - - J 2 Ni(V A' 0) - N(V A' 0) , 

J 

= I "' J £., Ni(VA,0) 
i = 1 

(CZ) 

(C3) 

(C4) 

is the mean value. Maintaining an acceptably small cr while decreas-

. •v · r 112 · h' h 'di · h ing ~ A requires to increase, w ic rapi y increases t e 

total time each (El.) measurement requires. 

Unfortunately, a finite !::::.VA (and/or !::::.y ), leads to a first 

order systematic error in the measured (El) when slopes are meas-

ured using the approximation (Cl). If we Taylor expand equations 

(3. C. i. 2) and (3. C. i. 3) about Y = o· and VA =VA , respectively, we 

find, to first order, 
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'· 

e 
----:6=-'y __ • ( E ) 

6N(V A• 0) .L meas. 

6VA 

The sys~ematic error term can be of order 1 Oo/o or larger. 

This level of error can be reduced by simply centering 

the two point measurement on VA (and y = 0), that is, measuring 

N(V A (/O.V A/2), 0) and N(V A+ (6V A/2), 0). The level of error due 

to finite !:!. VA is then second order in !:. VA, b.y, An alternate 

method, and the one used for this study, is to bracket VA (and 'Y = 0) 

with several different values of VA (and y). A least-squares curve 

fitting algorithm is then applied to the data, which in turn gives the . . 

desired derivative. This method is capable of measuring (although 

with decreasing accuracy), the higher order partial derivatives. By 

repeated differentiation of equations (3. C. i. 2) and (3. C. i. 3), it is 

easy to show that 

(C6) 

where (E~) is the nth moment of the perpendicular energy distribu-

tion. This information was not used, nor investigated, in this study. 
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There is another source of systematic error that must be 

addressed. When the secondary solenoid is energized so that y > 0, 

the field lines in the confinement region are slightly convergent on 

the axis. The amount of convergence is dependent upon distance from 

the secondary solenoid. Thus if we follow the field lines which pass 

through the collimator hole back into the confinement region, we see 

them slightly diverge to cover a larger area. Hence, if the collimator 

hole is positioned at r = 0, there will be more electrons passing 

through the collimator hole when y > 0 than when y = O. The situa-

tion when the collimator hole is off axis and the density is a function 

of radius is more difficult to predict. There may be more or fewer 

electrons, depending upon where the field lines which pass through the 

hole originate in the plasma. This effect makes the total num.ber of 

electrons through the collimator hole, NT , a function of y. Let 

Nm (VA, y) be the measured quantity, and let N0(V A' y) be the 

value N (V , y) would have if NT were not a function of y, i.e. 
m A 

(C7) 

Simple differentiation with respect to y, along with isolating the 

desired quantity aNO(V A' 0)/8y. yields 
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(CS) 

The second term on the right hand side of the equation is the correc-

tion for varying sample size to the measured derivative. This correc-

tion is measured by measuring 8NT(0)/8y using the same method as 

the measurement of the slope Nm(V A' 0)/8y except VA is set to 

zero. This correction can be of the order of lOo/o for measurements 

of (E.l) on axis, and can be larger when r i- O. We believe that the 

present method of measuring (E .l) is accurate to better than So/o • 
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APPENDIX D: T
11

: Analysis for Arbitrary f(v\l) 

An alternate method of integration can be employed to obtain a 

simple analytical solution to equation (3. C. ii. 4) when f(v
11

) is left as 

an arbitrary function of v
11 

(still independent of r). For simplicity, 

r is allowed to become infinite, although a finite r can be accom-
c c 

rnodated with an increase in the complexity of the results. Equa-

tion (3. C. ii. 4) is restated using v = E 
1/2 

2e/m(vd - ¢(r, 0)) as the 

minimum escape velocity: 

Q (Dl) 
e 

The analysis is again performed within the restricted regime of 

Q' =- Q , i.e. where the potential ¢(r,O) maybe assumed unper-
e e 

turbed by the loss of Q • The radial density is assumed to be con­
e 

stant out to the radius where essentially no electrons escape to con-

tribute to Qe • For a Maxwellian f(v
11
), this radius is a few hD • 

All the other restrictions of the T 
11 

restriction model are retained. 

¢(r,0)=¢ 
0 

2 
- TT n er 

0 

where ¢ is the potential at r =O and n is the density. An 
0 0 

examination of the lower limit of the v
11 

integral of (Dl) shows a 

parabolic radial dependence to vE , 
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2 
TT n er ) 

0 
(D3) 

which is of the parabolic form 
2 

y = a(x - x ). 
0 

Figure 31 shows the 

area in (vl!' r 2J space over which f(v!I) must be integra~ed to yield 

Q 
e 

The lower bound of v 11 is the parabolic line which crosses the 

. Ze 1/2 
v

11 
ax1sat v 110 =-m_(Vd-¢

0
) • The analytic solution to equa-

tion (Dl) essentially involves integrating f(v!I) over v
11 

to generate 

area element (I), then integrating these elements over r
2

• However, 

2 
advantage can be taken of the independence of f(v

11
) from 1• to form 

area element (ll} first, and then integrating over v
11

• We simply 

solve {D3) for 
2 

r 
max 

which leads to the alternate integral form of (DI): 

This is trivially integrated: 

mL 
p 

Q "' e - Zen 
0 

(D4) 

(DS) 

(D6) 

where the integration variable has been rewritten as v
11

, From (D6), 

and the defi~tion of v
110 

, it is easy to show that 
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I 

V;; 
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/ 

Figure 31. 

I 
Transmitted 

II 

r2 

2 
The transmission and reflection regions in v 11 • r space. 
The lower boundary is given by the smallest vl! that can 
penetrate the dump barrier at that radius. Area element 
I is found by integrating along vl\ ; area element II is 
found by integrating along rz. 
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I 
eQ 

e 

dQ 
e 

dv 
d 

= 
d ln Q 

e 
(D7) 

where (E
11 

)> is the a:erage parallel kinetic energy of the electrons 

averaged over f{v
11

) from v 110 to infinity, and E
110 

= ~ mv1 ~0 
Thus, for an arbitrary f(vll)' [d ln Qe/d(eV d)]-

1 
is the average 

energy in the tail of the distribution over the range of the slowest 

whic~ escapes (E 110 ) to the fastest, minus the energy of the slowest 

to escape, E 110 • If f(v 11 ) is in fact Maxwellian, at least over the 

2 
range v 110 :s: v 11 :s: oo, i.e. f(vll) a: exp(-mv

11 
/ ZT lie) where v

11 
~ v

1
lo 

with T 118 the 11temperature" of the tail, then ((E
11

)> - Ell
0
],-l be­

comes identical with the right side of equation (3. C. ii. 10) in the limit 

2 
r c -+ 00 , and Tl!E: is substituted for T

11
. 

Other manipulations of (D6) are also instructive; for instance 

~ 

dQ 

J e 
~ dv11 f(v 11

) 
dVd LP (D8) 

Vila 

or 

d2Q eL 
e 

"' __£ 
f(vllo)/vllo - -z- rn 

dVd 
(D9) 

can yield detailed information about the tail of f(v
11

), Of course, to 

. . . [Ze ]1/2 avoid scale errors in the value of v = - (V - ¢ ) ,.i.. must 
l!o m d o ' 'l'o 

be known. Both LP and ¢ 
0 

can be accurately determined via the 

density measurement. 
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APPENDIX E: Measurement of h(v
1

) 

This appendix describes a measurement technique which allows 

the measurement of an arbitrary perpendicular velocity distribution 

function h(v
1

). This measurement uses the same hardware as the ~ 1 

measurement. In its present state of development, this measurement 

gives only a rough picture of h(v
1

), but with improvements in tech­

nique this measurement may become a precision tool. 

We start the discussion by rewriting equation (3. C. i. 1), the 

expression for the nwnber of electrons which pass through the electro-

static analyzer cylinder and secondary magnetic field solenoid com-

bi nation: 

·~ ~ 

N(V A' Y) =NT [ dE1 f dEu f(E 11 ) h(E1 ) 

0 -eV A +YEl 

(E !) 

with the same notation as in section 3. C. 4, i. We emphasize that 

NT is the total nwnber of electrons which could possibly pass through 

to the collector. We take the partial derivative with respect to the 

analyzer potential VA : 

(EZ) 

If we can so arrange f(E
11
), t":ie parallel energy distribution of the 

dwnped electrons, so that it approximates a delta function 
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where E is the parallel energy of the dumped electrons, then 
0 

aN ---av 
A 

~ 

eNT f dEl. h(El.) 5(-eVA +yEJ. -E
0

) 

0 

(E. 3) 

(E. 4) 

(E. 5) 

where EA= -eV 
A 

Thus, to the approximation f(E
11

) = O(E\1-E
0

), 

the change in the fractional number of passed electrons at analyzer 

energy EA is proportional to the perpendicular energy distribution 

evaluated at the energy difference EA - E , which is then magnified 
' 0 

by a factor of y. It is trivial to convert h(E .l) to the corresponding 

perpendicular velocity distribution h{v
1

}: 

a (N(E A' y)) 
- ym SE N 

A T 
(E. 6) 

Fortunately, dumping the electrons in such a way as to approx-

imate a monoenergetic beam is simply accomplished. Consider the 

dump gate potential to be fixed at V • Any electron in the confined 
0 

plasma can escape past the dump gate if its total parallel energy, 

I 2 = -e¢(r,z) + z mv
11
(r,z), exceeds -eV = E 

0 0 
Let V be the 

p 

potential applied to the cylinder in which the plasma is confined. 
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(Figure Za schematically shows a confined plasma, and for this case 

V would be applied to LI-LS.) Initially, V is set at ground, and 
p p 

u 11 < E
0 

for all electrons. 

u 11 is increased by -eV p 

As V is slowly made more negative, 
p 

and eventually u
11 

reaches E
0

• At that 

time, the electron escapes past the barrier, and ends up with parallel 

kinetic energy E 11 = u 11 = E
0 

• Thus each electron that escapes has 

parallel kinetic energy E
11 

= E
0

• 

The selective deconfinement of electrons is then completely 

analogous to that of the slow dtunping procedure used for the Tl\€ 

diagnostic (see section 4. C. 4. ii). In this case, however, the final 

energy distribution of the deconfined electrons is ideally the single 

value E 
0 

In practice, the beam energy has some finite spread in 

energy from E to E +~. This spread is primarily due to the 
0 0 

fact that the rate of the slowly changing potential applied to the 

containment cylinders is not infinitesimally small, and that the 

electron axial bounce frequency is not infinitely large. The meas-

urement's resolution of the structure of h(E .l) is then limited to a 

scale length of approximately ~/y, 

The relevant quantity in this measurement is the relative signal, 

N(V A; Y )/NT • Unfortunately, NT is not just the total ntunber of 

electrons on field lines which pass through the collimator hole. If 

this were true, the measurement of NT would be simple and the 

fluctuation level of NT would be quite small (on the order of one 
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percent). However, in practice, NT is limited to only a few percent 

of the total possible by the onset of a diocotron instability driven by 

21 
the slow hollowing out of the plasma column. (This instability is 

also mentioned in the Tiie diagnostic section.) 

Consequently. the plasma is dumped in such a way as to only 

allow the slow deconfinem~~nt to proceed over a fixed range of V 
p 

When the end of this range is reached, the V is rapidly switched 
p 

back to ground, and no more electrons can escape confinement. NT 

is then the number of electrons which pass through the collimator 

hole while the containment voltage is varied over the fixed range. The 

fluctuation level of NT produced this way is on the order of 5-1 Oo/o, 

and thus a great number of shots are needed to produce an accurate 

measurement of h(v
1

). 

Although very little development work has been done on this 

measurement, its potential can be seen from Figure 32, which shows 

traces of N(V A, y) (in arb, units) plotted against VA for the same 

plasma at various times after a compression has occurred. The 

distribution function, h(E 
1

), is simply 'given by the product of the 

slope of the N(V A''Y) data times y /eN(O,y). The parameter y is 

held at l for all traces except two, where Y is set to zero to show 

the approximate resolution. NT = N(O, y) is the value of the signal 

as VA-" 0 and all electrons can pass through the analyzer. 
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collimator ho le was centered on axis, and y= 1 for most of the shots. Bz = 188 G. 
There are two plots of N(V A • 0), which show the effective resolution width of the 
other plots . The plots were horizontally adjusted to line up at N = 0, and vertically 
scaled to coincide at N(O, 0) . The slope of each plot gives the perpendicular dis­
tribution h(E 1 ) times a constant. 
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APPENDIX F: Polarization Drift 

A tiine dependent radial electric field will impart a radial 

drift velocity to an electron in an axially magnetized plasma. This is 

a polarization drift, and can be thought of as arising from the effective 

azimuthal force an electron feels in an accelerated frame wherein the 

~ ~ 

changing E XB azimuthal drift velocity is zero, This effective force 
r 

is analogous to the centrifugal force of circular motion, The effective 

~ ~ 

force in turn causes an FXB drift in that frame. For radial electric 

fields that vary in time, this results in a radial drift. This situation 

occurs naturally in the studied plasmas whenever they are compressed 

or expanded, and also during the dump process. 

The magnitude of this polarization drift velocity is given by 

v ; 
p 

c 
OB z 

~E 
dt r 

(Fl) 

where 0 is the electron gyrofrequency and E is the radial electric 
r 

field. The radial drift velocity of the gyro center is v 
p 

An estimate 

of the largest radial displacement expected from a duxnp, compress 

or expansion can be made by integrating (Fl) to get 

~r = (F2) 

where ~E has been approximated as ...., ± E • E is approximated 
r r 

by the radial electric field from a uniform density plasma, 
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(F3) 

Then, expressing the density, n
0

, in terms of the plasma frequency, 

lJ) 

p 
2 

lJ) 

1 _..E.. r 
z 02 

(F4) 

2 2 -2 
For the plasmas studied, w /0. < 10 , but for plasmas near the . p 

Brillouin limit (Zw
2 

= o. 2), D.r will be significant. 
p 

that 

As long as the time rate of change of E is slow enough so 
r 

-1 -1 n << E (dE /dt) , the gyromagnetic moment, µ, of the 
r r 

electron will remain constant. In our plasmas, the smallest 

-1 -1 
E (dE /dt) is on the order of a microsecond, while n ...... l 

r r 
2 

nanosecond. Thus µ = v
1

7B remains constant, and when B is also 

constant, then is also constant. Therefore, even though the 

form of (F4) gives a uniform radial compression or expansion, there 

is no associated heating or cooling of the perpendicular degrees of 

freedom. 

Of course, the dUinp process is much more complicated than a 

simple E , but the t::.r associated with the dump is probably on the 
r 

order of the estimate of {F4). This estimate gives a systematic error 

to our calculations.of n(r, z) and ¢(r, z) on the order of 2(t::.r/r); 

this is seen to be less than lo/o • The closer the plasma gets to the 

Brillouin limit, the more consideration these errors must be given. 
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The systematic error in the T 
1 

measurement should be much smaller 

than Io/o, since the measurement is basically a simple ratio of meas-

ured densities at constant r • 

It is perhaps worth noting that this polarization displacement 

is necessary to conserve angular momentunl •. Since the compress, 

expand and dUinp processes are 9 -syrmnetric, they impart no net 

torque to the plasma. The total canonical angular momentum of the 

plasma, L
0 = Z r. (P9 . - ~c A 9 (r

1
.)) , is then a constant. 

i 1 l 
Here 

B 
e e 

A 9(r.) r. = 
c l 1 c 

z 
2 

2 
r. 

1 
is the field component of L

9 
, and r.P

9
. = 

1 1 

2. 
mr. e. is the mechanical component, which consists of two parts; 

1 l 

the individual gyromotion and the overall column rotation. The 

individual gyromotion portion remains fixed. The column rotation is 

determined by E , which is of course changed. Thus the change in 
r 

L 0 due to the change in Er must be balanced by a corresponding 

. change in the field component; the mean square radius m·..lst change . 
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