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Abstract of the Dissertation 

Experimental Studies of Relaxation of Two-Dimensional 

Turbulence in Magnetized Electron Plasma Columns 

by 

Xiao-Pei Huang 

Doctor of Philosophy in Physics 

University of California1 San Diego, 1993 

Dr. Charles F. Driscoll, Chairman 

Freely evolving E x B drift turbulence has been studied in magnetized elec­

tron columns, which follow the same ( r, 0) dynamics as 2D incompressible fluids. 

Experimentally, plasma columns are confined inside conducting cylinders in a uni­

form axial magnetic field, and are measured with two density (vorticity) diagnostics: 

a multi-collector array and a phosphor screen/CCD camera. 

An initially hollow column undergoes unstable diocotron mode growth, vor­

tex formation, and convective transport. This results in large-amplitude t11rbulent 

fluctuations, and a monotonically decreasing density profile with sheared rotation. In 

this thesis1 quantitative measurements on the decaying 2D turbulence are presented, 

and detailed comparisons are made to theories of 2D relaxation. 

The entire free relaxation process lasts several hundred column bulk rota­

tions1 and can be roughly divided into three phases. Phase I is characterized by 

the rapid filamentation and mixing of turbulent density clumps (electron surpluses) 

and shallow holes (deficiencies) in the shearing background rotation. Phase II is 
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dominated b,v the ren1ai11ing elongated n1ediuin-size holes. \vhich are J)rograde a11d 

tl1us can survive the background shear. These holes consolidate into azin1uthally 

symmetric configurations through mutual interactions such as occasional n1erger. In 

Phase III, these coherent holes slow!;' drift radially out¥lard and are fi11ally axisym­

n1etrized \vith respect to the column center, giving the meta-equilibrium state of the 

2D relaxation. 

The meta-equilibrium column persists for about 104 rotations, before eventu­

ally decaying away due to 3D dissipation. Between tl1e initial and meta-equilibriun1 

states, the number of electrons (circulation), angular momentum, and energy are 

\vell conserved, while the enstrophy and mean-field entropy vary significantly. The 

measured meta-equilibrium radial profiles exhibit close agreement with the minimum 

enstrophy vortices predicted by the "selective decay" hypothesis. In contrast, predic­

tions of maximum entropy theories differ substantially from the experimental data. 

Small-amplitude (,...., 2%) shot-to-shot variations in the meta-equilibrium profiles have 

also been observed, reflecting the random motions involved in the relaxation. 

XVIII 



Chapter 1 

Introduction and Overview 

1.1 Introduction 

Turbulent flo\vs occur in a wide variety of physical systems, rar1ging from 

earth's atmosphere to hot fusion plasmas confined in thermonuclear reactors [33, 92]. 

Although there is no rigorous scientific definition of turbulence, a turbulent fl.ow must 

exhibit randomness in both space and time, excitations of many degrees of freedom, 

and extensive mixing of fluid elements. Due to the complexity of the nonlinear inter­

action, a comprehensive physical picture of turbulence is still elusive, and it remains 

'~the last great unsolved problem of classical physics," as ¥:as dubbed by Richard 

Feynman. Turbulence appears to behave differently from one system to another, 

depending on the flow dynamics involved, as well as on the initial and boundary 

conditions. Scientific research has been concentrated on finding universal properties 

that can provide a clear physical understanding of the observed phenomena [66). 

Under certain conditions, a three-dimensional physical system can be mod­

eled by neglecting one of the spatial degrees of freedom. For example, geophysical 

phenomena such as mesoscale oceanic and atmospheric flows are approximately two­

dimensional1 due to the effects of earth's rotation and the relatively small vertical 

extent of the flows [72]. In addition, the macroscopic behavior of strongly magne­

tized plasmas is often 2D-like, due to the "stiffening" effect of the confining magnetic 

1 



2 

field [42]. Other 2D flo\\'S include tl1i11 liquid films, c1'yogenic superflui<ls, and self­

gravitating disk galaxies [41]. 

The 2D dynamics of incompressible fluids has been studied for over a hun­

dred years [41]. In the inviscid limit~ a 2D flo\v is simply the advection of scalar 

fluid vorticity; for tl1is reason, 2D turbulence exhibits some intriguing features quite 

different from its 3D counterpart. For example, as the turbulence evolves, the ki­

netic energy of the flow tends to condense into large 2D vortices, rather than being 

transferred to small spatial scales. Freely evolving 2D turbulence is of particular 

interest, since the lack of external forcing eliminates 11nwanted complications. Re­

cently1 insights on free turbulence relaxation have been obtained through extensive 

analytical and computational studies, par'tially motivated by the availability of high 

performance computers. The laboratory experiments are relatively few [93], how­

ever, mainly because it is difficult to devise a well-diagnosed experimental system 

with low dissipation and a high degree of two-dimensionality. 

Research on non-neutral plasma physics began in the early 1960s when col­

lective effects were explored in electron beam experiments [15]. In the past twenty 

years, non-neutral plasmas confined in traps have been intensively studied both ex­

perimentally and theoretically. Many properties of magnetically confined pure elec­

tron plasmas have been elucidated; and experiments on trapped pure ion, positron, 

antiproton plasmas are also making rapid progresses. A \vide range of applications 

are possible [77], such as laser-cooled pure ion plasmas for the next generation of 

ultra-high precision clocks [97]. 

A magnetically confined pure electron plasma column can be considered as 

"two-dimensional" when the electron axial bounce motion is much faster than the 

guiding-center E x B drift in the (r, 0) plane perpendicular to the magnetic field. 

In this regime, the column 2D dynamics is governed by the Euler equation for 2D 
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i11con11)ressible inviscid fluids, \Vith the electro11 density l)eing proportional to t11e 

scalar \'orticity. \\"ith lo\v dissipation and accurate diagnostics, these magnetized 

electron columns provide excellent opportunities to study 2D Euler dynan1ics and 

t11rbulence. Here, the fto\v vorticity (densit)') can be directly measured \Vith high 

speed and precision) allo\ving detailed quantitative co111parisons \vi th theoretical pre­

dictions. 

In this t11esis. I present experimental studies on tl1e t11rbulent evol11tion of 

i11itiall:y hollo\v electron colum11s confined in a l\tlalml)erg-Penning trap .. i\.fter the 

creation of unstable initial configurations, columns are then completely isolated in 

tl1e trap, \Vithout any forcing or damping from the outside. Therefore, tl1e free 

evolution studied here is entirely driven by its O\\'n intrinsic d.ynamics. The initial 

hollo\v column is unstable to l(elvin-Heln1holtz shear instabilities, called diocotron 

modes in the plasma literature. These instabilities and their saturation dynamics 

have been studied by Driscoll et al. [23, 19], and by other groups [SO, 73]. Here, I 

\\'ill concentrate on the late-time relaxation period of the free c;volution, einphasizing 

results obtained fron1 the ne\v CCD camera density diagnostics. The ca1nera enables 

the identification of coherent density holes as the prominent feattlre in tl1e relaxation 

process. 

The in.itial instabilities and turbulence cause large-scale transport, but no 

plasma. loss. Fig11re 1.1 sho...,·s a series of radial density profiles measured by a single 

mobile probe at various times (taken from [51]). Eacl1 small l1orizontal bar represents 

density of an individual shot measured at that particular radius, and the solid curve 

is t11e average constructed fron1 many shots starting fron1 esse11tially tl1e same initial 

conditions. During early tin1es (t = 0, 100 µs, and 150 its), the hollow column 

exl1ibits gro\ving sl1ot-to-shot noise on its radial profile, reflecting tl1e gro,vth of 

unstable diocotron mode(s). .i\.t t = 200 µs, the noise has very large amplitucle 
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a11d the average profile is no longer hollo\v, due to the in\vard convective transport 

and turbulent fluctuations. By t = 2 ms, the colum11 has relaxed to a n1onotonicaJly 

decreasing density profile, \vith most of the noise decayed a\vay. This thesis examines 

the free relaxation of this turbulence, i.e., the dynan1ics between t = 200 µs and 2 ms 

as shown in Figure 1.1. The questions ca11 be summarized as the follo\ving: 

• How does the turb11lence decay away in this system? 

• What determines the final relaxed density distribution? 

1.2 Overview of Dissertation 

In Chapter 2, I discuss the experimental device (named V') on which this 

research has been performed. The V' apparatus was one of the original enlarged 

cylindrical Penning traps, now called ivlalmberg-Penning traps, which are utilized 

to magnetically confine non-neutral plasmas. The apparatus and the measurement 

diagnostic methods are described in detail. I also review the basic properties of 

trapped pure electron plasmas, with emphasis on the confinement behavior. Finally, 

several specific experimental techniques are discussed, which are used to create de­

sired initial plasma conditions. 

In Chapter 3, I revie"v the theory of nondissipative two-dimensional E x B 

drift dynamics in magneticall.Y confined electron columns. The E x B drift equations 

are the Euler equation for 2D incompressible inviscid (ideal) fluids. The vorticity of 

the electron flow is seen to be proportional to the electron density, and the total num­

ber of electrons is the total circulation of the flow. Further, the electron boundary 

conditions are equivalent to free-slip fluid boundaries. I also comment on the effect of 

dissipation and three-dimensionality to the ideal 2D dynamics. Theoretical insights 

on 2D turbulence phenomena are surveyed, with emphasis on the global conserva­

tion laws. Also considered is the Reynolds decomposition formalism that separates 
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2D turbulence into constitttent 111ea11 background f-lo\v and turbulent. fluctuations. 

Several experin1ental 1neasure111ent inethods and data processing techniques are de­

scribed, including the CCD camera imagi11g of 2D density distribution, and ensemble 

averaging over many evolutions. The coarse-graining effect of finite-size collectors is 

analyzed in detail as well. 

In Chapter 4, I present experimental measurements on the free relaxation 

process of 2D E x B drift turbulence in magnetized electron columns. The tur­

bulence arises as a result of shear-flow instabilities on the initially hallo\'.' density 

distribution. These instabilities saturate witl1 the formation of it1teracting nonlinear 

vortex structures, and the turbulence then relaxes after the in¥lard convective trans­

port establishes a globally stable, albeit turbulent column. The relaxation leads to 

a long-lived, quiescent 2D meta-equilibrium, which then decays due to 3D "viscous" 

particle transport. These features are illustrated by measurements from both single­

shot CCD camera images and from ensemble averages using the multi-collector array, 

such as the fluctuation level and two-point correlations. 

I find that the entire relaxation process lasts several hundred column bulk 

rotations, and can be roughly divided into three phases. Phase I is characterized 

by the rapid filamentation and mixing of turbulent density clumps (electron sur­

pluses) and shallo"'"· holes (deficiencies) in the shearing background rotation. Phase 

II is dominated by the remaining elongated medium-size holes, which are prograde 

(rotating in the direction of the shear) and thus can survive in the rotational back­

ground, and are settling into symmetric configurations through mutual interactions 

such as occasional merger. In Phase III, these coherent holes slowly drift radially 

outward and are finally axisymmetrized with respect to the column center, giving 

the axisymmetric meta-equilibrium state of the 2D relaxation. 

I demonstrate that as a result of the longevity of the deep density holes, the 
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observed noise decay tirne is 10-50 tin1es slo\ver titan predicted by si1nple "passive 

tracer" n1ixing. 'fhe quasi-stability of the i11dividual holes is qua;Jtitatively under­

stood by tbe Nioore-Saffman model based 011 the equilibration of an elliptical vorticity 

patch in a background fl.o\v with uniform shear. The tendenc.y for the l1oles to set­

tle into symmetric configurations in the column is explained by intuitive stability 

arguments on the hole-hole and hole-background interactions. The decline of the 

fluctuation level at late times, which apparently reflects the outward drift and final 

axisymmetrization of the density holes, can be approximated with an exponential 

decay. I present experimental measurements showing the dependencies of the fluc­

tuation decay rate on radial position, on column axial length, and on magnetic field 

are all weak. These scalings are all consistent with 2D E x B drift dynamics. 

In Chapter 5, I consider the relaxed meta-equilibrium state of the 2D tur­

bulence, presumably reached through nearly inviscid, nonlinear interactions of the 

tu~bulent flow. I show that this 2D meta-equilibrium persists for over 104 column 

bulk rotations, until 3D dissipation drives the system toward its final thermal equi­

librium. Quantitative experimental measurements of the meta-equilibrium state are 

presented, for comparison with theoretical predictions of point vortex and continuous 

fluid maximum entropy theories, and with minimum enstrophy models. I develop an 

analytical "restricted" minimum enstrophy model appropriate to the experin1ental 

constraints of density being non-negative and monotonic in radius. 

I find experimentally that the number of electrons (circulation), angular mo­

mentum (angular impulse), and electrostatic energy (kinetic energy) are all well 

conserved during the evolution from the initial to the meta-equilibrium states. In 

contrast, less robust invariants, such as the enstrophy and mean-field entropy, vary 

significantly, apparently due to '~viscous" dissipation or measurement coarse-graining 

of structures at the fine scales generated by the turbulence. I also find that the mea-
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sured IJlf'tn-eq11ilibriun1 density (vortici1.y) profiles exhibit close agreement \Vit.h the 

predictions of the restricted 1ninimum enstrophy model, \vl1ile differing suhsta11tially 

from maximum entrap.)' predictions. Sn1all-a1nplitude ("' 2%) shot-to-sl1ot variations 

are observed in the meta-equilibrium profiles, apparently because the relaxation dy­

namics magnifies the shot-to-shot variations in the i11itial state. The gradua1 decay of 

the meta-equilibrium state caused b~y the microscopic "viscous" effects and external 

particle transport is briefly discussed. 

In Appendix A1 I describe the collector calibration procedure. In Appen­

dices B - D, I present several theoretical and mathematical results that are 11sed 

jn the main text. Finally, frequently used symbols and notations are listed in Ap­

pendix E. 



Chapter 2 

Experimental Setup 

2.1 Overview 

In this chapter, I discuss the experimental device (named V') on which this 

investigation has been performed. The V' machine was one of the original enlarged 

cylindrical Penning traps, now called Malmberg-Penning traps, 'vhich were developed 

by Malmberg and his colleagues to study confined non-neutral plasmas [49, 16]. 

In the last two decades, many properties of pure electron plasmas confined in 

these traps have been carefully studied and characterized both experimentally and 

theoretically [51, 69]; furthermore, e:Xperimental techniques to manipulate and mea­

sure these-plasmas have been perfected, paving ways for investigating more complex 

behaviors in such systems. Here, I do not attempt to cover all the aspects of these 

experiments; rather I give a brief review of those that are directly related to the 

theme of this thesis, i.e., experimental studies on the relaxation of two-dimensional 

E x B drift turbulence. 

In Section 2.2, I describe the machine apparatus and the measurement di­

agnostic methods. Section 2.3 is devoted to a review of basic properties of trapped 

pure electron plasmas. Finally in Section 2.4, several experimental techniques 1s 

discussed, which are used to create desired plasma initial conditions. 

9 
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2.2 

2.2.1 

E 8-1> 

-Ve 

(Side view) Detection Circuit 

Figure 2.1: Basic configuration of a Malmberg-Penning trap. 

Experimental Apparatus 

Malmberg-Penning Traps 

Figure 2.1 shows a simplified schematic of the experimental confinement de-

vice. A series of concentric conducting cylinders (radius Rw = 3.05 cm) are enclosed 

in ultra-high vacuum (;S 10-9 torr) and immersed in a uniform background axial 

magnetic field B = B,,Z. These cylindrical electrodes are electrically isolated from 

each other and can be independently biased from outside the machine. Plasmas 

are formed from electrons emitted by a negatively biased spiral tungsten filament 

shown at the left of the illustration. Experiments typically run in cycles of inject­

manipulate-hold-dump actions at repetition rates up to 60Hz, providing possibilities 

for high-speed data acquisition. 

At the beginning of each cycle, the injection cylinder on the left is temporarily 

grounded, allowing the electrons to enter the confine-ment cylinder at the center. This 

---- -------- - ------------ -- -
___ _J 
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electron clou(l is then traJ)pecl by biasing the injection c:ylindcr at a large negative 

confinement voltage - \!~,typically· around -150\l. The <lump cylinder on the rigl1t is 

generally biased at the same confinernent voltage -Ve during this injection/trap1>ing 

process, so that the column can not escape axially to the rigl1t. The axial confi11en1ent 

of the colu1nn is thus assured by the large e11ergy barriers provided by the end 

cylinders. The unneutralized space charges produce a strong repelling electric field 

E, generating rotational E x B drift motion in the colum11 [12]. The column is 

therefore radially confined by the balancing Lorentz v x B force, where v is the 

Ex B drift velocity [14]. 

The density and temperature of these electron clouds are such that they 

are typically in the plasma state, i.e., coherent collective interactions, rather than 

individual particle effects, dominate the dynamics of the system [12]. Various ex­

perimental and theoretical studies have established the unique confinement property 

of these plasmas, which is reviewed in detail in the next section. These plasmas 

can typically be confined for a few seconds [50], or about 106 E x B bulk rotations, 

providing ample time to perform a variety of high-quality plasma experiments. For 

turbulence experiments on initially hollow columns, one generally first obtains qui­

escent stable plasmas, then creates the unstable hollow initial conditions by ejecting 

some electrons from the central region of these columns. This technique is described 

in Section 2.4. 

At time t after the creation of hollow initial conditions, the z-averaged elec­

tron density can be measured by grounding the dump cylinder, letting the column 

escape axially onto the positively biased density diagnostics at the right in Fig­

ure 2.1. Since this axial "streaming-out" process is typically much faster than any 

2D drift motion in the perpendicular (r, 8) plane, the column essentially preserves its 

2D structure, allowing accurate 2D density measurements [64]. This dump/diagnose 



12 

process is inherently destructive in nature, i.e., one can not. fol\o\v the ten11)oral evo­

lution of a particular column, since it has to be destroyed in order to carry out the 

measurement. In this thesis, t\VO kinds of 2D density diagnostics are used: an en<l­

plate multi-collector arra.r and a phosphor screen/CCD (Charge Coupled Device) 

camera. I discuss these diagnostics in the following sections. 

The whole cycle (called a plasma shot) can be repeated time after time, ge11-

erally with a high degree of reproducibility. For example, the creation of the initial 

hollow columns has shot-to-shot variations in measured density less than 0.5%. If 

an evolution does not involve instabilities 1 one can follow the evolution accurately 

utilizing the reproducibility of the system. An example is the off-axis dynamical equi­

librium state (nonlinear l = 1 diocotron mode) investigated by Fine [27]. However, 

if the evolution under study is intrinsically unstable, such as in chaos or turbulence, 

statistical approaches must be employed, since one can not reproducibly follow a 

given evolution for long times. Chapter 3 deals with this issue extensively. 

An independent diagnostic method, which is non-destructive in nature, in­

volves measuring image charges induced on wall electrodes at various axial positions 

of the apparatus [27, 60]. As shown in Figure 2.1, azimuthally partitioned "sector" 

probes are used to detect and drive waves in the confined electron plasmas. These 

sectors can also be biased electrostatically to change the boundary conditions at the 

wall [67]. In addition, the total electric charge within a particular cylinder can be 

independently determined by measuring the image charges when a column is injected 

or dumped. This '~Gauss' law" method is used to obtain the number of electrons 

per unit length NL at the axial midpoint of a column1 and can therefore be used to 

obtain the axial length LP of the column. 
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Endplate 

• 

+90V 
( End view from the filament ) 

(Side view ) 

Figure 2.2: Endplate multi-collector array density diagnostic. 

2.2.2 Multi-Collector Array Density Diagnostic 

One 2D density diagnostic method, which has been the traditional choice, 

utilizes the endplate multi-collector array shown in Figure 2.2. The conducting 

endplate, which is biased at +90 \', has nine collimator holes (diameter 2Rco = 

0.40 cm), with electrically isolated Faraday cups behind each hole. Six collectors, 

co ---+ C5, line up along 0 = 0 at positions Rj = 0.54 x j Cmj collector C2, c2+' 

C2*, c2- are located on a circle of radius R 2 = 1.08 cm with 90° azimuthal angular 

separation. In addition to the fixed collectors, a mobile collector Cr (diameter 2Rcr = 

0.20 cm) can be positioned at any location along an arc of radius 5.85 cm, which lies 



a1)proxin1ately on tl1e 0 = 0 line near tl1e cyli11drical axis. 

This configuration enables one to measure the density at ten <liffere11t posi-

tions at an~y time during tl1e evolution. The voltage induced by the electrons collected 

on each collector is then amplified and processed, giving ten independent data chan-

nels. The whole measurement process is controlled by a microcomputer, with the 

density data read and stored electronically for further analyses. 

For cross-field E x B drift motions studied here, one can generally neglect 

3D density variations such as axial waves and column end shapes [19]. Here, this 

2D assumption implieS that a trapped electron column is treated as a section of an 

infinitely long column without any axial variations. The 2D density n can then be 

calculated from the charge Qj on collector Cj, the calibrated cross section Acj (see 

Appendix A for details), and the column axial length LP: 

( 8) - Qj 
n rj, j = A L , 

e Cj p 

(2.1) 

where ( r j, 8j) is the central position of collector Cj. The axial length Lp is determined 

through the relation 
N, 

Lp=:=NL' (2.2) 

where Ne is total number of electrons in the trap as measured on the entire endplate, 

and NL is the number of electrons per unit length at the axial midpoint of the colum11 

determined from the wall image charges as described above. 

Alternatively, LP can be obtained self-consistently by solving the 3D Pois­

son equation, using the measured electron parallel temperature T11 and radial profile 

Qr(r) [27]. Note that this method assumes that the density distribution is axisym-

metric, and that electrons on each magnetic field line are in parallel equilibrium. 

Normally, these two methods yield answers within ±5% of each other, especially in 

columns with Lp ~ AD, since the Debye length >.v is a rough measure of the length 

of the column end region. 
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Since the collectors l1ave finite sizes, the 111easured density is necessarily the 

average value of the real density distribution over the cross sections of the collectors. 

Wl1en the density distribution has only large-scale structures, the collectors should 

be able to resolve all the features of the distribution. However 1 in cases where fine­

scale structures are present, the averaged density may deviate from the real density 

at the collector center. In Chapter 3, I will present a detailed evaluation of this 

coarse-graining effect of the finite-size collectors. The basic conclusion is that a 

collector of radius Re can only resolve structures -..vith scale-length.(:. 3Rc, with any 

finer distributions being averaged out. Despite its limitati6ns, the multi-collector 

array density measurement still has the advantages of being easy to calibrate and 

free from dump-induced distortions, offering a reliable \Vay of measuring the density. 

2.2.3 Phosphor Screen/CCD Camera 2D Density Imaging 

The multi-collector array gives density readings at only ten positions for each 

shot, insufficient to construct a snapshot of the 2D density distribution. As part of 

the testing .procedure for a next generation Malmberg-Penning trap, a phosphor 

screen/CCD camera density diagnostic was installed on the V' machine, permitting 

the imaging of the complete n( r, 0) from a single plasma shot [30]. 

Figure 2.3 is a simplified schematic of this new diagnostic system. Here, 

the end plate is replaced with a phosphor screen coated with a thin layer (thickness 

,....., 0.15 µm) of aluminum, with an effective imaging area,....., 1.80 cm in radius. The 

purpose of the aluminum coating is to block the stray light generated by the filament 

source at 1800c K. The screen is positioned about 15cm away from the dump cylinder. 

A series of thin metal plates (accelerating plates), with the first one grounded, are 

connected in series by lOMfl resistors, with the last one attached onto the aluminum 

coating of the screen. The screen is biased at a high positive voltage (normally 

,....., 15 kV). These plates create a smooth potential gradient, so that exiting electrons 
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Figure 2.3: Phosphor screen/CCD camera density imaging system. 

experience an axial acceleration to 15keV over the entire 15cm distance, minimizing 

the distortions on the 2D density distribution [63, 29]. 

Tests indicate that the intensity of the fluorescent light generated by the 

high energy electron impacts is locally proportional to the number of electrons col­

lected per unit area. The 2D light intensity distribution is then imaged, through a 

transparent view-port, by a CCD camera located outside the vacuum chamber and 

focused on the phosphor screen. A conventional optical filter further reduces the 

reddish filament light, without degrading the green-blue phosphor fluorescent light 

signal. Results show that after aluminum blocking, optical filtering, and numerical 

subtraction, the "noise" due to the background stray light is typically less than 1 % 

of the light signal induced by the electrons [30]. 
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Presently, the do1ninant error in n1easuring 11(r, 0) is a repeatable 1531 gain 

variation over tl1e phosphor screer1 surface, probably caused by slight differe11ces in 

the thickness of the aluminum coating. This problern is overco1ne by a 2D gain 

calibratio11 procedure. Here, one measures a reproducible axisymmetric electron 

column with both the calibrated mobile collector Cr, as shown in Figure 2.3, and 

the phosphor screen/CCD camera. Any variations of the camera image from the 

measured radial profile are thus assumed to be caused b_y this error, and can be 

corrected using a 2D gain function associated with each location (r,O). 

2.3 Basic Properties of Trapped Pure Electron 
Plasmas 

This section is devoted to the description of a few relevant plasma param­

eters and the fundamental confinement property of trapped pure electron plasmas. 

The wall radius Rw of the conducting cylinders is 3.05 cm; the axial length of the 

confinement cylinder(s) can vary from 3.05 cm to 113 cm by using various cylinder 

configurations [16]. The background axial magnetic field Bz may be set .from 50 G 

up to 700 G, although most of the experiments considered here have Bz ~ 400 G. 

The background neutral pressure is always kept below 1 x 10-9 torr, ensuring that 

the electron-neutral collision is negligible [50]. 

While the axial length LP of a trapped column is set by the length of the 

confinement cylinder(s), its radius is determined by the applied conditions on the 

source filament [16]; the half-peak-density radius Rp ranges from 0.5 cm to 2.5 cm, 

while columns with larger than 2.5cm radius are generally in contact with the cylinder 

wall. For columns studied in this thesis, the electron density n is generally less thar1 

5 x 107 cm-3
, and the electron temperature Tis typically around 1 eV. The average 

electron gyroradius RL is around 50 µm (at Bz c::: 500 G) 1 and the plasma Debye 
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length AD is approxi111ately 2.5 mn1· (for n ~ 1 x 107 c'in-3); both are n1uch s1naller 

than the column dimensions Rp and LP. This fact indicates that these columns are 

indeed in the plasn1a state, and that the electrons are closely tied to the magnetic 

field lines, except for guiding-center drift motions. 

The average electron axial bounce frequency· /b :::::::: 1 MIIz (for LP ::::::: 20 cm), 

which is much faster than the column bulk Ex B rotation frequency w/27r '.'.:::' lOOkHz, 

suggesting that the column is basically 2D like [69}. In addition, the electron-electron 

like particle collision time Tee is about 10 ms, making the relatively "fast" drift 

dynamics under consideration essentially collisionless [37]. 

The electron injection process is now a well controlled experimental opera­

tion1 enabling one to obtain various quiescent electron plasma columns with a high 

degree of reproducibility. These plasmas can be manipulated to be on-axis and 

macroscopically stable1 with axisymmetric, monotonically decreasing density pro­

files. The confinement property of these plasmas has been the subject of extensive 

studies for many years. Theoretically1 if there were no field errors that break the 

cylindrical symmetry, these columns would be confined indefinitely, due to the con~ 

servation of the total canonical angular momentum of the electrons [68, 69]. Con­

sequently, the experimentally observed outward particle transport must be due to 

microscopic effects caused by the field errors in the trap. 

Malmberg and Driscoll investigated the plasma confinement behavior in the 

V1 machine [50, 21]. They characterized the confinement time, 7'm 1 as the time it 

takes for the central density to drop by a factor of two, and measured the dependence 

of 1'm on the axial length LP and the magnetic field Bz. The result is summarized in 

Figure 2.4, where graph (a) shows measured density profiles for a particular column 

(Lp = 20cm, Bz = 507G) at early times (t =5ms), and near 7'm (t =5s), with graph 

(b) showing Tm versus the ratio Lp/Bz for many different columns. Over six orders 
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of magnitude in confinement time Tn, 1 the data approximatel.Y follo\v tl1e empirical 

scali11g la\\', as represented b:y the dashed line in Figure 2.4(b ), 

(2.3) 

Therefore, for a 20 cm long column in a 500 G n1agnetic field, the confinement time 

Tm is roughly 10s. It is clear from Equation (2.3) tl1at shorter colum11s \vith stronger 

magnetic field tend to stay longer in the V' device. 

Another apparatus (named EV) was later built \vitl1 special care to minimize 

various field errors. The ne\v device sho\vs a t\';enty.fold in1provement in confinen1ent, 

'vi th the same Lp/ B;: dependence [20]. Tl1is suggests that the obser\'ed transport is 
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indeed caused by trap i1nperfections, through an unknO\\'TI co1nmon mecl1anism of 

"anomalous1
' external transport. 

A very short column may be confined long enough so that it can first reach its 

3D thermal equilibrium through internal (angular momentum conserving) transport 

[7.5 1 22, 25]. For the 2D E x B drift dynamics, both the internal and external 

transports are considered as dissipation. ·The 1-10 second tin1e scale associated with 

these dissipative effects indicates that they are quite negligible compared to the Ex B 

drift motions on the 1 ms time scale, thus making tl1e 2D fast dynamics effective!;• 

in\'iscid. I will come back to tl1e question of dissipation in Chapter 3. 

2.4 Experimental Manipulation of Columns 

In this section, two relevant experimental procedures are discussed: a proce­

dure to create unstable hollow columns; and techniques to detect, drive 1 and feedback 

control various modes in the trap. 

2.4.1 Creation of Hollow Columns 

Experiments on 2D E x B drift dynamics t)'pically start \vith the creatio11 

of various stable or ltnstable initial conditions, which then evoi'\'e freely 'vithout 

further intervention from tl1e outside. !\Iany interesting initial distributions have 

been created fron1 near thermal equilibrium stable col11n1ns, among them, the multi­

column configurations [60], thin annular distributions [SO, 73], a.nd hollow columns 

[19]. This \Vork is mainly concerned \vith the evolution of hollo\v columns, especially 

the relaxation of t11rbulence after the initial stabilities. 

Figure 2.5 is a schematic illustrating the procedure to create a hollow column. 

First, an on-axis, quiescent column \\'ith monotonically decreasing radial density 

profile is obtained (top). Second, the negative bias on the filament is converted to 

positive 20 \', and the confinement voltage -Vc on the injection cylinder is temporar-
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Figure 2.5: Schematic of hollow column creation process. 
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il.r raised to the ejection voltage -i-·~ (generally het\veell ~10 \i to -2 \ 1), allo\ving 

electrons from the central region of the column to escape axially and be absorbed 

by the filament (middle). Finall.y, after about lOµs, tl1e injection cylinder is rarr1ped 

back dovvn to -Ve, isolating the column again from the filament (bottom). A hollow 

column is therefore obtai11ed and starts its free evolution. Note that the closing of 

the ejection pulse is designated as t = 0 for the subsequent evolution. 

Shown in Figure 2.6 are the radial profiles of the plasma density and poten­

tial before and after the ejection process, which are constructed b~y using the mobile 

collector Cr from many reproducible shots. Just before hollowing, the column 11as 

peaked density and potential radial distributions, shown as dashed curves in Fig­

ure 2.6 (a) and (b) respectively. The ejection voltage is marked as the dot-dashed 

line in Figure 2.6 (b ), with -V~ ~ -6.5 Vin this case. After hollowing (solid curves), 

the density profile is clearly hollow, with the central density dropping by more than 

a factor of five, and the potential profile is approximately flat near the center, at a 

level slightly above -Ve. This is consistent with the physical picture that all the elec­

trons with total energy higher than eVe, which is the sum of potential and kinetic 

energy, have escaped from the column to the filament. Similarly, hollow columns 

with various "width" and "depth" can be created by using different initial stable 

columns and ejection voltage -Ve. 

This ejection process is well controlled and repeatable experimentally. From 

shot-to-shot, the reproducibility of the pre-ejection column is normally better than 

0.2%; after ejection, the hollow profiles typically varies less than 0.5%, apparently 

mainly due to the reduction in the amplitude of the density itself. This high degree 

of reproducibility of the unstable initial conditions makes it possible to carry out the 

ensemble averages discussed in Chapter 3. 
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2.4.2 Detection and Control of Modes in Non-Neutral 
Plasmas 

One of the most fundamental properties of }Jlasmas is that they support 

coherent oscillations, or modes. In particular, many modes in these magnetically 

confined non-neutral plasmas have been investigated and cl1aracterized both experi-

mentally and theoretically [16, 75, 34]. 

The simple electron plasma modes are the column compression-rarefaction 

motions along the parallel axis, which were first studied in Malmberg-Penning traps 

by deGrassie and Malmberg [17]. These plasma mode(s) are normally excited to some 

extent by the ejection process that creates a hollow column. Generally speaking, 

the plasma mode frequencies are greater than 5 MHz for the density range I am 

considering here, much faster than the 2D E x B drift motion; therefore, any axial 

variations caused by this mode are averaged out over the slow 2D E x B drift time 

scale. Furthermore, these oscillations are quickly damped after the initial excitation, 

typically within 500µs, presumably through interaction with the "resonant" electrons 

which convert the wave energy into particle kinetic energy - a fundamental process 

called Landau Damping [12]. Consequently, plasma mode(s) does not appear to 

interfere with the column 2D drift motions in the ( r, 0) plane. 

Another class of oscillations are the diocotron modes, which are associated 

with the E x B drift motions in the ( r, 0) plane perpendicular to the magnetic field. 

Each mode is characterized by its azimuthal mode number l, where the mode density 

perturbation varies as exp(i!O). For example, the l = 1 diocotron mode for a stable 

column is simpl.Y the column center-of-mass motion when it is shifted off-axis. The 

column executes a circular orbit around the cylindrical axis, due to interaction with 

the image charges on the wall. This mode is very stable and observed to last up 

to 105 column bulk rotations [27]. The diocotron modes can be detected using a 
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sector probe described in Section 2.2. In addition: a feedback circuit can be utilized 

to amplify the detected mode signal, shift its phase, and then apply tl1e processed 

signal back on another sector probe, rr1aking tl1e mode either gro\v or damp in its 

amplitude [27]. 

Generally speaking: \vhen a hollow column is created: the diocotron modes 

are also being excited. While the amplitude of l 2: 2 modes are normally small, the 

robust l = 1 mode can have a moderate amplitude, corresponding to a center-of­

mass displacement of approximately 1 mm. Interestingly, I find that tl1e amplitude 

of this I = 1 stable mode remains roughly constant during the turbulent evolution 

of hollow columns I have studied, even though there exists no rigorous theoretical 

proof that it is a constant of motion. If this mode is not damped, tl1e measured late­

time "!fuctuations will be dominated by this coherent center-of-mass orbital motion, 

masking the interesti11g dynamical effects. This complication can be eliminated by 

carefully growing the l = 1 mode with the right amplitude and phase prior to the 

ejection, so that the center of mass of the hollow column begins and always remains 

on axis throughout the free evolution. A negative feedback circuit can also be turned 

on, to ensure that the l = 1 mode does not grow later. 

One can also intentionally excite l 2: 2 modes in electron columns before 

hollowing, creating initial conditions with pertµrbations having a preferred l sym­

metry. For example, al =2 diocotron mode (Kelvin mode) can be excited through 

feedback growth, resulting in an evolution dominated by the l = 2 instability. Note 

that unlike I= 1 center-of-mass mode, l 2: 2 diocotron modes are generally damped 

by tl1e resonant electrons through the 2D spatial Landau damping [9, 16]. 



Chapter 3 

Fundamentals of 2D E x B Drift 
Turbulence 

3.1 Overview 

In this chapter 1 I review the non dissipative two-dimensional E x B drift 

dynamics in magnetically confined electron columns. The same dynamics can also 

be readily applied to various pure ion systems. The isomorphism with the Euler 

dynamics that governs 2D incompressible inviscid (ideal) fluids is discussed in detail. 

I also examine the boundary conditions for the trapped columns, and comment on 

the effect of dissipation and three-dimensionality to the ideal 2D dynamics. 

Theoretical insights on 2D turbulence phenomena are surveyed, with em­

phases on the global conservation laws and the Reynolds decomposition formalism 

that separates the 2D turbulence into constituent mean background flow and turbu­

lent fluctuations. 

I also describe experimental measurement methods and data processing tech­

niques, including CCD camera imaging of the 2D density distribution, and ensemble 

averaging over many evolutions. The coarse-graining effect of finite-size collectors is 

analyzed in detail as well. 
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3.2 2D E x B Drift Dynamics 

In classical mechanics, a charged particle in a n1agnctic field B executes 

circular gyromotion around its guiding center with a11gular velocity w, = qlBl/mc, 

\vhere q and mare the charge and mass of the particle respectively1 and c is the speed 

of light in vacuum. For a collection of particles of the same S}lecies with temperature 

T, the average radius of this gyromotion is called the gyroradius or Larmor radius 

[12], RL = c(2mkBT)t /qjBj, with kB being the Boltzmann constant. 

Under typical circumstances, the pure electron plasmas studied here typi­

cally have gyroradius RL ,....., 50 µm; therefore, electron cross-field movements are 

quite limited, except for the drifting motions of their guiding centers. Among the 

various cross-field guiding-center drift motions [12], the E x B drift with velocity 

cE x B/IBl 2 is dominant, since zeroth-order space charge field E is large, and 

magnetic field B is uniform and well aligned with the cylindrical axis. 

When certain conditions are satisfied (see following discussions), an electron 

column can be treated as 2D-like, i.e., as a section of an infinitely long axially uniform 

column, and its (r, 0) fluid motion can be approximately described by the 2D Ex B 

dynamics. Here, one substitutes the density of electrons with the density of their 

guiding centers, since the gyroradius is much smaller compared to the typical spatial 

scale of the dynamical structures; furthermore, all other non-Ex B drift motions are 

assumed to be negligible. The dynamics of this E x B "guiding-center" fluid can be 

summarized by the drift-Poisson equations [44, 691 

an 
- +v· V'n = 0 

I at l 

c • 
v=--V'"xz B .,, , 

' 
\72 

<P = 47ren , (3.1) 

where n(r,O,t), v(r,O,t), and </>(r,O,t) are the 2D electron density, fluid velocity, and 

electrostatic potential respectively, with -e being the electron charge. 
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3.2.1 Conditions of Applicability 

The ideal 2D drift dynamics in Equation (:3.1) is obviously a highl.Y sin1plifiecl 

description of tl1e true 3D plasma system. It is a good approximation of the real 

dyllamics only \Vl1en the following conditions are satisfied: 

(a) the background magnetic field is uniform and in good alignment \vith the axis 

of the conducting cylinders; 

(b} the temporal and spatial scales of the gyromotion of individual particles are both 

much smaller than those of the fluid motion under consideration; 

( c) the axial length of the column is large compared to the plasma De bye length >.v, 

so end effects are relatively unimportant; 

( d) the electron axial bounce frequency /b is much faster than the Ex B drift motion 

in the (r, 0) plane; 

( e) the time scale of the fluid motion under study is much shorter than the like­

particle collision time and external transport time. 

Here, conditions (a) and (b) ensure that the Ex B guiding-center drift ap-

proximation is valid for the cross-field plasma fluid motion. In a typical experiment, 

Bz is about 500 G, with relative field errors less than 10-4 , providing a uniform ax­

ial background field; the gyrofrequency wc/2tr is thus on the order of 1.5 GHz, and 

RL "'50 µm (for T ::::::: 1 eV), making these two conditions well satisfied. 

Conditions (c) and (d) are necessary in order to achieve two-dimensionality. 

The column axial lengths LP are normally between 20 cm and 50 cm, while the 

plasma Debye length Av= (kBT/4trne 2 )!::::::: 2.5 mm; the average bo11nce frequency 

/b = ( kaT)t /2Lp ,...., 1 MHz, whereas the bulk E x B rotation frequency is around 
m, 

lOOkHz. Therefore electron columns are quite 2D-like under these typical conditions. 
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Finally, condition (e) is required in order to justify neglecting dissi1)ation 

mechanisms. For these pla.sn1as, the electron like-particle collision time Tee is longer 

than 10 ms ancl the external transport time scale is seconds, making the E x B 

drift dynamics basically nondissipative, except perhaps for columns \vith fine-scale 

distributions. 

3.2.2 Analogy with Ideal 2D Fluid Dynamics 

2D incompressible, homogeneous (uniform density and temperature) Newto-

nian fluids follow the Navier-Stokes equation in the (x,y) plane 

dv & I 2 - = (-+v ·'V)v =--\/Pm+ Vm'V v, 
dt &t Pm 

(3.2) 

where d/dt is the material derivative along the trajectory of a fluid element with 

velocity v(x, y, t), Pm is the specific mass of the fluid, Pm is the pressure, and Vm is 

the fluid molecular kinematic viscosity. 

When the incompressibility condition \7 · v = 0 is satisfied in 2D, the fluid 

velocity v can be rewritten in term of a scalar stream function W(x, y, t), with 

v = Z x 'VW. Consequently, at each moment, contours of the stream function corre-

spond to the 2D flow stream lines [71]. The fluid vorticity ((x,y, t) is also a scalar in 

2D, defined as ( = Z · \7 xv= \72 '11. From Equation (3.2), the vorticity equation 

for the 2D fluid can be derived, 

&( 2 - + v . \7( = v \7 ( at m ' 
(3.3) 

or 

Provided that the following sufficient conditions are met, the vorticity dy-

namics is the complete description of a 2D flow, i.e., once the distribution of the 

vorticity (is set, the stream function W, velocity v, and pressure Pm are all deter-

mined through the Green function of the system [82], 
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(i) the region occupied by the fluid is bounded a.nd sing!:,; connected; 

(ii) the normal component of tl1e \'elocity is given at the boundary. 

Note that conditions (i) and (ii) are generally satisfied in the electron column exper-

iments under the 2D approximation, as shown later in the section. 

In the inviscid limit, Vm ::: 0, Equation (3.3) becomes the Euler eqttation, 

(3.4) 

which describes the simple advection of fluid vorticit.Y ( along stream lines [82]. 

The convective velocity v is determined by the distribution of ( and the boundary 

conditions. 

Levy first pointed out that there exists a mathematical isomorphism between 

the nondissipative 2D E x B drift dynamics in non-neutral plasmas and the Euler 

equation that governs ideal 2D fluids [44]. As can be seen clearly from Equation (3.1), 

the fluid stream function '11 is directly proportional to the electrostatic potential r:/J, 

with '11 = c,P/Bz; and the scalar vorticity (is directly proportional to the electron 

density n, with ( = 4Jrecn/B2 • As shown in Figure 3.1, the motion of a magnetized 

electron column confined in a conducting cylinder with density distribution n(r, 0) 

is completely analogous to a uniform density fluid in a free-slipping cylindrical tank 

with the vorticity distribution ((r,O) = 47recn(r,O)/B2 • 

The significance of this analogy is two-fold: first, 2D fluid dynamics has 

been studied extensively over the past one hundred years, rendering many results 

directly applicable to the E x B drift dynamics; second, owing to the inherently low 

collisionality and high degree of two-dimensionality, magnetized electron columns are 

excellent test-beds for the study of the 2D Euler dynamics. In addition, the electro11 

columns are easy· to manipulate and can be measured with high degree of accuracy 

and resolution. 



Electron Column 

n, (" 

+ 

-> 
0B 

31 

Ideal Fluid 

(" 
+ 

Pm=const 

Figure 3.1: Analogy between electron Ex B drift motion and ideal 2D fluid flows. 

3.2.3 Boundary Condition 

Boundary conditions are needed in order to fully describe the flow dynam­

ics in the entire 2D domain. In the experiments performed for this thesis, there is 

no central conducting \Vire in the V1 machine, as is the case for some other non-

neutral plasma devices [80]; consequently, the re~ion occupied by an electron column 

is alv.'ays bounded and singly connected, satisfying the vorticity completeness con-

dition (i). Generally speaking, except for small portions being used as receivers and 

transmitters of waves, all the confinement cylinders are electrically grounded with 

¢(Ru,, 0) = 0, ensuring that the 2D boundary is everywhere parallel to the equipo-

tential (stream function) contour. This also implies that the E x B drift velocity 

does not have a normal component at wall, as a result, no electrons can Ex B drift 

out of the confinement region under this boundary condition. 
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Other ])oun<lary co11ditio11s have been a1)plied by Notte cl al. to study the 

s'(ationary density distribution in an asymmetric trap [67]. Here, sector probes ex-

tending over the entire column axial length are biased to electrostatic voltages up to 

100 V, giving a piece\'.'ise equipotential boundary condition, which also satisfies the 

vorticity completeness condition (ii). 

In conventional fluid experiments, there normally exists a co1nplicated "vis-

cous boundary layer" near the wall regions, due to the "no-slip" boundary condition 

where the fluid velocity must remai11 the same as that of the wall [71]. In Malmberg-

Penning traps, electrons are normally far away from the cylinder wall at all times, 

so one can avoid considering the complex particle-wall interactions. Here, the fl.ow 

velocity is well defined at the wall even when the electrons are absent, giving a true 

free-slip boundary. 

3.2.4 Ideal 2D Invariants 

Under the nondissipative 2D E x B drift dynamics, the following integrals 

(called ideal 2D invariants) are conserved: 

• number of particles 

• angular momentum 

• electrostatic energy 

H¢ = (e2 Ni,) H• = _ _: j d2x ¢(x, t) n(x. t) = J_ j d2x IE(x, t)I', 
2 8~ 

• mth moment of density 

Zm = [NL'/ R~(m-I)] Zm = ~ j d2x [n(x, t)]m, m = 2, 3, 4, .... 



:J:J 

Herc .Pu, H,µ, and Zm represent the corres1)011ding din1ensionless invariants nor111al­

ized by using Rw, B2 , and 1\'L· Since ,'\'L is \Vell conserved in the ·experiments (sec 

Appendix A) 1 typically varying less than 2%, this choice of using }.,rL for norn1a.l-

izations is justified, and these dimensionless invariants will be used in the follo\ving 

cl1apters. 

Let the dimensionless spatial coordinate be r := x/ Rw. One can define char­

acteristic density and potential as n0 =: NL/R~ and <Po= eJVL. Therefore, the di-

mensionless ideal invariants can rewritten as 

Pe = J d2r (I - r 2
) ( _.':_) , 

no 

Generally speaking, a global integral of any function of density n, F = J d2r f( n) 

is also an ideal invariant. An important example is the dimensionless mean-field 

entropy S = - f d2r(n/no) ln(n/no), which is also conserved. 

Employing the analogy to the 2D Euler flow discussed earlier, the following 

correspondence between ideal invariants of the E x B drift dynamics and those of 

the Euler dynamics can be listed: 

NL ~ total circulation r, 
Po ~ angular impulse Az, 

1-l,p ~ kinetic energy £ 1 

Zm ~ mth moment of vorticity; 

in particular, Z 2 corresponds to enstrophy !l = ~ f d2x ( 2 . 

As in any other physical systems, invariants of the evolution play an impor-

tant role in the behavior of these 2D-like electron columns. When the evolution 

does not involve turbulent motions, these infinite number of invariants are strictly 

conserved, putting strong constraints on the possible cross-field motions. 
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3.2.5 Dissipation and 3D Effects 

The ideal 2D E x B drift dynamics neglects the axial degree of frecdon1 

and the effect of dissipation. A11 electron column in the experimental situation is, 

of course, a three-dimensional object, and its 3D nature inevitably influences the 

dynamics to some degree. In addition, even though this systen1 is highly inviscid 

at large scales, various kinds of dissipation still play a role in tl1e turbulence energy 

and enstrophy balance, due to their enhanced effectiveness at the fine scales [95]. 

Current knowledge of these non-ideal effects is far from complete; here, I summarize 

some qualitative understandings that appear to be relatively sound. 

Any non-ideal effects not included in Equation (3.1) can be treated as dissipa­

tion in a general sense. For example, the column internal transport to its 3D thermal 

equilibrium has been studied experimentally by Driscoll [22J, and theoretically by 

Dubin and O'Neil [25]; they found that the dominant tra11sport can be attributed to 

non-local, resonant 2D E x B "collisions", which arise due to the "granular" nature 

of the relatively lo\v-density electron column. The time scale for this dissipation is 

typically on the order of 106 bulk rotations for a quiescent column [22]. 

Other microscopic dissipation mechanisms include finite-gyroradius effect 

[42], 3D particle collisions [37], and the external anomalous transport [50], etc. In 

addition, a systematic error associated with changes in column end shape can happen 

when there is significant amount of 2D density redistribution during the evolution of 

a column; for example, the end shape of a hollow column is relatively flat compared 

to that of a peaked column, resulting in an apparent deviation from the ideal 2D dy­

namics in the z-averaged density measurement. Finally, the finite ratio of bounce to 

rotation frequency 27r/b/w results in some 2D density "smearing'', in that electrons 

with unequal parallel kinetic energies tend to drift at slightly different angular ve­

locity due to column axial variations and end confinement voltages, causing density 

--- - ----~------
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to spread in the B-direction [63, 74]. 

If one is concer11e<l only \vith tl1e fa.st E x B drift dynamics and large-scale 

pl1enomena, the effects of all these imperfections are generall)' quite small and can 

be safel)' neglected. One such example is the off-axis dynamical equilibrium state 

of large-amplitude l = 1 mode, which was treated successfully with tl1e ideal 2D 

dynamics [31, 28]. 

In a turbulent flow where fine-scale motions are excited, however, these ef­

fects are presumably non-negligible, which tend to smooth out the fine-scale features 

quickly. Since these "viscous" effects are not well understood, it may seem doubt­

ful that the turbulent phenomena in this system can be studied in any meaningful 

fashion; experimentally, however, this does not present any serious problems when 

the smallest scale the diagnostic can resolve is larger than the scale-length at which 

dissipation is important. This is because the influence on the large-scale dynamics 

by motions at the "dissipative scale" is quite weak [41], i.e., two columns, having 

identical large-scale but different fine-scale density distributions, will evolve to ap­

proximately the same large-scale distributions at later times, at least in the statistical 

sense. Physically, it reflects the fact that the column space charge E field is largely 

determined by the mean-field (large-scale) density distribution; in other words, the 

fine-scale structures are averaged out when Poisson equation is integrated to obtain 

the E x B drift velocity, limiting their influence on the large-scale flow. 

In numerical simulations, to facilitate computations, investigators often use 

the so-called "hyper-viscosities", which artificially cause dissipation to appear as 

( -1 )P-1 lip '\72P( , p = 2, 3, ... , in Equation (3.3), instead of the physical molecular 

viscosity Vm with p = 1; t~ey have found that flows at large scales are nearly in­

dependent of the nature of viscosity as long as it is small compared to the inviscid 

interactions [56, 3]. Therefore, the existence of small but finite dissipation appears 
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to act only as a "drain" for the conserved quantities at the dissipative scale, and does 

not influence the large-scale dynarnics. For this reason, these systems are referred to 

as "effectively inviscidn by Batchelor [4]. Experiments on relatively sl1ort electron 

columns in moderately higl1 magnetic fields indicate that the fast E x B dynamics 

studied here is indeed effectively inviscid [19, 60]. 

3.3 General Properties of 2D Turbulence 

The detailed dynamics of turbulence involves many degrees of freedom with 

disparate temporal and spatial scales, making it complicated and difficult to formu­

late [47]. Consequently, dynamical theories that have been proposed are generally, 

to certain degree, speculative and controversial in nature. Here, I only discuss some 

universal properties of 2D turbulence that either have been tested in experiments or 

numerical simulations, or are generally held to be true. 

3.3.1 Robust and Fragile Invariants 

During unforced turbulent evolutions characterized by the generation of fine­

scale structures and strong mixing, some of the ideal invariants discussed in Sec­

tion 3.2 can change significantly. These fragile invariants vary due to dissipation 

at fine scales and coarse-graining associated with the measurement processes. In 

contrast, other invariants are well conserved even in the presence of dissipation and 

coarse-graining, and these are called robust invariants. 

In the absence of particle-wall interactions and field errors, NL and 'Po are 

robust invariants, since the internal dissipation does not affect the column particle 

number or total angular momentum [69]. In addition, electrostatic energy 1lq, is 

nearly conserved when the dissipation acts on fine scales and is small in magnitude 

[5]. This is apparently due to the weak dependence of potential </> on the fine-scale 

density distribution. The conclusion can be illustrated in the case of molecular 
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viscosity. Using tl1e analogy \vith the 2D Euler flo\v, frorr1 Equation (3.3), one ca11 

derive the decay rate of t11e electrostatic energy 'H,;,, 

(3.5) 

Since 2 2 is bounded, i.e., it can not go to infinity, the decay rate of energy approaches 

zero as viscosity Vm goes to zero. 

Whenever the evolution creates fine-scale structures, the robust invariants 

are the only true invariants of the experimentally measured density distribution, 

since the coarse-graining effect of the finite-size collectors would still cause apparent 

dissipation even if the dynamics were ideal. 

The higher moments of density Zm and entropy S are all fragile invariants. 

Take Z 2 as an example, its fragility can be understood by considering the case of 

molecular viscosity. From Equation (3.3), one gets 

dZ, f d' 1~ I' dt=-Vm X vn . (3.6) 

Since the density gradient \7n is intensively amplified as a turbulent evolution pro­

ceeds, the integral on the right hand side of Equation (3.6) tends to increase to large 

values. As a result, even in the limit of small viscosity vm, the decay rate of the 

enstrophy can still be finite [5], causing enstrophy to decrease. 

3.3.2 Transfer of Energy and Enstrophy in Spectral Space 

Another way to understand the behavior of ideal invariants is to consider 

the spectral transfer of the two quadratic integrals: energy and enstrophy. Here, for 

simplicity, I use a periodic 2D square domain with unit area.. The potential ¢(x, t) 

can be '.vritten in terms of its Fourier components, 

¢(x, t) = L ¢k(t) exp(ik · x), 
k 
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\Vhere 

¢k(t) = j d'x ¢(x, t) exp(-ik · x). 

The energy and enstrophy can then l>e written as sums of all t11e contributions in 

Fourier spectral space, 

1i,(t) = I;H,k(t) ex I: lkl'l¢k(t)l 2
, (3.7) 

k k 

Z,(t) =I; Z,k(t) ex L lkl'l¢k(t)l 2
, (3.8) 

k k 

where components of energy and enstrophy for wavenumber k are related by 

(3.9) 

Generally speaking, when a flow is turbulent, distributions of energy and 

enstrophy among various scales in spectral space are being dynamically altered by 

the intense nonlinear couplings. By examining the energy and enstrophy balance 

for elementary triad interactions in 2D turbulent flows, Kraichnan demonstrated 

that statistically speaking there is a net transfer of energy from fine scales to large 

scales; in contrast, the net transfer of enstrophy is from large scales to fine scales [39]. 

This nonlinear coupling between different spatial scales is crucial for determining the 

robustness of the ideal invariants. Normally, appreciable dissipation occur only at fine 

scales
1 

the fact that net energy transfer is from fine scales to large scales verifies that 

energy is indeed a robust invariant during a turbulent evolution; whereas significant 

amount of enstrophy decays awa:y apparently due to the spectral enstrophy transfer 

from large scales to fine scales. 

3.3.3 Reynolds Decomposition of Turbulent Flows 

The idea that a turbulent fl.ow can be theoretically decomposed into a slowly 

varying mean fl.ow and rapidly changing random fluctuations may be traced back to 

<la Vinci, before Reynolds put forward a rigorous definition (see [47] and references 
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t11erei11). 'fhe mean fio\v can be regarded as the average over the fast ti111e scales 1 

\vhereas the fluctuating part is the instanta11eo11s deviation fro111 the mea11 flo\v. 

For turbulent electron colurnns confined in conducting cylinders, the mean 

flow can be taken as the time-average over the colun1n rotation period, wl1ich is 

approxin1ately equivalent to the 8-average, as represented by the symbol <>. The 

instantaneous turbulent flo\v can therefore be decomposed as t11e following, 

l 
n(r,O,t) =<n(r,t)> +n(r,O,t) 

. v(r, 0, t) = w(r, t)ril + v(r, 0, t) 

f(r, 0, t) =< f(r, t) > +J;(r, 0, t), 

(3.10) 

where the mean flow is assumed to be axisymmetric and slow-varying, with the mean 

angular velocity w(r, t) satisfying the relation 

) 4~ec l' , , ( , ) w(r,i =-B 
2 

drr <nr,t > 
,r o 

(3.11) 

From Equation (3.1), the dynamics of the mean flow and fluctuations can be 

summarized as the following coupled equations, 

0 <n> 8 <Vrii> 
i)t + iJr =O, (3.12) 

dn a iJ _. a .a 
dt =(at +wao +v · 'V)n = -(iJt +v'ilr) <n>' (3.13) 

with 
c • • 

V = -z x \11> '\1 2
</> = 411"eii. B, , (3.14) 

In this view of the turbulent flow, the axisymmetric background is changed 

gradually by the flux < Vrii > due to the fluctuations. The fluctuating component 

is not axisymmetric in general, and its evolution is determined by the nonlinear 

convective coupling, (w :ii + V · \7)ii , and the source term due to the interaction 

with the vorticity of the mean flow, -(%
1 
+ V.,. ;,,) < n >. These equations lay the 

foundation for further developments of theories on dynamics in cylindrical geometry, 
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e.g., the passive tracer n1odel neglects the effects of the fluctuating velocity V, lea(ling 

to a simple equation: 

Furthermore, it is often co11venient to express tl1e fluctuating density ii(r, 8, t) 

in terms of its azimuthal Fourier components, 

00 

n(r,O,t) = Lfiill(r,t)exp(i/e), (3.15) 
l=O 

with the understanding that whenever the equations are complex, the physical den­

sity is the real part of tl1e expressions. The complex Fourier component n(l>(r, t) 

JS 

I {'' 
;;ill(r, t) = 27' lo de' n(r, e',t) exp(-iie'). 

This is especially convenient when dealing with normal modes of the electron column. 

3.3.4 Coherent Structures in Decaying 2D Turbulence 

Earlier theories of 2D turbulence have mainly concentrated on the spectral 

analysis of the flow field, where the phase information of Fourier modes are gener-

ally assumed to be unimportant [41]. However, more recent numerical simulations 

[56, 6, 7, 84] and some laboratory experiments [81, 13, 93] have demonstrated that 

the so-called "coherent structures" play a dominant role ·in the decaying 2D turbu-

Jenee. These structures are spatially localized, robust blobs of vorticity (vortices) 

co-existing with seemingly structureless turbulent background; the late-time dynam­

ics of turbulent relaxation can often be characterized by the mutual interactions 

between these coherent vortices [11, 55]. 

Furthermore, as part of the effort to understand the giant vortices in outer 

planets, investigations have shown that coherent vortices can also exist prominently 

in shearing flows [52, 90, 53]. Here, the mean shearing background breaks the sign 



syrnmetr.y of the coherent vortices, and only tl1ose vortices tl1at rotate in the same 

sense as the background shear (prograde vortices) ca11 survive in the rr1ean fio\v. 

The domina11ce of these coherent structures indicates that the phase informa­

tion of the Fourier modes is crucial to t11e understanding of 2D turbulence [2, 3, 57], 

at1d that the eleme11tary excitations of the fio\v are these coherent vortices existing 

in real space, rather than the Fourier modes in spectral space. 

3.4 

3.4.1 

Diagnosing 2D Turbulence 

Collector Measurement and Coarse-Graining Effect 

As described in Chapter 2, 2D density distribt1tions can be measured at 

ten different locations for a single-shot using the endplate collector assembly. The 

diameter 2Rco of the nine fixed collectors is 0.40 cm; whereas the diameter 2Rcr of 

the mobile collector Cr is 0.20 cm, and it can be placed at any radial position along 

I} '.::::'. oo. 

The collector density measurement can be easily calibrated, and has the 

advantages of being fast, accurate, and reliable. When used to measure turbulent 

distributions, the main limitation of these collectors is their finite spatial resolution. 

Since the measured charge is necessarily the spatial average over tl1e cross section of 

a collector, one can not resolve density structures that are smaller than the size of the 

collector. Therefore, measuring a physical 2D turbulent flow using these collectors 

is similar to seeing a pict11re through a slightly unfocused camera. This convolution 

effect by the finite-size collectors is commonly referred to as "coarse-graining". 

One can study this coarse-graining effect on a more quantitative level. Let's 

again consider the periodic 2D square domain with unit area (this is justified on 

the ground that coarse-graining only affects scale-lengths much smaller than the 

cylinder radius); here, n(x) = l.:nk exp(ik · x) is the real density distribution being 
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Figure 3.2: Collector coarse-graining effect on Fourier component k -..vith 2D 

wavenumber amplitude k. 

measured
1 

where nk is the Fourier transform of n(x). The measured density nc as 

seen by a circular collector centered at x with diameter 2Rc is (see Appendix D) 

R
l 2 r d2x' n(x + x') 

7r c le 

1 lRc l'' L:;nkexp(ik·x)-R
2 

dlx'l lx'I dO' exp(ik·x') 
k 7l" c 0 0 

""" . 2Ji (Re lkl) 
~ nk exp(zk · x)[ Rclkl ] . (3.16) 

Thus, the attenuation factor for the Fourier component with wavenumber amplitude 

ko=lklis 

(k) = 2J,(Rck) 
gc Rck · 

(3.17) 



This attenuation factor .Qc(k) is plotted as a function of (Rck/27r) in f·ig­

ure 3.2. As expected fron1 physical intuition, for large-scale compone11ts (\vavelength 

27r/k ~Re), the measurement of density is not affected by the collector radius Rei 

whereas for fine-scale components (wavelength 2rr/k <<Re), the collector averages 

out most of their contributions to the measured density. In essence, tl1e collector 

acts like a "low-pass" filter for the spatial scales of the 2D density distribution: with 

sensitivity of 503 for structures \vi th wavelength".::::::'. 3Rc. 

3.4.2 Single-Shot Imaging 

The phosphor screen/CCD camera diagnostic allows 2D density imaging of 

a single shot with high spatial resolution (up to 512x512 pixels). This diagnostic is 

still in the trial stage, and many subtle aspects, such as accurate calibration, image 

distortion due to high voltage axial acceleration, and light diffusion in the optical 

system have yet to be fully understood. Nonetheless, the ability to obtain single-shot 

images of column 2D density distribution represents a great improvement over the 

traditional collector (Faraday cup) diagnostic. 

Due to the fact that the density diagnostics in Malmberg-Penning traps are 

inherently destructive, many essentially identical plasmas must be created in order 

to study the temporal evolution of dynamical processes. For evolutions that are 

non-chaotic and highly repeatable in experiments, the camera setup is an excellent 

2D density diagnostic, containing all the information of the dynamics. For chaotic 

or turbulent evolutions, 11owever, one still l1as to resort to statistical analyses, since 

the detailed dynamics of these processes are sensitive to arbitrarily small variations 

in the initial conditions. Eacl1 particular image of the evolution is the11 just a sample 

out of many possible dynamical states. 
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3.4.3 Experimental Ensembles for Statistical Averaging 

Devising an experimental ensen1ble to .Perforrn statistical analyses requires 

some explanations, since the meaning of ense1nble averaging can be easily rnisinter­

pretted. The assumptions built into the theoretical ensemble described in Section 3.3 

are not always automatically met in the experin1ents, so careful selection of ensemble 

for statistical averaging is needed. 

In Chapter 2, I described the experimental techniques used in the prepara­

tion of initial electron hollow columns. These columns are very reproducible exper­

imentally, \vith shot-to-shot variations typically less than 0.5%, and have roughly 

axisymmetric density distribution. Unstable diocotron modes will grow, resulting in 

the onset of turbulence. 

One simple statistical ensemble is to use all the shots measured at the time 

t of the evolution. If the instabilities arise predominantly from random noise in 

columns, this choice will satisfy the assumptions made in the tl1eoretical Rey11old::i 

decomposition of the mean flow and fluctuations. In the experiments, however, I 

found that the instabilities generally grow out of reproducible asymmetric perturba­

tions created by the ejection process, rather than from random noise. Consequently, 

the growing instabilities are initially phase locked with respect to t = 0. 

Figure 3.3 shows such an example of density versus time at radius R = 0.5cm, 

8 = 0 and 8 = 180°, during the early growth of the unstable I = 1 diocotron mode 

in a 20 cm long hollow column. The density evolution is constructed from many 

shots, which clearly shows growing phase-locked oscillations (out of phase between 

8 = 0 and e = 180°), indicating that the mode is growing out of the same seeded 

asymmetries created by the ejection process from shot-to-shot. The frequency of 

the density oscillations is about 72 kHz, in correspondence with the sector probe 

measurement of the unstable I = 1 mode. 
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Figure 3.3: Density versus time showing the initial growth of the unstable l = 1 
mode. (a) At R = 0.5cm, e = 0, (on Cl); (b) at R = 0.5cm, e = 180', (on Cr). 

To construct an ensemble that allows for meaningful Reynolds decomposition 

as discussed in Section 3.31 I devise another statistical ensemble that randomly varies 

the dump time within one period of the dominant unstable mode. Here, one first 

finds out the frequency of this primary unstable mode through measurements like 

those shown in Figure 3.3, then a variable-time trigger generator is utilized to vary 

the dump time randomly within l times the period of this mode (normally:$ 20 µs). 

This effectively scrambles the phase of the dominant unstable mode during the early 

stage of the mode growth. In this case, the evolution time t is designated as the 

dump time for the halfway point of this period. 
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Figure 3.4 sho\vs the comparison of these two averages llsecl to n1easure the 

mean density and RMS (Root-I'vlea11-Square) density fl11ctuatio11 level (at R = 0.5cn1) 

of the same hollo\v column evolution. At early times, the phase-lockecl average yields 

an oscillating mean density and small shot-to-shot R1'.JS fluctuations, reflecting the 

good shot-to-shot reproducibility of the initial hollow column. t\s expected, the 

phase-scrambled average smoothes out the fast oscillations and gives a m11ch higher 

fluctuation level, which is simply 1/J2 times the amplitude of the unstable mode. 

This unstable mode continues to grow, and soon saturates to form nonlinear vor­

tices, causing rapid convective inward transport, \Vhich establishes a monotonically 

decreasing mean radial profile and stabilizes the column (see Chapter 4). After the 

radial transport, these two averages give essentially identically results, presumably 

because all the initial phase information is lost at late times of the evolution. 

The main emphasis of this thesis is on the turbulent relaxation of these 

columns after the establishment of the mean radial profiles, so the two averages are 

generally interchangeable. V1/ithout being specified otherwise, I normall.Y use this 

phase-scrambled average as the experimental ensemble, represented by the symbol 

<>, to perform statistical analyses. 

3.4.4 Fluctuations and Correlations 

It is necessary to distinguish between the density readings measured on dif­

ferent plasma shots when the amplitude of the shot-to-shot fluctuations is large. At 

time t of the evolution and for shot i, the density measured by collector Cj posi­

tioned at (rj, Oi) is designated as ni(rj, ()j, t). Let Ns be the total number of shots 

measured, one--point quantities as functions of time and location can be calculated 

as the following: 
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• Nlean density 

• Fluctuation level 

1 N, 1 

<ii( r,, t) >rm,= { N, _ 
1 

{;In;( r,, e,, t)- < n( r,, t) > ]2
}' , 

• Skewness 

S;(r,, t) = 

• Kurtosis 

where iii( rj, 8j 
1 
t) :::::=: n;( r;, (}i, t)- < n( r j, t) > is the density fluctuation. Futhermore, 

all the measured one-point statistical information on Cj is contained in the probabil­

it.Y distribution function (PDF) p(n1
, rj, t), where pdn' is the statistical probability 

for the measured density ni to appear in the density range n' -t n' + dn'. 

Two-point correlation functions of the density fluctuations contain informa-

tion about the scale-lengths of the fluctuations in various directions. They are defined 

as 

where indices j, k represent collector Cj and Ck (or pixel j, k) at two different locations 

(r3,03) and (rk,Ok), with j,k = r, 0, 1, 2, 2+,2•,2-, 3, 4, 5. Note that the position 

of the mobile collector Cr is simply ( r, 8). 

According to Equation (3.15), the measured density fluctuation ii can be 

written in terms of its azimuthal Fourier components, 

00 

ii(r,O,t) = I;n(ll(r,t)exp(ilO); 
l=O 
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therefore, ensen1ble-averagcc1 qttantities are related to the Fourier co1nponenl 1i(ll(r1 t); 

e.g., the fluctuation level is 

I oo 

<f>(r,t)>=,= ;olL < ln.1'1(r,t)l 2 > ]! , 
y2 l=O 

and the correlation function is 

I: .""-'~~o_<~fil_'l~(r~,~t)~n~11_1•~(r~1~,t~)~>--'e~xp~[~il~(O'----~e~i)~] c (re t) = -1
' ' ' [I;j'.';0 < lf>l11(r, t)l 2 > I;j'.';0 < lf>l11(r,, t)l 2 > ]! ' 

where component fi(1)* is the complex conjugate of ii(ll. 

(3.18) 

(3.19) 

The ensemble-average measurement method can be tested on columns with 

known fluctuations, such as a single stable diocotron wave with mode number l, 

f>(r, e, t) = VZ < n(r) >=, exp{ i[IO - w1t + <p1(r)]} , 

where cp1(r) is the phase of model. Here, the two-point correlation functions are 

particularly simple, 

C;,(r,O) =exp{ i[/(0- O;) + <p1(r) - <p1(r;)]}, (3.20) 

where ( r i, 8j) is the position of the fixed collector Cj. 

Figure 3.5 shows the ensemble-average measurement using the phase-scrambled 

ensemble on a column with a I= 1 stable mode. Plotted in Figure 3.5(a) and (b) are 

radial profiles of the mean density and fluctuation level respectively. The solid curve 

in Figure 3.5(b) is the prediction by the linear theory of diocotron modes [44, 45, 19], 

<TI.( r) >rms <X -d < n(r) > / dr , where the overall amplitude is obtained by fitting at 

R ~ 1.3 cm, the point of steepest mean-density gradient. The measured fluctuation 

level basically agrees with the linear theory. 

The correlation functions C2r and C2-r are shown in Figure 3.5(c) and (d), 

where the vertical dashed lines mark the locations of the fixed collector C2 (82 = 0) 

and c2- (82 - = -90°). For the stable I= 1 diocotron mode, phase cp1(r) = 0 for all 



50 

~ 6 
"' (a) I s 

Cl 4 
"' 0 .... ...... 2 
/\ 
1::1 
v 0 

2 (b) 1=1 mode 

~ 
/\ 
~ 

1 a e::: a ...... a 
ll::i 
v 

p 
(c) cJiiiP' 1iiIii'11 ~ 

a a ..-.. I a 
~ 0 .__... 0 .. 

C\l 0 I u 0 0 

cP 0 1C2 -1 Cb [I I It It 'f1)1J) I I I I ga:P 

1 (d) c2-(-90°) 
I 

..-.. 
~ .__... 

0 .. 
~<> I 

"' u <> <I> 
<> <> 

-1 

-2 -1 0 1 2 

R (cm) 

Figure 3.5: Ensemble averages of a stable column with l = 1 diocotron mode. (a) 
Mean density; (b) fluctuation levelj (c) correlation function C2r; (d) C2-r· Solid 
curves in (b) & ( d) are the theoretical predictions. 



5.1 

,......_ 6 .., 
(a) I s 

Cl 4 ., 
0 ..... _. 2 
/\ 
s:: 
v 0 

2 (b) 1=2 mode 

~ 
/\ ,......_ 

1 0:: _. 
ZS:: 
v 

p 
,...... 

0 0: 0 ..._, 0 ... 0 

"' 0 I 0 u 
-1 

1c2 
1 (d) cz-(-90°} 

I ,...... 
0 0 0: 0 ..._, 

0 ... 
I 0 I 0 

"' 
0 0 

0 u 0 Oo0~00o""'°° 0~00 
-1 

-2 -1 0 1 2 

R (cm} 

Figure 3.6: Ensemble averages of a stable column with l =2 diocotron mode. (a) 
Mean densityj (b) fluctuation level; (c) correlation function C2r; (d) C2-r. Solid 
curves in (b)-(d) are the theoretical predictions. 



52 

radii; therefore, fron1 Equi:1Jion (3.20), one ha.s 

Cj,(O) = exp[i(O-Oj)]. 

where () = 0 or 180° for the mobile collector Cr. For C2r, the prediction is plotted 

as the horizontal lines in Figure 3.5(c), and is verified by the measurement; For 

C2-r, theory predicts a zero correlation for all radii, while the measurement has a 

30% discrepancy for B = 0, which is apparently caused by the slight misalignment 

between the center of the column and that of the endplate. 

The same ensemble-average measurement is also carried out for the stable 

l = 2 mode, as shown in Figure 3.6. In this case, the linear theory predicts that the 

fluctuation level satisfies <ii( r) >rms ex: -rd< n( r) > / dr [19], which agrees quite 

well with the data shown in Figure 3.6(b); in addition, from Equation (3.20) and 

using tp2(r) = 0, the correlation functions take the form 

Ci,(O) =exp[ i2(0 - e,)], 

and is essentially confirmed by the measurement shown in Figure 3.6(c) and (d). 

Note that here, C2r(r) and C2-r(r) both go to zero at origin, for the reason that the 

measured fluctuation level at R :::: 0 is dominated by random noise, since the mode 

eigenfunction is close to zero. 

J 



Chapter 4 

Measurements of 2D Turbulent 
Relaxation 

4.1 Overview 

Experimental measurements on the free relaxation process of 2D E x B drift 

turbulence in magnetized electron columns are presented and discussed in this chap­

ter. Starting from a hollow density distribution 1 the turbulence arises as a result of 

diocotron instabilities and subsequent nonlinear vortex interactions, and then relaxes 

after the convective inward transport establishes a globally stable, albeit turbulent 

column. 

Section 4.2 describes the characteristics of the overall plasma column evolu­

tion1 which consists of early unstable mode growth and saturation, turbulence and 

relaxation, meta-equilibrium, and 3D ~'viscous." particle transport. These features 

are illustrated by measurements from both the single-shot CCD camera images and 

the ensemble averages. Correlation measurements on the initial hollow column with 

a growing unstable mode and on the turbulent column are examined, complementing 

the direct observations from the CCD images. 

In Section 4.3, the 2D turbulent relaxation process is studied in detail. I find 

that the entire relaxation lasts several hundred column bulk rotations, and can be 

roughly divided into three phases: Phase I is characterized by the rapid filamenta-
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tion and mixing of turbulent density clun1ps (electron surplttses) and shallo\v holes 

(deficiencies) in tl1e shearing backgrou11d .rotation; Pl1ase II is dominated by tl1e re­

maining elongated medium-size holes, \vl1icl1 are prograde and thus can survive the 

background shear, and are settling into symmetric configurations througl1 mutual 

i11teractions such as occasional merger; in Phase III, these coherent holes slowl.Y drift 

radially outward and are finally axisymmetrized \Vi th respect to the column center, 

bringing forth the meta-equilibrium state of the 2D relaxation. 

As a result of the longevity of these deep density holes, the observed noise 

decay time is 10-50 times slower than that of a simple ~'passive tracer" mixing. The 

survivability of the individual holes is quantitatively understood using the Moore­

Saffman model based on the equilibration of an elliptical vorticity patch in a back­

ground flow with a uniform simple shear. The tendency for the holes to settle into 

symmetric configurations in the column are explained by physically intuitive sta­

bility arguments on the hole-hole and hole-shear interactions. The decline of the 

fluctuation level at late times, which apparently reflects the outward drift of the 

density holes, can be approximated ¥1ith an exponential decay. The dependences of 

the e-folding decay rate on the radial position, on the column axial length, and on 

the magnetic field are found to be weak; this consistent \vith the 2D Ex B dynamics. 

4.2 Characteristics of the Overall Evolution 

General characteristics of the overall evolutio11 of the initially hollow electron 

columns are discussed in this section, for the purpose of providing background in­

formation for discussions on the turbulent relaxation period of the evolution. Two 

plasma columns are used to illustrate these characteristics: the l = 1 sequence has 

a relatively deep initial hollow profile (nmax/n(r = 0) :::::::: 3.7) and large column 

radius {Hp :::::::: 2.2 cm, LP = 20 cm, and Bz = 507 G), dominated by the l = 1 dio-
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cotron instability at early times; the l :::::: 2 sequence has a shallo\ver initial profile 

(nma)n(r=O) '.:' 1.5) with smaller radius (R, '.:' 1.6 cm, L, = 46 cm, B, = 422 G), 

dominated by the l ::::::2 diocotron instability. 

A series of CCD camera images of the densit}' n(r, (), t) are displayed as false­

color contour plots in Figure 4.1 1 sho\ving the evolution dominated by the l :::::: 2 

instability. Here, the initial hollow colltmn is seeded \vi th a l :::::: 2 perturbation by 

exciting stable l :::::: 2 mode (see Section 3.4) prior to the colltmn hollowing, resulting 

in an evollttion initially clriven by the l :::::: 2 diocotron instability. Note that in 

this case, no external damping is applied to the colltmn after the creation of the 

initial condition
1 
so the slightly damped stable l:::::: 2 n1ode co-exists \vi th the gro\ving 

unstable l ::::::2 mode and the turbulent fluct11ations [16, 19]. 

At t :::::: 30 tLS, the unstable l :::::: 2 diocotron mode has gro\vp. to a moderate 

amplitude, and t\vo large-size density blobs start to form as the mocle approaches its 

nonlinear saturation. After orbit ting arou11d for several rotations, these t\YO blobs be-

gin to merge near the column center ( t :::::: 145 µs ). The merger convectively transports 

electrons from outer radii to the column center, thtts establishes a monotonically cle-

creasing mean radial profile, which is globally stable. By t :::::: 230 µs, the merger event 

has basically completed, \vhile turbulent strt1ctt1res. such as filaments and vortices, 

have been generated in the column. 

Follo\ving the formation of the column n1ean profile, these turb11lent fl11ctlta-

tions start to decay by going through three distinct phases of relaxation ( t :::::: 23011s -

5 ms), \.vhich are discussed in detail in Section 4.3 .. A.t t:::::: 5 ms, this 2D relaxation 

process is essentially finished, \vith the column being completely axisymmetrizecl. 

This meta-equilibrium colttmn \vill be analyzed in Chapter 5) \vhere I \.viii sho\v tltat 

the measured meta-eqttilibrium state is well predicted by the minimum enstrophy 

I . f " l . d " vortex resu ting rom se ect1ve ecay . 
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Figure 4.2: Long-term temporal evolution of the central mean density < n(O, t) > 
and fluctuation level <ii(O,t)>rms (the l =l sequence). 

The overall column evolution can also be studied using the ensemble averages 

described in Chapter 3. Figure 4.2 shows the evolution of the central mean density 

< n(O, t) > and fluctuation level < fi(O, t) >rms of the l = 1 sequence over 10 second 

temporal span. At the early stage, the initial increase in the fluctuation level reflects 

similar unstable mode growth and saturation (l = 1 in this case). The subsequent 

ascend of the mean density underlies the convective inward transport; concurrently, 

large-amplitude fluctuations are generated indicating the onset of the turbulence in 

the column. The relaxation period of the evolution occurs approximately between 

t ::;;;: 300 µs and 5 ms (corresponding to t = 230 µs - 5 ms for the l = 2 sequence), as 

marked by the dashed vertical lines in Figure 4.2. 

After t = 5 ms, the mean density and fluctuation level remain essentially 
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unchanged for about lOOrr1s, or 104 colu111n })ulk rotations, reflecting tbe fact that the 

dissipation of tl1e syste1n is quite small. Tl1e n1easured long-lasting fluctuations (3-5 

times greater than that of the initial state) are caused by the shot-to-shot variations 

of the radial profile of the meta-equilibrium column (see Section 5.3). Eventuall,y, 

the meta-equilibrium column decays away in a few seconds, on the same time scale 

associated with the microscopic "viscous" process which drives the column to its 3D 

thermal equilibrium, and other mechanisms that transport electrons to the cylinder 

wall. At t = 5 s, as the radial profile < n( r, t = 5s) > indicates (shown in Figure 2.4), 

significant fraction of the electrons are lost to the boundary. These 3D dissipation 

effects are beyond the scope of this work. 

4.2.1 Correlation Measurements of Diocotron Instability 
and Turbulence 

Diocotron instabilities are equivalent to Kelvin-Helmholtz shear-induced in­

stabilities in fluid flows, and have been experimentally studied on magnetized elec­

tron annuli and hollow columns by many investigators [96, 18, 19, 80, 73]. Generally 

speaking, according to Rayleigh's stability criterion (see e.g., [46]), electron columns 

with monotonically decreasing radial density profiles are stable against all 2D per-

turbations. For columns with non-monotonic radial profiles, l1owever, there normally 

exist unstable modes, which can grow exponentially to large amplitudes and change 

the column density distribution as a result. 

Detailed experimental investigation of the linear l = 1 and l = 2 diocotron 

instabilities on hollow columns that are similar to the ones used in this work were 

carried out by Driscoll. For l = 2 mode, general agreements with the 2D inviscid 

theory has been found [19]; for l = 1 mode, some subtle discrepancies with a theoret­

ically predicted mode having algebraic growth have been observed [18, 89]. Here, the 

theory predicts that the l = 1 unstable mode grows algebraically from t = 01 whereas 



59 

the experi1nental n1easure111ent sho\VS an essentiail:v exponential gro\vtl1, evf'n though 

the 111ocle eigenfunctions arc sirr1ilar. This disagree1nent has been attributed to the 

small non-ideal effects that were entirely neglected i11 the 2D inviscid theory [86]. 

In Chapter 3, I have demonstrated that ensemble-average n1easurements can 

be utilized to study the normal modes of stable electron columns. 1-lere, I apply 

this technique to analyze tl1e unstable l = 1 diocotron mode of the hollo\v column. 

Special care is taken to prepare the initial l1ollow column at t = 0, so that the stable 

l = 1 (center-of-mass) mode is not present in the system (see Section 2.4). 

Figure 4.3 sho\VS the ensemble-average measurements of the initial hollow 

column at t = 20 µs. The radial profiles of the measured mean density and fluctuation 

level are plotted in (a) and (b) respectively, while the correlation function C1r is 

shown as a function of radius in ( c ). If one assumes that at 20 µs (,...,, 2 bulk rotations) 

after hollowing, most of the perturbations which are not part of the unstable mode 

have phase mixed away, leaving only the single-mode perturbation in the hollow 

column, then the measured fluctuation level should be directly related to the unstable 

l = 1 eigenfunction fi(lu) (see Section 3.4), 

and the correlation function Cjr(r, 8) should be 

Cj,(r, 0) =exp{ i[(O - Oj) + \Piu(r) - \Piu(r,)]}, 

where (rj,&j) is the position of the fixed collector Cj, and !f'iu(r) is the phase of the 

eigenmode. Indeed, the ensemble-average fluctuation level <ii( r) >rms has a radial 

dependence qualitatively the same with that of the measured l = 1 eigenfunction 

for a some"\ovhat different hollow column [18]. Furthermore, the· correlation function 

C1,.(r, 0) shows that as the radius increases, the phase of the mode experiences a 

sharp shift from 0 to 71" at rm=• the radius at which the mean density has the peak 
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Figure 4.3: Ensemble-average measurements of the l = 1 unstable initial hollow 
column at t = 20 µs. (a) Mean density radial profile; (b) fluctuation level; (c) 
correlation function Cir with the fixed collector Cl marked by the dashed line. 
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value, and then shift a.gain fron1 r. to aroun(l 2ri near the edge of the colu1n11. This is 

essentially the sa1nc mode phase behavior discovered eXfJerimentally by Driscoll [18]. 

These observations confirm tl1at the measured perturbation at 20 µs is dorr1inated 

by the single unstable I = 1 n1odc. 

Analogous to the l = 2 seque11ce sho\vn in Figure 4.1, the unstable I = 1 mode 

saturates to form a large-size blob. The subsequent nonlinear flow moves the large 

density blob to the column center, creating a globally stable mean density profile, and 

generates large-amplitude secondary turbulent fluctuations, such as filaments and 

vortices (see [19] for details). At t =400µs, the column is qualitatively similar to the 

l =2 evolution at t =230µs, as shown in Figure 4.1, characterized by a monotonically 

decreasing mean density profile with large-amplitude turbulent fluctuations. 

Figure 4.4 shows the ensemble-average measurements of the turbulent column 

(the l = 1 sequence) at t = 400 µs. The radial profile < n(r) >, plotted in (a), has 

become monotonically decreasing; large-amplitude fluctuations (<ii >rms / < n > 

,...., 30%) are observed 1 as shown in (b), which are approximately 4 times greater 

than that of the column at t = 20 µs. From the correlation functions C2r(r) and 

C2-r(r), plotted in Figure 4.4(c) and (d), one can see that the measured large­

amplitude fluctuations are no longer dominated by a single global mode, since neither 

C2r(r) nor C2-r(r) shows significant long-range coupling associated with a si1tgle­

mode perturbation, indicating that the column is indeed quite turbulent at this 

time. 

The excitation of turbulence in the column is transient in nature and soon 

gives away to the stabilizing effect of the column background rotation induced by the 

mean density radial profile. The column evolution then enters the relaxation period. 
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Figure 4.4: Ensemble-average measurements of a turbulent column (I = 1) at 
t = 400 µs. (a) Mean density radial profile; (b) fluctuation level; (c) correlation 
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4.3 Measurements of the Relaxation Period 

4.3.1 Background Rotation and Passive Tracer Decay 

The existence of the column background rotation has a profound influence on 

the relaxation of 2D turbulence in the system. Unlike 2D neutral turbulence studied 

in computer simulations, the background rotation breaks tl1e symmetry between plus 

and minus vorticity distributions, and dominates the convective fl.ow dynamics, as 

will be illustrated in this section. During most of the relaxation period, the column 

mean density profile, which induces the background rotation, experiences only small 

and gradual changes. For example, for tl1e l = 1 evolution, Figure 4.2 shows that 

the central mean density < n(O) > increases by less than 10% between the turbulent 

column at t = 400 µs and the meta~equilibrium state at t = 5 ms. Therefore, the 

properties of the background rotation can be studied at one particular time. 

For the l = 2 evolution at t = 1 ms, the radial profiles of the background 

mean vorticity < (( r) >= 4trec < n(r) > / B 2 and rotational angular velocity w( r) are 

shown in Figure 4.5(a), while their radial gradients are plotted in Figure 4.5(b). The 

mean density < n( r) > is the 0-averaged radial profile taken from the CCD camera 

image averaged over 4 shots at t = lms. The angular velocity w(r) is calculated from 

< ((r) >, 

w(r,t) = ~ rr dr'r' <((r')>' 
r lo 

which is the background rotational environment seen by the turbulent fil1ctuations 

' 
during the relaxation period. As shown in Figure 4.5, the mean density profile is not 

uniform, with a monotonically decreasing distribution. Consequently, the rotational 

motion described by w( r) is sheared, characterized by the rotational shear rate 

dw 
r dr =<((r)> -2w(r), (4.1) 

which is zero at the column center and negative everywhere else. At R "" 1 cm, 



Figure 4.5: Column background rotation at t = 1 ms (the l = 2 sequence). (a) 
Radial profiles of the mean vorticity< ((r) >and angular velocity w(r); (b) radial 
gradients of <((r)> and w(r). 
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the bulk rotation period is about lOµs 1 a!ld the sl1ear rate r<lw/dr is about -2.7 x 

105 s- 1 . Note that, in general, the convective velocity seen by ar1y ftui(l ele111ent 

is, the combination of the background rotation arid the convectio11 due to all otl1er 

fluctuating structures. 

If one assumes that the dynamical effect of the fluctuations ii(r, (}, t) is neg­

ligible, i.e., the fluctuating velocity V( r, 8, t) is small compared to the background 

rotation, the passive tracer mixing model can be constructed, which describes the 

simplest kind of relaxation [76]. Here, ii is treated as a conserved passive tracer that 

is merely being convected by the prescribed background rotation w(r). Applying 

V = 0 to the inviscid Equations (3.12) and (3.13), one gets 

(4.2) 

which determines the dynamics of the passive tracer distribution ii( r, 8, t). 

According to Equation (4.2), for a rigid rotor column background rotation 

w(r) = const, distribution ii does not change in the rotating frame. When the 

gradient of w( r) is not zero, however, the differential rotation can break up the 

original density variations through phase mixing, typically on the time scale of a 

few column bulk rotations. Using the azimuthal Fourier decomposition described by 

Equatons (3.15), the evolution of the density component 71(1l(r, t) for modenumber l 

is determined by Equation (4.2), 

iiill(r, t) = ii~l(r) exp[-ilw(r)6't], (4.3) 

where ng) ( r) is the Fourier component of the original density distribution ii( r, 8, to), 

with t 0 being the start of the relaxation and 6.t = t - t 0 . 

In this inviscid model, the phase mixing illduced decay occurs when a finite­

size collector (diameter 2Rc) centered at ( rj, 8j) is used to measure the real density 

distribution. Following the same procedure to derive collector coarse-graining effect 
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in Section 3.4, one can sho\v that the n1easured I<'ourier ro111pone11t 11~1 l(r1 ,t).is 

( 4.4) 

and the cl1aracteristic mixing rate for component l is 

(4.5) 

where I have assumed that the radial lengthscales of the original density variations 

are larger than 3Rc and that the linear Taylor expansion of w can be used over the 

cross-section of the collector, i.e., w(r) ~ w(r1) + (dw/dr) ]ri (r - r1)· 

It is clear from Equation ( 4.4) that the decay of the measured passive tracer 

intensity is caused by the continuous transformation of structures with large radial 

lengthscales into ones with fine radial lengthscales, which can not be detected by the 

finite-size collector (see Section 3.4). Physically, this reflects the fact that a patch 

of passive tracer in a background rotation is being sheared apart and "wrapped" 

around as the time progresses, resulting in the creation of fine filaments which are 

too thin to be discerned. 

For collector radius Re = Rco = 0.20 cm at R ".:::'. 1 cm, and gradient 

dw/dR ".:::'. -2.7 x 105 s-1cm-1 , the l = 2 passive tracer e-folding decay time is 

T2 = 2.8/x2 ~ 30 µs, or about 3 column rotations. This ~ighly simplified relaxation 

model is see11 to be a poor description of the experimental data in the follo\ving 

discussions. 

4.3.2 Phase I - Filamentation and Mixing 

From CCD camera images of the l = 2 evolution (shown in Figure 4.1), it 

is observed that the early-time relaxation (Phase I) is characterized by the rapid 

filamentation and mixing of the fluctuating turbulent density clumps (electron sur­

pluses) and shallow holes (deficiencies) which are generated by the merger of the two 
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large-size density blobs. This phase lasts approxin1ately 150 11s, or al)out 15 bulk 

rotations. Images indicate that the clumps and sh.allo\v 11oles are being sheared a1)art 

into spiral-like thin filaments by the strong background differential rotation, \vhich 

has nearly finished its formation. This shear-induced filamentation has previously 

been studied by Marcus in a computer simulation [52] and observed experimentally 

by Sommeria et al. in a forcecl rotating fluid system. 1'he spiral shape of the densit~y 

clumps being sheared apart may be the underlying dynamical reason for the observed 

"peaks" and "dipsn near R ~ 1.5 cm in the profiles of the correlation function C2T 

and C2-T shown in Figure 4.4. 

By t = 400µs (see Figure 4.1 ), Phase I of the relaxation is essentially complete, 

with the turbulent density clumps and shallow holes having been filamented and 

destroyed, leaving only a few medium-size deep density holes prominently visible in 

the column. This marks the beginning of the Phase II of the relaxation. It is worth 

noting that the turbulent filamentation and mixing in Phase I apparently cause 

significant dissipation in the measured fragile ideal invariants of 2D Ex B dynamics, 

such as the enstrophy Z 2 , as will be discussed in Section 5.3. Similar dissipation is 

also observed in the merger of two isolated columns [60]. 

Let's examine the decay of the ensemble-averaged fluctuation level and make 

the comparison with the simple passive tracer model. Figure 4.6 shows the relaxation 

of the mean density and the fluctuation level measured by a collector (diameter 

2Rco = 0.40 cm ) positioned at R = 1 cm. At t = 300 µs, < n(lcm, t) >, plotted in 

Figure 4.6(a), has basically reached a constant level, indicating that the background 

rotation is well established at this time. Therefore, for this l = 2 evolution, t = 300 µs 

is designated as the theoretical starting time t 0 for the passive tracer relaxation 

model) shown as the solid curve in Figure 4.6(b). It is clear that the measured 

fluctuation decay is very gradual compared to that of the passive tracer, typically 
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over 10 ti1nes slo\ver at various col11n1n radii a11d for other evolutions. This suggests 

tl1at son1e fluctuating structures are nonlinear and self-col1ere11t in nature, and do not 

behave like passive tracers. l11deed, as sl10\Vll in the i11serted graph in Figure 4.6(a) , 

the measured PDF p( ri', lcm, lms) (defined in Section 3.4) 11as a characteristic ske\ved 

shape \vith a long lo\v-amplitude "tail" on the small density side, indicating that 

spatially-isolated deep density holes dominate the measured late-time fluctuations. 

Both the CCD camera images and the ense1nble-average measurements sho\v 

that the relaxing electron column can have long-lived density holes (i.e., regions of 

negative relative vorticity) embedded in the background rotation, but not density 

clumps (regions of positive relative vorticity). This observation can be quantita­

tively explained by an idealized model adopted from the original work by Moore and 

Saffman [65, 38], which describes how an individual vorticity clump or hole behaves 

under a shearing background rotation. This model treats the interior vorticity dis­

tribution of a clump or hole as an elliptical vortex (aspect ratio Av) with uniform 

relative vorticity (v being embedded in a background rotation w(r). In addition, 

the size of the vortex is assumed to be small compared to the radial length over 

which w varies, so that near the vortex center rv, the linear Taylor expansion of the 

background rotation can be used 1 i.e., w(r) ~ w(r11 ) + (dw/dr) Irv (r - rv)· 

Here, the scaled shear rate u of the background rotation w( r) is defined as 

which is the ratio of the vorticity in the background rotation and the relative vorticity 

of the elliptical vortex (see Appendix B). Following the derivations of Moore and 

Saffrnan [65], one can sho\v that for certain values of u, the vortex can achieve stable 

dynamical equilibrium with the background flow by orienting its major axis to the 

8-direction (for u > 0) 1 or to the i--direction (for u < 0). Let a be the elliptical 

semi-axis in the 8-direction, the equilibrium aspect ratio ,\eq _ a/b must satisfy the 
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relation. 

Aeq = 

1
1 + u - Ji"+ 6a + a 2 

1 + a + J~ + 6a + a 2 
( 4.6) 

This prediction is plotted as the solid curve in Figure 4. 7. For the background 

rotation considered here, dw/dr::; 0, therefore, er is positive for vorticity holes, i.e., 

hole rotates in the same direction as that of the background shear; whereas a is 

negative for vorticity clumps, i.e., hole rotates against the background shear. From 

Equation (4.6), it is clear that in order for a clump to survive the adverse background 

shear, it must be quite intense, i.e., lcrl must not be less or equal than 3 - 2v'2, or 

alternatively, 

(4.7) 

Experimentally, for a typical density profile during the relaxation, this necessary 

condition generally can not be satisfied by a clump located inside the column. This 

can be seen from the following example: for a parabolic background radial profile 

< n(r) >=< n(O) > (I - r' /ri) , it can be shown from Equation (4.7) that the abso-

lute density nv = nv+ < n( rv) > of a clump at radius r v must fulfill the requirement 

which is impossible under 2D incompressible dynamics, since< n(O) >;S nmax, where 

nmax is the peak density in the initial condition (see Section 5.3). In fact, if one 

assumes that nv =< n(O) >, in order to survive the adverse shear in the background 

rotation, the density clump has to go out of the column, with 

r" Jf:hc: - > -+ v2. 
To - 2 

In contrast, according to Equation (4.6), arbitrarily weak holes can survive 

the background shear in principle, albeit with large aspect ratio Aeq, because density 



jj 

5 

4 C~tt> 
..0 0 

3 00 
.......... 'b 0 

('lj 

Ill 2 
I> 

.< 
1 

0 1 2 3 

dcv "' 
a - r dr lr=r. / (v 

Figure 4. 7: Model for the quasi-stability of density holes in a shearing background 
rotation. Equilibrated aspect ratio >.eq is plotted versus the scaled background rota­
tion shear rate u, from measurements (symbols) and from the theoretical prediction 
(curve). 

holes are prograde with respect to the shear. Of course, one would expect that when 

a holes iii too weak, it is simply filamented and axisymmetrized in the column. In 

the experiments, I see holes with relative density depth 0.2 :S hv/ <n(rv) > :S 0.4, 

resulting in observed Av falling between 1.5 and 3.0. 

Measurements of the aspect ratios of the observed density holes in CCD 

camera images between t = 400 µs and t = 4 ms are shown in Figure 4. 7 as symbols. 

Here, the scaled background shear rate u is calculated from the rotation profile 

shown in Figure 4.5 and the difference between the central vorticity of the holes 

and the mean vorticity at that radius. The aspect ratios ,\v is measured manually 
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from the images for one density contour of the holes, e.g., the blue-green transition in 

Figure 4.1. Reasonable agreen1ent between the rneasurement and the model is found, 

validating the applicability of the model to these colum11s. Some discrepancies arise, 

since the holes have a nonu11iforn1 interior density distribution, and since neither 

deformation of the column core nor the influences of otl1er holes is included in this 

simple model. 

4.3.3 Phase II - Interactions of Coherent Holes 

During the Phase II of the relaxation, columns with 3 or more medium-size 

holes generally involve to having 2 holes located opposite to each other in () (for 

the l = 2 sequence). This can involve merger, or mutual advection causing 1 hole 

to move outward and be destroyed by the background shear, or other processes. I 

do not observe in-place dissipation of the individual holes, presumably because the 

size of the holes are large compared to the dissipation lengthscale. The symmetric 

two-hole configuration ("tripole") appears to be particularly stable and long-lived. 

On a somewhat longer time scale, the two holes tend to drift outward radially, where 

they are finally sheared apart (Phase III). 

Figure 4.8 presents a density hole "census" as a function of time. The number 

of observed elliptical l1oles Nhole is plotted versus t. Cross symbols represent images 

where the positions of the holes are irregular in 0, and circle symbols represent images 

where the holes are symmetrically configured, i.e., they are at same r, and less than 

±10° deviation from symmetric() positions. Statisticall~y speaking, at early stage of 

the relaxation, there are more holes, and they are generally irregularly positioned. 

As the relaxation progresses, Nhole decreases, and the holes settle into symmetric 

configurations (mostly tripoles). After t ::::::'. SOOµs, virtually all the images are in the 

tripole configuration, as shown in Figure 4.1 (at 1000 µs), with a large oval-shaped 

core and two elliptical holes opposite in 0. This tripolar state likely reflects the early 
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Figure 4.8: Observed number of holes in the column versus time, compiled from 
about 200 CCD images between t = 400 µs and 10 ms, with crosses representing 
irregularly located holes and circles representing symmetrically configured holes. 

l = 2 diocotron instability, in fact, dipolar configurations are normally observed for 

columns with l = 1 mode growth (not shown). 

In Phase II, the main drive for relaxation appears to be the mutual inter-

actions between the holes embedded in the background rotation. For example, the 

decrease in the number of density holes is due to binary holes mutual advection and 

merger events. These hole merger events have been observed among the CCD cam­

era images during this phase of the relaxation. The dynamical bases for the merger 

have not been established experimentally. However, two holes that are at slightly 

different radial positions are convected at different angtilar velocity, thus, the hole 

that is closer to the center will be able to catch up with the other and likely to merge, 
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presnmabl.Y \Vithin several rotations. Of course, 1.hey may alternately be so far apart 

radially that they are unable to get into contact at all. It is \Vorth pointing out that 

compared to the case of t\vo isolated vortices, the presence of tl1e strong rotational 

background seems to have profound influences on the n1erger dynamics of tl1e holes 

[53]: first, these holes take the elliptical shape with major axis in the 0-direction and 

aspect ratio of about 21 whereas two merging isolated vortices are deformed under 

their mutual influence with their major axes pointing toward each other [83, 32]; 

second, two holes must also overcome the strong tendenc.y of maintaining their az­

imuthal orbital motion in order for the merger to happen, or else they simply scrape 

past each other [53]. 

Hole mutual interaction can cause the merger of two holes that are at the same 

radii but separated by a short azimuthal angle ( < 90°), as first suggested by Marcus 

[53]. Since the mutual interaction between two neighboring holes tends to generate 

rotation around their center of mass (see Appendix C), this small rotation perturbs 

the radial positions of the two holes, enabling the trailing hole to move slightly 

inward and the leading hole slightly outward, resulting in either the leading hole 

being sheared apart by the background or their complete merger. This mechanism 

is consistent with the fact that late-time columns normally have only 2 holes left (1 

or 3 on rare occasions), which are always far apart in their (J position. In principle, 

there can also be some mechanism which makes the symmetric configuration to be 

the most probable state. 

One can understand the observed quasi-stability of the tripolar configuration 

by noting that the elongated core tends to maintain the symmetric 0-positions of 

the 2 remaining holes (see Figure 4.1). Here, I argue that for a hole, the dominant 

interaction is with tl1e deformed core rather than the other hole, since they are far 

apart in this case. Core region acts like a vortex with positive vorticity at the center, 
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\vhich adjusts its shape in response to the location of tl1e holes. In the tripole case, 

the core vortex takes ai1 oval shape witl1 it major axis oriented parallel to those of 

the symmetrically positioned holes. The stability argument is tl1e follo\ving: suppose 

that the radial position of a hole is perturbed slightly inward, its orbital rnotion then 

\vill speed up, allowing it to catch up \vith the other hole; however, this trend is 

suppressed by the core1 since its influence tends to move the hole outward radially, 

slowing it down and restoring the symmetric configuration. The observed longevity 

of the tripolar configuration ( > 200 rotations) supports this stability argument. 

4.3.4 Phase III - Hole Radial Drift and Axisymmetriza­
tion 

In Phase III of the relaxation, the quasi-stable tripolar configuration is de­

stroyed by a slow outward drift of the holes. Figure 4.9 shows the radial position 

Rhole of the hole centers versus time, measured from the CCD camera images. Most 

of these images have two symmetrically positioned holes. These holes travels from 

Rhole ~ l.Ocm to Rhole ~ l.5cm within about 5ms, giving an estimated drift speed of 

0.1 cm/ms. The scattering of the data points reflects the shot-to-shot irreproducibil­

ity of this I = 2 evolution. The cause of this outward motion is unknown at this 

-moment. However, the experiments varying LP and Bz suggest that this outward 

drift is 2D E x B drift in nature. Note that holes that are strictly symmetric in 0-

position do not feel E field in the 0-direction, and consequently have no radial drift 

velocity. Therefore, any radial drift motions must come from asymmetric effects. 

The outward radial drift apparently causes these holes to stretch in the az­

imuthal direction and to be axisymmetrized eventually. This is because that as a hole 

moves outward radially, it should maintain its absolute density according to the 2D 

dynamics; when the hole is no longer deep enough with respect to the background, it 

is stretched apart and axisymmetrized by the shear in the background rotation. This 
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Figure 4.9: Average radial positions of hole centers versus time, measured from 
CCD images of the l = 2 sequence between t = 500 µs and 5 ms. The dashed line 
marks the radial extent of the column. 

argument can be seen graphically from Figure 4.10, where the expected hole equi­

librium aspect ratio ,\eq is plotted as a function of the radial position R,_, of the hole. 

Here, I assume that the hole always has a uniform density of nv = 1.2 x 106 cm-3 

(similar to the ones shown in Figure 4.1 at 1000 µs), and that as the hole drifts out, 

it remains equilibrated with the background rotation. At around R,,, '.::::'. 1.4 cm (see 

Figure 4.5 for the background rotation) 1 ,\eq becomes large, indicating large extension 

in the azimuthal direction of the column. For example1 in Figure 4.1 at t =5000 µs, 

an azimuthally long-stretched hole is still visible near the column edge at lower left 

corner, which is probably going to be completely destroyed soon. 

The column axisymmetrization process can also be observed from the mea-
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Figure 4.10: Theoretically expected hole aspect ratio Aeq versus its radial position 
Rv, for a hole with central absolute density nv = 1.2 x 106 cm-3 . 

sured two-point correlation functions. Here, I use the l = 1 evolution as an example, 

whose initial condition is shown in Figure 4.3. Using the endplate multi-collector 

array, angular correlation function C( R, f:l.(}, t) between two collectors at the same 

radius R and separated azimuthally by J::i() (e.g., C2 and c2-, or C3 and Cr at 

R = -1.6 cm) can be calculated as functions of time. Figure 4.11 shows the evo-

lution of C(R, J::i(), t) at 3 radial positions (R = 0.5 cm, 1.0 cm, and 1.6 cm) and 

2 .6,.() separations (,6.0 = goo and 180°). At the early times, these functions show 

perfect anti-correlation for J::i(J = 180° and near zero correlation for fj.{) = goo, re­

flecting the growing unstable 1 = 1 mode. In Phase I and II of the relaxation, these 

correlations are generally near zero, due to the small spatial scales of the turbulent 

density structures and coherent holes. After t = 1 ms, in Phase III, all the functions 
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Figure 4.11: Evolution of the 8-correlations C( R, f:l.0, t) of the l = 1 sequence 
showing the column axisymmetrization. (a) C(0.5crn, 180°, t )i (b) C(lcm, 90°, t ); ( c) 
C(lcm, 180°, t); (d) C(l.6cm, 180°, t). The dashed line marks the time t = 400 µs 
which is shown in Figure 4.4. 
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start to approach 11nit.Y at roughly the sanic rate, indicating that the &-variations 

are decaying a'.vay, leaving the axisy1nmetric shot-to-shot variations (rv 2%) of the 

radial profile to dorninatc the measured noise. 

This late-time axisymmetrization process can be seen in greater detail in tl1e 

evolution of the radial correlation functions Cjr(R, t). Figure 4.12 sl1ows the radial 

profiles of C2r(R, t) at 3 times during Phase Ill of the relaxation. At t = 1 ms, the 

radial correlation is localized around the position of C2, underlying the narrow radial 

extent of tl1e densit~y hole(s); as the relaxation progresses, radial correlation patterns 

appear (t = 2 ms), and at t = 5 ms, nearly perfect correlation is achieved for the 

same radius R c:::: 1 cm, even at I:!,.(} = 180°. Figure 4.13 shows the corresponding 

evolution of C2~r(Ri t), \vhere the fixed collector c2~ is at the same radius of C2 1 

but separated -90° azimuthally (see Figure 2.2). Again, near zero correlations for 

all radii are observed at t = 1 ms, in agreement with Figure 4.ll(b); as the column 

further relaxes, symmetric patterns develop ( t = 2 ms), and perfect correlations are 

achieved for the same radius, at ti(} = ±90°. These radial correlation measurements 

again show that all the 0-variations are decaying away while radial variations re­

main, demonstrating that the late-time Phase III of the relaxation indeed brings the 

complete axisymmetrization of the column. 

It is useful to characterize the axisymmetrization rate, in light that its mech­

anism is still unknov.:n yet. As mentioned above, the residual fluctuation level reflects 

the shot-to-shot variations of the axisymmetric meta-equilibrium radial profiles, and 

is different in nature compared with the decaying azimuthal fluctuations. Therefore 

it is logical to decompose the measured fluctuation level into two parts: < ?ie(t) >nns 

which is 0-dependent and is decaying to zero, and < ?ir(t) >nns which remains con­

stant during the axisymmetrization, with the relation 

(4.8) 
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Figure 4.14: Exponential decay of the 8-fluctuations during the column axisym­
metrization (the l = 1 sequence). Star symbols represent data after the asymp­
totic level has been subtracted as in Equation (4.8), and the dashed line is the 
least-square-fit. 

Figure 4.14 shows the decay of the fluctuation level at R = 1 cm, correspond­

ing to the axisymmetrization process illustrated in Figures 4.11-4.13. Circle symbols 

represent the measured< ii(t) >nns, while star symbols are the calculated late-time 

decaying component< iiii(t) >rms from Equation ( 4.8). The exponential least-square­

fit to the < iiii( t) >rms data is plotted as the dashed line, with .an e-folding decay time 

Te ~ 690 µs. The decay rate le = l/Te is presumably determined by the radial drift 

speed of the holes, as discussed above. Note that the exponential fit to the decaying 

fluctuation component normally does not work very well for the entire relaxation, as 

can be seen from Figure 4.14. In fact, power law fit <iie(t)>rms"'-' t-t., withe= 1.5-
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Figure 4.15: Measured exponential decay rate le versus radius R for the l = 1 
evolution, with the global decay rate /g being plotted as the dashed line. 

3.0, appears to do a better job in some cases. Therefore1 the exponential decay rate 

fe should be viewed simply as a characteristic relaxation time scale. 

The same decomposition and exponential fitting procedure l1as been per-

formed on data measured at various radial positions. The resulting radial depen-

dence of the decay rate is shown in Figure 4.15. Except for the center and the very 

edge of the column, the measured decay rate le does not depend strongly on the 

radial position, even though the background rotational shear has quite large radial 

variations (see e.g., Figure 4.5). Experimentally, this is also true for many other 

columns with various initial conditions. 

The global decay rate /g characterizes the overall relaxation, and is calculated 
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Figure 4.16: Measured global decay rate /g versus axial length LP, for columns 
with approximately the same initial radial profile. 

by decomposing and fitting the globally integrated fluctuation level 

< n,(t) >rm,= 2~ R~ j dr r < n(r, t) >rm, . 

The global decay rate / 9 averages out the radial dependence of the local /e( r ), and 

generally gives a better exponential fit. This decay rate is plotted as the horizontal 

dashed line in Figure 4.15. 

Similarly, /g rates for other evolutions with different initial conditions have 

been calculated, and scaling laws with various plasma parameters such as column 

axial length Lp and magnetic field Bz have been measured. Ideally, one has to ensure 

that when a plasma parameter is varied, other parameters remain the same, especially 

for the detailed initial 2D density distribution. However, this can only be achieved 
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Figure 4.17: Scaled global decay rate fgBz/Bzo versus magnetic field Bz, for 
columns with approximately the same initial radial profile. 

approximately in the experiments, due to the uncontrollable factors involved in the 

electron col1trnn preparation process. 

Figure 4.16 shows the axial length dependence of /g for columns with initial 

conditions similar to the one shown in Figure 4.3. The /g calculated for the evolution 

of Figure 4.3 is shown as the solid symbol. Here, Lp ranges from 20 cm :::; LP :::; 80 cm; 

the global decay rate /g varies up to a factor of two, but does not show a simple de­

pendence on Lp· In fact, if the relaxation were dominated by end effects, one would 

expect to see a strong dependence of /g on LP. This suggests that the relaxation 

processes, including the radial outward drift of the density holes are basically 2D in 

nature. 

The dependence of /g on the axial magnetic field Bz has also been measured 
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in the same i,vay. Here, the drift-Poisson equations predict that ;-iJ] the dyna111ical 

time scales are directly proportional to tl1e 1r_agnetic field Bz, so tl1e scaled global 

decay rate '°'jgBz/.820 should be independe11t of B2 , i,vl1ere constant field Bzo = 507G. 

Figure 4.17 shows /gBz/ Bzo versus Bz, \Vhere B2 ranges from 170 G::; Bz::; 640 G. 

The measured scaled global decay rate changes by a factor of two, with no systematic 

dependence on Bz. Again, the measurements are consistent i,vith 2D Ex B dynamics. 



Chapter 5 

Meta-Equilibrium State of 2D 
Turbulence 

5.1 Overview 

The relaxation process of 2D turbulence is generally complex, with many 

intriguing features as illustrated in Chapter 4. After the turbulence fully relaxes and 

equilibrates, however, it is tempting to expect that the equilibrium is determined 

only by the conserved quantities of the motion, independent of the details of the 

relaxation. This idea works well in systems having many degrees of freedom, such 

as an ideal gas, which always relaxes to its Maxwellian thermal equilibrium. Here, 

I consider the eqltilibrium state of 2D turbulence, which it is presumably reached 

through inviscid, nonlinear interactions of the turbulent floVI'. This 2D equilibrium 

persists for over 104 column bulk rotations until dissipation drives the system toward 

its final 3D thermal equilibrium [22, 25]. Owing its long but finite lifetime, this 2D 

equilibrium is called the meta-equilibrium state of 2D turbulence. 

In this chapter, I present quantitative experimental measurements of the 

meta-equilibrium state, for comparison with the theoretical predictions of various 

models. Section 5.2 introduces several theories of 2D meta-equilibrium state. The 

point vortex and continuous fluid maximum entropy theories are within the frame­

work of statistical mechanics applied to the configurational space of 2D flows. In 
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contrast. the glol)al 1ninimu1n enstrophy n1odel follo\VS directly frorr1 the ~'selective 

decay'· hypothesis based largely on physical int11ition. I-Iere, ] develop a "restricted'' 

minimum enstrophy model appro1>riate to the experimental constraints of density 

being non-negative and monotonic in radius. These n1odels are examined in (lctail, 

laying the foundation for further improvements and generalizations. 

Section 5.3 describes the experimental measurements of the long-lasting meta.­

equilibrium column. It is sho,vn that between the initial and meta-equilibrium states, 

the number of electrons (circulation), angular momentum (angular impulse}, and 

electrostatic energy (kinetic energy) are well conserved during the evolutio11. In 

contrast, less robust invariants, such as the enstrophy and mean-field entropy, vary 

significantly. This variation is apparently due to dissipation or measurement coarse­

graining of structures at fine scales generated by the strong turbulence. I also find 

that the measured meta-equilibrium density (vorticit_y) profiles exhibit close agree­

ment with predictions of the restricted minimum enstrophy model, while differing 

substantially from maximum entropy predictions. Furthermore, I examine the small­

amplitude (,..,,, 2% ), shot-to-shot variations observed in the meta-equilibrium profiles, 

and the effects of the relaxation dynamics on the meta-equilibrium state. In Sec­

tion 5.-1, I discuss the gradual decay of the meta-equilibrium state caused by the 

microscopic '~viscous" effects and external particle transport. These 3D processes 

are beyond the scope of this work. 

5.2 Theories of Meta-Equilibrium State 

Theoretical efforts to predict the meta-equilibrium state date back to 1940s, 

when Onsager published his pioneering work on the statistical equilibrium of a point 

vortex gas [70]. To derive the predictions for the meta-equilibrium state, theories 

generally propose variational principles, such as the maximization of entropy and 
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n1inimization of enstroph,Y: based 011 certain physical i11sigl1ts on the relaxatio11 dy­

namics. 

Experimentally, meta-equilibrium states resulti11g from initially hollo\v columns 

are axisymmetric, with monotonically· decreasing de11sity profiles. Consequently, the 

theoretical models discussed in this section all treat equilibria that ~ave only radial 

dependence. Tl1ese four theories are 

• point vortex maximum entropy theory) 

• continuous fluid maximum entropy theory, 

• global minimum enstrophy theory, 

• restricted minimum enstrophy theory. 

Here, I develop the restricted minimum enstrophy theory to apply to the particu­

lar experimental situation. Connections between some of these models have been 

explored theoretically [59, 26); and in some cases, computer simulations have been 

performed to test the validity of these ideas [88, 91, 61, 59]. However, to our best 

knowledge, they have not previously been quantitatively tested in experiments. 

5.2.1 Point Vortex Maximum Entropy Theory 

The point vortex maximum entropy model derives its prediction by maxi­

mizing the mean-field entropy of a point vortex gas. A comprehensive survey of this 

approach was given by Smith, with references to most of the important develop­

ments [85]. This compressible point vortex gas serves as an approximation to a real 

turbulent fluid. Here, one assumes that the 2D turbulence is sufficiently violent that 

vorticity structures are being shredded into small pieces which wander ergodically 

over the configurational space. As a result, the statistical equilibrium of the fl.ow is 
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1nerely the maximun1 entropy state of this point vortex gas. subject to constrair1ts 

of fixed total circulation, a11gular morr1entu1n, and kinetic energy. 

l\tlathematically, the entropy of a point vortex gas is the rnean-field entropy 

S defined in Section 3.2. T11e maximum entropy state can therefore be calculated 

from the functional derivation, 

b(S - apP8 - ayH,p) = 0. ( 5.1) 

Here, O.p and O:ff are Lagrange multipliers embodying conservation of angular mo-

mentum and energy, and the conservation of circulation is implicitly satisfied by the 

normaliza.tion of the integrals. In general, a relation between the equilibrium density 

neq and potential t/>eq can be derived from Equation ( 5.1 ), 

(5.2) 

The density and potential must be related by Poisson equation, giving 

(5.3) 

with wall boundary condition l/Jeq(r = 1) = 0. The Lagrange multipliers and the 

consta11t C are dcter1nined from the values of NL, Po, arid H¢ self-consistently by 

plugging the solution neq into the definitions of these fixed integrals. 

5.2.2 Continuous Fluid Maximum Entropy Theory 

Strictly speaking, the point vortex model can only be valid in the limit where 

the vorticity is sparsely distributed and concentrated in discrete vortices. In this 

case, one obtains a statistical equilibrium analogous to the Boltzmann distribution 

in thermal dynamics. The more realistic continuous fluid approach was developed by 

Lynden-Bell in the context of collisionless relaxation of self-gravitating galaxies [48]. 

Here, the 2D incompressible fl.ow is broken into small non-overlapping fluid elements 
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"\\'ith arbitrary vorticity. A generalized entropy functional gives the statistical equi-

libriu1n, 'vhich is essentially the same as the f·ermi distributio11 [48, 58, 78, 59, 79]. 

This approach conserves JVi, Po, a11d H¢,, and also conserves all tlie 1non1ents 

of vorticity Zm l1ntil averaging is performed over the fine scales. Tl1at is, the frac­

tional area A(n') is conserved, where A(n')dn' is the area occupied by fluid elements 

with vorticity between n' and n' + dn'. The macroscopic equilibrium state is ob-

tained in terms of equilibrium probability function Peq(x, n'), which represents the 

probability of having density n' at location x. The statistical analysis gives [59] 

( 
') exp{-/in'[-1,q(x)+7r2]-a(n')} 

Peq x, n = } J::'
00 

dn" exp{-/in"[-$,q(x) + 7r2 ] - a(n") 
(5.4) 

where /3,/, and function o:(n') are parameters to be determined from the conserved 

quantities. 

The mean density neq( r) is calculated through the general relation 

(5.5) 

Again, the density and potential must satisfy the Poisson Equation (5.3). Normally, 

Equation (5.5) leads to a n-<P relationship analogous to that of the Fermi distribution. 

The parameters are determined numerically from Po, H¢,, and A(n') of the initial 

hollow density distribution. In practice, the measured initial A(n1
) is approximated 

by a polynomial fit to the data [87], such as, A(n') ~Ao+ A1n1 + A1n'2 + ... , to 

facilitate the determination of the parameter function a( n') through the equation 

A(n') = 2 j drrp,q(r,n'), (5.6) 

which follows from the definition of p.,q(r,n1
). 

One conclusion of this theory is wortl1 mentioning: at the macroscopic spatial 

scales, the statistical equilibrium is predicted to be completely fluctuationless as 

time approaches infinity [59]. This point can be readily tested in the experiment 
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by comparing the initial and meta-equilibrium shot-to-shot statistical variations. If 

the system has indeed equilibrated to the continuous fll1id maximum entropy state, 

the shot-t~-shot variation level should not be too much higher than that of tl1e 

well-controlled initial state, provided that the equilibrium does not depend on the 

conserved quantities very sensitively. 

Another comment concerns the fact that the statistical (maximum entropy) 

theories postulate that the meta-equilibrium state is intimately associated \vith the 

ergodicity of the flow in 2D configurational space. This assumption can not be proven 

from the true 2D dynamics, although attempts have been made to formulate a H­

theorem for the dynamical relaxatio11 to the most probable state [79}. Ultimately, 

the validity of this idea must be quantitatively tested in experiments and/or accurate 

computer simulations. 

5.2.3 Selective Decay Hypothesis 

In principle, inviscid 2D dynamics conserves the vorticity associated with 

each Lagrangian fluid elements. However, as the turbulent flow evolves, more and 

more fine-scale motions with complex spatial structures are created. Consequently, 

any slight dissipation or measurement coarse-graining will cause variations in some 

ideal invariants. 

Experimentally, the total number of electrons (circulation) and angular mo­

mentum are well conserved, and the energy is nearly conserved (see Section 5.3); in 

contrast, higher moment integrals (fragile invariants) changes significantly during the 

evolution. In a 2D statistical spectral theory, Kraichnan argues that the only impor­

tant fragile integral is the enstrophy. This is because that it is a quadratic function 

of vorticity, and therefore independent of the high wavenumber cut-off which must 

be used in any practical spectral analyses [39, 40, 41]. Carnevale and Frederiksen 

suggest that the uniqueness of enstrophy is probably connected to the complicated 
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phase space topology· of the higl1er Zm constraints [10]. Ho\vcver, there is still no u11i­

versally accepted justification for this choice of enstrophy as the uniquely important 

fragile invariar1t [59]. 

Based on this physical insight, the selective decay relaxation mechanism con­

jectures tl1at the meta-equilibrium state of 2D turbulence results from unequal decay 

of the robust invariants (such as energy) and the enstrophy [8, 54, 35]. Therefore, the 

proposed 2D meta-equilibrium is simply the minimum enstrophy state constrainted 

by the fixed robust invariants of the system [8, 43, 36]. Again, this hypothesis can 

not be proven from tl1e dynamical equation. However, similar conjectures have been 

successfully applied to experiments on turbulent MHD plasma systems [94, 62]. 

In this model, the equilibrium density distribution neq(r,8) is obtained by 

minimizing Z2 subject to the constraints that NL, Po, and H.;, remain fixed. It 

follows that 

(5.7) 

where the NL constraint is implicitly included in the normalizations. This functional 

variation leads to an equilibrium n-¢ relation, 

(5.8) 

where n0 ::::::: NL/R~ and <Po ::::::: eNL are the characteristic density and potential 

respectively, and C is a constant. Note that neq is not a function of ,Peq alone, due 

to the angular momentum constraint in the laboratory frame. However, by choosing 

a rotating frame with proper angular velocity, the r 2 term in Equation (5.8) can be 

cancelled out, allowing a simple linear n-<P relation [69]. 

5.2.4 Minimum Enstrophy Vortices in a Cylinder 

The axisymmetric minimum enstrophy states can be derived analytically for 

magnetized electron columns bounded by conducting cylinders. Note that }1ere, the 
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conducting cyli11clers 1>rovi<lc a con11)iete neutralizing shield, not found i11 open :flo\vs; 

as a result, one needs not to impose any ad hoc boundary conditions to avoid energy 

divergence [43]. 

:t\-1inimum enstrophy radial profiles are derived for the global model, and for 

a "restricted)' model which requires that density remains positive every,vhere and is 

monotonically decreasing. In both models, I solve for the axisymmetric equilibrium 

profile neq(r) by combining the minimum enstrophy n-¢> relation Equation (5.8) with 

Poisson Equation (5.3). This gives 

( 5.9) 

with the solution 

L 
n,.(r) = aJ0 (/3•r)- ', (5.10) 

where J0 is the zeroth order Bessel function. The parameters (0:.,/3,1) and the mini-

mum enstrophy Zf'in = Z2 [neq] are completely determined by the integral invariants 

(NL, P,, H0). 

For the global minimum enstrophy model, neq(r) from Equation (5.10) ts 

used in the entire region of 0 ::; r :::; 1, since no additional requirement for density 

and boundary is imposed. For typical values of (f\1
1;,P01 H¢) of the initially hollo\v 

columns, this neq profile goes negative at large radii and is finite at the wall; fur­

thermore, it generally is not monotonically decreasing in radius. Clearly, negative 

electron density would be unphysical, and non-monotonic profiles would be unstable 

to diocotron instabilities, indicating that the global minimum enstrophy state may 

be non-axisymmetric and/or off-axis away from the cylinder center [43]. 

These difficulties can be overcome by requiring that neq( r) follows the solution 

of Equation (5.10) until it reaches zero at some radius r 0 , after which neq = 0. This 



restricted miniml1m enstropby model :yields a solution 

0 :=; r :=; r 0 

r0 <r:=;l, 
(5.11) 

where (a, {3, ro) and zzin are again determined from the measured (NL, Pe, }f ¢),\Vi th 

no other adjustable parameters. 

This added requirement is mainly based on the experimental observation that 

the meta-equilibrium columns considered here are normally confined in a core region 

of the cylinder, completely isolated from the \Vall. f\..fathematically, the solution of 

Equation (5.11) can be derived more rigorously by taking the following generalized 

functional variation 

b d1ro n 2 2 n <fan 
( 0 + -d ){ dr 7rr[ (-) - 2ap(l - r )(-) + <>H(-)(-)]} = 
on r0 o n0 n0 <Po no 

1ro 27rr n 2 ¢ 
dr -[ (-) - ap(l - r ) + <>H(-)] = 0, 

o n0 no <Po 
(5.12) 

where the d/dr0 term vanishes, since density neq(r0 ) is assumed to be zero. The 

restricted minimum enstrophy solution Equation (5.11) then follows directly from 

Equation (5.12). 

The meta-equilibrium potential </Jeq( r) follows from neq and the boundary 

condition r./>eq(r= 1) = 0, as 

¢eq(r) = 

2¢o In r r0 <r:=;l. 
(5.13) 

Because <Peq(r) is a monotonically increasing function of r 1 the functional relation 

neq(</Jeq) can be derived and compared with experimental data. 

Applying neq(r) in Equation (5.11) to the NL and Pe integrals, a and f3 can be 

expressed in terms of the scaled cut-off radius f 0 = j3t r0 by using the mathematical 
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j(lentities listed in Ap1}endix D, 

a(ro) = 
no , 2 8 

2T0 J1(fo) 

2 (] n)''J(')[(r,- )+ l(')] 
7r - r(i r 0 2 ro ' 2 1 o 

(5.1<1) 

f3(To) = (5.15) 

The scaled cut-off radiu!:> f 0 can be solved numerically from the energy in­

tegral of the equilibrium profile. Using the solutions for the equilibrium density 

and potential, the energy can be expressed as a function of Pe and fo, FH(Po, fo)· 

Parameter f 0 will have to satisfy FH(Po, f 0 ) = H,p. It turns out that function 

Fy(Pe, f 0 )-H,p depends explicitly only on the scaled cut-off radius f 0 and the excess 

energy, H:xc = Hq, - Hgun, with 

Hmin _ ~ _ ln2(1- Pe) 
• - 4 2 

(5.16) 

being the minimum energy possible for a column with fixed NL and PfJ, which occurs 

for a uniform density profile. Analytically, this dependence can be expressed as 

(5.17) 

where G(f0 ) is a universal function of T0 without parameters. 

Figure 5.1 shows a typical solution for HJ,xc = 1 x io-2 , with f 0 '.:::: 2.87 in the 

region 0 ::; f 0 ::::; j 1,1 (j1,1 = 3.8317 is the first root of J 1 , corresponding also to the 

minimum of J0 ), within which the first zero of J0 lies. The second root is discarded 

since it permits negative density, and thus is not physical. From Figure 5.1, it is 

clear that in order to derive a self-consistent analytical solution, HJ,xc must satisfy a 

prerequisite, 

H'"' < _£ + ~ ln(J - ..!_). 
<P - ·2 2 ·2 

J1,1 J1,1 

Furthermore, the sufficient condition 

1 4 
Pe~-+T 

2 J1,1 

(5.18) 

(5.19) 
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Figure 5.1: Solving for parameters in the restricted minimum enstrophy model. 
Analytical function FH ~Ht/> is plotted versus f 0 , with one root being found between 

0 and j1,1· 

ensures that the cut-off radius r 0 :S 1, i.e., within the boundary wall. Of course, when 

Equation (5.18) is not satisfied, the restricted minimum enstrophy state still exists 

- it simply no longer occurs as a local extremum for the multi-dimensional variation 

Equation (5.7), and must be solved through more advanced numerical means [24]. 

Furthermore, preliminary calculation suggests that near the upper excess energy 

limit in Equation (5.18), a bifurcation of solution may occur, resulting in an off-axis 

state with slightly lower enstrophy [88]. 

At the upper excess energy limit, 

2 " ro= [
1

_ 81
., (1-Pe)]', 

Jt,l 

and the density profile is an up-shifted Bessel function. When the excess energy 
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satisfies 
' 1 3 Hexc = Jfexc = _2_ _ - Jn .:._ 

¢ ¢O 24 2 2 . (5.20) 

the equilibrium density profile becomes a parabola, 

o::; r ::; ro 

r0 <r:Sl, 

with r 0 = [3(1-P,)]! and Zf'" = 2/[97r(l -P0)]. 

For H'J,xc < H'J,~c, o: and f3 are both negative, Equation (5.11) becomes (see 

Appendix D) 

ro<r::;l, 

where 10 is the zeroth order modified Bessel function. As H'J,xc ._ 0, the minimum 

enstrophy state approaches the uniform density column of radius r 0 = [2(1- Pe)]!, 

with Z;'" = 1 /[47r(l - Po)]. 

Generally speaking, the minimum enstrophy value zrun depends both on Pe 

and H.p; under this restricted model, however, Zfin can be rescaled so that the scaled 

minimum enstrophy ifin = 41r(l - Pii)z~n is only a function of the excess energy 

H'J,xc. Here, the factor 411" is chosen so that a uniform column would have .Zf"n = 1. 

When the analytical solution exists, this dependence can be seen from the equation 

[(fij -8)J2 (f0 ) + 2f0 J1(r0 )] x 
rgJ2(fo) 

{fo[2Ji(ro) + J[(fo)] - 4Jo(fo)J1(fo)}, (5.21) 

where f 0 is in turn determined by H'J,xc alone. In Section 5.3, this single-variable 

dependence for the scaled minimum enstrophy is examined in detail from the exper-

imental data. 
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t 7lma"' NL Pe H¢ z, z, z, s 
20µs +4.1% +l.2% +l.5% +3A% +22% +45% +68% -0.082 

5ms 3.05 x 106 1.77 x 107 0.861 0.896 0.510 0.396 0.373 0.087 

50ms -1.0% -0.1% -0.3% -1.0% -1.8% -3.3% -4.8% 0.104 

Table 5.1: Measured ideal 2D invariants at various times. Values at 5 ins are 
absolute; other values (except for S) are expressed as% changes from t =5 ms. 

5.3 Measurements of Meta-Equilibrium State 

The long-lasting meta-equilibrium state resulting from the relaxation of 2D 

turbulence has been described briefly in Chapter 41 where the main topic was the 

dynamical process of the relaxation. In this section, I discuss the meta-equilibrium 

state in detail, and make quantitative comparisons with the theoretical predictions. 

Since the meta-equilibrium state is essentially stationary for over 104 bulk rotations, 

one only needs to consider its properties at a particular time after equilibration. 

Here, I take measurements at t = 5 ms for the l = 1 sequence to characterize the 

meta-equilibrium, and at t = 50 ms to verify that the meta-equilibrium is indeed 

stationary. The measurements at t = 20 µs characterize the initial condition. 

5.3.1 Changes of Ideal 2D Invariants 

I first consider the variations in the ideal 2D invariants between the initial and 

meta-equilibrium state. The evolution dominated by the l = 1 instability, discussed 

in Chapter 4, is used as an example. Radial density profiles of the initial and meta­

equilibrium state are plotted in Figure 5.2 as cross and square symbols. The large­

scale convective transport caused by the turbulent E x B drift dynamics is apparent. 

Table 5.1 lists the ideal 2D invariants defined in Section 3.2, as calculated 

from the measured density profiles at t = 20 µs, 5 ms and 50 ms. For normalizations, 

the characteristic density n0 and potential <Po are calculated using the measured NL 

at t = 5 ms. Between t = 20 µs and t = 5 ms, NL, Po, and H,p drop by 4% or less, 
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probably due to systematic errors such as changes in column end shape. In addition, 

the peak density nmax, '.vhich is a local ideal invariant, experiences a 4% drop after 

being transported from r '.::::: 0.4 to the column center. In contrast, Z2, Z3 , and Z4 

fall by more than 20%, and S increases by more tl1an a factor of 2 while changing 

its sign from negative to positive. Note that since the entropy S has a logarithmic 

density dependence, its numerical value can be offset by an arbitrary constant, so 

its percentage change is meaningless. These results confirm that the experimental 

system is 2D-like and that the main dissipation in these columns occurs at fine scales, 

and is quite weak. Furthermore, all the ideal invariants (except S) remain essentially 

constant between t = 5 ms and 50 ms, providing added evidence for the longevity 

of the meta-equilibrium state in this system. The increase in S is mainly caused 

by the slight change of density profile near the column edge, where the logarithmic 

integrand contributes the most to the integral. 

These integrals are calculated from the radial profiles of the mean density 

< n(r, t) >,so they do not include corrections due to shot-to-shot fluctuations. How-

ever, this does not cause any significant changes to the ideal invariants of the initial 

and meta-equilibrium states listed in Table 5.1. At t = 20 µs, the perturbation is 

dominated by a single unstable l = 1 diocotfon mode varying as n(lu)(r)exp(iO), 

where n(lul(r) '.:::::'. J2 <ii(r)>nns is the mode eigenfunction. By carrying out the 

2D r-0 integrals, it can be shown that the calculated NL and Pe do not change, since 

they depend linearly on density. Zm and S change by insignificant amounts: for 

example, the enstrophy Z2 is increased by 

\vhich is less than 1 % for the given initial condition. The electrostatic energy H4' is 

decreased by the negative energy of the diocotron mode, which is calculated to be less 

than 0.5% of the energy of the axisymmetric profile for <ii( r) >nns / < n( r) > ,..., 5% 
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Figure 5.2: Measured radial density profiles of the initial and meta-equilibrium 
state, and theoretical predictions from the 4 models discussed. 
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by using the formula of Briggs et al. [9]. F'inally, the peak density nmax (at r = 

r max) does not deviate much from the true value, for the reason that the 111easure<l 

fluctuation level is sn1all at Tmax (see Figure 4.3). 

The measured fluctuations of the meta-equilibrium state are shown to be 

caused by the shot-to-shot variations in the axisymmetric radial density profile, 

as discussed in detail later in this section. Following the same ki11d of reasoning, 

one can show that the ideal invariants of the meta-equilibrium state listed in Ta­

ble 5.1 are essentially unaffected by the profile variations, since the changes go like 

[<ii>rms / <n>]2 and the measured variation level is quite small('""' 2%). Take 

enstrophy Z2 as an example; for shot i, 

where it is assumed that the varying component ii,(r) (for shot i) is not correlate.<l 

to the mean density < n(r) > over radius, so that the first integral vanishes. The 

enstrophy difference therefore represents the integrated square density deviation be-

tween the two distributions. Note that the result expressed in Equation (5.22) can 

be applied to any two radial profilc8 provide(! that their <lifference8 arc randomly 

distributed in radius. Fundamentally, the conclusions based on Table 5.1 are solid 

for the reason that many other initial and meta-equilibrium states display essentially 

the same changes even when the initial asymmetries are quite small. 

5.3.2 Meta-Equilibrium Radial Profiles 

The detailed meta-equilibrium density profile< n(r) >is of special interest, 

since the various theories discussed earlier give definitive predictions that can be 

compared with the experimental data. Figure 5.2 shows the measured initial and 

meta-equilibrium radial density profiles compared to the four theoretical models. 
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Here, the n1odel profiles are calculated using the robust invaria11ts obtained fro1n 

the measured< n(r) >, \vith no adjustable parameters. The point vortex maxirnurr1 

entropy and continuous fluid maximum entropy predictions are plotted as long and 

short dashed curves respectively. These two profiles are both relatively flat near 

the column center, apparently due to the assumption of thorough ergodic mixing of 

the fluid elements. These profiles deviate significantl:y from the experimental data. 

The global minimum enstrophy prediction is plotted as the dot-dashed curve. This 

profile shows reasonable agreement with the data inside the column, but fails by going 

negative near the wall, where the measured density is essentially zero. Finally, tl1e 

prediction from the restricted minimum enstrophy rr1odel is shown as the solid curve. 

This profile shows close overall agreement with the experimentally measured meta­

equilibrium density data, typically within 5% for all radii. Note that the predicted 

central density and cut-off radius both agree closely with the experimental data, even 

though they are only determined by the integral invariants of (NL, Pe, H¢)· 

A one-to-one correspondence exists between the theoretically predicted den­

sity neq and potential </Jeq, even though analytically1 the relation is not generally 

explicit. Figure 5.3 shows the comparison of the measured n-¢ dependence with the 

predictions of the four theoretical models. Here again, the data is best described 

by the restricted minimum enstrophy model: as expected from the< n(r) > com­

parisons. Note that n-¢ relation from the restricted minimum enstrophy vortex is 

approximately linear (solid curve). This is because parameter f3 for this column is 

quite small, making the r 2 contribution in Equation (5.13) negligible compared to 

the J0 ({3!r) term. 

I have experimentally measured the relaxed meta-equilibrium states resulting 

from initially hollow columns of various diameters, "hollowness" depths, and axial 

lengths in various magnetic fields. For example, two such meta-equilibrium states are 
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sho\vn in Figure 5.4: Fran1e (a.) is near the point 'vhcre f3 = 0 \vi th a paral)o\ic densitJ' 

profile; Fran1e (b) is for the case of H'J,xc near its upper limit in Equation (5.18). 

Both curves sho\v excelle11t agreement with the ex1)erirnental data1 typifying the 

correspondence between the measured meta-equilibrium columns and the restricted 

minimum enstrophy vortices. 

The measured meta-equilibrium profiles give scaled enstrophy Z2 versus HJ,xc 1 

plotted as circles in Figure 5.5. The functional dependence from the restricted min­

imum enstrophy model is shown as the solid curve, with the vertical dashed line 

being the HJ,xc limit expressed in Equation (5.18). Here, the specific evolution of 

Figure 5.2 is shown as the solid symbols: the scaled enstrophy varies from Z2 = 1.084 

at t =20µs to Z2 = 0.892 at t =5ms, with the restricted minimumenstrophy predic+ 

tion being j;~n = 0.890. For comparison, the point vortex maximum entropy profile 

would have Z2 = 0.900, deviating from the data four times more than the restricted 

minimum enstrophy profile of Equation (5.11). Similarly, the measured enstrophy 

of the meta+equilibrium state is close to the prediction of the restricted minimum 

enstrophy theory for each initial conditions, typically within 1-2% of the enstrophy 

available for dissipation for each given (NL, P6, H¢)· This reflects the fact that the 

measured < n( r) > profiles generally agree well with Equation ( 5.11 ), comparable or 

better than the profile shown in Figure 5.2. In addition, as shown in Figure 5.5, the 

experimentally measured Z2 appears to be continuous across the theoretical upper 

limit of H;xc. As H;xc further decreases, zrun rises again, with ;i~n(H:xc = 0) = 1 . 

These experimental evidences strongly support the selective decay hypoth+ 

es1s. Of course, only a limited region of parameter space has been explored and 

compared to theory. Nonetheless, the experiments clearly show that selective decay 

has predictive validity for these types of initial conditions. 

Some other unstable initial conditions, such as 2 merging vortices [32, 60], 
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Figure 5.5: The scaled enstrophy Z2 of the rneta~equilibrium state versus excess 
energy H'J,xc, from measurements (circles) and from the restricted minimum enstrophy 
model (curve). 

have H'J,xc a lot higher than the range specified by Equation (5.18), and result in 

measured meta-equilibrium profiles not describable by Equation (.5.11). Further 

theoretical work is needed to understand the g~neral minimum enstrophy states, and 

further experiments are necessary to establish under what circumstances unstable 

initial conditions do relax to these states. 

5.3.3 Shot-to-Shot Variations of the Profiles 

The measured meta-equilibrium states exhibit higher shot-to-shot fluctuation 

levels than their initial states, as shown in Figure 5.6(a). This data applies to the 

evolution of Figure 5.2 (the l =l sequence). The variation level at t =5ms ("-' 1.6% 
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at r = 0) is typically 3-.5 times greater tban that of the initial state. Note that the 

initial shot-to-shot variation level must be measured using tl1e phase-lockecl ense111ble 

described in Section 3.4. The cause of this noise "amplification" is probably the 

instability processes resulting in the onset of turbulence, \vhere t\vo very close initial 

conditions deviate exponentially in tirr1e as the turbulence develops. 

The spatial structure of these fluctuations can be investigated by measuring 

correlation functions. Consider the spatial correlations bet\veen a fixed collector (CO, 

C2, c2-) and the radially scanning mobile collector Cr, as described in Section 2.2. 

Figure 5.6(b) shows Cor(r) at t = 5 ms to be highly axisyrnrnetric, with a radial 

correlation length of about 0.5 cm. Figure 5.6(c) shows C2r(r) and C2-r(r) to have 

essentially identical axisymmetric shapes even though the fixed collectors C2 and c2-

are azimuthally separated by 90°. It is clear that there are essentially no angular 

variations left after the column relaxes to the meta-equilibrium state, i.e., two-point 

correlations between collectors at r = 0.36 (such as C2i c2-) are all above 90%, 

indicating that any remaining 8-variations and instrumental noise are less than 0.2% 

of the mean density at that radius. The measured fluctuations simply reflect the shot­

to-shot variations of the meta-equilibrium radial profiles. Alternatively speaking, the 

data demonstrate that each particular column relaxes to a stationar.y axisymmetric 

profile, but their profiles varying slightly (,...., 2%) from one shot to another. This then 

appears as shot-to-shot "noise", and persists until 3D processes cause the profiles to 

decay (see Figure 4.2). 

5.3.4 Significance of the Experimental Results 

The maximum entropy models fail apparently because during the evolution, 

there are regions which are not thoroughly mixed with the rest of the column. For 

example, the region of peak density nmax is evidently unmixed as it is transported, 

as shown in Table 5.1. Once the monotonically decreasing mean density profile is 
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established, the large-scale density rearrangernent is greatly din1inished, since there 

are no further global instabilities. As a result, the system does not equilibrate to the 

most probable state. 

It is tempting to suggest that these experin1ents may model the emergence of 

coherent vortices in a region of non-zero circulation within a larger field of decaying 

2D turbulence [56, 43, 3, 7]. In this case, the internal shape of the emerging vor­

tices may be determined by the local conserved integrals through selective decay. Of 

course, the cylindrical walls give complete isolation of the columns considered here, 

whereas in a turbulent flow other regions can perturb any given vortex, with merger 

of like-signed vortices being perhaps the most extreme example of the external per­

turbation. 

5.4 Decay of Meta-Equilibrium State 

The meta-equilibrium state lasts more than 104 column rotations, or about 

100 ms, as shown in Figure 4.2. It then decays due to non-ideal 2D E x B or 3D 

processes, such as "viscous" microscopic particle transport and external asymmetry 

induced anomalous transport [22, 25]. On this longer time scale, the radial profile 

changes slowly, characterize,d b,y the broadening of the column radius (Po and Ho 

both decrease), and the decline of the central density [16]. Eventually, the column 

. touches the cylinder wall, and electrons are lost. 

Another point of view of this process can be seen through the evolution of the 

correlation functions of the shot-to-shot variations. Figure 5.7 shows the long-term 

evolution of function Cor( r ). Between t = 5ms and lOms, there is little change in the 

profile of Cor( r ), reflecting the longevity of the meta-equilibrium state. By t = 0.5 s, 

the first zero of the correlation function (radial correlation length) has increased, as 

the measured variation level decreases by a factor of two (Figure 4.2). At t = 2 s, 
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Figure 5.7: Long-term changes of the correlation function C01"(r,t) showing the 
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the central density l1as dropped by about 20% 1 and the radial corrclatio11 length is 

about t\vicc as large as t11at of the meta-equilibrium state. This obser\ratio11 suggests 

that the effect of tl1ese non-ideal "viscous'' processes acts preferrentially on the small 

spatial scales: relatively short wavelength "ripples" are smoothed out first, leaving 

out the longer ones, which eventually vanish together v..1ith the whole column. 



Appendix A 

Calibration of Collector Effective 
Cross Sections 

In this appendix, I describe the calibration procedure for the effective collec­

tor cross sections as briefly mentioned in Section 2.2. The problem arises because 

the endplate and the mobile collector both have certain thickness, and therefore are 

susceptible to the collimator hole loss/mobile collector gain effect as first discussed 

by Fine [27]. 

When a column is dumped, electrons must first go through collimator holes 

on the endplate (thickness=0.318 cm) in order to be collected by the fixed collectorsj 

since the electrons are executing gyromotion as they pass through the collimator 

holes, some of the electrons that sho11ld have been collected if the endplate \Vere 

infinitely thin, are lost to the endplate. Consequently, the effective cross section of 

the fixed collectors are smaller than the area of the collimator holes. Similarly, the 

effective cross section of the mobile collector (thickness ~ 0.30 cm) is larger than the 

area of its facing surface. 

Let's estimate the number of gyro-orbits an electron executes while it passes 

through a collimator hole. The parallel kinetic energy of the electron at the end­

plate is about 100 eV due to the +90 V bias applied to the endplate; therefore, it 

takes 0.54 ns to travel through the hole. Consider Bz ~ 500 G with gyrofrequency 

113 
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Wc/27r '.:::::'. 1.4 GHz; within 0.54ns, the electro111nakes about 3/4 of one orbit. Assurn­

ing that all the electrons that come into contact '.vith the endplate are absorbed, 75% 

of the electrons in a circular strip 2RL '.vide and 27r Rco long are lost [27], where RL is 

the electron gyroradius and Rco is the radius of the collimator holes. Consequently, 

the effective collector cross section is approximately 

2 • 4RL) 
Aco -::= ~ Rc0 (1 - 0. 7o x -R . 

co 
(A.I) 

Analogously, the effect cross section of the mobile collector Cr is increased, and 

estimated to be 

2 4RL 
Ac,-::= ~Rc,(l + 0.70 x -R ) . 

co 
(A.2) 

Experimentally, I only assume that the effective cross section of the fixed 

collectors and that of the mobile collector follow the relation 

Aco - 7r Rbo Rco 
~~--=',C' ""' - -- . 
Ao,. - 7r Rcr Rcr 

(A.3) 

In other words, the orbit fractions for CO and Cr, which are 0. 75 and 0. 70 respectively 

from the theoretical estimates, are assumed to be approximately equal, and are 

determined from the calibration measurements. 

Stable columns with highly reproducible flat radial profiles are trapped and 

then dumped. First, I measure the charge Q0 collected on the central fixed collector 

CO. Next, the mobile collector Cr is placed at the cylinder center and the charge Qr 

it collects is then obtained. Since the two collectors are measuring the same physical 

density, the ratio of Qo and Qr must satisfy 

(A.4) 

From Equations (A.3) and (A.4), the effective collector cross sections Aco and Ac .. 

can be solved. 
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Nor111all:v, for colu1nns \vith electron per1)endicular ten1pcrature TJ. :::- 1 e\l, 

the experime11tally determined orbit fractio11 is about ltnity, resulting in corrections 

to the cross sections to be ;S 103. As an independent verification on this calibratio11 

procedure, one can check the agreement between the nt1mber of electrons per unit 

length 1V L measured at the axial midpoint of a column, and that calculated from the 

integral J d2x n(x). Typically) the agreement is better than 5%, which is approxi­

mately the accuracy of the absolute density measurement. In the main text of this 

thesis, these two definitions of NL are used interchangeably. 



Appendix B 

Linear Decomposition of 2D 
Incompressible Flows 

In general, the kinematics of a 2D incompressible flow can be linearly de-

composed into two parts: one that induces vorticity, called the pure rotational com-

ponent, and the other that causes kinematic distortion, called the pure straining 

component. 

Let's assume that one is in the reference frame ( x', y1
) where the fluid is sta-

tionary at the origin 0. In this frame, the 2D velocity field v( x 1
, y') can be written as 

v(x',y') = Z x '\71W(x 1,y1
), (B.l) 

where W is the 2D stream function. If the velocity of this flow is regular (differen­

tiable) near tl1e origin and is slow-varying spatially, W(x 1
, y1

) can be approximated 

by its Taylor expansion around point 0, 

'''( ' ') 12 12 I I 'i' x,y '.::::!0:1x +0:2v +0:3xy, (B.2) 

where W(O, 0) is set to zero, and the linear terms vanish because the fluid is stationary 

at the origin. Parameters ( o 1 , o 2 , a 3 ) are the Taylor coefficients associated with the 

second derivatives of W, i.e., the first derivatives of v(x', y'). 

Generally speaking, upon a proper rotation of the orientation of the Cartesian 
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(a) 'J'r=1, ')',=0 (b) ')',=1, 'J'.=1/2 

(c) 7,=l, 7,=l 

(d) 'J'r=l/2, ')',=1 

Figure B.I: 2D flow patterns 11ear a fixed origin. Case (a)-(e) are discussed in the 
text. 
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coordinates fro111 (x1 ,y1
) to (r.y). '11 can be re,vrit.ten as, 

w(x.y):ewlZl(x,y)= -~(x'+y')- ~(.i:'~y'), (B.3) 

\vhere the fr tern1 is the pure rotational component and the /'s term is the pure 

straining component. Tl1e coefficients "fr and is are 

{ 

/, = (o1 + 02) 
ls= v-(o-1~--0-,-)-,-+~o-j. 

(BA) 

For a 2D incompressible fio,v, at each instant., co11tours of the strean1 functio11 

also describe its fl.o\\' pattern at that time, \\'ith the velocity vector deter1nined ac-

cording to Equation (B.l). Sl10\\'ll in Figure B.1 are tl1e contours of stream function 

q,( 2 l(.r~y) for \·arious values of/rand /s: 

(a) /r = 1, "fs = 0, pure rotation, circular closed flo\\'i 

(b) /r = 1, /s = 1/2, mixed rotation and strai11, elliptical closed flo\\'; 

(c) "fr= 1, /s = 1, equal rotation and strain, simple shearing open flo\Vj 

(d} ''fr= 1/2, /'s = 1, mixed rotatio11 and strain, asymmetric hyperbolic open :flo\Vj 

(e) ~fr= 0, 1·s = 11 })Ure strain~ syn1n1etric hyperl)o}ic open IJo,v. 

Note that 2/r is simply the local vorticitj' ( at the origin. 

As an example, this clecomposition can be applied to a shearing rotational 

flo''' v = w(r} riJ. Let's consider the relati,·e Yelocity VR near a point r = r0 in the 

rotating fran1e \Yi th angular \·elocit)' "-'o = .... :(r0 ), 

v R = [ "'( r) - "''] rO . (B.5) 

B.Y choosing a Cartesian coordinate S)'Sten1 (x,y) centered at 1·0 \Vith x-axis in the 

()direction, i.e., the direction of the rotational flo,v, one can express the relative 
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stream function WR( x, y) as 

,,, >T,(2) 2 
'!' R '.:::::: '!' R = /RY , (B.6) 

indicating that t11e relative 2D flow is a simple sl1ear, \.vith /r =Is = ~/R . Here, the 

shear-induced vorticity is 

(B.7) 

Consequently, for monotonically decreasing w(r) profiles, vorticity 2/R is normally 

negative. 



Appendix C 

Motion of Two Unbounded Point 
Vortices 

In this appendix, I review the motion of two point vortices in 2D fluid open 

domains. This is an idealized description for two finite size vortices that are relatively 

well separated so that their shapes are approximately circular, and for cases where 

these vortices are far away from the boundary within which they are confined. 

Under the point vortex idealization, only the total circulation r 1 and r 2 

(for vortex 1 and 2 respectively) enter the dynamics. Let r 1 and r 2 be the vector 

coordinates of vortex 1 and 2, one can then define the position of the center of 

circulation 

(C.!) 

with the relative displacement vector being rr = r 2 - r 1 • 

From point vortex kinematics, motion of the two unbounded vortices is de-

termined by 

[ 

ddr, = - rl' l'z x r, 
t 27r rr 

dr2 f1 A 

dt = + 27r/rrl2z X rr. 

Therefore, the equations for rr and rr are 

drr = O· 
dt ' 

dr, _ (r, + r,)_ 
d - I I' z x r,. t 27r rr 
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(C.2) 

(C.3) 
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(a) (b) 

(c) (d) (e) 

Figure C.1: Motion of two unbounded point vortices. Case (a)-(e) are discussed 
in the text. 

Under this description, the relative distance lrrl is obviously a constant, and the two 

vortices undergo rotational motion around the stationary center of circulation with 

angular velocity 

f1+f2 
w,. = 27rlrrl2 . (C.4) 

As sho'.vn in illustration Figure C.1, the motion of two unbounded point 

vortices described by Equation ( C.3) can be classified into the following five cases: 

(a) f 1 > 0, f 2 > 0, rotation in the counterclockwise direction, 180° out of phase; 

(b) r 1 < 0, r 2 < 0, rotation in the clockwise direction, 180° out of phase; 

(c) f 1 > 0, f 2 < 0, and lf11 > jf2 1, rotation in the counterclockwise direction, in 

phase; 
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(cl) ['1 < 0, f 2 > 0, and lf11 > lf2 1, rotation in the clock\vise direction, i11 phase; 

(e) r, > 0, r, < 0, and 1r,1=1r,1, translation in the (z x r,) direction. 

Sir1ce there exists a direct analogy between 2D fluid and Ex B drift dynamics 1 

motion of two unbounded, magnetized electron columns can also be appr?ximately 

described by Equation (C.3), with f = 4ITecNLf B,. 



Appendix D 

Useful Mathematical Identities 
Involving Bessel Functions 

Some useful mathematical identities involving Bessel functions are listed in 

this appendix, which are mainly used in Chapter 5 to calculate minimum enstrophy 

vortices. 

Let lm(z) and Im(z) be the mth order ordinary and modified Bessel function 

(fir:sL ki11d) respectively1 where the index m = 0, ±1, ±2, ... ; the following equa­

tions are mathematically correct [1]: 

(a) relation between Jm and Im 

(b) power series expansion 

( c) integral representation 

(-i)m i' Jm(z) = -- dO cos(mO)exp(izcosO); 
7r 0 

(d) recurrence relations 

dJm(z) 
dz 
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(D.l) 

(D.2) 

(D.3) 

(D.4) 

-- ------------------ - -- -----------------------
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(D.5) 

in particular, 
d.lo 
dz =-Ji; (D.6) 

( e) general definite integrals (for m 2: 0) 

la' dz' (z'r .lm-1 (z') zm.lm(z), (D.7) 

!oz dz' (z')-m lm+1(z') 2mlm! - z-m lm(z)' (D.8) 

in particular, 

lz dz' z' Jo( z1
) z.l1(z), (D.9) 

la' dz' J1 ( z') 1-Jo(z); (D.10) 

(f) special definite integrals 

!oz dz' z'3 lo( z') z3.l1(z)-2z2.l2(z), (D.11) 

fo 2 

dz 1 z' Jg( z') ' - z2 [J~(z)+J[(z)]. (D.12) 

All the definite integrals can be proven by using the recurrence relations. 

In addition to the identities listed above, numerical values of the roots of 

ordinary Bessel functions are also often used. The real roots of J0 ( z) are 

} 0 ,1 = 2.4048 Jo,2 = 5.5201 Jo,3 = 8.6537 ... ' 

and for J 1 (z), the nontrivial roots are 

J!,1 = 3.8317 JI,2 = 7.0156 JI,3 = J0.173 . , .. 

Since dJ0 ( z )/dz = -J1 (z), the roots of J 1 ( z) also correspond to the extremum points 

of function J0 (z). 



Appendix E 

Symbols and Notations 

This appendix compiles lists of commonly used symbols and notations in this 

and other related works [60]. \.Vhenever necessary1 definition of a symbol or equation 

number where it is first introduced is giveri. All equations are in the cgs convention; 

in addition, as described in Cl1apter 3, notation<> represents the ensemble-average, 

and variables with ,...., sign on top are the fluctuating components. 

-e 

x 
k 
r 

B 
¢ 
E 

T,1j1,TJ. 

n(r,O) 
v(r,O) 

********** 

3.048cm 

Fundamental Quantities 

Electron charge 

Electron mass 

********"'* 

Speed of light in vacuum 
Boltzmann constant 
Cylinder wall radius 

Evolution hold time 
Spatial coordiriate vector 

Wavenumber vector 

Normalized cylindrical coordinate 

Background axial magnetic field 
Electrostatic space charge potential 
Electric field 

Electron temperature, parallel and perpendicular 
to the magnetic field 

z-averaged (2D) electron density 
Fluid perpendicular (2D) velocity 
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w, 

-Yb 

w, 

w 

Tm 

Tee 

T, 

" ,, 
Xl 

L, 

RL 

>-v 
R, 
L, 
Re 

Ac 

g, 
s, 
I<u 

cij 

u 

A,q 

********** 

eB,/(m,c) 

f?!/(2L,) 
J47rne 2/me 
Eq. (3.11) 

Eq. (2.3) 

Eq. (4.8) 
~! 

T, 

Eq. (4.5) 

Times and Frequencies 

Electron gyrofrequency 

A veragc electron axial bounce frequenc.y 

Electron plasma frequency 

Guiding-center E x B drift angular velocity 

Electron column lifetime 

Electron-electron particle collision time 

e-folding decay time of density fluctuations 

Fluctuation decay rate 

Global fluctuation decay rate 

Passive tracer fluctuation decay rate 

********** Lengths ********** 

3.2cm---+113cm Confinement cylinder length 

J2k::.~ 1 /we Average electron gyroradius 

JkBT /47rne2 Debye length 

0.5cm---+2.5cm Electron column radius 

3cm---+110cm Electron column axial length 

0.lOcm, 0.20cm Radius of charge collectors 

,..., 1rRb Calibrated cross section of charge collectors 

********** Dimensionless Quantities ********** 

Eq. (3.17) Collector coarse-graining attenuation factor 

Skewness of the density fluctuations 

Kurtosis of the density fluctuations 

Normalized zero-time correlation function of the 
density fluctuations between collector Ci and Cj 

dw ' rv-;r; Irv /~v Scaled shear rate of background rotation 

a/b Aspect ratio of equilibrated elliptical ·vortices 



NL 

N, 

Pe 

I', 

'Ii. 

H¢ 
Hm.i.n • 
Hexc • 
Zm 

Zm 

z, 

Pm 

Pm 

Vm 

w(r,B) 

(( r, B) 

r 
A, 
£ 
f! 

I 

p(n') 

-11,, 
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********"'* Integrals ********** 

R~fd2rn Nurr1ber of electrons per unit length 

1Vr1,LP Total number of electrons 

eB,R;,jd'r(l-r')n 
2c 

Magnetic ang11lar momentum per unit length 

Pe/( eB,~NL) Dimcnsio11less angular momentum 

eR~ f d' ¢ --- r n 
2 

Electrostatic energy per unit length 

'H¢/(e2N'j,) Dimensionless energy 

[~ -ln2(1-Pe)]/2 Minimum energy for constant NL and Po 

H Hmi.n ·- . Excess energy 

R' ;; j d2rnm mth moment of density, m = 2, 3, 4, ... 

Nm 
Zm/[R;l;_,l] Dimensionless mth moment of density 

Dimensionless enstrophy 

********** 2D Fluid Dynamics Quantities ********** 

Eq. (3.2) Fluid pressure field 

Eq. (3.2) Fluid specific mass 

Eq. (3.2) Kinematic molecular viscosity 

Eq. {3.3) 2D stream function 

Eq. (3.3) 2D scalar vorticity 

Jd'x( Circulation per unit mass 

~ Jd'x(l-lxl')( Angular impulse per unit mass 

~ J d'x lvl' Kinetic energy per unit mass 

~ fd'x(' Ens trophy 

********** Miscellaneotts ********** 

- -150V 

Azimuthal mode number 

Density probability distribution function (PDF) 

Electric confinement voltage (generally on con­
finement gates) 
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