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Abstract

For a pure electron plasma in a sufficiently strong magnetic field, an unusual
many-body adiabatic invariant constrains the collisional dynamics. To the extent
that this adiabatic invariant is preserved by the dynamics, no exchange of energy
is possible between the parallel and perpendicular degrees of freedom. The sys-
tem may then acquire and maintain two different temperatures, T, and T,
However, since an adiabatic invariant is not an exact constant of the motion,
equilibration will eventually take place, but on an exponentially long timescale.
The phenomenon is illustrated analytically and numerically, and a derivation of
the equipartition rate is outlined.

1. Introduction. Adiabatic Invariants.

The notion of an adiabatic invariant goes back at least to the 1911 Solvay
Conference, where Einstein stressed the point that if the length of a simple pen-
dulum is varied sufficiently slowly, the energy E changes only through the fre-
quency v, in such a way that F =hv remains valid throughout. More generally,
an action J which is canonically conjugate to an angle 6, where # varies on 2
timescale faster than any other timescale in the system, is an “almost constant of
the motion.” Early quantum mechanics evolved around the idesa that quantiza-
tion could be obtained when the values of action variables were restricted to
integral amounts of b .

Mechanics textbooks prove the adiabatic invariance of the action by employ-
ing some version of the method of averaging.! There is another view? of the
phenomena which may be quite instructive. Consider a 1-dimensional oscillator
with slowly varying frequency

I +wit)z =0

If w(t) varies between some constant value w_ in the past and a constant value
w, in the future, z has asymptotic solutions

T, = %(C:I: efutt 4 Of e-iwkt) (1)
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and corresponding well defined values of the action

1
Jizgwi IC:I:|2

Letting t -2 and w?—k2=<=E -V (z) we can consider the quantum mechanical
problem

P+ (E-V{(z) =0

of passage above a smooth potential bump. Here we lock for asymptotic states of
a transmitted wave to one side; and an incoming plus a reflected on the other:
’l,b_ —e th_z + a, c—l’k_z - (2)

The coeflicients @; and e, are transmission and reflection amplitudes respec-
tively. If we equate the real part of (2) to the solutions (1) we get that C,=ua
and C_=1+a" Using this, together with conservation of fux:
k(1-|a |%)=k,|a |2 we can express the difference in action between the
two asymptotic states as

A =T, -J_=k_ [—|ar |2—Rea,]

Now, from elementary quantum mechanics it is well known3 that the amplitude
for “‘reflection above the barrier” is vanishingly (in fact exponentially) small,

As we shall see below, for a system such as the strongly magnetized pure
electron plasma the entire kinetic energy perpendicular to the magnetic field is an
adiabatic invariant for the Hamiltonian describing the system. In particular, this
means that one cannot expect equilibration of an anisotropic temperature distri-
bution (say, with T < T") to occur on the usual timescale of a few collisions.
Rather, a timescale exponentially longer than the collisional can be expected.

2. A Many-Body Adiabatic Invariant.

Consider a gas of N charged classical particles imbedded in a homogeneous
magnetic field. The Hamiltonian for such a system is given by

e
(p; —?As‘)g‘l‘ >,
< g

N
H=1Y

e 2
i=1 {

1
2m |r; —r; |

We consider a magnetic field so strong that the typical Larmor radius is small
compared to the distance of closest approach (or, equivalently, the eyclotron fre-
quency is the largest frequency which enters the particle dynamics); with this
ordering the system is known as a Strongly Magnetized Pure Electron Plasma.
For such a plasma, we will show that the total kinetic energy associated with
velocity components perpendicular to the magnetic field is an adiabatic invariant.
This is a novel invariant, since it involves the velocities of many electrons; it is a

many electron adiabatic invariant.
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To see this, we make two canonical transformations. First we introduce
guiding center (X,Y) = (py/mQ, Y) and gyro-angle (p ) coordinates, see
fig. 1. In these coordinates,

2
N P, R
H:E Qp¢l+ om +Ze /|r,——rJ- I '
1=1 1 <J
where {} = ;_Ej is the electron cyclotron frequency, and

| rl' drf I 2 = (‘X—I + rL,‘ COs Tpf _XJ' - rLJ_ COS T,bJ )2
+(Yy + 1, sine; - Y; - ry, sin 4 )2
+ (2’" —Zj )2

The quantity r;, = /2p ¢/ m {} is the Larmor radius for an electron. Assuming
that the dynamics is that of a many-electron collision, rather than a collective
mode of oscillation, the condition for strong magnetization implies that the W;
are rapidly varying compared to the other variables. Since there are many fast
variables 9;, the existence of an adiabatic invariant is not immediately obvious.
To uncover the invariant, we make a further canonical transformation to
=% Xj =% -% 5 >1
p,pl:pxl—gpxj Py, =Dy, i>1

We have made x; the only fast variable and measure all other angles relative to
it. The Hamiltonian now appears as

N 2
pz,‘ 2
H=0py+ % =+ % ¢ |rir; |
i=1 i<
N N
clearly showing that p, and therefore Op, =3, Qp, =Y 5 Vi 2 is an adi-
1 1

abatic invariant.

3. Binary Interactions.

A case which can be treated in considerable detail® is that of a binary colli-
sion in a uniform magnetic field. The equations of motion for the two electrons,

dv 2 r-r
e e, = ¢ )
dt m |1 |
dv, e? (rgry)
— 4+ v, Xe, = —-— —=
dt : : morr,|®

can be separated into equations for the center of mass and for the relative
motion:
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iV
W+QVXe,=O

dv

2
LY tQvxe =S _T
T3

dt |3 (3)

| »

Here, p = % is the reduced mass. Notice that (3) describes the motion of an

electron in a uniform magnetic field and the field of a fixed charge (see fig. 2).
The solution for the center of mass motion is trivial; the interesting part of the
dynamics is in the relative motion. In fact, since V12 is a constant of the
motion, and mv{ /2 + mug /2 = pv 2 24+ mV ?, we can calculate the
change in the tota perpendicujlar kinetic energy in one collision by calculating
the change in gv ? /2.

From (3), one obtains

spen=fasyman

Denote by vy, and v, the parallel aénd perpendicular velocities of the moving
€

1/2 mv }
approach. The quantity ¢ = v”/ﬂb is a small parameter, the condition ¢ << 1
expressing the condition that the Larmor radius is much smaller than the dis-
tance of closest approach or, equivalently, that the eyclotron frequency is much
larger than the characteristic frequency associated with the parallel dynamics.
Following the usual practice in the theory of adiabatic invariants, we use the
lowest-order orbits in evaluating the time integral, that is, we rewrite (4) as

A(E 52 e o2 5 it cos ({t)
(o) = Popoon(@ [ 572 Ty

where {p,2z ) is the guiding center approximation for (r,z), 8 is a phase, and z (¢ )
is determined by

charge at iﬁﬁnity, and let b = be a measure of the distance of closest

, ()

dz |2 2e?/ .
@ g ®

In terms of the scaled variables

we can rewrite (5) and (6) as

AR iR B NG () | Leen () )
2 Ty P T
~ 2 . -1/2
42y 4 [ + 7 =1 . (8)
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The integrand in (7) is a rapidly varying function, and the integral is exponen-
tially small. In fact, by analytic continuation one can argue ¢ that the value of
the integral has the form

I "[ff(t—]/f*/%' = kG exp o(F)d (©)

where g (p ) is a monotone function with ¢ (0) = /2 and ¢ (p)— p for p foo,
and % is a non-exponential function.

We thus have an expression for the exchange of kinetic energy between the
parallel and perpendicular degrees of freedom in a single binary collision. It
depends on p , which can be thought of as the impact parameter, and on ¢, the
adiabadicity-parameter. The largest amount of exchange evidently occurs for low
impact parameter, high-velocity collisions.

4. Temperature Equilibration.

We now discuss the influence of the adiabatic invariant on the long-time col-
lisional evolution of the electron velocity distribution. On the time scale of a few
collisions there is negligible exchange of energy between the parallel and the per-
pendicular degrees of freedom, and the distribution of parallel velocities and the
distribution of perpendicular velocities become Maxwellian separately, with the
T not necessarily equal to T,.

The evolution does not stop at this stage, however. Each collision produces
an exponentially small exchange of energy between the parallel and the perpen-
dicular degrees of freedom, and these collisions act cumulatively in such a way
that T, and T relax to a common value on an exponentially long timeseale,
From the observation that small impact parameter collisions are most effective in
producing an exchange of parallel and perpendicular energy, we deduce that the
most important collisions are well separated binary events. Such collisions ecan be
treated with a Boltzmann-like collision operator®

O f(vit)=mn [2rpdp [dvy |e, (vovy)|
X [t 10 )= 1 ) £ at) ] (10)
The first integral in (10) replaces the usual integral over scattering cross section,

and the term |e, - (vo—v,} | replaces the usual factor | (vy—v,)| since particles
stream toward one another along field lines.

We use the Boltzmann-like operator to evaluate the integral

2
ar my
= =ldvi—2 0/ (vit) (11)
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Substituting (10) into (11) and using symmetry arguments yields the result
aT n
_?l?l—: Zfzﬂpdpfd"l dvy | e, (vo-vy) |
X |7 6008) 10400 £ 00) £ ()]
m m m m
X (? Ulzl + ? ‘022]_ - ?”11'2— —2—1)2]_’2
If we assume that the distribution functions are of the form
m /2 m mv”2 mv
:t - - - L
ft) =G (G el 27, 2T, )

and furthermore change variables in the integral to relative and center of mass
velocities, the center of mass part can be integrated out, and we obtain

dT
——-zﬁi—=%f21rpdpfdv | v |

m M2 om mo my
X (47rTH) () P aF, 2T, )
1 1 B2 B2
X (exp (- =) Aa(v?)-1)A(5v?)
T, T, "2 2

Taylor expanding the exponential, integrating out v |» and inserting the expres-
sions (7) and (9) finally yields

aT —a_ -
—EL=(TII"T1)”52”M'I(6) ’

where barred quantities involve thermal velocities, and

1(?)= TIE et 5 (/P h% (7€) exp (2 (7))

Using the saddle-point method yields the result I{ ¢ ) ~ exp (- ?/3‘)
€
The main point to note is that the equilibration rate is larger than one
might have guessed. Since the exchange of parallel and perpendicular energy for
an isolated collision between two electrons is exponentially small in (¢)!, one
might have guessed that the equilibration rate would be exponentially small in
(€Y. However, the equilibration rate turns out to be exponentially small in
(€2/5y1, and this destinetion is important since (€ 25y << (€ ) for € << 1.
The (€ 2/%)! dependence is determined by a competition between the velo-
city dependence of exp(—n/e¢) and the velocity dependence of the distribution of

relative velocities, exp (- % (¢/ € )*/®). Collisions characterized by large relative

velocities are particularly effective at producing an exchange of parallel and per-
pendicular energy, but there are relatively few such collisions.



5. A Numerical Analysis.

The approximation (5) to the exact expression (4) for the change in perpen-
dicular kinetic energy involves substituting the lowest-order orbits into the time
integral. Although such an approximation is the traditional method of calculat-
ing the exponentially small change in an adiabatic invariant, it is not obvious
that an approximation valid only to algebraic accuracy [i.e. O (€)] can accurately
determine an exponentially small quantity. To investigate (5) and its analytical
evaluation (9) one can integrate numerically the equations of motion keeping

track of the kinetic energy in the parallel and in the perpendicular degrees of
freedom.

Recall that the total perpendicular kinetic emergy is proportional to an
action associated with the gyrotron motion. The statement that the action is an
adiabatic invariant is only strictly true in the ¢ | O limit. For finite ¢, the action
is the first term in an asymptotic series for a “true’” invariant, J. This series can
be constructed using Lie perturbation techniques.® For the system (3) one can
obtain

T # 2 E%ulv"
J = -2—01 _GWCOS(X)

~2 o ~ g
2 |3/8uv2p cos(2X) _ 3/2 g v v (2} p sin(X) N sBlpvf p

+ € - — — + O (e
[ 2+ 5’2]5/2 [p2+z b2 [p2+ ﬁs ( )

Here, X is essentially the gyroangle in the relative motion. For a collision where
both the initial and final state has |z | = oo, we see that the change in J

between these two limits is actually given by the change in L 12 , since higher

order terms contain powers of the Coulomb denominator [p % + 52]'1/ 2, For finite

z, i.e. during the collision, -g— v 12 is not even approximately conserved. In an

accurate computer simulation for a given e (fig. 3a), we can monitor the evolution
of the series with more and more terms added. For slightly higher ¢ (fig. 3b), we
can even detect the asymptotic “breaking” of the adiabatic invariant, i.e. the

finite change in % v 2.

For a number of such runs with different values of ¢, one can plot

A (g— v,? ) as a function of 1/¢ to check the exponential character; one such plot

is shown in fig. 4. Computed values of A (% v 12 ) are compared to the expres-

sion (9); one can see that the agreement is quite good.
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The analytical expression (9) - the solid line - compared to

(%-vl?) - the o's - computed by direct integration of the

equations of motion, for several values of g.



