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Abstract of the Dissertation 

Exp,eriments with the l = 1 Diocotron Mode 

by 

Kevin Sanford Fine 

Doctor of Philosophy in Physics 

University of California, San Diego, 1988 

Professor John H. Malmberg, Chairman 

Dr. Charles F. Driscoll, CcrCha.irman 

Experiments are presented on a. particularly interesting oscillatory mode 

in pure electron plasmas. The plasmas studied are colUilllls contained inside con­

ducting cylinders in an axial magnetic field. Traditional theory models diocotron 

modes as surface density perturbationsj the mode of interest has azimuthal mode 

number l = 1 (i.e. varying as cos 6) and is essentially independent of axial position 

(i.e. k~ :::::: O). At large amplitude the mode is more correctly viewed as a dynamical 

equilibrium in which the plasma column is offset by a displacement, D, and drifts 

around the cylindrical axis. 

The frequency, f, of the mode is observed to vary with amplitude as l::J..f ex: 

D 2• This frequency shift arises because 1) the plasma is closer to its image charge 

than a linear model assumes, and 2) the plasma distorts from a circular shape. 

From measurements of n(r, 8) it is seen that at large amplitudes the column shape 

becomes elliptical with elongation in the 8-direction. The distortion and frequency 

shifts are such as to make the density stationary in a frame rotating at the mode 
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frequency. 

The small-amplitude frequency of the diocotron mode in an infinite length 

column, fd, depends only on the charge per unit length. Measurements of frequency 

have been made versus plasma length, L11 , and plasma radius, Rp. The mode 

frequency is found to be up to 200% higher in short plasmas, and the fractional 

frequency shift increases as L;1 and decreases with Rp. These observations are 

in agreement with linear theory. Finite length theory also predicts damping of 

the diocotron mode. Measurements indicate that mode damping is at least three 

orders of magnitude smaller than predicted: the mode oscillates 105 cycles with 

negligible change in amplitude. 

Finally, the effects of two field perturbations have been studied. An axisym­

metric electrostatic field induces exponential damping in the diocotron mode. The 

other is a small (10-3 rad) tilt of the magnetic field that induces mode damping, 

as well as particle transport towards a square, low-noise density profile. 
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Chapter 1 

Introduction and Summary 

This thesis presents experiments on a particularly interesting oscillatory 

mode in pure electron plasmas. The plasmas studied are columns contained inside 

conducting cylinders in an axial magnetic field. Traditional theory models dio­

cotron modes as surface density perturbations; the mode of interest has azimuthal 

mode number l = 1 (i.e. varying as cos8) and is essentially independent of axial 

position (i.e. kz ::::i 0). At large amplitude the mode is more correctly viewed as a 

dynamical equilibrium in which the plasma column is offset by a displacement, D, 

and drifts around the cylindrical axis. I have studied this mode at large amplitude, 

when the plasma. column is relatively short, and when external field perturbations 

are applied. 

The word 'diocotron' was first used to describe instabilities in hollow elec­

tron columns [2,3,6,13,29]. The instabilities were thought to be driven by shears in 

the plasma rotation velocity, and the word diocotron originates from the Greek 

word 'fitwKetv', meaning 'pursue'. The word now generally refers to low fre­

quency electrostatic oscillations perpendicular to the magnetic field, including 

mixed modes with z-dependence as \Yell. 

DeGrassie and Malmberg first measured the properties of diocotron modes 

in confined pure electron columns [8]. Most of their measurements were performed 

1 
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on columns that had monotonically decreasing density profiles. For such profiles 

the modes are basically density perturbations on the plasma surface that interact 

with the conducting wall. I will call these modes 'outer' modes. 

DeGrassie and Malmberg also reported that hollow electron plasma columns 

were unstable on a timescale of 50 µsec. In recent months, it has been discovered 

that these instabilities in hollow electron columns [12,28] are distinct from the outer 

diocotron modes. This second set of unstable diocotron modes is primarily due to 

interactions between the inner and outer surfaces of the column. I will call these 

modes 'inner' modes. These inner modes are being experimentally investigated by 

Driscoll, et. a.l. [12), and these researchers find that the instabilities produce rapid 

transport towards a monotonically decreasing profile. 

The experiments discussed in this thesis were performed exclusively with 

monotonically decreasing density profiles, and only outer diocot;-on modes are dis­

cussed. In particular, I will discuss only the l = 1, k;: ~ 0 diocotron mode. 

The experiments were performed on a pure electron plasma containment 

device that was designed to minimize radial transport and loss of the plasma. The 

apparatus contains a column of electrons in ultra-high-vacuum (5 x 10-11 Torr) 

in a uniform axial magnetic field (0 < B::r < 470 gauss). The electron column 

has a density n < 107 cm-3 , a radius Rp < 3 cm, and a length 2 < Lp < 40 

cm. The plasma kinetic energy is typically about 1 eV, which is small compared 

to the electrostatic energy per particle of -e<P ">J 20 eV. The contained plasma 

has a lifetime which depends on n, Lp, and Bz, being around 100 seconds for the 

experiments described herein. 

The plasma density is measured by dumping the electrons axially and mea­

suring the charge Q which passes through a collimator ~ole at a particular radial 

position. By repeating this measurement many times on identical plasmas, but 

-------
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varying the position of the hole, Q(r) is obtained. For axisymmetric plasmas, a 

computer solution of Poisson's equation in (r,z) is used to determine the plasma 

shape at the ends from Q(r), and to obtain the density n(r,z). The density mea­

surement can be calibrated to 1 %. 

We are also able to measure the average kinetic energy of the plasma elec­

trons, T(r), although this energy is not important for the modes of interest. Note 

that the measurement of both T(r) and Q(r) rely on the high degree of shot-to-shot 

reproducibility of the plasma. 

When a diocotron mode is present, the plasma is dumped at a variable 

phase of the wave to obtain the phase-locked charge Q(r, 8). For long plasmas, the 

density can be estimated as n(r, 8) "' Q(r, 8)/(-eAhL,), where L, is the plasma 

length, and A1a is the collimator hole area. This measurement allows a complete 

characterization of the dynamics of the wave, to the extent the. dynamics is inde­

pendent of the axial position z. 

The diocotron mode is essentially an offset of the plasma column from the 

conducting wall axis by a displacement, D. The electric field can be calculated 

using the method of images: the image charges in the conducting wall are replaced 

by a. rod of charge at a particular position outside the wall. The diocotron motion 

is the E x B drift of the column in the electric field of this image charge. 

The diocotron mode can be measured and manipulated with sector probes. 

Sector probes are electrically isolated wall patches that capacitively couple to the 

plasma. The signal produced on a sector probe by the diocotron mode consists of a 

fundamental component at the mode frequency plus harmonics. The displacement 

can be calculated from the measured n(r, 8), and using this measure of D I have 

found that the amplitude of the fundamental component.is proportional to D. The 

coefficient is in good agreement with a theory by Kapetanakos and Trivelpiece [17), 
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once an algebraic error in the theory is corrected. Also, the second harmonic agrees 

well with theory. 

A feedback circuit connected between a 'receiver' probe and a 'transmitter' 

probe can be used to grow the diocotron mode to large amplitudes and to damp 

the mode to. levels comparable with noise. It is striking that the mode can be 

grown, then damped, with negligible change in the density profile. I find that the 

growth and damping rate depend on amplifier gain and phase, in good agreement 

with a simple calculation based upon an energy argument. 

Measurements have been made of the frequency and phase-locked density 

n(r, 8) of a large amplitude dicotron mode. I find that prior theories are inadequate 

at describing the mode at large amplitude, but that most effects can be understood 

from my image charge model. The mode frequency shifts from its low amplitude 

value by an amount proportional to D 2 • This frequency shift is ~derstood as being 

due to two effects: 1) the plasma is closer to its image charge than a linear model 

assumes, and 2) the plasma distorts from a circular shape. From the plots of n(r, 8), 

it can be seen that at large amplitudes the column shape becomes elliptical with 

elongation in the 8-direction. The distortion and frequency shifts are in excellent 

agreement with a waterbag computer code. The code iterates both the frequency 

and plasma shape until the plasma boundary is coincident with a potential contour 

in a frame rotating at the diocotron frequency. This condition implies that the 

plasma density is time-invariant in this rotating frame. 

Finite length effects are important even for small amplitude diocotron 

modes. I have measured the diocotron frequency as a function of Lp and plasma 

radius, Np. The image charge model predicts a mode frequency, fd, that depends 

only upon charge per unit length in the column. I have. found that the measured 

frequency, /,is up to 200% higher in short plasmas. The fractional frequency shift 

... 
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(f- fd)/ fa increases as L;1 and decreases with R,,. This is in reasonable agreement 

with a finite length theory of Prasad and O'Neil [27,26]. 

Finite length theory suggests that couplings to other plasma modes may 

induce damping in the l = 1 diocotron mode. I have measured the damping 

rate of the finite length diocotron mode at various B: and amplitudes. In all 

cases, the diocotron mode was found to not be damped to within the accuracy of 

the measurement. The quality factor, Q, of this resonance was determined to be 

greater than 107 • The measurements indicate that the mode damping is at least 

three to four orders of magnitude smaller than the theory predicts. 

Finally, I have measured the effect on the plasma of two externally applied 

field perturbations. The 'squeeze' perturbation is an axisymmetric electric field 

which squeezes the plasma towards one end; and the tilt perturbation is a tilt of 

the magnetic field with respect to the conducting wall a.xis. I find that the previ­

ously stable diocotron mode becomes exponentially damped when these fields are 

applied. Extensive measurements of the diocoton damping rate were made for the 

case of the squeeze perturbation. The damping rate scales as perturbation ampli­

tude squared. A possible explanation agreeing with these scalings is a nonlinear 

interaction proposed by Crawford, O'Neil and Malmberg {5}. It may be that the 

squeeze damping of the diocotron wave is a particularly simple example of this 

nonlinear effect. 

The tilt perturbation also produces a remarkable transport towards a square 

density profile and a flat temperature profile. There is in addition a reduction in 

the shot-to-shot variability to about 0.1 %, as compared to a variability of 1 % before 

the tilt-induced transport. The tilt field is an important experimental technique in 

obtaining repeatable plasma samples of uniform density: and temperature. So far, 

the effect has no carefully derived theoretical explanantion. 
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These results are explained in detail in the following chapters. Each chapter 

begins with an overview that summarizes the main ideas and results of the chapter. 



Chapter 2 

Design and Operation of the EV 
Experiment 

2.1 Overview 

The EV experiment will be described in this chapter. (The acronym EV 

derives from Equilibrium plasma, Voltage containment.) Basically, the apparatus 

produces stable, repeatable electron plasmas that can be varied from 2 to 40 cm in 

length and 1.3 to 2.9 cm in radius. The density is about 107 electrons per cc, and 

the plasma is immersed in a uniform magnetic field that can be varied up to 500 

gauss. A typical temperature is about 1 eV. For these parameters, the cyclotron 

radius is much smaller than the Debye length, and there are about three to eight 

Debye lengths in a plasma radius. 

The main diagnostic is a density mea.Surem.ent. Essentially, the plasma 

is dumped along the magnetic field and a fraction of the electrons pass through 

a hole in a collimator plate. The electrons passing through the collimator hole 

then encounter a collector. The measured capacitance of the collector is used to 

calculate the number of electrons from the voltage produced by the electrons. This 

measurement is repeated with the collimator hole at different radial locations until 

a radial profile of the z-integrated charge, Q( r ), is compiled. 

An independent Gauss's Law measurement has been used to check the 

7 
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accuracy of the density measurement. I find that the density measurement can be 

low by as much as four percent, probably due to electrons colliding with the edges 

of the collimator hole due to the cyclotron motion. Nevertheless, the accuracy is 

better than one percent if the radial integral of the profile is normalized to the 

total number of electrons, which is measured separately by the collimator plate. 

The EV apparatus has a perpendicular temperature analyzer that measures 

the temperature as a function of radius. We routinely use these temperatures along 

with charge profiles, Q(r), as input to a computer program that solves for density, 

n(r,z), as a function of rand z. This calculation relies upon the assumption that 

the plasma has a Boltzmann distribution in z. The density can then be used to 

compute plasma length, L 11 , and number of electrons per axial length, NL. Both 

Lp and NL are used in the analysis of finite length effects in Chapter 5. 

The angular momentum, Ps, can be obtained directly from radial profiles of 

Q( r ). Theory states that the angular momentum _of the plasma should be conserved 

under the infiuence of axisymmetric perturbations. The measurement of Ps will be 

used in Chapter 6 to test this hypothesis for the symmetrical 'squeeze' field. I find 

that the contribution of the wall charges to Ps should be included if changes in P8 

are to be meaningful. 

Conservation of Ps implies that the plasma is radially confined [21]. There is 

background loss, however, which is due to cylindrically asymmetric fields coupling 

to the plasma. The main objective in designing the EV apparatus was to minimize 

these couplings. The result is that the EV apparatus has containment times a 

factor of 20 better than the previous apparatus. This background loss of electrons 

is a basic limit to some experimental measurements, such as the long time damping 

of the diocotron wave. 

Finally, the chapter is concluded with a short discussion of the dramatic 
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effect of field tilt. I have found that if the magnetic field is tilted by a small amount 

( ...... 10-3 radians) with respect to the containment cylinder axis for a short period 

( ..... 1 second),, the radial profile becomes very square in shape and the shot-to-shot 

variability decreases by a factor of ten. This effect will be discussed in more detail 

in Chapter 6. It is such an important technique that it is used in almost all the 

experiments in this thesis. 

2.2 Overview of the Apparatus 

A schematic of the EV apparatus is shown in Fig. 2.1. The apparatus essen­

tially consists of a filament source, cylindrical conducting electrodes, a temperature 

analyzer, and charge collectors. These electrodes are enclosed in an ultra-high vac­

uum chamber (pressure ..... 5 x 10-11 Torr) in a uniform axial magnetic field, Bz. 

The value of Bz can be varied up to about 500 gauss. During both design and 

construction, prime consideration was given to minimizing all loss processes, so 

that the plasma would relax to a confined state at thermal equilibrium. 

The source of electrons is a directly heated spiral of tungsten wire. The 

center of this spiral is biased negatively with respect to ground, to potential Vbi 

usually, Vi, is between -20 Volts and -35 Volts. For the quiescent injection normally 

used, the space charge potential of the plasma ?osely matches the filament poten­

tial. Typical plasma density is ,..., 107 cm-3 and typical plasma temperature is,..,,, 1 

eV. The electron plasma contains a negliglible number of positive ions, since ions 

are not confined longitudinally. 

The apparatus is operated in an inject, hold, dump and measure cycle. For 
' 

injection, the inject cylinder is briefly grounded, while the dump cylinder is biac;ed 

to Vc (Vc ,...,,, -100 Volts). The plasma then forms a column between the source and 

the dump cylinder, with continuous emission and reabsorption by the filament. 
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This injection configuration is established for approximately 100 µsec, and then 

the inject cylinder is ramped to Vc. This reflects the incoming electrons and traps 

the column. The cylinders between the inject and dump cylinders are grounded. 

Since there is actually a stack of eight electrically separate cylindrical electrodes to 

the left of the collimator plate in Fig. 2.1, the length of the containment cylinders, 

Le, can be varied in discrete steps from 4.1 cm to 43.5 cm. The radius of all 

cylindrical electrodes is 3.81 cm, which I will denote by Ru,. 

2.3 Radial Density Measurements 

After a chosen hold time, the dump cylinder is pulsed to ground potential, 

and the electrons stream along the magnetic field to the collimator and collector. 

Repeating the cycle with the collimator hole at varying radii allows us to construct 

a radial density profile of the plasma. I am assuming here that the plasma is 

cylindrically symmetric around the conducting wall axis; density measurements of 

8 dependent profiles will be discussed in Chapter 4. 

Our basic density measurement is the total chaxge Q(r) which exists along 

a field line at radius r and angle 8, and passes through the collimator hole of area 

Ah = 0.08 cm2 (0.159 cm radius). This is the z integral of the plasma density: 

Q(r) = -eAh j dz n(r, z), (2.1) 

where e is the proton charge. 

I routinely use the measurement of Q(r), along with temperature mea­

surements and the boundary conditions at the wall, to calculate n(r, z). Assume 

that the plasma maintains a Boltzmann distribution along each field line, so that. 

Poisson's equation becomes 

~''( ) _ n(r, z)e _ n0(r)e (•¢(r, z)) 
v ~ r, z - - exp kT( ) 

~ ~ r 
(2.2) 
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with boundary conditions ¢(R,.,, z) = 0 for -L,/2 < z < +L,/2 and ¢(R,.,, z) = V., 

for Lc/2 <I z I· The function n0 (r) is chosen so that Eq. 2.1 is satisfied. Eq. 2.2 

is solved numerically using an iterative calculation: a guess is made for n( r, z) and 

this is used with the boundary conditions to calculate <f>(r, z), which is in turn used 

to calculate a new guess for n(r,z). A fraction of the new solution for n(r,z) is 

added to the old solution, ta.king care to satisfy Eq. 2.1. This process is repeated 

until the maximum change in n(r,z) is smaller than a given parameter (usually 

103 electrons per cm3 ). 

The finite size of the cyclotron radius, re, has an effect upon the radial 

density measurements. At the lowest values of B 11 used, only about six cyclotron 

orbits will fit side by side across the collimator hole. During the time the electrons 

axe passing through the hole, the electrons continue to move along the cyclotron 

orbits, and a small fraction will collide with the hole edge and be lost. 

In Appendix A, the number lost is estimated for the EV experiment. The 

calculation uses the assumptions that density is constant across the hole, and 

that re is much smaller than the collimator hole. The result is that the effective 

collimator area is changed by .6Ah; 

"':.• "" 0.036 Tl1' , (2.3) 

so that at the typical temperature of 1 e V, 3%-4 % of the electrons will be lost to 

the collimator hole edges, independent of B:. 

The number of electrons passing through the collimator hole is measured 

by the collector (Fig. 2.1). These electrons pass through the temperature analyzer, 

biased to +10 Volts, to the collector biased to +158 Volts, where they are absorbed. 

These electrons will result in an incremental change i~ the collector voltage V,., 

where Q(r) = CrV,., with C,. being the capacitance of the collector and electronics. 

The value of Cr is known to ....... Q.5%, and consequently the number of electrons 
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hitting the collector is known to -0.5%. 

Amplifier noise contributes an uncertainty of about 104 electrons. For a 

typical plasm:a with L,,:::::: 30 cm and n:::::: 101 , Q;:::: 2 x 107 . Therefore, amplifier 

noise is about a 0.04% uncertainty in the density measurement. 

2.4 Measurement of Total Number and Gauss's 
Law Measurement 

In addition to Q(r), the total number of electrons in the plasma, N1, is 

measured. The electrons that do not go through the collimator hole strike the 

collimator plate, and produce a voltage ·change Vp. The collimator capacitance, 

C., is also known to -0.5%; so N, = (C,V,, + C,V,)/(-e) is known to -0.5%. 

The total number can also be obtained from integrating Q(r): 

1 J,R., N;., = -A dr 2irr Q(r) 
-e h. o 

(2.4) 

where Rw = radius of the conducting wall. I routinely compare measured N1 and 

Ni'flti Nint is usually less than Nt by a.bout 4%, presumably because of the effect 

described by Eq. 2.3. The simplest way to correct Q(r) for this effect is to multiply 

Q(r) by N,/N;.1: this has been done for the analysis of radial profiles presented in 

this thesis. 

The basic assumption of our density measurement is that all the electrons 

that strike the collimator plate and collector are collected. I will call the percentage 

of electrons that are collected the 'collection efficiency': if all electrons that strike 

the collimator plate stay on the plate, then the plate has a collection efficiency 

of 100%. For the density measurement to be absolute, the collection efficiencies 

should be either calibrated or 100%. 

There is a measurement that allows us to measure density without use of 

the collimator plate or collector. This measurement is based upon Gauss's Law. 
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Imagine a cylindrical Gaussian surface lying inside the conducting material of one 

of the containment cylinders. Assume that the cylinder is far enough from the 

plasma ends so that the electric field is radial inside and the contribution of the 

endcaps can be ignored. Gauss's Law states that the total enclosed charge is zero. 

The charge in the plasma is balanced by the absence of electrons on the wall. \.Vhen 

the plasma is dumped, electrons must flow from outside the Gaussian cylinder to 

keep the net charge zero. 

The interaction of the containment cylinder with the rest of the apparatus 

is approximated by a capacitor connected between ground and the cylinder. This 

capacitance comes from a combination of the capacitance of the lead connected 

to the cylinder and the distributed capacitance of the cylinder to ground. The 

charge fl.owing onto the cylinder will come from this capacitance and produce a 

voltage with respect to ground. From this voltage and the measured capacitance 

the original number can be measured (again, to ...... Q.5%). I will call this the 'Gauss's 

Law Measurement. 1 

The number inside any part of the containment wall can also be calculated 

from the measured Q(r) (corrected by multiplying by N.fN1.,) and T(r) by inte­

grating n(r,z) obtained with the computer code described in the previous section. 

These two independent ways of obtaining the number inside a cylinder allow a 

consistency check: the two numbers are found to agree better than 1 %. This gives 

confidence that the collection efficiencies are nearly 100%. 

Note that for the Gauss's Law measurement to work correctly, the voltage 

of the cylinder must not rise enough to trap electrons inside. Typically, the voltage 

rises to a few milliVolts, which is negligible compared to space charge voltage 

and temperature. This has been confirmed by compar~ng N1 measured with the 

Gauss's Law circuit in place with that measured when the Gauss's Law cylinder is 
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grounded: both measurements of Nt are the same within 0.1 %. 

To summarize: we measure both the total number Nt and the radial profile 

Q(r). Measured Q(r) is about 4% lower than that predicted by Eq. 2.1 because 

some electrons hit the edges of the collimator hole, and I typically correct for this 

by multiplying Q(r) by N1/Nint· Finally1 the Gauss's Law measurement is allows 

a consistency check, and gives confidence that absolute density measurements are 

good to about 1%. 

2.5 Temperature Measurements 

I measure the perpendicular temperature, Tl., by use of a 'beach analyzer' 

utilizing a secondary magnetic field. The analyzer consists of an analyzer solenoid 

enclosing an electrically separate cylindrical_ electrode located between the colli­

mator and the collector. Essentially, the analyzer uses an electrostatic velocity 

analyzer to measure the change in the parallel energy of exiting electrons caused 

by the secondary magnetic field. 

The temperature measurement begins when the dump cylinder potential 

is abruptly switched to ground. The plasma disassembles and the electrons fonn 

a. beam with a parallel energy distribution determined by a. combination of the 

parallel temperature and space charge energy., The perpendicular energy distri­

bution, however, is the same as it was before the plasma was dumped. This is 

because the time for a gyro orbit ( ...... 1 nsec) is much less than the disassembly 

time ( ...... lµsec) or the collision time ( ....... 1 msec), and the gyromagnetic moment 

µ = mv1/2Bz is conserved. Since Bz is fixed, v1 remains unchanged and there£0re 

the perpendicular energy distribution remains unchanged. 

The electrons encounter the secondary magnetic field as the beam tra..-els 

towards the collector. The distance an electron moves during a gyro orbit is small 
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compared to the distance over which the magnetic field changes. This implies 

that there are two quantities conserved by each electron in the exiting beam: the 

total energy -i~( vi + vn) and the magnetic moment, µ. In order to conserve 

both quantities the average paxallel energy must change by t.En = -(SB,/ B,)kT~ 

inside the analyzer solenoid. By measuring the difference in the parallel energy 

distribution on consecutive shots with 6B,, at different values, the perpendicular 

energy distribution can be obtained. Note that one temperature measurement 

requires many shots and many inject, hold and dump cycles. 

With this method, we routinely obtain T..L as a function of radius to a 

few percent accuracy. This technique is described more completely in separate 

publications [15,14]. 

2.6 Radial Density Profiles 

Figure 2.2 is an example of a radial density profile. The two vertical dashed 

lines represent the location of the conducting wall. The solid line connects the 

average of the measurements of Q( r) at each radius. For this particular profile there 

a.re eight shots taken at each radial point. The result of each shot is represented 

by a horizontal bar. The close vertical clustering of each group of eight bars is 

an indication of the reasonable degree of shot-to-shot repeatability. After each 

set of eight shots, the collimator is moved to a new location by a stepper motor. 

Included in Fig. 2.2 a.re six crosses which represent the results of the perpendicular 

temperature analysis at the radii indicated by the abscissa. The vertical extent of 

each cross is an indication of the uncertainty of the measurement. 

On the left vertical dashed line in Fig. 2.2, is a small horizontal bar rep­

resenting the results of the measurement of N1• There 8.re actually eight separate 

bars plotted for eight separate measurements. The measurement appears as one 
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Figure 2.2: T:ypical radial density profile a) v.•ithout field tilt, and b) same as a) 
except field v.·as tilted by 6.2 mrad for 0.4 sec. For these profiles, there are eight 
density measurements at each radial location. Temperatures are the crosses, v:ith 
the vertical extent an estimate of the error. These profiles were taken at Bz == 188 
gauss. 



18 

bar because Of the high degree of shot-to--shot repeatability. 

The data of Fig. 2.2 was taken with a lab computer, a DEC LSI 11. The 

plot shown was made by the computer, which also stored the same information in a. 

file. Both Q(r) and Nt are converted into numbers of electrons using the amplifier 

gains and capacitances which are inputs into the computer program. In addition 

to density and temperature data, the file includes a record of various voltage and 

magnetic field settings for the radial profile. This file can be transferred to a larger 

VAX computer for more analysis. An example of such a post-processing program 

on the VAX is the calculation of n(r, z) described previously. 

The computer oriented approach i~ typical of much of the data taken on the 

EV machine. The design philosophy has been to always have manual electronics 

as an alternate, while developing computer software for very repetitive and tedious 

data taking, such as radial profiles. The use of the lab computer has made possible 

experiments that would have been very tedious before, such as radial temperature 

scans and the cross-sectional density plots described in Chapter 4. 

2.7 Angular Momentum and Radial Losses 

The angular momentum. about the z axis, Pe, is important for understand­

ing radial confinement [20). The total canonica.\ angular momentum. is the sum of a 

mechanical and an electromagnetic part. The mechanical part is much smaller (at 

least a factor of 100) in the experiments discussed here. Ignoring the mechanical 

angular momentum, 

Ps=(·~·)[N,~-~rJ], (2.5) 

which includes the contribution due to charges on the wall. Note that Pe can be 

calculated directly from the experimentally measured Q(r), without any need to 

know n(r,z). 
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Figure 2.3: Measured evolution times 1 m versus plasma length L divided by 
magnetic field B for the new apparatus {solid symbols) and for the prior apparatus 
(hollow symbols). From Ref. [10). 
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If the system were azimuthally symmetric, then Ps would be conserved. 

This implies e. constraint on the allowed radial positions of the electrons, i.e. 

L; rJ = const. If some electrons mo'\·e out, then others must move in. This 

argument has been developed rigorously in a paper by O'Neil [21). 

Contrary to this theory, the experiments have shown radial loss. This 

implies that there is an external coupling which applies a torque to the plasma. 

Examples of couplings that change Ps are electron-neutral collisions, finite '''all 

resistance, electromagnetic radiation, and deviations from cylindrical symmetry in 

the construction of the device. These external couplings are always present to some 

extent in experimental containment devices, although different effects dominate in 

different devices. This radial loss will be referred to as 'external transport'. 

DeGrassie and Malmberg (8) investigated external transport in an early 

containment apparatus (the 1V1 machine), which operated at neutral background 

pressures above io-7 Torr. DeGrassie found that the transport rates scaled as 

P/ B:, where Pis the neutral pressure, and found good agreement with a theory by 

Douglas and.O'Neil (9). Later, Malmberg and Driscoll [19) measured the external 

transport rates on an ultra-high-vacuum apparatus ('V-prime') at low pressure; 

they found that the transport was dominated by a mechanism that was independent 

of P. This transport mechanism was termed 'anomalous'. 

Driscoll and Malmberg (11) investigated the scaling of the anomalous trans­

port rate by measuring the time, Tm, for the central density to decrease by a factor 

of two as a function of Bz and LP (plasma length). They found that Tm scaled as 

(Lp/Bz)- 2 m·er five decades in (Lp/ Bz), with one decade of scatter. The results of 

this experiment on V-prime are the hollow symbols in Fig. 2.3. 

Experimentation indicated that the most prob.able cause of the length­

dependent anomalous losses is small electrostatic or magnetostatic field Crtl)rs. 
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These small deviations from cylindrical symmetry can exert external torques on 

the plasma, and thereby cause radial transport. 

The EV. experiment was designed to minimize these asymmetries. The 

solid symbols in Fig. 2.3 are data from the EV experiment [10], and a best slope·2 

logarithmic fit to the EV data gives 

(B,)' 
Tm= 0.32 L.,, (2.6) 

where L.,, is in cm, Bz is in gauss and 'Tm is in seconds. The containment times on 

EV are a factor of 20 longer than in the prior experiment. 

2.8 Magnetic Alignment and Tilt 

In addition to the main solenoid, EV has external field coils that produce 

magnetic fields perpendicular to Bz. The purpose of these coils is to align the 

magnetic axis with the axis of the containment cylinders. This alignment has 

a strong effect on the evolution of the plasma. The alignment is performed by 

maximizing the central density left after a chosen containment time td, Q(r = O, td)· 

The external alignment .coils create secondary B fields in the X or Y direc­

tions: a uniform field Bz effectively tilts the main field B~ by the angle (}z = Bz/Bz. 

Figure 2.4 plots central density Q(O, td) versus (}:s: at B~ = 94 gauss. It is seen that 
' 

Q(O, td) is a sharp function of the axis alignment, with a misalignment of 10-4 

radians being significant. In this graph, B 11 has already been set so that Q(O, td) is 

a maximum. 

For most of the data presented in this thesis, the magnetic field is inten­

tionally tilted for a period of time after injection. I perform the injection process 

with the field aligned and then change the current in the B:s: or B 11 field coil. This 

change in the magnetic field takes about 100 msec to penetrate the conducting 

cylinders into the plasma, since eddy currents in the wall last this length of time. 
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I leave the field tilted for a time on the order of 1 second, then reset the B= or B'll 

field back to the aligned value. After waiting longer than 100 msec for the fields 

to again penetrate the conducting wall, the experiment can be continued. 

The field tilt has a dram.8.tic effect upon the radial profile. Figure 2.2b is 

a radial profile taken after the profile of Fig. 2.2a. The number of averages, the 

amplifier gains, the dump time (0.7 sec)i all parameters are the same as in Fig. 2.2a, 

except that the field was tilted by 6.2 x 10-3 radian for 0.4 seconds. The field tilt 

was then turned off 200 msec before the plasma was dumped. 

Note that after the field tilt, both the plasma density and temperature have 

very fiat profiles. The noise in both Q(r) and T(r) is also much smaller than in 

Fig. 2.2. The total number of electrons is the same in both cases, with the tilted 

profile being ·slightly expanded in the radial direction. The flattening of the profile 

and decrease of the shot to shot noise seems to be a general ch_aracteristic of the 

tilt effect. 

Such a tilt-quieted profile has two important advantages: fewer shots need 

be averaged for the same statistical accuracy, and the profile is a good approxima­

tion to the ubiquitious 'square profile' of theory. These advantages are so important 

that the tilting procedure is almost always used for EV experiments. 



Chapter 3 

Measurement and Manipulation 
of the Diocotron Mode 

3.1 Overview 

This chapter will introduce the ks R:l O, azimuthal mode number l = 1 

diocotron mode and the experimental techniques used to manipulate this mode. 

The word 'diocotron' refers to modes with potential variations 64',..,, e(il9-k~z>, and 

often means the k,, ~ 0 modes in particular. The I= 1, kz R:l 0 diocotron mode is 

unique in that it is very stable. In this thesis the term 'diocotron mode' will be 

used as short for 'I= 1, kz R$ 0 diocotron mode'. 

The diocotron mode can be pictured as a displacement by a distance D of 

the plasma column from the axis of the conducting wall. The method of images 

can be used to calculate the electric field: the conducting wall is replaced by an 

infinitely thin line of charge that is opposite in charge from the plasma and located 

at a radius of R~/ D. The diocotron mode is essentially the motion of the column 

around the wall axis due to E x B drift in the field of the image charge. 

The diocotron mode can be manipulated and measured with the use of 

'sector probes'. Sector probes are electrically isolated conducting wall patches. 

As the plasma column moves in 81 image charges move on and off of the sei:tor 

probes. If a resistor (usually 50fi) is connected from the sector probe to ground, 

24 
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a fluctuating voltage will develop across the resistor due to the diocotron motion. 

I have found that this signal consists of a fundamental oscillation at the diocotron 

frequency plus oscillations at the harmonics of this frequency. The displacement 

can be measured by taking a phase-locked density profile, and using this measure 

of D I have found that the amplitude of the fundamental increases as D, and that 

the amplitude of the first harmonic increases as D 2• These results agree with a 

theory by Kapetanakos and Trivelpiece [17], once an algebraic error in the theory 

(the right hand side of Eq. 22 in Ref. [17] should be multiplied by two) is corrected. 

Growth of the diocotron mode can be induced by a resistor attached to a 

sector probe. This effect has been investigated by White, Malmberg and Driscoll 

[31). They derive an expression for the growth rate by relating the energy in the 

wave to the power lost in the resistor. The small resistance in the wall and sector 

probe leads will cause a background growth of the mode: I estimate this to be 

about 0.05 dB/sec, which is generally negligible on the one to ten second timescale 

of the experiments described here. 

Alternately, growth or damping of the diocotron mode can be induced using 

an active feedback loop instead of a passive resistor. The feedback loop can be s~t 

up by phase-shifting and amplifying the signal from a 'receiver' sector probe and 

applying this voltage to a 'transmitter' sector probe [30}. This feedback causes the 
' 

diocotron mode to grow or damp exponentially, depending upon the amount of 

phase shift. Using feedback, the diocotron mode can be grown to large amplitudes 

and then damped with negligible change in the radial profile. I have measured 

the feedback growth rate and find that it increases linearly with the amplifier gain 

and varies as the sine of the phase shift. These measurements agree with a simple 

calculation which is also presented. 
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3.2 The Image Charge Model of the Diocotron 
Mode 

The diocotron mode can be pictured as a displacement by distance D of the 

plasma column from the axis of the conducting wall. This simple interpretation of 

the diocotron mode leads to an analysis using the method of images. Figure 3.la 

depicts a cross-section of a line charge with charge per length -NLe displaced a 

distance D from the axis of a conducting cylinder. 

It is easily shown (Appendix B) that the boundary condition <f>(R,,,,&) = O 

is met by replacing the conducting wall with a line charge with charge per length 

+NLe located at the radius 

(3.1) 

From the method of images it is clear that the two line charge system has exactly 

the same electric field inside r = Rw as the line charge and conducting wall system. 

The method of images can also be used to solve for the electric field of a 

plasma column of radius R,,. Assume that the plasma is cylindrically symmetric 

about an axis displaced by D, as depicted in Fig. 3.lb. Assume also that this 

plasma has the same NL as the line charge in Fig. 3.la. Imagine for a moment 

that the conducting walls are removed in Fig. 3.1. From Gauss' Law, the electric 

field from the plasma in Fig. 3.1 b is the same' as the field due to the line charge 

in Fig. 3.la for points outside the plasma. In particular the electric field at the 

location of the conducting walls is the same. Therefore, if the walls are replaced, 

the image charges will be the same. It can be concluded that the positive image 

charge used with the line charge also works with the plasma, as long as the plasma 

is cylindrically symmetric about its axis. 

The physics of the diocotron mode becomes clear from the image charge 

model. If D / Rw < 1 then the image charge is far away and the image electric field 
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Figure 3.1: Image charge model of the diocotron wave for a) charged, in.finltely 
thin line charge offset by D; b) a plasma column of radius Hp cylindrically sym-
metric about an axis offset by D. . 
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is approximately constant across the plasma. This results in an E x B drift which 

is the same for every part of the plasma. This drift causes the plasma to revolve 

around the cqnducting cylinder axis. At the same time the plasma rotates about 

its own axis due' to its self-field. To the extent the image field is constant over the 

plasma, this rotation is not perturbed by the image field and the plasma remains 

cylindrically symmetric, consistent with the model. 

Several results can be immediately obtained from the model; first the fre­

quency of revolution will be calculated. The field from a line charge is given by 

(3.2) 

Assuming D / Rw <: 1, and using the image electric field Ei at the center of the 

conducting cylinders, the E x B drift velocity is 

Ei NLeD 
vd = B = 211'eoB..,R~ ' (3.3) 

from which the frequency of revolution is calculated to be 

(3.4) 

Equation 3.4 is identical to the result derived in the standard linear theory 

of diocotron modes [18]. (An excellent bibliography of previous work on diocotron 

modes can be found in Davidson [7].) The beauty of the image charge model is 

that this result can be derived easily. 

The diocotron mode energy, W, is negative. Since the image charge is 

opposite in sign from the plasma charge, the electrostatic energy is lowered as the 

plasma is moved closer to its image, or as D increases. If part of the conducting 

wall is made resistive, the wave will be destabilized and grow exponentially. It 

is straightforward to derive an expression for W. The energy is the work needed 

to move the plasma off center a distance D in the image electric field. The v.·ork 



29 

needed to displace a section of plasma of length Lp is 

W= {DFdx= {D -(NLeL )NLe~dx=-(eNL)' (D)'i. (3.5) 
lo lo P 2rreo R~ 47rfo R..v 'P 

This expression ·will be used to derive the growth rates due to both feedback and 

the resistive wall effect. 

The fact that the diocotron mode is stable, and the simple picture of it as 

an orbit of the plasma around the center of the conducting cylinders, lead me to 

call it a dynamical equilibrium. 

There is a difference between the image charge model and the standard 

linear diocotron theory which should be pointed out. Linear diocotron theory 

requires that both D /Fl,, and D / R..v be small, while the image charge model only 

requires that D / R..v be small. The behavior of the diocotron mode with D /Ru, ,..,, 1 

will be discussed in Chapter 4. 

3.3 The Signal on a Sector Probe from a Dio­
cotron Mode 

One of the EV cylindrical sections is divided azimuthally into four 60° elec­

trically isolated patches whose centers are separated azimuthally by 90°. These 

patches are known as 3ector probe3. The sector probes capacitively couple to dio­

cotron modes in the plasma, and are used to detect and manipulate the diocotron 

mode in the experiments described here. The topic of this section is the signal that 

can be expected on a sector probe when an diocotron mode is in the plasma. 

The image charge model can be used to calculate the signal from the dio­

cotron mode, assuming that the plasma is cylindrically symmetric about its axis. 

The electric field at the wall, E(R,,,), can be calculated by adding the fields of the 

plasma and the image, and the charge density at the conducting wall is EoE(.R.w). 

The total charge on a sector probe can be found by integrating the charge den-
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sity over the probe. This problem is analyzed in more generality in a paper by 

Kapetanakos and Trivelpiece [17]. They find that the current induced by an orbit­

ing line charge is 

. (2..JNLeL,) ~ . (nl;.8) . ( BJ( D )" i. = - L..J sin -
2

- sin nwt - , 
0 

, 

'Jr n=l "Lw 
(3.6) 

where L. ;; length of sector probe, D.8 = angular width of sector probe, and 8, = 
angular position of the sector probe center. (Note that the right hand side of Eq. 

22 in Ref. [17) should be multiplied by two.) 

I performed an experiment to test Eq. 3.6. The quantities L,, D.8 and Rw 

are known physical dimensions. The frequency, w, was measured with a spectrum 

analyzer. The line density, NL, was calculated from the measured radial profile 

using the computer solution of n(r, z) (see Section 2.6). The sector probe current 

was measured by connecting the sector probe to a. known resistor a.nd measuring 

the voltage amplitude with a spectrum analyzer. 

The displacement was measured with the density diagnostic. This tech­

nique will be described in Section 4.2, and consists of making a cross-sectional plot 

n(r, 8) from density measurements compiled over many shots. The displacement, 

D, is defined to be the distance from the center of mass of n(r, 8) to the conducting 

wall axis. 

If the coefficient in front of Eq. 3.6 is Constant with D, then Eq. 3.6 pre­

dicts that the signal from the fundamental (n = 1) will increase linearly with D, 

and the signal from the first harmonic ( n = 2) should increase as D 2• This simple 

behavior is complicated by the fact that w and NL, which appear in the coeffi­

cient, vary somewhat with amplitude. If all measured amplitudes are multiplied 

by NLw/NLOWo, where NLO and w0 are measured at the smallest amplitude, then 

this variation is corrected. (The correction is at most 20% ). 

The results of this experiment are shown in Fig. 3.2, where the measured i_. 
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Figure 3.2: Measured sector probe current, i,, as a function of diocotron displace­
ment, D. The fundamental and first harmonic are shown and compared to theory 
(solid lines). 

(multiplied by NL"'/ N UfNo) at both the fundamental and first harmonic frequencies 

is plotted versus D / R,,,. The predictions of Eq. 3.6 are represented by the solid 

lines. It is seen that there is agreement within' the accuracy of the measurement. 

One caveat is that the cliocotron mode is not only an orbit of the plasma 

but also includes a distortion of the profile at large amplitudes. The amplitudes 

in Fig. 3.2 are large, and some distortion could be expected. However, a narrow 

radius plasma was used, and it will be shown in Chapter 4 that the distortion is 

minimized for a narrow radius plasma. 
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3.4 Resistive Growth of the Diocotron Mode 

The I = 1 diocotron mode can be exponentially grown by attaching a 

resistor to a sector probe. As was previously mentioned, the diocotron mode is a 

negative energy mode, so that it is grown by removing energy from the plasma. 

This effect was experimentally investigated by White, Malmberg and Driscoll [31], 

and good agreement was found with the formula 

_ (4"°) L; sin
2
{Ll.8/2) [ R, l w' 

"Yre• - 1T Lp 1 + (wR
1
C

11
) 2 ' 

(3.7) 

where '"'/re• = growth rate in sec-1 , R 1 = resistor attached to sector probe, C1 = 
capacitance of sector probe, w = diocotron frequency. 

Equation 3.7 can be derived by equating the time rate of change of the 

energy of the mode, W, to the power absorbed in the resistor. Eq. 3.7 results if 

the expression for W from the image charge model (Eq. 3.5) is uSed along with the 

fundamental component of the sector probe current in Eq. 3.6. Since the image 

charge model is two-dimensional, Eq. 3. 7 does not include end effects. Eq. 3. 7 also 

does not include the effect of the higher harmonics of the signal, and the effect of 

large amplitude density distortions. I have not studied these corrections. 

A resistor is attached to a sector probe in order to observe the diocotron 

mode. This means that the process of detecting the diocotron mode will itself 

result in a small growth rate. The detection resistor is normally 50 n, which with 

C. ::::::: 500pF, a typical frequency of 105 Hz, and a plasma length Lp = 28cm gives 

a growth rate of 3 dB/second. 

Even with all of the sectors grounded, there is a small resistance due to the 

resistances of the cables attached to the sectors. The ground connection is made 

at the end of each cable, so that each sector has a resistance of 0.2 n attached to 

it. For the same conditions as in the previous paragraph, Eq. 3. 7 predicts a growth 
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rate of 0.05 dB/sec due to all four sectors. 

There is also a small growth rate induced by the finite wall resistance. This 

growth rate can be estimated by approximating the wall as two 180° sector probes, 

each with resistance 

"R,., 
R6=px Lpx8' (3.8) 

where p =resistivity of wall material, 6 =skin depth. Using Eq. 3.8 in Eq. 3.7 

and noting that wR,,C,, <: 1, the growth rate due to the finite wall resistance is 

(3.9) 

Equation 3.8 can be derived more rigorously using a technique described in Jackson 

[16, Section 8.1] (also see [l]). The result is identical to Eq. 3.9. 

Taking p = 1.74 x 10-• !l-m (Copper), Eq. 3.9 becomes 

( R,., ( f )'·'· 7~11 = (0.077 dB/sec) 3.81 cm) 100 kHz ' (3.10) 

so that for a typical case with f = 100 kHz we obtain {wall = 0.077 dB/sec. 

Combining the growth due to finite wall resistance and sector probe cables for the 

case Lp = 28 cm, "Ywall = 0.13 dB/sec. 

In summary, a resistor attached to a sector probe will cause an exponential 

growth of the I = 1 diocotron mode. This m.eans that the process of detecting 

the mode will necessarily induce a small growth while the detection resistor is 

connected to the sector probe. The finite resistance of the wall and the sector 

probe cable resistance also cause a small growth. 

3.5 Feedback Growth and Damping 

The diocotron mode can be accurately and repeatably grown or damped 

using feedback to an amplitude chosen by the experimenter. Figure 3.3 is an 
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example of the circuit used for feedback. I have previously mentioned that the EV 

experiment has four sector probes with centers spaced at 90° intervals. In Fig. 3.3 

two of these probes have been grounded and one is labeled receiver and the other 

transmitter. 

The receiver probe is operated with the sector probe connected to a pre­

amplifier with a 50 n input impedance. The signal then passes through a bandpass 

filter that is set to a frequency near the diocotron frequency. The signal then passes 

through a variable phase shifter, is amplified some more, and is then delivered to 

the transmitter probe. A spectrum analyzer is also attached to the output of the 

preamp, and produces a voltage proportional to the log of the wave amplitude. 

This can be used with a comparator and relay to halt the feedback growth or 
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damping at an amplitude chosen by setting the comparator. 

Since the feedback technique is fundamental to the experiments presented 

here, I will outline a derivation of feedback growth rates. The feedback technique 

has been previously analyzed by Warren White [30]i here I present a different 

derivation. 

First, some definitions: 

G - gain of feedback circuit 

¢ - phase shift of feedback circuit 

Lr, Lt - length of receiver /transmitter probe 

8,. - angular displacement between probe centers 

Br, 8t - angular positions of probe centers 

6flr 1 68t - angular width of receiver/transmitter probe 

R;n, Rout - input/output resistance of feedback circuit 

c~, - capacitance of transmitter probe plus circuit 

The resistors attached to the probes will cause a growth rate that can be estimated 

using the formulas in the previous section, and will be ignored here. The feedback 

growth is due solely to the interaction of the transmitter probe and the plasma. 

The current and voltage of the transmitter probe con~ists of two parts: 

i=iJ+ip' 

V =VJ+ Vp, 

(3.11) 

(3.12) 

where iJ, VJ are due to the feedback circuit and ip, Vp are induced by the plasma. 

The power from the transmitter to the plasma is given by 

(3.13) 



From Eq. 3.6, using only the n = 1 term, ip and VJ are found to be 

2wN,eL, . 68, . (" ) D 
7r s1n2s1n ui -wt R..u, 

2wN,eL, . 68, . ( ) D 
vi=- s1n-GR.tns1n 8r+<P-wt 

0 
. 

" 2 • ..., 

Circuit theory can be used to obtain i1 and v,, in terms of ip and vi: 

i _ dQ1 _ C dv1 
J- dt - outdt' 
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(3.14) 

(3.15) 

(3.16) 

(3.17) 

Combining Eqs. 3.13 through 3.17, the power J;).p can be calculated. Averaging 

over time, the average power 6P is found to be 

f).p - 2w'Nle'GR; LL . 68, . 68, D' 
2 ·n ,. tSin-

2 
sm-R

2 
" 2 w 

x {cos(8,, + ¢) - wC=1R..1 sin(8,. + ¢)} (3.18) 

This power comes from the decrease in energy of the plasma as the diocotron mode 

grows. 

The mode energy is given by Eq. 3.5. This expression was calulated from 

an infinite length model, and is an approximation that ignores finite length end 

effects. Setting dW/dt = f).P, we find that D grows exponentially at a rate 

i!• = 
4<o G 'R; L,L, . 68; . 68, - w · --sm-sm-

71" nL,, 2 2 

x { cos(8,, + ¢) -wC=,R=• sin(8,, + ¢)} (3.19) 

For the experiments here, the second term in brackets is much smaller than the 

first, and is ignored in what follows. 

I have experimentally tested Eq. 3.19 by measu~ing the growth rates v:ith 

a spectrum analyzer as a function of G and ¢>. Fig. 3.4 displays measured growth 

rate versus¢_ for if>rt = 90°. Solid lines are the predictions of Eq. 3.19. Figure 3.5 
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Figure 3.4: Feedback growth rate versus phase shift. 
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Figure 3.5: Feedback growth rate versus amplifier gain. 

displays growth rate versus amplifier gain. Again, the solid line is the prediction of 

Eq. 3.19. The agreement between theory and experiment is reasonable in light of 

the few percent corrections expected from the finite length effect (Chapter 5). For 

perspective, the growth rate due to the resistive wall effect is predicted by Eq. 3.7 

to be /re• :::::::: 0.07sec-1 • 



Chapter 4 

The Large Amplitude Diocotron 
Mode 

4.1 Overview 

The topic of this chapter is the behavior of the I = 1, k:i ~ 0 diocotron 

mode at large amplitudes. This behavior is particularly striking: the mode is best 

described as a stable nonlinear dynamical state rather than as a perturbation of 

the type treated by linear theory. The dynamical state is that of a displaced and 

slightly distorted plasma column E x B drifting around the axis of the containment 

cylinders. rn· the frame rotating at the mode frequency the density is stationary, 

implying that the density and potential contours coincide. The small distortion 

of the plasma column needed to meet this condition causes some of the observed 

nonlinear effects. 

In contrast, linear theory treats the mode as perturbation charges on the 

edge of the column. These theory perturbations are approximately 6n = D( f:Jn 0 /8r ): 

they 'model' a uniform displacement, D, of the plasma column. The linear theory 

appears nonlinear for displacements which are small compared to the radius of the 

column, even though the mode may still be basically linear. 

I have measured the displacement of the plasma column, the distortion of 

the plasma column, and the shift of the mode frequency ~ the mode is excited 

39 
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to large amplitudes. At finite displacements, the cross-section of the column is 

observed to become approximately elliptical (elongated in the 8-direction). This is 

a good characterization of the distortions up to amplitudes at which the plasma 

is essentially scraping the cylindrical wall. Indeed, one open question is why this 

mode is stable and essentially undamped at such extreme amplitudes. 

At large amplitudes, the measured mode frequency shifts by as much as 

20% (generally upward). This frequency shift can be understood best in terms 

of simple dynamical models: a 'rod' model predicts an upward shift proportional 

to D 2 i and fields due to the observed elliptical distortions produce a downward 

shift, which for small D is proportional to D 2 ~- Together, these two effects give 

excellent agreement with the experiment. 

In order to calculate the stationary state of the plasma column, I have 

developed a computer code that models the plasma as a uniform density 'waterbag' 

column. The calculated distortions and frequency shifts are in excellent agreement 

with experiments for all mode amplitudes and plasma radii. 

Finally, I compare a theory calculation of the frequency shifts by Prasad 

and Malmberg [24] to my experimental results. These predictions are a fair ap­

proximation at small amplitudes, but disagree for D/Rw > 0.1. This discrepancy 

at such low wave amplitudes is probably because the density perturbations are 

calculated with respect to the center of the cylindrical wall instead of the center 

of the plasma column: large perturbations are required to model the zero-order 

displacement of the column, ma.king the perturbation series suspect. 



4.2 Phase-Locked Density Measurements 

4.2.1 Experimental Setup 
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The experiments discussed in this chapter begin with a period of magnetic 

tilt followed by feedback growth. The magnetic field tilt is used to generate square, 

low noise profiles as discussed in Section 2.8. The profiles have approximately 

constant density inside with a sharp edge (see Fig. 2.2b, page 17). I define the 

plasma radius, Rp, to be the radius at which density drops to half of the central 

density. The value of R.,, can be varied by changing the bias across the spiral 

filament and· the length of time the field is tilted. Plasma radii between 0.35 < 

R,/ R,,, < 0. 75 have been generated by this procedure. 

After the field tilt has been turned off and the field is again aligned, the 

diocotron mode is initiated by a burst at the mode frequency on the transmitter 

probe from an oscillator (Fig. 2.1, page 10). The growth of the diocotron mode 

is monitored by a spectrum analyzer attached to the receiver probe output. The 

spectrum analyzer frequency is fixed, and the device operates as a tuneable receiver 

with variable bandwidth. The output of the spectrum analyzer is proportional to 

the log of the input amplitude, and this output is used with a comparator that 

turns off the feedback when the amplitude reaches a preset value. This technique 

is used to grow the diocotron mode to the same amplitude on every shot. 

A cross-sectional density plot of a plasma supporting a large amplitude 

diocotron wave can be generated by phase-locking the dump time to the wave 

phase. The phase of the fundamental component of the signal on the sector probe 

is the same as the angle of the plasma with respect to the sector probe, as shown 

in Eq. 3.6. If the value of this angle at dump time is varied, then a plot of density 

versus angle can be made from data taken on consecutive shots. 

This synchonization to the sector probe signal is provided by a comparator 
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triggered by a positive-going zero crossing of the signal on the receiver probe. 

The comparator starts a timer that delays for a time set by the lab computer. The 

timer generates a dump trigger at the end of this time and the density is measured. 

The phase angle of the wave is calculated from the timer value and the measured 

frequency. The timer is incremented on consecutive shots in precise steps until 

a plot of density versus angle is generated. The radial position of the collimator 

is then changed, and the process repeated until a full cross~sectional density plot 

n(r, B) is generated. 

Figure 4.1 shows two typical examples of such plots. Density is measured 

on a grid shown by the small black dots. The density is linearly interpolated 

between points, and the grey level at each pixel is assigned according to a four 

level map. Contours appear as boundaries between regions of different grey levels. 

The data shown in Fig. 4.1 was not averaged: only one shot was taken per point. 

The smooth shape of the contours is an indication of the shot-~shot repeatability 

of the plasma. 

The time for the electrons to leave the system axially during the dump 

must be small compared to the diocotron period, or 'smearing' of the density plots 

will occur. A du.mp circuit was designed to switch from the negative containment 

voltage to ground in ,..,, 0.3 µsec. With this fast dump circuit in operation, the 

longest time for the electrons to leave axially is observed to be ,..,, 1 µsec. For a 

typical frequency of 50 kHz, this would predict a motion through 10° during the 

dumping process in the worst case. The smearing was invesigated experimentally 

by taking a series of n(r, 8) plots as the dump circuit v.'as slowed down: for slow 

dump times these plots show a distinctive distortion (a dip in the outer part of 

the profile) that disappeared at the fastest dump times .. I believe that the effect 

of smearing is negligible in the data presented in this chapter. (An example of the 

'.• 
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Figure 4.1: Measured phase-locked densities n(r, 8) £or the diocotron mode at 
two amplitudes, showing elliptical distortion. For both cases, Rp = 2.42 cm, and 
the outer circle is at Rw = 3.81 cm. 
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Figure 4.2: Coordinates used in the calculation of the eccentricity, E, from the 
measured plasma density. 

effect of smearing can be seen, however, in the visible asymmetry of the 'before 

damping' curve of Fig. 6.5, page 87). 

4.2.2 Distortion of Plasma Shape 

I define the wave displacement to be the distance, D, between the wall 

a.xis and the center of mass of the measured densities. The two plasmas shown in 

Fig. 4.1 have' the same parameters, except for different values of D. It can be seen 

that the plasma column distorts from a circular shape on axis to an approximately 

elliptical shape with elongation in the 8-direction. This elliptical distortion has 

been seen in all the phase-locked plots I have taken at large D, and the distortion 

increases with D. At the very largest displacements {pl<isma edge at the wall), the 

inside edge of the plasma has been observed to curve outwards towards the wall, 
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so that the plasma. assumes a 'kidney-bean' shape. 

I characterize the plasma distortion by the eccentricity, e, of the plasma 

shape. The eccentricity is calculated from moments of the measured n(r, B). These 

moments are calculated using the coordinates illustrated in Fig. 4.2. Define the 

moments of density in the (x, y) coordinate system centered on the conducting wall 

with 

where 

and dA = dxdy. 

- 1 J 2 Izz = }..{ nx dA, 

I,. = ;{ j ny
2 dA , . 

lz'll = ~ j nxydA, 

M= j ndA 

{4.1) 

{4.2) 

{4.3) 

{4.4) 

These moments are transformed to a coordinate system ( X, Y) centered at 

the center of mass of the measured densities. Next, a principal axis transformatiori 

is made to a coordinate system ( u, v ), with u being the direction of the largest 

moment. The eccentricity is defined in terms of these moments: 

2 _ lv'U - Iw 
' = I •• 

(4.5) 

It can be shown that this definition of e will match the eccentricity of the outer 

boundary if the plasma density is constant inside an ellipse. For actual plasma 

profiles (Fig. 4.1), Eq. 4.5 represents a weighted average. 

The angle between the v axis and the radial direction, t/i, can also be gleaned 

from the principal axis transformation: 

11:1: - I.,;.,; 
cos2</>= I -I , 

1iU llll 

{4.6) 
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Figure 4.3: Variation of eccentricity of plasma sh.ape versus diocotron ampli­
tude for three different values of plasma radius R,./ R,.,. Shown are the results of 
experiment (symbols) and the water bag computer code (lines) . 

. and 
. 21;,; 

sin2,P = l - l . 
•• w 

(4.7) 

I have measured E for D / R,., < 0.5, and 0.35 < R,./ R,., < 0. 75, as shown 

in Figure 4.3. The eccentricity is plotted versus D /Ru, for three different radius 

plasmas. The eccentricity is found to increase with both D and Rp. 

Also plotted in Fig. 4.3 a.re the .results of the waterbag computer model 

described in Section 4.4. It is seen that the waterbag model predictions are in 

good agreement with experiment. Note that the eccentricity is linear with D/R.., 
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for small displacements, (D/R,,, < 0.2): I have found that the formula 

• ,. 5.4 (~) (~) 
2 

(4.8) 

is a good fit to the data in this linear range for 0.5 < R,/R,,, < 0.7. 

The values of ¢ calculated from experimental densities are shown next to 

the density profiles in Fig. 4.1, page 43. In both cases, the angle is less than 3°. 

This implies that the major axis of the ellipse is in the 9-direction, and I have found 

.this to be true in all cases in which e is large enough for an accurate calculation of 

¢>. 

4.3 Frequency Measurements 

4.3.1 Measurement of Frequency and Displacement 

I have measured the frequency, f, of the I = 1, kz ~ 0 diocotron mode and 

found that the frequency varies as amplitude is increased. Upward frequency shifts 

as large as 20% have been measured, and smaller downward shifts have also been 

seen. This is in contrast to the predictions of linear theory (Eq. 3.4), wherein the 

frequency is necessarily independent of amplitude. 

The frequency and amplitude of the mode are measured after the diocotron 

mode has been grown to the desired amplitude. The frequency is measured by 

accurately timing the interval between zero c~ossings of the sector probe signal. 

This method gives greater accuracy for the same number of cycles observed than 

a normal frequency counter/timer, which has an error of 1/Ne'!le, where Neye is the 

number of cycles observed. By timing zero crossings, only 100 cycles are needed 

to measure f to an accuracy of about one part in 104
• 

A sample and hold circuit recorded the amplitude output of the spectrum 

analyzer during the frequency measurement. For an accurate measurement of 

amplitude, f was kept well within the analyzer bandwidth. 
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The plasma. displacement, D, can be obtained either from the measured 

density n(r, 9), or from the amplitude of the sector probe signal. Defining D to be 

the center of mass of n(r, 8) is the most direct, but has the disadvantage that the 

measured coordinates have an uncertainty of about 0.2 cm. In contrast, D obtained 

from the sector probe signal has no offset at small amplitudes, but depends on the 

calibrations of all amplifier impedances and gains. To obtain the most accurate 

values of D, ~use the measured n(r,tl) at large amplitudes to calibrate the sector 

probe signal. 

The receiver probe is connected to ground through a 50 n resistor; the 

voltage across this resistor is then amplified to produce a. signal V,11 at the spectrum 

analyzer (which is usually set to a bandwidth of 10 kHz). HD is to be correctly 

estimated from V.0 , care must be taken to correct for the effect of changes in f and 

NL, where NL= number of electrons per length in the column. I assume that for 

small changes in NL, NL oc Nt, where N, = the total number of electrons in the 

column. From Eq. 3.6 it can be seen that 

D=K V.o 
N,f' 

{4.9) 

where K is a proportionality constant. The constant K can be calculated from a 

linear fit using a series of values of D, V.0 , N, and f obtained from n(r,8) plots. 

For small amplitudes Eq. 4.9 can then be used to determine D from V.o, Nt and f. 

4.3.2 Frequency versus Displacement 

The mode frequency, f, is measured for mode amplitudes ranging from the 

smallest detectable up to amplitudes where particles are scraped off by the wall. 

The data is recorded by a computer program and aver.aged: about 100 averages 

were taken at each amplitude. The lab computer generates a graph of this data, 

and an example of this is shown in Fig. 4.4. The horizontal axis is V.o in dBm. The 



49 

T T I 

140 t- - 3.8 -"' c: 
0 

Nt 
.... -- . . ... ' .. .w 
u 
Q) - ..-< 

"' ii Q) 
::i:: 
~ 130 0\ - t- ) . 0 ..... ..... f 0 -

I 
_, 

I I ii I 
.w 

.-,~; '~ I z 
.·I;_:' 

120 _j_ __]_ _l 

-102 -62 -22 

Amplitude (dBm) 

Figure 4.4: Output from frequency measurement program. 
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clusters of points labeled 'f' plot f on the vertical axis using the linear scale shown 

to the left. Each point represents one shot, and each cluster of points represents one 

group to be averaged, with each consecutive group taken at larger amplitudes. The 

scatter in f correlates well with the scatter in total number of injected electrons. 

The scatter in amplitude is caused by electronic noise in the detection circuit. 

The left-most cluster of points has a smaller cluster below it in frequency. This is 

because at low amplitudes the zero-crossing detector occasionally misses a cycle, 

and counts the frequency low. Such points are not used: the second cluster of 

points is the beginning of useable data. 

The top set of points, labelled 'N1', are the corresponding endplate signals 

plotted on a linear vertical axis. It is seen that at large amplitudes Nt begins to 

decrease. This is because the outer plasma edge is 'scraping' the wall and losing 

electrons. I stop using the data when Nt begins to decrease sharply: this represents 

the upper useable limit of my frequency measurements. In this particular plot there 

is useable data over about 35 dB in amplitude. 

One difficulty with this technique is that f changes because Nt is not exactly 

the same for each amplitude. Electrons at the edge of the plasma are lost to the 

wall, and this process varies with amplitude. Also, there are long term (over an 

hour) changes in the filament that results in changes in Nt. These variations in 

Nt are small (less than 1% except at the very largest amplitudes), but we wish to 

measure even smaller variations inf (less than 0.1%). 

From the linear diocotron frequency relation, Eq. 3.4, it is expected that 

f ex: NL ex: Nt. In order to correct for variations in f due to variations in Nt, I have 

multiplied the measured values off by Nto/Nt, where Nto = total number at the 

smallest useable amplitude value in the series. 



51 

Rod / 

Model ,,/n2 
0 Rp/Rw=0.45 o~ 

10-l 0 Rp/Rw=0.68 

0 
""'10-2 
....... 0 
,,...... 

0 ..... 0 
I 10-3 ..... D '-"" 

0.05 0.1 0.5 

DI Rw 

Figure 4.5: Nonlinear frequency shift versus displacement for two different ra­
dius plasmas. Also plotted are the predictions of the rod model (solid line) and 
(Jo -f)/fo = (D/R,,,)' (dashed line). 
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I find that the measured nonlinear frequency shift is well-fit by 

J - Jo =" (.!!._)' 
Jo R,,, 

(4.10) 

The 'zero-amplitude' frequency, f 0 , and the slope a, a.re determined by a linear fit 

to J versus (D/R,,,)2 • Fig. 4.5 plots the results for two different radii plasmas. It 

can be seen in both cases that(!- Jo)/ Jo varies as (D/R,,,)', but the slope<>"' 1 for 

the 'narrow' (R,,/R,,, = 0.45) plasma and a is smaller for the 'fat' (R,,/ R,,, = 0.68) 

plasma. 

If this procedure is repeated for a range of R,,, it is found that a decreases 

smoothly with 14/ R,,,. This is shown in Fig. 4.6. It can be seen that for large 

enough plasmas, f actually decrea.se" with amplitude (o: < 0), in excellent agree­

ment with the waterbag model, which is also plotted in Fig. 4.6. From a best fit 

to the data, I have derived an empirical formula for the frequency shift: 

(~· J foJo = [1 - 7.3 (;:) •1 (;:,,)' (4.11) 

4.3.3 Simple Model of Nonlinear Frequency Shift 

Equation 4.11 can be understood as a frequency shift due to a 'rigid' dis­

placement of the plasma column, plus a frequency shift due to an elliptical dis­

tortion of the column. The frequency shift due to rigid displacement is totally 

independent of the plasma profile, and can be modeled by a line charge1 or in­

finitely thin charged 'rod'. 

In the discussion of the image charge model, Section 3.2, the diocotron 

mode was described as the drift of the plasma in the field of an image charge at a 

radius of R!J D. The electric field from the image was calculated at r = 0, even 

though the plasma has a substantial spatial extent around r = 0. This results in a 

prediction of frequency of the diocotron mode equal to that of linear theory. 
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Figure 4.6: Variation of frequency shift coefficient, a, with plasma radius. Plotted 
are experimental points (crosses) and the predictions of the waterbag model (line). 
Also plotted are the results of the calculation of Prasad and Malmberg (circles). 
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H the electric field from the image is calculated at the center of mass of the 

plasma. instead, there is a. larger electric field and an upward frequency shift of 

f-fo 1 ( D )' 
Jo - 1- (D/R,,,) 2 - l"' R,,, {4.12) 

Note that Eq. 4.12 agrees with the empirical formula Eq. 4.11 for II,.< R,,,. If the 

rod plasma has finite radius, the field varies somewhat across the rod. However, 

one can show that the average E,,. is given by E,,. at the center of mass. 

There is an additional frequency shift due to the elliptical distortion of the 

column discUssed in Section 4.2.2. Here, I calculate this frequency shift for small 

distortions and small wave amplitudes, i.e. e <:: 1 and D/Rw < 1. In order to 

estimate this frequency shift, it is most convenient to shift to a coordinate origin 

at the center of the plasma. Define an angle I with respect to the radial direction. 

An elliptical distortion, e, will introduce a charge perturbation 6NL per unit angle 

of 

ONL {( . 2 1) '] d-y 
--~ sin 1-- E -. 
NL 2 21' 

(4.13) 

Assume all this charge is at a radius Rp. The electric field due to this 

charge perturbation will be zero at the center of the plasma, but the image charges 

induced will result in an electric field causing a frequency shift of 

{4.14) 

If the empirical formula Eq. 4.8 is used to express E in terms of D and R.p, then 

Eq. 4.14 will predict a frequency shift equal to the second term in brackets in 

Eq. 4.11. Therefore, the second order frequency shifts found in both the waterbag 

model and experiment are completely explained by a rod model and the effect of 

distortion. 
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4.4 The Waterbag Model 

I hav~ developed a computer program that calculates the shape and fre­

quency of a pla.Sma column supporting a large amplitude I = 1 diocotron mode. 

The model assumes that the plasma has constant density, so that the edge of the 

plasma is the only density contour. 

The calculation is based upon the assumption that there exists a reference 

frame in which the motion is steady-state. This frame is rotating at the frequency 

of the diocotron mode. Since electrons follow potential contours in E x B drift 

motion, the density and potential contours are coincident in this frame. The prob­

lem is then reduced to iterating the plasma shape and recalculating the potentials 

until the plasma boundary matches a potential contour. 

The plasma shape is described by the radius of the boundary (relative to 

the plasma center of mass) as a function of angle. I typically divided the shape 

into 200 different radii at evenly spaced angles. At each iteration, the new choice 

of shape was constrained to conserve the cross-sectional area (i.e. total number of 

particles) and the position of the center of mass (D). 

The potentials are the sum of the potential due to the plasma, plus that 

due to the rotation of the reference frame. The potential due to a circular plasma 

is easily solved by the method of images (Appelldix B). Since the distorted plasma 

is not circular, the plasma was broken into a large circular plasma plus additional 

small circular plasmas around the boundary at different angles. 

The potential due to rotation depends upon the frequency, f, of the dio­

cotron mode. The frequency can be found on a particular iteration by finding the 

point of minimum potential in the rotating frame: the value of the electric field at 

that point in the lab frame gives the E x B rotation rate. 

On each iteration, the potential is calculated along the plasma boundary, 
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and a choice for the next iteration of shape is made in order to minimize the 

variation of the potential along the boundary. The value of f used is the rotation 

rate of the pl-e~ding iteration. This process is continued until the variation of 

potential along the boundary is smaller than a given amount: I chose this to be 

one part in 105
, which required about 50 iterations. 

The boundary shapes match very well the elliptical shapes observed exper­

imentally (Section 4.2.2). Furthermore, the predicted values of f and e are found 

to be in excellent agreement with experiment over the complete range of Rp and 

D, as shown in Figs. 4.3 and 4.6. 

4.5 Comparison with Calculation of Prasad and 
Malmberg 

The predictions were also compared to the results of a coinputer calculation 

based upon a perturbation theory published by Prasad and Malmberg [24]. Their 

calculation is also based upon the assumption that a unique reference frame exists 

in which the potential and density contours are coincident. 

Prasad and Malmberg find that (! - Jo)/ Jo = cxf..D/ R,,,)2 for small D, and 

I have estimated the proportionality constant a from their calculations. These 

are plotted as circles in Fig. 4.6 for four different radius plasmas, and are seen to 

agree with experiment. Their predictions, however, only agree with experiment for 

D/R.. < 0.1. 

In Fig.· 4 of Ref. [24], predictions of frequency versus amplitude are made 

for a plasma closely resembling an experimental profile with Rp/ Ru, = 0.40. These 

results are pl"otted in Fig. 4. 7 along with the results of experiment, the rod moflel, 

and the waterbag model. It can be seen that the predictiOns of Ref. [24] are smaller 

than experiment for displacements D /Ru, > 0.1, while the rod and water bag models 
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are in good agreement. 

The calculation of Ref. [24] is based upon a perturbation tlieory, and the 

discrepancy wit~ experiment is probably due to the omission of higher order terms. 

I believe that this theory suffers from the choice of the cylindrical wall axis instead 

of the plasma center as the coordinate origin: large perturbations are required just 

to model the zero-order displacement of the column. 



Chapter 5 

The Finite Length Diocotron 
Mode 

5.1 Overview 

Experimentally, the l = 1, ki i::::: 0 diocotron mode is remarkably stable 

in a finite length plasma, oscillating through 105 cycles with negligible change in 

amplitude. rr the diocotron mode in a finite length plasma is simply modeled as 

an off-axis displacement, the image electric field will be z-dependent, the E x B 

drift will be z-dependent, and the plasma will not stay together. Clearly the mode 

must actually assume a z-dependent structure. The effect of this z-dependence on 

the diocotron mode is the topic of this chapter. 

I have measured the small-amplitude frequency, f, of the diocotron mode as 

a function of plasma length and radius for 0.67 <: L,/ R,, < 10 and 0.25 < Rp/ R,, < 

0.73. Furthermore, the number of electrons per length, NL, has been calculated 

for each of these plasmas from the radial density profiles, and the infinite length 

frequency, fr1., of each column has been computed using these values of NL in 

Eq. 3.4. I find that the fractional frequency shift(! - fd)/ J, increases as L;', and 

decreases with Hp. Furthermore, the fractional frequency shift versus length has 

been measured at three different values of B~, and no dependence upon magnetic 

field has been found. Upward frequency shifts of over 200% have been observed. 

59 
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These frequency measurements are in reasonable agreement with a theory of 

the finite length diocotron mode by Prasad and O'Neil [27]. The theory calculates 

the z-dependence of the mode by requiring the continuity of the mode potential at 

the plasma ends. This condition implies that the mode potential becomes concave 

as a function of z. To first order in R,,;/ Lp this potential is approximated by a 

section of a diocotron mode with a small, complex kz. The finite length frequency 

is predicted to be the frequency of a mode with wavenumber kz. 

I have also measured the damping rate of the finite length diocotron mode 

at Bz = 94, 188 and 376 gauss and at different amplitudes. In all cases, the 

diocotron mode was found to not change amplitude to within the accuracy of the 

measurement, which establishes an upper limit on the damping rate. This result is 

contrary to the predictions of a theory by Prasad and O'Neil [26], which predicts 

damping rates that are three to four orders of magnitude greater than the limits 

established by experiment. 

The theory predicts the introduction of Landau damping through the ex­

istence of small plasma modes coupled to the diocotron mode. I have estimated 

the velocity of resonant electrons and found that it is approximately equal to the 

therm.al velocity. Furthermore, I have estimated the energy that must be absorbed 

by the plasma in order to damp a small amplitude diocotron mode, and have 

found that this energy is io-3 times the thermal energy at the lowest diocotron 

amplitudes measured. Under these conditions the plasma modes would be effec-

. tively Landau damped, and the large discrepancy between theory and experiment 

suggests a fundamental problem in the theory. 
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5.2 Theory 

This section will summarize two theoretical papers by Prasad and 0 'Neil 

about the finite· length diocotron mode. The first paper by Prasad and O'Neil 

[27] models the plasma as a. cold fluid. This paper uses an idealization of the 

experimental plasma illustrated by Fig. 5.la.. 

The plasma is assumed to be constant density out to radius R.p. The plasma 

is assumed to have square ends, and the line density or the number of electrons 

per axial length, NL, is assumed to be constant within the plasma. For purposes 

of the wave calculation, the wall is assumed to be continuous and grounded. Note 

that this simple model is entirely characterized by the parameters NL, Rp, L,,, Rw 

andB.s· 

The plasma. is assumed to be far below the Brillouin limit; or w,, < We, 

where w,, is the plasma frequency and We is the cyclotron frequency. In this regime, 

centrifugal and pressure drifts can be ignored, and the plasma rotates about its 

axis at the E X B drift frequency Wr: 

(5.1) 

The plasma behaves as a cold, dielectric fluid with dielectric constant 

w' 
(5.2) 

Using Eq. 5.1 in Eq. 5.2, and also using the diocotron frequency relation Eq. 3.4, 

we see that for the diocotron mode 

(5.3) 

so that inside the plasma fzz is a large negative number. 

The effect of the ends is incorporated by requiring the continuity of <P 

and fzz8¢/8z. These continuity requirements are implemented by a perturbation 

_J 
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Figure 5.1: Idealized model of Prasad and O'Neil: a)geometry, b)potential inside 
. plasma versus z. 
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series in two small parameters: the finite length parameter 14/ Lpi and a parameter 

related to the dielectric 'stiffness' of the plasma, 6 = (-f::)-1!2
:::::: wp/2we. 

Prasad and O'Neil present the results of an analysis that is first order in 

Rp/ Lp and 6 for the l = 1, 2 and 3 diocotron modes. We can get an intuitive feel 

for the result for the I= 1 mode with the aid of Fig. 5.lb. 

Figure 5.lb plots the mode potential, </J, versus z at some radius within 

the plasma. Outside the plasma, the mode potential satisfies LaPlace's equation, 

and varies approximately as <P rv exp(±j10z/R.w), where j 1o is the zeroth root of 

the J1 Bessel function, and the sign is chosen so that 4> - 0 far from the plasma. 

The mode potential inside the plasma must join to the vacuum solution so that 

e:,,,8<P/8z is continuous across the plasma edge. Since Ezz = 1 in the vacuum, and 

fJ:z is a large negative number inside the plasma, <P becomes slightly concave in the 

plasma, as shown in Fig. 5.lb. 

Prasad and O'Neil show that ¢> is approximated inside by an infinite length 

diocotron mode with a wavelength much longer than the plasma. The dispersion 

relation for I= 1 diocotron modes varying as eik,,11: (see [27]) is 

W = Wd - (w,/4)(k,R,)2 
, (5.4) 

which is plotted in Fig. 5.2 for typical experimental parameters. 

The dashed line shows imaginary kz; th~ solid line shows real kz. The mode 

with imaginary kz is usually ignored in a treatment of an infinite column because 

it diverges as z--+ ±oo. However, this objection does not apply to the finite length 

case, and it is the imaginary k::: mode that approximates the concave shape of the 

finite length mode. 

We see from Fig. 5.2 that the finite length diocotron mode will be shifted 

upward from the kz = 0 frequency, fa. Prasad and O'Neil present the results of the 

calculation of this frequency shift in graphical form. For reference I write' down an 
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Figure 5.2: Dispersion curves for z-dependent, infinite length I = 1 diocotron 
mode. Drawn to scale for typical experimental parameters: Rp/ Rw = 0.5, 
w'P/wc = 0.02, wr/w11 = 0.01. The dashed line indicates the imaginary k::r: mode. See 
Ref. [27]. 
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approximate formula that reproduces their graph: 

!-fa ( R,,) [ l R,,l (.R,,,) , fa = 1.30 - 1.08 R., R,,/ R., - R., L, , (5.5) 

valid for .1 < R,,I R., < .8. The experiments to be described in the next section 

are in close agreement with this prediction. 

The stability of the finite length diocotron mode is explored in a second 

paper by Prasad and O'Neil [26]. This second paper uses the drift-kinetic approxi­

mation, which adds the effect of bounce motion in z and parallel temperature. The 

finite length cliocotron mode is also expressed in terms of infinite length modes. 

However, in this paper the modes are quantized so that k11 = n-;r/L11 • The cal­

culation is a perturbation theory in the small parameter Rw/ L 11• To lowest order 

in Rw/ Lp, Prasad and O'Neil find that the finite length diocotron mode is just 

the k11 = 0 mode. To the next order in Rw/ L11 , small l = 0 p~asma modes with 

k11 = nrr / L11 are mixed in with the diocotron mode. 

The presence of the small plasma modes introduces resonant particles and 

consequently Landau damping. This is especially significant since the kz = O 

diocotron mode is otherwise neutrally stable. Prasad and O'Neil calculate the 

imaginary part of the frequency of the diocotron mode that appears due to this 

Landau damping. This imaginary part occurs in order (Rw/Lp)2 and is given by: 

(w,-w,) ( w, ) 2>.v w; = -[0.4] (w, - w,) In _ -L ' 
Wp W,. Wd p 

(5.6) 

where w,. is the rotation frequency and An is the Debye length. (The 0.4 in brackets 

is the approximate value of a function of Rp/ Rw that varies between 0.3 and 0.5 in 

Fig. 5 of Ref. [26].) As will be seen in Section 5.4, my experimental measurements 

give no indication of this damping. 

The final significant prediction of Prasad and O'Neil is that for certain 

choices of plasma parameters the diocotron and plasma frequencies become equal. 
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Figure 5.3: Values of Lp and Rp th(!.t satisfy degeneracy condition between dicr 
cotron mode and m = 1 plasma mode for four different values of Bz. Typical values 
of L, and R,. for the EV experimeot lie betweeo the dashed lines: degeneracy is 
reachable within the triangular shape. 

This degeneracy is predicted to cause the plasma wave amplitude to be of the same 

order as the diocotron amplitude, giving a greatly increased damping rate. The 

condition for the diocotron mode to be degener'ate with a plasma wave with radial 

mode number n and wavenumber k = m7r / L 11 is 

~=~~~[1-(~)']::. {5.7) 

where j 2n. is the n-th root of the J2 Bessel function. 

The degenerate values of R,, and Lp are plotted in Fig. 5.3 for n = 1 and 

m = 1, for a density of 107 cm-3 • The solutions of Eq. 5.7 for different values of 

Bz appear as a family of curves. Values of Rp and Lp that .can easily be reached 
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in the EV experiment lie between the dashed lines. The EV experiment can easily 

match the degeneracy condition inside the shaded region in Fig. 5.3. However, no 

systematic experimental search was made to detect this degeneracy. 

In summary, there are three theoretical predictions made by Prasad and 

O'Neil that can be checked by experiment: 1) The upwards frequency shift of a 

finite diocotron mode from the k, = 0 value f 4 (Eq. 5.5) 2) The damping induced 

in the diocotron mode which is neutrally stable for k, = 0 (Eq. 5.6) 3) Greatly 

enhanced da:inping of the diocotron mode at certain plasma parameters due to a 

degeneracy with a plasma wave (Eq. 5. 7). 

5.3 Shifts in the Real Part of the Frequency 

The experimental setup of the finite length frequency measurement is al­

most identical to the setup for the measurement of the nonlinear diocotron mode. 

The small-amplitude frequency,/, is desired, and this can be obtained from a series 

of data taken at different amplitudes, as described in Chapter 4. 

The only significant difference is the use of 'cutting'. H a short plasma 

is desired, a cylinder within the containment region is ramped from ground to a 

negative voltage to 'cut' the plasma into two sections . The experiment will then 

be performed with only the plasma nearer the dump gate, and I assume that the 
, 

other plasma is sufficiently separated by the cut gate to be ignored. 

The cutting procedure is used because the tilt effect is much stronger in 

longer plasmas. In Chapter 6, data will presented on the transport due to tilt for 

different containment lengths, Le· Essentially, I have found that a tilt angle that 

causes rapid transport to a square low noise profile in a plasma with Le = 35.6 cm 

will have barely noticeable effect in a plasma with Le ~ 19.8 cm. Therefore, the 

tilt is used to 'prepare' the plasma with Le = 35.6 cm (or greater), and then the 



68 

plasma is cut to obtain a shorter length. 

A profile is taken for each plasma without the diocotron mode present to 

determine the initial state of the plasma. An example is shown in Fig 2.2b. The 

plasma is squarish and low noise. 

The finite length theory of Prasad and O'Neil depends only upon the pa­

rameters NL, Rp, Lp, R,,, and Bz. Both Bz and Rw are known from direct measure­

ment. The parameters N Li R,,, and Lp do not have unambiguous definitions in the 

experimental plasma. The experimental plasma has rounded ends (see Fig. 2.1); 

NL will be a function of z 1 and Lp will be a function of r. 

I proceed by ma.king resonable, self-consistent definitions of these three 

quantities using initial profiles of which Fig. 2.2b is an example. The plasma 

radius, Hp, is defined to be the point at which the measured projection density, 

Q(r), falls to one-half of its value at the center. There are El: number of other 

resonable definitions. An example is the radius of a column with the same central 

density and total number of electrons. However, because the density profile is 

nearly_ square, these definitions all give about the same radius. 

As was described in Chapter 2, profiles like the ones in Fig. 2.2 can be used 

as input to a. computer program that calculates n(r,z). Define a line density at 

each point in z by 
[R• , 

NL(z) =Jo dr21'rn(r,z). (5.8) 

This line density must be averaged over z to obtain a single number. A reasonable 

way to do this is to weight NL by the number of electrons per length, or just NL: 

- _ J':'~ Nl(z)dz 
NL= f':'~NL(z)dz · (o,9) 

The plasma length is defined to be consistent with NL and the measured 

total number of electrons, NT: 

(5.10) 
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Figure 5.4: Finite length frequency shift versus L;' holding plasma radius ap­
proximately constant. 

These definitions are used to experimentally test Eq. 5.5. For each plasma, 

an initial profile is taken, and from this profile llp, NL and L.,, are calculated. 

Then fd is calculated using Eq. 3.4. Next, the diocotron frequency is measured 

as a function of amplitude, and extrapolated back to zero amplitude to obtain a 

value for f. The experiment is repeated for di~erent plasma R,, and Lp values and 

(f - fd)/ /d is compared to the predictions of Eq. 5.5. 

Figure 5.4 shows the results of this procedure for various plasma lengths 

L.,,. Here, the radius R,, was kept as const~t as possible: for the points shown 

0.436 < R./ R,,, < 0.451. The data was taken at three different B, values: 94 gauss, 

188 gauss, and 376 gauss. At B:i = 188 gauss the frequencies measured varied from 

70 to 250 kHz, with NL varying by a factor of 2.4 due.to the cutting procedure. 

The theory line in Fig. 5.4 is the result of using R.p/ R,,, = 0.44. Note the good 
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agreement between theory and experiment, even at Rw/ L'P > 1. Also note that 

there is no indication of magnetic field dependence, which is also in agreement with 

theory. 

Figure 5.5 plots the measured frequency shift when R,, is varied while keep­

ing L, approximately constant. For these points 0.099 < R,,,/ L, < 0.124. The 

experimental points plotted are corrected for this 25% variation by multiplying by 

the factor (10/(L,/ R,,,), i.e. presuming the length variation in Eq. 5.5. The theory 

line comes from using L,,/ R,,, = 10 in Eq. 5.5. There is a trend for the data to fall 

below theory for small R,,, but there is still reasonable agreement between theory 

and experiment. 

To summarize, I have compared the real frequency shifts of the finite length 

diocotron mode to the idealized theoretical model of Prasad and O'Neil by mak­

ing reasonable definitions of plasma parameters. The agreement between theory 

experiment is reasonable, even at plasma lengths where the experimental plasma 

is more spherical than cylindrical. 

5.4 Shifts in the Imaginary Part of the Frequency 

The finite length theory of Prasad and O'Neil predicts that the diocotron 

mode will acquire a small damping due to <:<;>upling with plasma modes. This 

damping rate is given by Eq. 5.6. In this section an experiment will be described 

to measure the long time damping of the diocotron mode. The experimental mea­

surements show none of the predicted damping. 

The experimental procedure is similar to that described in Chapter 4. Field 

tilt is used to obtain a low noise profile, and feedback combined with a comparator 

is used to grow the diocotron mode to a repeatable amplitude. There is a difficulty 

with using this setup for the measurement of the long term stability of the diocotron 
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mode: the input impedance of the receiving amplifer will cause a small growth (see 

Section 3.4) that can m .. k the damping that is expected from Eq. 5.6. 

In order to circumvent this difficulty, the receiving probe is connected to 

the receiving amplifier through a relay. When the relay is energized, the receiving 

amplifier is connected to the receiving sector, otherwise the receiving sector is 

connected to ground. The relay is energized for an initial period during feedback 

growth, at the end of the growth the amplitude is measured and the relay turned 

off. Then, after waiting many diocotron cycles (about 105
), the relay is again 

energized and the amplitude is measured again. 

Note that the sector probe cable resistances and finite wall resistance (see 

Section 3.4) are predicted to produce a growth Wi with wi/w....., 2 X 10-s. 

The amplitude is measured by connecting a digital oscilloscope to to the 

output of the spectrum analyzer. The analyzer is operated as a bandwidth filter 

turned to the diocotron frequency, and its output voltage is proportional to the 

log of the diocotron amplitude versus time. The oscilloscope has the capability of 

averaging the amplitude- over many shots to reduce noise. 

There is an upper limit on the number of cycles between the initial and 

final amplitude measurements. As was mentioned in Section 2.7, there is a slow 

expansion of the plasma towards the wall. At some point in time this expansion 

will result in particle loss to the wall. The particle loss will in turn cause the 

frequency and amplitude of the signal to decrease. In order to avoid this, the time 

at which particle loss to the wall occurs is taken as the upper limit on the time 

that the final amplitude is measured. 

The results of these measurements are shown in Table 5.1. The decay rate 

was measured at three different magnetic fields and seyeral different amplitudes. 

All the data '\\'as taken with a plasma length Lp R:: 30 cm. In all cases no decay 
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B, D/R,,, Vrea/Vth -w;/w(lO"'j Theory/Exp 
(gauss) Exp Theory (10') 

. 94 0.008 0.29 < 0.6 1000 1.7 
0.317 < 0.2 5.0 

188 0.020 0.49 < 0.09 1500 17 
0.063 < 0.02 75 
0.126 < 0.09 17 

376 0.025 0.75 < 0.2 1500 7.5 
0.032 < 0.2 7.5 
0.112 < 0.09 17 
0.159 < 0.09 17 

Table 5.1: Comparison between diocotron damping rates predicted by the theory 
of Prasad and O'Neil and experimental measurements. 

of the wave was actually observed, and the measurements only established upper 

limits on the experimental decay rates. The predictions of Eq. 5.6 are also shown in 

Table 5.1. The measured damping rates are smaller than the predictions of theory 

by three to four orders of magnitude. 

The theory also uses the approximation Vrea/Vth '.:)> 1, where Vre• is the 

velocity of a resonant electron, and v1n is the thermal velocity. The resonant velocity 

can be calculated from the condition that a resonant electron be in phase with the 

wave, giving w - lwr - kzVre• = O. The results are shown in Table 5.1. In all three 

cases Vre• ::::i v11i, so that the theory approxim~tion is not satisfied. Nevertheless, 

in Landau damping the damping is usually maximum when Vrea Rl Vth, since the 

number of resonant particles available to absorb the wave energy is large. It is 

difficult to see how having Vre• ~ Vth could decrease the damping. 

It is possible that the background velocity distribution is heavily modified 

by the diocotron mode, which would tend to reduce the damping. To estimate 

the effect of the diocotron mode on the thermal distribution, it is instructive to 

calculate the change in electrostatic energy that would occur if the mode v.·ere 
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completely damped. This energy change is not just due to the mode energy, because 

the column must also expand in order to conserve the angular momentum, P6• This 

expansion will lower the energy in the column. To estimate these energy changes, 

assume that the column initially has a square profile of radius Rp and a diocotron 

amplitude of D. Also assume that after the diocotron mode damps away, the 

column is still a square profile with a radius larger by ~Rp. In addition, ignore the 

effect of the ends on the energy. 

The profile must expand by the amount 

D' t..R,, = -R,, {5.11) 

in order to conserve P1. The electrostatic energy per length of a centered column 

of radius Rp is 

W •' Nl (1 R,,,) L, = 4ir<o 4 +In R,, ' 
so that the electrostatic energy per length changes by an amount 

i'..W 
-- "' L, 

{5.12) 

(5.13) 

The diocotron mode energy per length is given by Eq. 3.5. The mode energy 

change is po.sitive when the mode damps; adding this to Eq. 5.13 the total energy 

change per electron is 

t..W, = - •'NL D' (_!__ - 2-) = -(2 x 10-3 eV) (DIR,,,)' ' 
NLL, 4ireo R~ R;, 0.01 

{5.14) 

where the last equality is obtained by taking experimental values NL = 5 x 107 

electrons per cm and /4/ Ru, = 0.5. The plasma temperature is about 1 eV, so 

that for the smallest amplitudes in Table 5.1, the energy the plasma must absorb to 

damp the mode is 10-3 times the thermal energy per electron. Since for Vr~t1/Vth ~ 1 

a large fraction of the electrons would partipate in the damp!ng, it seems unlikely 
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that modification of the electron distribution is the source of the large discrepancy 

between theory and experiment. 

Even 'if ~he distribution function were modified by the mode, electrons 

would be scattered into resonance at a high rate. The 90° scattering time for a 

thermal particle in an electron plasma is 

v: R:: 220 T- 3!2 (~) sec-1 
ee 107 , (5.15) 

where T is in units of eV and n is in cm-3 (see [15]). At 1 eV and a density of 

5 x 106 , the distribution would refill roughly 100 times a second, and even less 

energy would have to be absorbed by a thermal electron to damp the mode. 

The damping of the diocotron mode has been previously measured by de­

Grassie [8) in a similar experiment. DeGrassie found that the diocotron amplitude 

64' decayed as I 6¢ 12 ...... exp(-a:2t2), where a was found to vary with pressure. De­

Grassie's experiment operated at higher neutral pressures than EV (10-6 Torr as 

opposed to 5 x 10-11 Torr), and the background transport was much higher due 

to the neutrals. It is likely that some electrons had expanded to the wall by the 

time the diocotron wave was measured. Neither the effect of the wall or of neutral 

collisions on the diocotron wave have been investigated in the EV machine. 



Chapter 6 

Induced Damping and Transport 
from External Field Perturbations 

6.1 Overview 

The effect of field perturbations on plasma transport is of central impor­

tance in plasma physics. In this chapter, the effects on the electron plasma of two 

particularly simple perturbations are discussed. 

One perturbation is the 'squeeze' field, in which an axisymm.etric electric 

field is created by a voltage, V,_.,, applied between the cylinders in the containment 

region. The effect of this perturbation is to induce exponential damping in the 

previously neutrally stable diocotron mode. Since the fields are a.xisymmetric, 

the damping should conserve P8 , and this has been verified by experiments. A 
' 

description of the damping has emerged from phase-locked density measurements: 

the diocotro~ displacement, D, decreases smoothly and continuously while the 

plasma radius expands to keep Po constant. 

I have measured the exponential damping rate, 7 1 versus Vpert and D at four 

different values of B::. At small amplitudes (I V1;,ert I< 0.5 Volts), 1 is proportional 

to V,?ert· The scaling with Bz. is roughly 'Y ex: B;2
• 

I speculate that the z-dependent squeeze perturbation introduces resonant 

particles and consequently damping. It is possible that this is via the nonlinear 

76 
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interaction proposed by Crawford, O'Neil and Malmberg [5], and calculated in 

detail by Crawford and O'Neil [4J. In the case of the squeeze perturbation, the 

nonlinear inter~tion would be between the squeeze field and the diocotron wave. 

A beat wave would be produced that would transfer electrostatic energy in the 

plasma into thermal energy via Landau damping. This is consistent with the elec­

trostatic energy decrea,,,ing when the diocotron mode is damped. (Electrostatic 

energy decreases when the diocotron mode is damped due to the plasma expan-, 

sion necessary to conserve Po, see Section 5.4). Their theory predicts exponential 

damping of the diocotron mode proportional to v;,~rt' in agreement with experi­

ment. For the kl& = 1r / Lp component of the squeeze field, the theory also predicts 

a peak in the damping near the center of the experimental range of Bz, and this 

has not been observed. Higher kz components in the squeeze 'field may explain this 

discrepancy. 

The second perturbation is the· magnetic field tilt introduced in Chapter 2. 

The tilt differs from the squeeze field in that it is not axisymmetric. Therefore, the 

transport induced by the tilt does not necessarily conserve P8• I have measured 

the rate of change of angular momentum, vp, and the rate of change of the central 

density, vo, versus tilt angle. I have found that tilt angles as small as 10-4 radian 

can induce significant particle transport. These ,measurements were repeated at five 

different values of Bz, and three different values of Lp. In all cases, the minimum 

of Vp occurs at approximately the same angle as the minimum of v0 , corresponding 

to optimal alignment. I find that dvp/ dB varies approximately as B;2 • Also, the 

tilt effect is much less strong in short plasmas, although I have not obtained the 

scaling versus Lp. 

The tilt transport has a dramatic effect on the radial profile, producing 

square density and flat temperature profiles, and reducing the shot-to-shot jitter 



78 

by a. factor of ten. These profiles resemble thermal equilibrium profiles (22,25J, 

but they are not thermal equilibria: I find that the width of the plasma edge is 

substantially '!es~ than the predicted edge width for thermal equilibrium of 2.XD. I 

speculate that the tilt transport drives the plasma towards a state where the Ex B 

drift rate is constant with radius, perhaps by increasing internal mixing. 

There will be electrons in the plasma that will be resonant with the tilt field, 

and it may be that these electrons are driving the transport. However, no careful 

theory has yet been formulated for this case. It may be that this particularly simple 

perturbation will provide an incisive test of resonant particle transport theory. 

6.2 Axisymmetric Electrostatic Field Perturba­
tions {Squeeze) 

6.2.1 Measurement of Induced Diocotron Mode Damping 

Figu;e 6.1 illustrates the induced damping experiment. At the top of 

Fig. 6.1 is a schematic of the experiment. The containment region is divided into 

two equal length cylinders. The cylinder nearest the dump gate includes the sector 

probes, and is at ground potential. One sector probe, the receiver, is connected to 

amplifiers and a spectrum analyzer, and is used for detecting the diocotron mode. 

The other probe, the resistive growth sector, is connected to a resistor through a 

relay. This resistor causes the diocotron mode to grow due to the resistive wall 

instability (see Section 3.4). The only reason that feedback techniques were not 

used is that this experiment was completed before the feedback circuity was in 

place. 

The cylinder nearest the inject cylinder is connected to a 'perturbator'. 

The perturbator is a voltage pulser that has its output ~t ground potential during 

the injection of the plasma and the growth of the diocotron mode. The perturba.tor 
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Figure 6.1: Experimental setup to measure induced damping as a function of 
Vpert, amplitude and Bz. 
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Figure 6.2; Measured damping rate versus amplitude for various values of Vpert 

for B* = 188 gauss. The curves merely connect the points in each set. 

output is then pulsed to a. voltage of Vpm. At this time there will be an electric 

field between the two parts of the containment section that will be azimuthally 

symmetric (I= 0). This is called a 'squeeze' perturbation, since the field will tend 

to squeeze electrons from one part of the containment section to the other. 

The log of the amplitude of the diocotron mode is plotted at the bottom 

of Fig. 6.1. Two consecutive shots are shown. During both shots the diocotron 

mode is grown to an amplitude that is controlled by the a.mount of time that the 

resistive growth relay is energized. The perturbator is driven to V';,ert on only the 

first shot. 
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Both shots are grown exponentially to the same amplitude using the growth 

resistor. After the growth relay is twned off, both shots still display a small growth 

due to the 50' fl, resistor attached to the receiving sector. This growth rate, 'Yo, is 

measured during the second shot. The first shot displays an exponential decay at 

a rate"'(, which is presumably due to a combination of damping due to squeeze and 

growth due to the resistor on the receiving sector. I assume here that 7-70 is due 

to the squeeze field alone. 

The dots on the amplitude graph indicate points at whlch the amplitude 

is measured by a differential sample and hold. With these measurements '"'{ and 'Yo 

can be calculated. In practice, many such pairs of shots are taken and 7 and io 

are average values. 

Measurements of"'/ and "'(o were taken varying Vpert, the diocotron ampli­

tude, D, and Bz. The two pieces of the containment section were each 15.8 cm 

long in all cases. Fig. 6.2 plots 7 - 70 versus D /Ru, at Bz = 188 gauss, for various 

values of Vpert· It can be seen that 7 - 70 is constant with mode amplitude below 

a certain value. The measurements in Fig. 6.2 were made by growing the mode to 

different amplitudes, and measuring the damping rate when the squeeze was first 

applied. Nevertheless, I believe that that Fig. 6.2 is a good characterization of the 

damping over time of a diocotron mode in the squeeze field. The region of constant 

7 - "Yo then implies exponential damping. This was verified by the output of the 

spectrum analyzer, which displayed a straight line decay on the log-linear display 

for small amplitudes. 

For amplitudes above a critical value, the damping rate is less than would 

be expected from the exponential damping at low amplitude. For large amplitudes 

Fig. 6.2 gives an approximate scaling of r - 'Yo oc n-1
• 

MeasUrements of 7 - fo versus D and Vp~rt were also made at Bi = 471 94 

"---------------------------------------·· 
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Figure 6.4: Measured exponential damping rate versus Bz for Vpert = -0.1 Volts 
(crosses). Also shown are the theoretical rates for kz = 7r / Lp and kz = 37r / Lp, both 
of which are scaled to match experiment at B11, = 188 gauss. 
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and 376 gauss. The damping was found to be exponential at small amplitudes for 

all values of Bz. However, the curves of damping rate versus D at these values 

of Bz do not'show as clean a separation between exponential damping and the 

damping proportional to n-1 as can be seen at Bz = 188 gauss. 

The damping rate was measured in the region of exponential decay in 

Fig. 6.2, and is plotted versus Vput in Fig. 6.3 at four different values of Bz. Note 

that all four sets of points show i.-;,2ert dependence for small values of V,,ert· Beyond 

a critical value of Vpert, the damping becomes smaller. 

Figure 6.4 displays the damping rate versus Bz for 'V;,ert = -0.1 Volts. It 

can be seen that the damping rate scales roughly as B;2 • 

6.2.2 Relation to Beat-Wave Theory 

One possible theoretical explanation of the above data is that the nonlinear 

interaction between the squeeze field and the diocotron mode produces a beat wave 

that interacts with resonant particles. This idea will become clearer with the aid 

of Table 6.1. The squeeze field is represented as a zero frequency wave with l == 0 

and kz = 7r / L9 • This wave interacts with the diocotron mode to produce a beat 

wave. The beat wave has mode numbers which are the sum of the two interacting 

waves. From Table 6.1, it can be seen that the beat wave is an l = 1, kz = 7r/L
9 

wave at the diocotron frequency, w. 

The predicted damping is essentially due to Landau damping of the beat 

wave, and is exponential with time. This prediction matches the observation of 

exponential damping in experiment in the small amplitude range. Furthermore, 

the decrease in damping rate above a certain amplitude could simply be due to 

modification of the velocity distribution, which could be expected to occur at larger 

amplitudes. 

The expected scaling of damping with 11,,ert can be derived using a heuristic 
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Azimuthal Mode Longitudinal mode Frequency 
Number Number 

Squeeze I= 0 k,=1r/L, w =0 

± Diocotron I= 1 kz = 0 w 

Beat Wave I= 1 k,=1r/L, w 

Table 6.1: Mode numbers and frequencies for squeeze, diocotron and beat waves. 

argument taken from a paper by Ott and Dum [23). The beat wave amplitude, q,, is 

proportional to the product of the diocotron amplitude, ¢d, and VJ>e"t: </>i, ex: r/>dVpe,.t· 

The damping rate of the diocotron mode is proportional to the ratio of the rate of 

energy dissipation by the beat wave and the energy associated with the diocotron 

mode, or 'Y ex: tPll ¢~. Combining the two proportionalities, we See that 'Y ex v~rt! 

which is the scaling seen in experiment. Note here that even though the diocotron 

wave is negative energy, the energy change to damp the diocotron wave while P1 is 

conserved is po.sitive (see Section 5.4). This means than energy must be ab.$orbed 

by the particle distribution in order to damp the diocotron wave. 

The scaling of damping versus Bz. is more complicated. The dam.ping will 

change in part because the resonant velocity is a function of Bz.. If Vre• is the 

resonant parallel velocity, then 

(6.1) 

where Wr is the plasma rotation frequency. Solving for Vre• 

Vre• Wr - W 158 --= =-- (6.2) 

where kz. = mtr/Lp, T = 1 eV, Rp/R,,, = 0.5, Lp = 26 cm, n = 107 cm-3 and B,. is 
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in gauss. From Crawford and O'Neil's theory, I is predicted to be 

V,!,., v,., [ 1 (""') '] -yoc ~ x -exp -- - . 
Bz V 2 V 

(6.3) 

The scaling of "Y versus B, can be obtained by using Eq. 6.2 in Eq. 6.3. The 

results of this calculation for k. = r. / L,, are plotted as the solid curve in Fig. 6.4, 

where the curve has been normalized to the experimental damping rate at B, = 

188 gauss. The peak in the curve is due to the fact that Vre• = V in the middle of 

the graph. Clearly this curve does not match experimental scaling. 

Higher k. modes may be important. The squeeze electric field is a square 

wave in z, so that it can be thought of as having higher k,. components. The scaling 

of "Y for k = 371' / L,, is plotted in Fig. 6.4 as the dotted curve, where a.gain it has 

been normalized so that it matches experimental damping rate at Bz = 188 gauss. 

This curve matches experimental scaling much better. For all higher k. modes, the 

exponential in Eq. 6.3 is near one, and the scaling is 'Y ex B;2 • 

The relative importance of the various kii modes of the squeeze electric 

field would require the evaluation of matrix elements in the theory of Crawford 

and O'Neil. This appears to be a difficult calculation, and I am left with an 

inconclusive result: theory matches the observed scaling of 'Y with Bii if higher k
1 

modes dominate, but there is no proof that this is the case. 

6.2.3 Radial Transport due to Squeeze 

Angular momentum should be conserved during the damping caused by 

the squeeze field as should electrostatic energy. This follows from the fact that 

the squeeze field is axisymmetric, and therefore Ps is a conserved quantity. Since 

Ps ex: E; rJ, this implies that the plasma must expand as its center moves to the 

axis of the conducting wall (i.e. D goes to zero). 

Radial profiles of a plasma undergoing this process are shown in Fig. 6.5. 
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Figure 6.5: Phase-locked radial profiles of the plasma before squeeze damping 
and after 30 dB of damping. The asymmetry in the 'before damping' profile is due 
to dwnp smearing and does not exist in the plasma. 
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The profiles ~ere taken with the phase-locked technique described in Chapter 4, 

and are scans approximately through the center of the plasma. It can be clearly 

seen that the, plasma is becoming more broad and that the density is dropping. 

Note that the asymmetry in the 'before damping' profile is due to dump smearing 

(see Section 4.2.1), and does not actually exist in the plasma. 

An experiment was performed to test the conservation of Pe. As was pre­

viously mentioned, P8 can be calculated from radial profiles without knowing the 

z-dependent structure of the plasma. This technique is somewhat complicated by 

the 8 dependence of the diocotron mode. This problem is solved by averaging: if a 

non-phase locked radial profile is taken of a plasma orbiting with a large diocotron 

mode, and if a large number of shots per radial point are taken, then the average 

of all the shots taken at that radius will give the 9-averaged density at that radius, 

The 9-averaged density profile can then be used to calculate P~ in the same way 

as for a centered profile. 

The results of using this averaging technique to measure Po are shown 

schematically in Fig. 6.6. The abscissa is the time after injection, the ordinate is the 

log of the diocotron amplitude. The numbers between· points are the changes in Po, 

expressed as percent of P6 right after injection. The changes during four different 

processes are shown. One process is plasma containment without the diocotron 

wave grown, in which case Po decreases by 3.0% in 0. 75 seconds, presumably due 

to external field errors. Another process is the growth of a diocotron wave by 25 dB 

using the resistive wall effect; in this case Po decreases by 16.3%. This relati\·ely 

large change is to be expected, since the wave growth is induced by asymmetric 

fields. 

A third process is the squeeze damping of the diocotron \vave, during which 

Ps is found to decrease by 2.1 %. Note that this rate of loss of Ps, about 4% per 
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Figure 6.6: Changes in angular momentum during resistive growth feedback 
damping compared to no growth and growth but no damping. 

second, is about the same as in the case where the diocotron mode is not grown. 

It is reasonable to assume that this loss is also due to external field errors. 

The final process measured was growth of the diocotron mode without 

squeeze damping. The loss rate of P1 is over two times the background rate in this 

case. This could be because of larger magnetic errors at bigger radius, or because 

of interactions with the wall, neither of which have been carefully studied. 

To summarize, in contrast to the loss of angular momentum during resistive 

growth, angular momentum change during squeeze damping decreased the same 

rate as during background external transport. This supports the basic theoretical 

idea that axisymmetric fields conserve angular momentum. 
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6.3 Magnetostatic l = 1 Field Perturbations {Tilt) 

In Ch.apter 2, the use of magnetic field tilt to create square, low noise 

plasmas was discussed. In this section I will discuss the experimentally observed 

scalings of the tilt transport with L'P, tilt angle and Bz . . 

An illuminating measure of the transport caused by tilt is the rate of mo­

mentum change, v, = (!/Po )(dPo/ dt). If the fields were perfectly cylindrically sym­

metric, angular momentum would be constant and Vp would be zero. A nonzero 

value of Vp must be due to either the background field errors, the magnetic field tilt, 

or both. The advantage of Vp is that it is a single number which gives a measure 

of the integrated effect of the non-symmetric part of the fields. 

The angular momentum, Pe, can be calculated directly from a radial profile 

using Eq. 2.5. An estimate of v11 can be made from two profiles taken at different 

confinement times. In practice, the two radial profiles are measured in a single 

radial scan. At each radial point, the confinement time is alternated on consecutive 

shots. A number of these pairs of density measurements are taken, and the densities 

at the two times are averaged separately. The difference in average density between 

the two times is calculated and then the collimator plate is moved to another radial 

location. This is essentially a form of coherent detection. 

Another measure of the transport rate i's the rate at which the central den­

sity decreMes, v0 = (1/n0 )(dn0 /dt). The typical initial radial profile is somewhat 

peaked at the center, and the field tilt causes this peak to go away. The value of v0 

was measured by eye: I measured the central density difference between two radial 

profiles with a ruler, averaging over irregularities. 

I define the tilt angle, D..() = (B:r: - B:r:,min)/Bz, to be the angle betv.'een B 

and the magnetic field direction where v0 is minimized. The values of Vp and v0 

versus tilt angle for three different containment cylinder lengths, Le, are shov;n in 
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Figure 6. 7: Transport rates Vp and v0 versus magnetic field tilt angle for three 
different confinement lengths. All data was taken with Bz = 94 gauss. 
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Figure 6.8: Transport rates vP and v0 versus magnetic field tilt at different values 
of Bz.. All data was taken for a confinement length of 35.6 cm. 
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Figure 6.9: Sensitivity of Vp to tilt angle versus B: 

Fig. 6.7. These transport rates were measured shortly after injection. All density 

changes were measured between an initial dump time of 0.017 seconds and a time 

at which PB had decreased by a few percent. The minimum of vP is located at 

approximately D,.() = 0. The tilt effect was measured at even shorter lengths, and 

very little effect was observed. 

The value of v,, at zero tilt angle is presumably due to background field 

errors. This transport has been previously found to scale approximately at a rate 

proportional to (L,/ B,)2 (see Section 2.6). The fact that the scaling shown in 

Fig. 6.7 does not scale as L; is not too suprising, since the data of Reference [10] 

has almost a decade of scatter and was taken for much longer confinement times. 

There is ~!early a strong length dependence to the data shown in Fig. 6.7. 
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The effect of tilt is much stronger in longer plasmas. 

Figure 6.8 displays vP and v0 versus tilt angle at different values of Bz for 

Lp = 35.6 cm. Again the curves have minimums near zero tilt angle, with the 

exception of the curve of v0 at B::: = 47 gauss. The tilt transport is a strong 

function of Bz, with the strongest effect for small Bi. To get a rough idea of how 

the transport scales with Bz., I measure the slope dv,,/dfJ near zero tilt angle and 

plot this slope versus Bi in Fig. 6.9. These measurements are factor of two at best. 

Nevertheless, Fig. 6.9 suggests that the effect of the tilt transport at a given tilt 

angle scales approximately as B;2
• 

The tilt transport also decreases shot-to-shot variability of the density mea­

surement. Fig. 6.10 displays the results of an experiment to compare the shot-to­

sbot variability of a plasma with the field tilted to the same plasma without the 

field tilted. A total of 64 shots were taken at each of several duzp.p times; each set 

of 64 was averaged to obtain nr and the standard deviation t5nr was calculated. 

Figure 6.10 plots nr and t5nr versus dump time. The tilt causes nr to decrease 

faster than without tilt, but causes t5nr to decrease even faster. An improvement 

of five to ten in shot-to-shot repeatability is usually found. In experiments where 

statistical averaging is used, this corresponds to 25 to 100 times fewer shots for the 

same uncertainty! 

The tilted profiles appear similar to thermal equilibrium shapes: the tem­

perature profiles are flat, and the density profiles are square. However, the edges 

are too steep for the measured temperatures. O'Neil and Driscoll [22], and also 

Prasad and O'Neil [25], have calculated the shapes of thermal equilibium p1rre 

electron plasmas. They find that for long plasmas (a few R,, in length), the radial 

profile thernial equilibrium shape is approximately square with an edge that de­

creases in density from 90% to 10% of the central density in a distance of abrJUt 
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Figure 6.10: Decrease in shot-to-shot noise due to tilt transport. The number 
of electrons collected with the collimator hole centered, Q(O), and the standard 
deviation of ihis signal for 64 shots, OQ(O), are plotted versus dump time. These 
curves are shown for three different situations: normal operation, with the squeeze 
perturbation, and with the tilt perturbation. 
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2.\n. The tilted profiles do not match this edge criterion. For example, the plasma 

in .Fig. 2.2b drops from 90% to 10% density in a distance of about 0.74 cm, but 

AD "' 0.83 cm. 

The thermal equilibrium plasma has a constant rotation frequency as a 

function of radius, i.e. it is a rigid rotor. The rotation rate is composed of an 

E x B drift and a diamagnetic (VP) drift, with the diamagnetic drift largest at 

the edge. The tilt profiles resemble a plasma in which only the E x B drift is a 

constant with radius. Perhaps the tilt causes an in~ernal mixing that is sensitive 

only to the E x B drift rate. 

The thermal equilibrium plasma state has been observed in the EV appa­

ratus, and this state typically has lower shot-to-shot jitter than the initial state. 

This is presumably because the final state is determined by initial total energy, 

angular momentum and number of particles; all of which have much less jitter 

than the initial radial density measurements. The final tilt shape appears to be an 

expanding square profile. Perhaps this expanding shape has greater shot-to-shot 

repeatability for reasons similar to those for the thermal equilibrium case. 

There will be electrons that are in resonance with the tilt perturbation. It 

may be that these particles are responsible for the transport. No one has yet has 

created a careful resonant particle theory for the tilt transport, or explained the . 
reason tilt caUses the transport to a profile that is flat in density and temperature. 

The tilt field is a simple perturbation with a dramatic signature; if it was explained, 

it could become a paradigm for transport due to field asymmetries. 



Appendix A 

Estimate of Electron Loss inside 
Collimator Hole 

When the plasma is dumped, exiting electrons encounter the collimator 

plate, and a fraction of them will go through the plate and be measured by the 

collector (see Fig. 2.1). lithe plate were infinitely thin, then the number that would 

pass through would be those electrons that happened to be inside the collimator 

hole when the electrons first encounter the plate. 

The plate actually has a thickness of 0.159 cm. Electrons will continue to 

spiral along cyclotron orbits while journeying through the c.ollimator hole, and a 

fraction of these will collide with the hole wall and be lost. In this appendix I 

estimate this fraction, and find that this fraction is 3%-4 % for the EV experiment 

at a temperature of 1 eV, independent of B 2 • , 

The collimator plate is biased to +158 V, so that all electrons will ha\'e at 

least 158 e V of energy at the plate. The cyclotron frequency for electrons is fc = 

2.8 Bz MHz , where Bz is in gauss. At an energy of 158 eV, an electron will travel 

an axial distance le = 266/ Bz cm during one cyclotron oscillation, and while iruide 

the plate will execute 

~ = 6 x 10-• B, (A.l) 

fractions of an orbit. 
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Figure A.1: Geometry of cyclotron orbits near collimator hole edge. 

The situation is illustrated by Fig. A.1. I assume that the collimator hole 

radius is much larger than the cyclotron radius, re, so that the hole edge can be 

considered straight. The coordinate x measures the location of the guiding centers. 

Assume that the density of guiding centers is constant over the collimator hole. 

Consider for the time being a group of electrons all with the same re. Note that 

only electrons with x > -re can collide with the hole edge. 

The position of electrons in their orbits will be random before electrons 

encounter the hole. The fraction of electrons with guiding centers at x passing 

through the hole is 

s + b.s 
Fraction passing through hole = 1 - .

2 
, 

1rr, 
(A.2) 

where s is the arc length of the cyclotron orbit that intersects the plate, and ~3 is 



the arc length the electron moves through while inside the hole. Note that 

D.s 
-=~. 
2'11'rc 

The arc length is given by 

S = 2rcCOS-l (- ;c) . 
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(A.3) 

(A.4) 

The fraction of electrons, f, in the range -r c < x < r c that pass through the 

collimator hole is given by averaging Eq. A.2 over x: 

f=- 1-~--cos-• -- dx. 1 1•<=•· [ 1 ( x )] 
2rc -re 1r Tc 

(A.5) 

Here, the upper limit is the point where 6.s = 211'rc - s, since all electrons will 

collide with the wall beyond this point. Assuming f1 < 1, and integrating Eq. A.5, 

1 
f = 2 - ~ + O(~'). (A.6) 

Equation A.6 can also be derived from a. symmetry argument. For each 

electron with guiding center at x and arc length s, there will be another electron 

at -x with arc length 21l'rc - s, as shown in Fig. A.1. Summing the two fractions, 

exactly half of the electrons in the range -r c < x < r c will pass through in the 

limit ll.s = 0. In addition, the effect of small .6.s is that a fraction f'/ of incoming 

electrons will collide while inside the hole. 

Using Eq. A.6, the overall correction to the collimator area can be esti-
' 

mated. The number of electrons lost while inside the hole is approximately the 

number of electrons in a strip 2re wide and 27rRh long times 1J· This is effectively 

a change in the collimator hole size by .6.Ah: 

.6.Ah::;:;;: _f'/27fRh2re = _411~. 
Ah 1rRX Rn 

(A.7) 

Equation A.7 can be averaged over particles with different re. The average 

radius of a cyclotron orbit is 

2.38Tl,1' 
re= cm, B, 

(A.8) 
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where T..L = perpendicular temperature in eV. 

Using Eqs. A.8 and A.l in Eq. A.7, and taking the hole radius R, = 0.159 

cm, the fractional area change is 

~~' "' -0.036 Tl1
' (A.9) 

At a typical' temperature of 1 eV, 3%-4% of the electrons will be lost to the 

collimator hole edges, independent of B%. 



Appendix B 

Image Charge 
.Geometry 

• 
Ill Cylindrical 

Consider an infinite, conducting cylindrical wall of radius Rw containing a 

line charge with charge per unit length -NLe (see Fig. 3.1, page 27). The line 

charge is displaced from the axis of the conducting wall by distance D. Define 

coordinates (r, 8) with origin at the wall axis, and with the line charge at 8 = O. 

We wish to solve for the potential <fl(r, 8) everywhere inside the conducting wall. 

The method of images is based upon the mathematical statement that 

the grounded wall can be replaced by a collection of 'image' charges outside the 

wall radius. These image charges, along with the line charge, satisfy the boundary 

condition «P(.R.u, 8) constant. Since the charge interior to the wall and the boundary 

condition are the same, the solution to Poisson's equation is identical (see Jackson 

[16, page 54]). Our goal here is to find the appropriate image for this case. 

Make the guess that the image charge is another line charge with opposite 

charge per length +NLe, and place this image at radius S. From symmetry, the 

image charge must lie along the same radial line (8 = 0) as the line charge. Using 

the solution of potential for an infinite line charge: 

~(r, 9) = - NLe [1n Vr' + D' - 2rD cos 9 - ln v'r2 + S' - 2rS coso] (B.1) 2,,.., 
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where the second term is the potential due to the image. Rewrite Eqn. B.1 as 

N,e [r /1 + D2 /r2 -2Doos9/r] 
<j;{r,9) =--In --'--;:-...:..---~ 

, , 21rEo S .j1+r'/S'-2rcas9/S 

If we make the choice S/ R,, = R,,/ D, then at r = R,, 

<j;(R,, 9) = - N,e In(.!!....) 
' 27T"EQ Ru, J 

{B.2) 

{B.3) 

which meets the boundary condition of constant potential at the wall. The ex­

pression for S is easiest to remember in normalized coordinates; d = D / Rw and 

s=S/R,,: 

(B.4) 



References 

[1) R. J. Briggs, J. D. Daugherty, and R. H. Levy. Role of landau damping in 
crossed-field electron beams and inviscid shear fl.ow. PhyJics of Fluids, 13:421, 
Feb 1970. 

[2) 0. Buneman. Ribbon beams. Journal of Electronic Control, 3:507, 1957. 

[3J 0. Buneman, R. H. Levy, and L. M. Linson. Stability of crossed-field electron 
beams. Journal of Applied Phy•i", 37:3203, July 1966. 

[4] J. D. Crawford and T. M. O'Neil. Nonlinear collective processes and the 
confinement of a pure-electron plasma. Physics of Fluids, 30:2076, 1987. 

[5) J. D. Crawford, T. M. O'Neil, and J. H. Malmberg. Effect of nonlinear collec­
tive processes on the confinement of a pure-electron plasma. Physical Review 
Letters, 54:697, 1985. 

[6] C. C. Cutler. Instability in hollow and strip electron beams. Journal of 
Applied Phy'i", 1028, Sep 1956. 

[7] Ronald C. Davidson. Theory of Nonneutral Pla,.,mas. W. A. Benjamin, Inc., 
1974. 

[8] J. S. deGrassie and J. H. Malmberg. Waves and transport in the pure electron 
plasma. Phy'i" of Fluid., 23:63, 1980. 

[9] M. H. Douglas and T. M. O'Neil. Transport of a nonneutral electron plasma 
due to electron collisions with neutral atoms. Phy.sica of Fluids, 21:920, 1978. 

[10) C. F. Driscoll, K. S. Fine, and J. H. Malmberg. Reduction of radial losses in 
a pure electron plasma. Phy&ica of FluidJ, 29:2015, 1986. 

[11] C. F. Driscoll and J. H. Malmberg. Length-dependent containment of a pure 
electron plasma. Physical Review Letter&, 50:167, 1983. 

[12) C. F. Driscoll, J. H. Malmberg, K. S. Fine, R. A. Smith, X-P. Huang, and 
R. W. Gould. Growth and decay of turbulent vortex structures in pure electron 
plasmas. In Proc. of 12th International Conference on Plasma Phyaic& and 
Controlled Nuclear Fu.sion, I.A.E.A., 1988. 

103 



[13] Andrew V. Haeff. The electron-wave tube-a novel method of generation and 
amplific~tion of microwave energy. Proceedings of the I. R. E., 37, 1949. 

[14] A. W. Hyatt. Measurement of the Anisotropic Temperature Relaxation Rate 
in a Magnetized Pure Electron Plasma. PhD thesis, University of California 
at San Diego, 1988. 

[15] A. W. Hyatt, C. F. Driscoll, and J. H. Malmberg. Measurement of the 
anisotropic temperature relaxation rate in a pure electron plasma. Physical 
Re1Jiew Letters, 59:2975, 1987. 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

J. D. Jackson. Classical Electrodynamics, Second Edition. John Wiley and 
Sons, 1975. 

C. A. Kapetanakos and A. W. Trivelpiece. Diagnostics of non-neutral plas­
mas using an induced-current electrostatic probe. Journal of Applied Physics, 
42:4841, 1971. 

R. H. Levy. Two new results in cylindrical diocotron theory. Physics of Fluids, 
11:920, 1968. 

J. H. Malmberg and C. F. Driscoll. Long-time containment of a pure electron 
plasma. Physical Review Letters, 44:654, 1980. 

J. H. Malmberg and T. M. O'Neil. Pure electron plasma, liquid and crystal. 
Physical Review Letters, 39:1333, 1977. 

T. M. O'Neil. A confinement theorem for nonneutral plasmas. Physics of 
Fluid.., 23:2216, 1980. 

T. M. O'Neil and C. F. Driscoll. Transport to thermal equilibrium of a pure 
electron plasma. Physics of Flu.ids, 22:266, 1979. 

Edward Ott and Christian Thomas Dum. Nonlinear landau damping and beat 
wave trapping. Physics of Flu.ids, 14:959, 1971. 

S. A. Prasad and J. H. Malmberg. A nonlinear diocotron mode. Physic3 of 
Fluid•, 29:2196, 1986. . 

S. A. Prasad and T. M. O'Neil. Finite length thermal equilibria of a pure 
electron plasma. Physics of Flu.ids, 22:278, 1979. 

S. A. Pr~ad and T. M. O'Neil. Vlasov theory of electrostatic modes in a finite 
length plasma. Physics of Flu.ids, 27:206, 1984. 

S. A. Prasad and T. M. O'Neil. Waves in a pure electron plasma of finite 
length. Phy•ica of Fluid•, 26:665, 1983. 

104 



[28] R. A. Smith, M. N. Rosenbluth, C. F. Driscoll, and T. M. O'Neil. Two­
dimensional shear instabilities in a pure electron plasma. Bull. Am. Phy!. 
Soc., 33, 1988. To be published. 

[29] H.F. Webster. Breakup of hollow electron beams. Journal of Applied Phy8ic8, 
1386, 1955. 

[30] W. D. White and J. H. Malmberg. Feedback damping of the l = 1 diocotron 
wave. Bull. Am. Phy•. Soc., 27:1031, 1982. 

[31] W. D. White, J. H. Malmberg, and C. F. Driscoll. Resistive wall destabiliza­
tion of diocotron waves. Phy4ical Review Letter,,, 49:1822, 1982. 

105 



' 
·' I 
j 
I 

I 
' 

I 

I 

l 
I 
1 

' 
' ' 
'' 

l 
1 
\ 
i 


	KSF_a
	KSF_B
	KSF_C



