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Abstract. The inviscid damping of an elliptical perturbation on a 2D vortex is ex-
amined experimentally and theoretically. The perturbation is generated by an impulse
at the wall. Initially, the quadrupole moment (ellipticity) of the perturbation decays
exponentially. This result is significant, since arbitrary perturbations need not decay
exponentially. The decay rate is given by a “Landau pole” of the equilibrium pro-
file. When the Landau damping is weak, the vorticity perturbation, in addition to the
quadrupole moment, behaves like an exponentially damped mode. This “quasi-mode”
is actually a wave-packet of exceptional continuum modes that decays as the continuum
modes disperse.

The inviscid relaxation of a 2D vortex after a weak external impulse is studied
experimentally and theoretically. In the experiments, the 2D fluid is a strongly
magnetized electron plasma in a cylindrical Penning trap, with wall radius R,, [1,2].
These electron plasmas have negligible viscosity and are governed approximately
by the 2D Euler equations:

OC/ot+7-V(=0, T=2xVep, and V= (1)

Here, #(r, 0,t) is the (E x B drift) velocity field in the plane perpendicular to the
trap-axis, ((r,0,t) = 2 -V x ¥/ is the vorticity, and ¢(r, 0,t) is a stream function.
The boundary condition is ¥ = 0 at R,,.

EXPERIMENTS

Figure 1 shows two experiments that illustrate the process of “inviscid damp-
ing” [2-8]. In both experiments, we excite an elliptical (m = 2) perturbation on
an initially circular vortex. The initial vorticity distribution (,(r) and the initial
rotation frequency €,(r) are monotonically decreasing functions of radius, making
the vortex stable [4]. In experiment (a), the impulse excites an undamped elliptical
mode, with frequency w. The fluid rotation is resonant with this mode at a radius
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FIGURE 1. Experiments. a) An undamped mode is excited, with critical radius r, outside
the vortex. b) Inviscid damping occurs when r. is inside the vortex. In both experiments, the
unperturbed vorticity {,(r) decreases monotonically with . Time is measured in central rotation
periods: T =t - Q,(0)/27.

T, defined by 2Q,(r.) = w, and this critical radius lies outside the vortex. The
vortex in (b) is similar to the vortex in (a), except that (,(r) extends past the
critical radius r.. The excited mode is now damped by resonant mixing of vorticity
at r.. This inviscid damping is analogous to collisionless Landau damping, where
a compressional plasma wave decays due to its interaction with charged particles
that travel at the same velocity as the wave [4].

Figure 2 shows the evolution of the quadrupole moment ()5 of the perturbation
in Fig. 1(b). We define the quadrupole moment by the equation

Qe = /ORU dr r36¢® (r,t), (2)

where R, is the vortex radius, and 6¢® is the m = 2 Fourier component of the
vorticity perturbation. The amplitude of ()5 is a measure of ellipticity. Also plotted
in Fig. 2 is the theoretical linear response of the vortex to an externally applied
d(t) impulse. Initially, there is good agreement between linear theory and the
experiment. However, after 5 rotations, the experiment diverges from linear theory,
and the amplitude of () begins to oscillate. These nonlinear oscillations are due
to mixing of trapped vorticity at r.. Eventually, the amplitude saturates, and the
vortex relaxes to a rotating “cat’s eyes” equilibrium [Fig. 1(b), far right].

For the remainder of this paper, we focus on the initial linear decay, which prop-
erly describes the evolution for arbitrarily long times if the amplitude is sufficiently
small [2]. Figure 2 indicates that the initial decay of () is approximately exponen-
tial, i.e. |Q2(t)| & |@2(0)|e~7". This result is generic to the experiments, and is sig-
nificant, since arbitrary linear perturbations need not decay exponentially. Of equal
interest is that, when the damping is weak (7/w << 1), the actual vorticity pertur-
bation behaves like an exponentially damped eigenmode: §((r,t) =~ £(r)e e,
for 7 S r.. This perturbation is referred to as a “quasi-mode”, since it is not an
exact eigenmode of the Euler equations.
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FIGURE 2. Typical evolution of the quadrupole moment, 2. The X’s give (5 for the experi-
ment in Fig. 1(b). The diamonds correspond to linear theory. The dashed line is an exponential
fit to the initial decay.

LINEAR EIGENMODE THEORY

As pointed out by Case [9], a linear vorticity perturbation varying as e™? can

be viewed as a sum of discrete modes plus an integral of continuum modes (also
called “shear-waves”) [9-11]:

5C(r,t) = 3 Awa)&alr)e et + / dw A(W)E, (r)e " 3)

We will use the index k£ to refer to both discrete and continuum modes. These
eigenmodes satisfy the following integral eigenvalue equation:

O, (rE(r) — ) [ G a0 = wdl) )

where (! is the radial derivative of the equilibrium vorticity. The Green’s function
m 2m
in Eq. (4) is given by G, (r|r') = -5 (T—<) 1-— (T—>) ] . Here, 7~ (r<) is the

% > Rw

greater (smaller) of 7 and r'.

The eigenmodes can be obtained numerically by discretizing Eq. (4) in r. This
leads to a standard matrix eigenvalue equation, Y=; M;;&(r;) = wilk(rs). If there
are N radial grid-points between 0 and R,, then a solution to the matrix equa-
tion gives N eigenmodes. Any linear initial value problem can be solved numeri-
cally with a superposition of these eigenmodes: 6¢(r,t) ~ YN A(wy )& (r)e @kt
The solution generally breaks down for times greater than the minimum value
of 2 /mQ, Ar, where Ar is the radial grid-point spacing and Q/(r) is the radial
derivative of the rotation frequency.

When there are no discrete modes, the perturbation consists entirely of con-
tinuum modes. It is common (but often misleading) to view this perturbation
intuitively as a passive scalar in the equilibrium shear flow. However, a quasi-mode
is a superposition of continuum modes that does not behave like a passive scalar.
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FIGURE 3. Equilibrium profiles and (m = 2) radial eigenfunctions for a top-hat vortex with a
discrete mode (a), and a top-hat vortex with a quasi-mode (b).

One goal of this paper is to clarify how the “phase-mixing” of continuum modes is
consistent with the observed quasi-modes.

It is useful to compare a quasi-mode, which exists when ¢/(r.) < 0, to an un-
damped discrete mode, which exists when /(r.) = 0. Figure 3(a) shows the m = 2
eigenmodes of a “top-hat” vortex, similar to that studied by Kelvin [12]. This top-
hat supports a single discrete mode, which has a critical radius r. > R,, and a set of
continuum modes that have eigenfrequencies in the range 2Q,(R,) < wi < 2§2,(0).
Figure 3(b) shows the eigenmodes of a similar vortex, with a skirt of vorticity that
tapers past r.. The negative vorticity gradient at r. causes the discrete mode to
be replaced by a wave-packet of continuum modes. The continuum modes in this
wave-packet are labelled “exceptional” in Fig. 3(b), since they are approximately
the same as the original discrete mode. The only noticeable difference is that each
continuum mode has a singular spike near r., where the fluid rotation is resonant
with the mode. As we will soon see, the wave-packet that replaces the undamped
discrete mode evolves as a quasi-mode, which decays exponentially (at early times)
as the continuum modes disperse.

LINEAR RESPONSE TO AN IMPULSE

We now consider the response of the vortices in Fig. 3 to a brief external impulse,
of strength €. The impulse is applied at the wall, and creates an instantaneous
“external” stream function, e (r,0,t) = &6(t)(r/Ry,)*??. A straight-forward
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FIGURE 4. The (m = 2) eigenmode amplitudes after an impulse is applied to a top-hat vortex
with a discrete mode (a), and a top-hat vortex with a quasi-mode (b).

calculation shows that, for a monotonic vortex, the complex amplitude of each
eigenmode (immediately) after the impulse is given by

y 2e <§k,7”Cé>__Z~ 2 fodr r3&(r)
A =G ) ~ e ) (5)

Here, (f,h) is short-hand for the inner-product [, dr r2f*(r)h(r)/|C.(r)|. Equa-
tion (5) indicates that the excitation of an eigenmode is proportional to its (scaled)
multipole moment (here the quadrupole moment, since m = 2). In this sense, the
system exhibits reciprocity: the eigenmodes that produce the largest external fields
are also the most sensitive to excitation by a brief external impulse.

Figure 4 shows the response of both vortices in Fig. 3 to an external impulse.
In case (a), the discrete mode is excited about 100 times more strongly than any
of the continuum modes. In case (b), a similar initial perturbation is excited,
but it now decomposes into a sharply peaked distribution of continuum modes.
The continuum modes in the peak region are exceptional, in that they are similar
in form to the original discrete mode (see Fig. 3). Due to this similarity, and
the sharply peaked distribution, the excitation will behave like an exponentially
damped version of the original discrete mode. The decay rate v of this quasi-mode
is proportional to the width of the peak in A(wg). Note that the simple mode-
like behavior of the excitation breaks down near r., where the continuum modes
have singular spikes. Here, the perturbation forms filaments, like those seen in the
experiments [Fig. 1(b)].

The evolution of the quadrupole moment of the excitation in case (b) is shown
in Fig. 5. At early times, the amplitude of Q> decays exponentially. The inset
shows that, for » S 7., the vorticity perturbation merely decays as a damped
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FIGURE 5. Evolution of an excited quasi-mode on a top-hat vortex [Fig. 3(b)]. The dashed
line is exponential Landau damping, given by Eq. (6). The vorticity perturbation (inset) behaves
like a damped, rotating mode (for 7' < 100 and r < 7). The ‘+’ and ‘—’ signs indicate regions of
positive and negative vorticity perturbation.

mode, without shearing apart. Near r., the perturbation actually grows to a finite
amplitude and then filaments (not visible). Eventually, the decay of @y turns
algebraic, as it must for all linear perturbations on a stable vortex that has no
discrete modes [4].

Exponential decay of ()5 is apparently the “generic” evolution after an exter-
nal impulse excitation. This is significant, since arbitrary perturbations can (and
often do) evolve with no stage of exponential decay. However, the possibility of
exponential decay has been known for some time. A general solution to the initial
value problem shows that any perturbation will have a contribution from a “Lan-
dau pole” of the equilibrium profile [4-6]. This contribution behaves exactly like
an exponentially damped mode, but never represents a complete solution to the
initial value problem.

The Landau pole for the top-hat profile in Fig. 3(b) gives the following exponen-

tial decay rate [4]:
v =T (2) - ()T ©

where 7, is the radius at which ¢ is maximal. Equation (6) is derived in Ref.
[4], under the assumption that (/(r.) is close to zero. The dashed line in Fig. 5
corresponds to exponential decay that is given solely by the Landau pole [Eq. (6)].
Clearly, the Landau pole gives the correct decay rate of an impulse generated
perturbation on a top-hat vortex.

Figure 6 shows the response of a Gaussian vortex, (,(r) = e¢ , to an
external impulse. As before, the initial decay of ()5 is exponential and dominated
by the Landau pole. Here, the Landau pole was calculated numerically, using the
method of Spencer and Rasband [6].
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FIGURE 6. Decay of an impulse generated perturbation on a Gaussian vortex. The dashed

line corresponds to the exponential decay that is given by a Landau pole, which is calculated

numerically [6].

Although @, decays exponentially, the vorticity perturbation (inset) does not
behave like an exponentially damped mode. This is due to the large decay rate
v/w = .35, compared to the previous case where v/w = 0.01. Because 7 is large, the
excitation has a broadly peaked distribution of continuum modes, with resonant
radii (and singular spikes) spanning most of the vortex. The evolution of such
perturbations is characterized by the “spiral wind-up” [13-15] that is observed
here.

SUMMARY

In this paper, we examined the inviscid damping of elliptical perturbations on
a 2D vortex. Specifically, we considered perturbations that were generated by
an impulse, applied at the wall. It was shown that, in general, exponential Lan-
dau damping properly describes the initial decay of the perturbation’s quadrupole
moment ()2, despite the fact that arbitrary perturbations need not decay expo-
nentially. We also showed that when Landau damping is weak (v/w << 1), the
vorticity perturbation 6¢ behaves like an exponentially damped mode (for 7 < 7).
This quasi-mode was identified as a wave-packet of exceptional continuum modes
that decays exponentially as the continuum modes disperse. When Landau damp-
ing is strong (y/w ~ 1), the vorticity perturbation exhibits spiral wind-up, and
does not resemble a mode.
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