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This paper derives an expression for the rate of collisional slowing of charges in a magnetized

plasma for which rc< kD, where rc is the mean thermal cyclotron radius and kD is the Debye

length. The rate depends on a new fundamental length scale d that separates collisions into two

impact parameter ranges that yield different slowing rates: a Boltzmann rate due to isolated binary

collisions for impact parameters q< d and a Fokker-Planck rate due to multiple small scatterings

for q> d. Slowing due to Boltzmann collisions is also shown to depend on the sign of the Coulomb

interaction: for repulsive interactions, the slowing is enhanced by “collisional caging,” while for

attractive interactions the Boltzmann slowing rate is zero. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4876749]

I. INTRODUCTION

The rate at which charged particles slow due to collisions

with surrounding charges is important to a number of physical

processes, including runaway electrons in magnetically con-

fined fusion plasmas,1 magnetic reconnection in collisional

regimes,2 and the growth rate of nonideal plasma instabilities

such as collisional drift waves.3 In many such cases, a mag-

netic field affects the plasma dynamics. This paper presents a

calculation of the slowing-down rate in a weakly coupled

thermal plasma for which rc< kD where rc is the mean ther-

mal cyclotron radius of the two colliding species and kD is the

Debye length. We focus on collisional slowing of motion par-

allel to the magnetic field, due only to charge-charge colli-

sions, with the charges treated as classical point particles. For

electrons with density ne in a magnetic field B, the regime

rce< kDe requires B > 32 gauss
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne=108cm�3

p
. Many plas-

mas have one or more species which satisfy rc< kD such as

the low density edge in a tokamak plasma, the solar plasma

near sunspots, and non-neutral plasmas. However, a precise

theory of the parallel slowing rate has not been formulated for

plasmas in this regime.

We will show that parallel slowing in this regime can be

strongly enhanced by collisions with impact parameters q in

the range rc< q< kD. Such collisions are described by guid-

ing centers interacting as they move in one dimension (1D)

along the magnetic field (see Fig. 1).4 These 1D long-range

(compared to rc) collisions are not included in the well-known

classical collision rates5,6 or transport coefficients7–9 produced

by short-range (q< rc) collisions that scatter the cyclotron ve-

locity vectors. Long-range collisions have been shown previ-

ously to lead to enhanced cross-field diffusion,10,11 viscosity,9

and thermal conduction15,16 in the regime rc< kD. Long-range

collisions have also been considered for electron-ion collisions

in a regime of intermediate magnetization, where electrons

satisfy rce< kD but ions are effectively unmagnetized.12–14

Here, we focus on the regime of long-range collisions where

both colliding species have cyclotron radii small compared

to kD.

We will show that in this regime the 1D long-range

collisions separate into two types: Boltzmann collisions

where the colliding particles can be treated as isolated pairs,

and Fokker-Planck (FP) collisions where many weak colli-

sions are happening simultaneously. We will find that the

Boltzmann collisions occur for impact parameters in the

range q< d, whereas the FP collisions occur for q> d. Here,

we introduce the distance d, a novel but fundamental length

scale given by the expression

d � ½ðjeiejj=lÞ3=D2�1=5: (1)

Here, ei and ej are the charges of the colliding species i and j,
l�mimj(miþmj) is their reduced mass, and D¼DiþDj is

the diffusion coefficient for relative parallel velocity, with Di

and Dj being the parallel velocity diffusion coefficients6 for

each species. The parallel slowing down rate �i of species i
is related to the diffusion coefficient Di by the Einstein

relation

�i ¼ Dimi=T; (2)

where T is the plasma temperature.

In order to see how d enters the theory of 1D long-range

collisions, note that Boltzmann theory for such collisions

assumes an isolated 1D binary interaction. Such an interac-

tion is shown in Fig. 1. Two guiding centers on different field

lines separated by distance q> rc approach one another.

Energy and momentum conservation then imply the two

charges either reflect from one another, exchanging their

parallel velocities, or pass by, with velocities unchanged. In

FIG. 1. 1D collision between two guiding centers labelled i and j on field

lines separated by impact parameter q, where q> rc.
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Boltzmann theory, only those collisions that result in reflec-

tions have an effect on the slowing rate. Furthermore, reflec-

tions via the Coulomb potential occur only if the initial

relative parallel speed jvzi
� vzj

j is less than (2eiej/lq)1=2.

This sets a timescale tB � qðjeiejj=lqÞ�1=2
for the reflec-

tions. This timescale becomes large for large q because

well-separated particles must move slowly for their weak

interaction to produce a reflection.

However, the collision can be regarded as isolated only if

surrounding plasma charges do not interfere. These surround-

ing particles cause the colliding pair to diffuse in parallel ve-

locity during the collision, and this diffusion must be small

over the time tB in order for the Boltzmann analysis to be valid.

That is, ðDtBÞ1=2 < ðjeiejj=lqÞ1=2
. Substituting for tB and rear-

ranging shows that only for q< d is Boltzmann theory valid.

On the other hand, for q> d, particles diffuse in velocity

before a collision can be completed so reflections need not be

considered. This is the regime where FP theory works.

We will therefore derive the slowing down rate for each

theory, applying the results only to their relevant impact pa-

rameter range. We will then test this intuition using a Monte-

Carlo simulation based on a nonlinear Langevin equation

that describes the Coulomb interaction between a particle

pair and also includes the diffusive influence of other par-

ticles on the pair.

In the Monte Carlo simulation, we will find that in the

Boltzmann regime q< d, the collision rate is enhanced by

the effect of “collisional caging,”10 for like-sign particles

(with eiej> 0). That is, 1D collisions do not occur only once:

parallel velocity diffusion due to the interactions of the col-

liding pair with surrounding charges eventually causes the

relative velocity of the pair to reverse, so that the pair col-

lides again. The correlation time of such a collision is

enhanced by the effect of surrounding particles, hence the

term collisional caging.

Caging is usually associated with strongly coupled sys-

tems like liquids, but it occurs here, in a weakly coupled

plasma, because of the 1D dynamics imposed by the strong

magnetic field. In contrast, multiple encounters happen rarely

if the charges can wander in 2 or 3 dimensions. A similar

caging effect was previously found to enhance both plasma

viscosity17 and spatial diffusion across the magnetic field.4

The distance d is not relevant for the 3D collisions

considered in previous theories of collisional slowing. For

3D collisions, where the particles cyclotron velocities are

scattered, Boltzmann theory and FP theory give the same

answer for the collision rate, since the rate is dominated by

small angle scattering.6 But small angle scattering does not

occur in 1D collisions, and consequently Boltzmann and FP

theory give different results. For example, for isolated 1D

collisions between oppositely charged particles, there are no

reflections and particles simply pass by without net velocity

change. Hence, Boltzmann analysis would imply no colli-

sional slowing from such collisions. However, we will see

that FP analysis yields a finite result that is independent of

the sign of the charges.

In Sec. II, we set up the collisional slowing problem

using a Green-Kubo expression for parallel velocity diffu-

sion. In Sec. III, we evaluate the Green-Kubo formula by

using the simplest version of FP theory for 1D long-range

collisions, which employs the technique of Integration Along

Unperturbed Orbits (IUO). In Sec. IV, we derive the velocity

diffusion using Boltzmann theory, showing that the result

differs from the previous FP theory. In Sec. V A, we intro-

duce a Langevin model for the collisional dynamics and

reconsider FP theory based on this model, without assuming

IUO. We show that the answer for the velocity diffusion is

the same as for the previous FP theory assuming IUO.

In Sec. V B, we simulate the Langevin model without

making any approximations, using a Monte Carlo method,

and connect the results of the model to the theory. We find

an enhancement of the velocity diffusion coefficient (and

hence the slowing rate) due to the aforementioned collisional

caging effect, provided the colliding charges are of like sign.

This enhancement depends on the velocity diffusion coeffi-

cient itself, and is largest as D ! 0þ. In Sec. V C, we con-

sider this limit by rescaling variables in such a way that the

Langevin equations of motion are independent of D in the

D! 0þ limit. In Sec. VI, we consider an equivalent

Fokker-Planck model of the D ! 0þ limit and re-derive the

diffusion coefficient as a test of the MC simulation. In

Sec. VII, we summarize the results and use them to evaluate

the diffusion coefficient and slowing rate to logarithmic

accuracy. In Sec. VIII, we discuss the results. In the

Appendix, we include details of the numerical solution of the

FP equation used in Sec. VI.

II. GREEN-KUBO FORMULA FOR VELOCITY
DIFFUSION

The equation of motion for the axial velocity vzi of

charge i at position ri¼ (xi, yi, zi) in a plasma of N charges in

a uniform magnetic field Bẑ is

mi
dvzi

dt
¼
XN

j6¼i

eiej
zi � zj

jri � rjj3
: (3)

By considering the velocity to be a stochastic process, the

velocity diffusion coefficient Di for particle i can be obtained

from the Green-Kubo formula

Di ¼
ð1
0

dt
dvzi

dt
ðtÞ dvzi

dt
ð0Þ

� �
; (4)

where the average is over an ensemble of realizations, i.e.,

over different initial positions and velocities of the plasma

particles. We assume that the plasma is weakly coupled, so

only 2 particle collisions need be considered, and the only

important terms in Eq. (3) involve particle pairs correlated

only to their own initial positions:

Di¼
XN

j 6¼i

eiej

mi

� �2ð1
0

dt
ziðtÞ� zjðtÞ
jriðtÞ� rjðtÞj3

zið0Þ� zjð0Þ
jrið0Þ�rjð0Þj3

* +
: (5)

By directly evaluating the average as an integral over rela-

tive position and velocity of particles i and j, Eq. (5) can be

written as
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Di ¼
X

j

eiej

mi

� �2

Nj

ð1
0

dt

ð
d3r0

V

ð
dvz0

fijðvz0
Þ zðtÞ

rðtÞ3

* +
z0

r0
3
: (6)

Here, the sum is a sum over species, Nj� 1 is the number of

particles in species j, V is the system volume, r(t)¼ (x(t),
y(t), z(t)) is the relative position of particles i and j with rela-

tive initial position r0¼ (x0, y0, z0), rðtÞ ¼ jrðtÞj, and

r0 ¼ jr0j. The function fij(vz0) is the distribution (normalized

to unity) of the initial relative velocity vz0, assumed to be

Maxwellian with temperature T, and the remaining average

h�i is over the initial positions and velocities of the other

N� 2 charges.

Finally, we will find it useful to write Eq. (6) as

Di ¼
X

j

eiej

mi

� �
nj

ð
d3r0

ð
dvz0

fijðvz0
ÞhDviji

z0

r0
3
; (7)

where nj is the density of species j, and hDviji is the velocity

kick given to particle i due to its interaction with particle j
averaged over initial coordinates of the other N� 2 charges:

hDviji �
eiej

mi

ð1
0

dt
zðtÞ
rðtÞ3

* +
: (8)

III. EVALUATION OF D USING INTEGRATION ALONG
UNPERTURBED ORBITS

Both the FP and Boltzmann approaches can be used to

evaluate the required integrals in Eqs. (7) and (8), but each

approach is, by itself, inadequate. In the simplest version of

FP theory, one assumes that particle-particle interactions

have only a small effect, so that one can use unperturbed

orbits: zðtÞ ¼ z0 þ vz0
t; xðtÞ ¼ x0; yðtÞ ¼ y0. Substituting

these orbits in Eq. (8) and performing the time integral yield

the following expression for the velocity kick Dvij, provided

that vz0 is nonzero:

DvIUO
ij ¼ eiej=mi

vz0
r0

; vz0
6¼ 0 : (9)

However, this expression is odd in vz0 and even in z0, so it

clearly yields zero when integrated over vz0 and z0 in Eq. (7).

In IUO, the diffusion is due only to particles with initial rela-

tive velocity vz0¼ 0, i.e., a resonant interaction that lasts for

a long time.

A slightly more sophisticated approach must be employed

to evaluate the velocity kick in this case. Equation (8) can be

expressed in terms of the Fourier transform of the interaction:

Dvij ¼ �
eiej

mi

ð1
0

dt

ð
d3k

ð2pÞ3
4pikz

k2
eik�rðtÞ : (10)

Performing the time integral using the unperturbed orbits

yields

DvIUO
ij ¼�

eiej

mi

ð
d3k

ð2pÞ3
4pikz

k2
eik�r0 pdðkzvz0

Þþ iP

kzvz0

� �
; (11)

where P stands for the principal part of the expression. The

first term in the bracket in Eq. (11) is due to resonant interac-

tions, which were not accounted for previously. Performing

the wavenumber integrals yields

DvIUO
ij ¼ eiej

mi
2dðvz0

Þ sinh�1ðz0=qÞ
r0

þ P

vz0
r0

 !
; (12)

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ y2
0

p
is the impact parameter of the colli-

sion. The first term in the bracket in Eq. (12) is the required

form of the velocity kick due to resonant interactions, while

the second term is the same as Eq. (9). Only the first term,

even in vz0 and odd in z0, contributes to the integrand in Eq.

(7) which is also even in vz0 and odd in z0.

When Eq. (12) is employed in Eq. (7) and the integrals

over z0 and vz0 are performed, we are left with a logarithmi-

cally divergent integral over impact parameter:

DIUO
i ¼

X
j

2
eiej

mi

� �2

njfijð0Þ
ð

2p
dq
q
; (13)

where fijð0Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pT=l

p
. This result can also be obtained

from the Rostoker collision operator18 applied to plasmas

with rc< kD.4 The divergences in the q integral are com-

monly dealt with by arguing that Debye shielding cuts off

the interaction when q> kD. For the lower bound, we note

that interactions with q<Max(rc, b) are not dealt with prop-

erly in 1D IUO, where b ¼ jeiejj=T is the distance of closest

approach. This argument implies

DIUO
i ¼

X
j

4p
eiej

mi

� �2

njfijð0ÞlogðkD=Maxðb; rcÞÞ : (14)

However, we will see that this result is incorrect, as it

neglects the effects of Boltzmann collisions and caging.

IV. EVALUATION OF D USING BOLTZMANN
COLLISIONS

The previous evaluation can be improved by using exact

particle trajectories for the relative axial motion of the collid-

ing pair, rather than IUO. However, we still neglect interac-

tions with the other N� 2 charges, so we drop the average in

Eq. (8). Energy conservation in such an isolated collision

implies that the relative velocity vz must satisfy

1

2
lv2

z þ
eiejffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ z2

p ¼ 1

2
lv2

z0
þ eiejffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ z2
0

p : (15)

This implies that the final velocity (z! 61) is given by

vzf
¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

z0
þ 2

eiej

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ z2

0

p
s

: (16)

The sign of vzf is determined by whether or not a reflection

occurred. Reflections occur provided that particles are mov-

ing toward z¼ 0 initially (i.e., vz0z0� 0), and that a turning

point exists in the orbit; this requires
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eiej

q
� 1

2
lv2

z0
þ eiej

r0

: (17)

The total change Dv in relative velocity in the collision is,

therefore,

Dv ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

z0
þ 2

eiej

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ z2

0

p
s

� vz0
: (18)

Here, s is the sign of the final velocity, which equals the sign

of the initial velocity when no reflection occurs, and is oppo-

site in sign otherwise.

However, only that portion of Dv that is even in vz0

enters into the diffusion coefficient, because fij is even in vz0.

This even portion is nonzero only for speeds in the range

given by Eq. (17) where reflection occurs, and is therefore

given by

Dveven ¼ Signðz0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

z0
þ 2

eiej

lr0

r
; v2

z0
� 2eiej

l
1

q
� 1

r0

� �
0; otherwise

:

8<
:

(19)

Note that this result vanishes for attractive interactions where

no reflection occurs.19 The velocity dependence of Eq. (19)

replaces the delta function of Eq. (12), noting that momen-

tum conservation implies that the above change in relative

velocity is related to the change in the velocity of particle i
through Dvij even ¼ lDveven=mi.

The integrals over z0 and vz0 in Eq. (7) can then be easily

carried out. At this point, it is useful to scale the variables.

We will scale positions by impact parameter q: �r � r=q; and

times by tB ¼ ðlq3=jeiejjÞ1=2 : �t � t=tB. Thus, velocities are

scaled by V � q=tB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jeiejj=lq

p
; �vz0
� vz0

=V.

We can simplify Eq. (7) by noting that the scaled veloc-

ities �vz0 that contribute to the integrand in Eq. (7) are of

order unity [see Eq. (19)], and such velocities are small com-

pared to the relative thermal speed
ffiffiffiffiffiffiffiffi
T=l

p
provided that

impact parameters satisfy q> b. We can therefore replace

fij(vz0) by fij(0) in Eq. (7).

In these scaled variables, Eq. (7) becomes

DB
i ¼

X
j

eiej

mi

� �2

SignðeiejÞnjfijð0Þ
ð

2pdq
q

ð1
�1

d�vz0

	
ð1
�1

d�z0

�z0

ð1þ �z2
0Þ

3=2
D�veven ; (20)

where D�veven ¼ Dveven=V. Using Eq. (19), it is not difficult

to show that this function is independent of q, so that D�veven

¼ D�vevenð�z0; j�vz0
jÞ. Then the required integral over �z0 in Eq.

(20) is a function only of j�vz0
j, which we denote by �gðj�vz0

jÞ:

�gðj�vz0
jÞ � SignðeiejÞ

ð
d�z0

�z0

ð1þ z2
0Þ

3=2
D�veven: (21)

For attractive interactions, �g ¼ 0, while for repulsive interac-

tions, substitution of Eq. (19) for Dveven yields

�gðj�vz0
jÞ ¼

2

3
23=2 � j�vz0

j3
� �

; j�vz0
j �

ffiffiffi
2
p

0; j�vz0
j �

ffiffiffi
2
p

:

8><
>: (22)

This function of velocity is plotted in Fig. 2. Integrating �g
over scaled velocity then yields a factor of 4, which when

used in Eq. (20) implies

DiBoltzmann¼
X

j

4
eiej

mi

� �2

njfijð0Þ
ð

2p
dq
q
; eiej > 0

0; eiej < 0:

8>><
>>: (23)

For a repulsive interaction, this result is a factor of two larger

than the IUO calculation of Eq. (13), while for an attractive

interaction there is no diffusion at all in Boltzmann theory.

The discrepancy between Boltzmann and FP theory for re-

pulsive interactions was also derived, but not resolved, in

Ref. 4. The discrepancy for attractive interactions was also

mentioned in Ref. 13 without considering the implications

for collision rates.

V. EVALUATION OF D USING A LANGEVIN MODEL

A. Estimate and Fokker-Planck theory

In order to resolve the apparent contradiction between

the Boltzmann result of Eq. (23) and the FP/IUO result of

Eq. (13), we must take into account that these results apply

only for certain ranges of the impact parameter q: FP

theory works only for q> d and the Boltzmann result

(modified by collisional caging) works only for q< d.

Collisions with impact parameters q< d occur sufficiently

rapidly that they can be regarded as isolated events well-

described by Boltzmann theory, but collisions with q> d
happen so slowly that velocity diffusion dominates the par-

ticle orbits.

This intuition suggests that the diffusion coefficient due

to long-range collisions is given by a sum of the Boltzmann

result, evaluated for impact parameters q< d, and the FP

result, evaluated for q> d. Using Eqs. (13) and (23) then

yields the preliminary estimate

FIG. 2. The function �g, plotted versus scaled velocity �vz0
, for repulsive

Boltzmann collisions (solid line; see Eq. (22)) and attractive Boltzmann col-

lisions (dashed line).
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Di¼
X

j

eiej

mi

� �2

njfijð0Þ2p
4; eiej>0

0; eiej<0

	 
 ðd
maxðb;rcÞ

dq
q
þ2

ðkD

d

dq
q

2
64

3
75:

(24)

The first term is the Boltzmann contribution, and the second

is the FP contribution. The cutoffs on the integrals assume

that rc< d; otherwise there is no Boltzmann contribution and

the FP integration runs from rc to kD. This can be accounted

for by replacing d by max d; rcð Þ. We will see in Sec. VII that

the functional form of Eq. (24) is correct, but the Boltzmann

coefficient of 4 for eiej> 0 is enhanced by collisional caging.

In order to test this intuition we introduce the following

Langevin-type equation of motion for the relative position,

written in scaled variables as

d2�z

d�t2
¼ SignðeiejÞ

�z

ð1þ �z2Þ3=2
þ ~a ; (25)

where ~a is a (scaled) stochastic acceleration modeling the

interaction of the colliding pair with surrounding plasma par-

ticles. This acceleration has zero mean and has an autocorre-

lation function whose time integral is given by the velocity

diffusion itself,

2 �D ¼
ð1
�1

d�th�~aðtÞ~að0Þi; (26)

where D¼DiþDj is the diffusion coefficient for the relative

velocity of particles i and j.
Langevin models often include a term �� _z due to the

mean slowing down, but we drop this term in Eq. (25) as it is

negligible compared to the terms kept. This �� _z term would

change velocities in a time of order 1/�, but we will see that

this time is much longer than the collisional correlation time

tmax.

In scaled variables, the diffusion coefficient is related to

the scale length d through

�D ¼ Dt3
B=q

2 ¼ ðq=dÞ5=2 : (27)

With this scaling, the diffusion coefficient as given by Eq.

(20) can be written as

Di ¼
X

j

eiej

mi

� �2

njfijð0Þ
ð

2p
dq
q

�hð½q=d�5=2Þ ; (28)

where we have used Eq. (27) to write �D in terms of q, and

the function �hð �DÞ is defined as

�hð �DÞ ¼ 2

ð1
0

d�vz0
�gðj�vz0

j; �DÞ : (29)

Here, �g is the generalization of Eq. (21) to finite �D given by

�gðj�vz0
j; �DÞ � SignðeiejÞ

ð
d�z0

�z0

ð1þ �z2
0Þ

3=2
hD�vieven (30)

and hD�vi � h�vzð�t !1Þi � �vz0
is obtained by a solution of

Eq. (25) with scaled initial conditions �zð0Þ ¼ �z0; �vzð0Þ ¼ �vz0
.

The average is over an ensemble of realizations of the sto-

chastic acceleration. Note that hD�vi ¼ hD�við�z0; �vz0
; �DÞ, with

all dependence on q scaled out, and dependence on the scaled

diffusion coefficient through Eq. (26). Of course, hD�veveni
¼ 1

2
½hD�við�z0; �vz0

; �DÞ þ hD�við�z0;��vz0
; �DÞ�.

When q 
 d, Eq. (27) implies that �D ! 0, and we

(might hope to) neglect the stochastic acceleration in Eq.

(25). In this case, we might expect to obtain the Boltzmann

result for the function �g, given by Eq. (22) and shown in

Fig. 2, and hence obtain the Boltzmann result for Di,

Eq. (23). However, we will see that in fact the stochastic

acceleration term cannot be neglected even when �D ! 0

because of collisional caging effects.

On the other hand, when q� d, Eq. (27) implies �D � 1,

so the stochastic acceleration overwhelms the Coulomb inter-

action and the equation of motion simplifies to

d2�z

d�t2
¼ ~a : (31)

This is diffusion-broadened IUO, a form of FP theory. This

limit can be solved analytically. Using this equation of

motion in Eq. (10) and performing the average (see Ref. 10)

yields

hD�viFP ¼ �SignðeiejÞ
ð

d3k

ð2pÞ3
4pikz

k2
eik��r0

ð1
0

d�teikz�vz0
�t�1

3
k2

z
�D�t3

:

(32)

Applying this FP result to Eq. (30), we find that the function

�g can be written as

�gFPð�vz0
; �DÞ ¼ 2

�D 1=3
cð�vz0

= �D
1=3Þ; �D � 1; (33)

where the function c(x) is defined as

cðxÞ ¼ 2

pjxj

ð1
0

dkzkzK
2
0ðkzÞ

ð1
0

du cosu exp � u3

3kzjxj3

" #
(34)

and where K0(k) is a modified Bessel function of the second

kind. The function c(x) is plotted in Fig 3. It is peaked

around x¼ 0. By direct integration, the area under this func-

tion can be easily shown to be equal to unity. Thus, �gFP is a

function of scaled velocity whose width is of order �D
1=3

.

This function replaces the delta function in Eq. (12).

Now, in writing Eq. (28), we implicitly assumed that the

velocity width of �g is small compared to the thermal speed

so that we could replace fij(vz0) by fij(0). We saw this was

true in the Boltzmann theory for �g [Eq. (22)] and we must

now check to see whether this is still true in the FP regime
�D � 1.

The velocity width of �gFP in unscaled units is V �D
1=3

¼ ðqDÞ1=3
. This width is small compared to the thermal

speed
ffiffiffiffiffiffiffiffi
T=l

p
provided that q
 kD=C

3=2, which is true for

all q< kD. Here, C� e2/aT is the Coulomb coupling
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parameter, where a is the mean interparticle spacing

(Wigner-Seitz radius). In a weakly coupled plasma, C 
 1.

Thus, even in the FP regime �D � 1, it is safe to replace

fij(vz0) by fij(0) in Eq. (28).

Since the area under the function c(x) equals one, Eqs.

(29) and (33) imply that �h
FP ¼ 2. This in turn implies that

the FP result for the diffusion coefficient is still given by the

IUO form, Eq. (13). This is because the velocity width

(qD)1=3 of �g in the FP regime is small compared to the ther-

mal speed, so we can approximate �gFP by a d-function, as

was done in IUO.

We expect that this FP result will be valid provided that

the width in (scaled) velocity of the function �g is much

greater than one, so that its width is much larger than the

width of the equivalent function given in Eq. (22) due to

Boltzmann reflections. Since the scaled velocity width of

�gFP is �D
1=3

, we require �D � 1 for the FP approximation to

be valid. This is consistent with the initial approximation in

our analysis, Eq. (31), where we dropped the Coulomb inter-

action in the equation of motion.

B. Monte-Carlo method

We have numerically evaluated the functions �g and �h
using a Monte-Carlo method. Equation (25) is finite-

differenced using the second-order leapfrog method,

�zn ¼ �zn�1 þ D�t �vn�1=2 ;

�vnþ1=2 ¼ �vn�1=26D�t
�zn

ð1þ �z2
nÞ

3=2
þ ~vn;

(35)

where ~vn is a random real number uniformly distributed in

the range ð�
ffiffiffiffiffiffiffiffiffiffiffi
6 �DD�t
p

;
ffiffiffiffiffiffiffiffiffiffiffi
6 �DD�t
p

Þ. This range is chosen so that

h~v2
ni ¼ 2 �DD�t. For given values of the initial position �z0 and

speed j�vz0
j, the equations are integrated twice, with positive

and negative initial velocities, and the result for D�v ¼
�vzf
� �vz0

is averaged to obtain D�veven, where �vzf
is the final

velocity in the simulation. This result is then averaged over

many runs with different realizations of ~vn in order to obtain

hD�vieven. Of course, we cannot take the limit as �t !1 when

determining the final velocity, but we take a sufficiently

large value of �t so that the results for hD�vieven are independ-

ent of the value of �t. The maximum value of �t used, �tmax,

depends on the value of �D (more on this later).

The function �g is also determined using a Monte-Carlo

approach. The integral over �z0 in Eq. (30) is performed by

first transforming variables from �z0 to s, where 0< s< 1.

The transformation is

�z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð2� sÞ

p
1� s

: (36)

With this transformation, we may write Eq. (30) as

�gðj�vz0
j; �DÞ � 2 SignðeiejÞ

ð1
0

dshD�vieven : (37)

We then evaluate the integral by choosing many random val-

ues of s uniformly distributed on the interval (0,1) and taking

the mean value of hD�vieven over these values of s.

Results for �g are shown for �D ¼ 3:2 in Fig. 4. There is

some scatter in the results at each �vz0
value shown because

of statistical noise in the Monte Carlo method. However, one

can see that for both attractive and repulsive forms of the

interaction, the result is close to the FP theory, given by

Eq. (33), shown by the solid curve in the figure. This is

because �D ¼ 3:2 is sufficiently large so that most particles

diffuse in velocity before they can reflect (or pass by in the

case of an attractive interaction).

However, for smaller �D values, the Monte Carlo results

for �g diverge from the FP theory. In Fig. 5, results for �g are

displayed for �D ¼ 0:1. The results for attractive interactions

are considerably smaller than FP theory, given by the solid

line, while the results for repulsive interactions are consider-

ably larger. For comparison, the dashed lines show the

Boltzmann theory for �g, which also do not bear much resem-

blance to the Monte-Carlo results.

The area �h ¼
Ð1
�1 d�vz0

�g under these curves is displayed

in Fig. 6 versus �D. The upper dots are Monte-Carlo evaluations

for repulsive interactions, and the lower dots are for attractive

interactions. Integration over initial velocities in Eq. (29) is

performed by MC sampling over a range j�vz0
j < vmax, where

vmax depends on �D. For �D ¼ 10�3, vmax¼ 1.5 is sufficient but

for larger �D, vmax must be increased as �gð�vz0
Þ broadens (see

FIG. 3. The diffusion-broadened d-function c(x).

FIG. 4. The function �g, plotted versus scaled initial velocity �vz0
, for scaled

diffusion coefficient �D ¼ 3:2. The solid line is the FP theory, given by

Eq. (33). Blue dots and red dots are Monte-Carlo evaluations of the function,

for repulsive and attractive Coulomb interactions, respectively. There are 5

evaluations for each velocity. The inset is an expanded view for �vz0
> 4.
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Figs. 4 and 5). For large �D values, the results converge toward
�h ¼ 2, as expected for FP theory. For small �D values

Monte-Carlo results for an attractive interaction approach zero,

as expected for Boltzmann theory; but for repulsive interac-

tions the results are larger than the �h ¼ 4 value expected for

repulsive Boltzmann collisions [see Eq. (23)].

This discrepancy is due to collisional caging. To probe

this effect, we evaluated �h for a range of values of the maxi-

mum time �tmax used in the numerical integration of Eqs.

(35). As shown in Fig. 7, for 1
 �tmax 
 1= �D, the value of
�h approaches the Boltzmann result, �h ¼ 4. However, for
�tmax > 1= �D, the value of �h increases and converges to a new

value �h � 5:9, the value plotted in Fig. 6. For �tmax > 1= �D
particles have time to reverse their relative velocity due to

diffusion, and collide again. If particles have sufficiently low

relative velocity, they can reflect off one another several

times consecutively. Each consecutive reflection produces

the same sign of acceleration in Eq. (8), adding to Dv on

each reflection, increasing the correlation time, and increas-

ing the diffusion coefficient. As time goes on, two particles

return to interact again and again since their motion is

limited to one spatial dimension, so one might wonder why a

finite result for Dv is obtained. Eventually, however (also on

a time of order 1= �D), velocity diffusion causes the relative

velocity to become sufficiently large so that particles can

pass by rather than reflect, after which the acceleration due

to their interaction averages to zero. If through velocity dif-

fusion they lose relative velocity and become reflecting

again, it is equally likely for them to reflect from either side

of their mutual center of mass, so the contribution to Dv of

these later interactions also averages to zero.

As an aside, note that �tmax � 1= �D implies that

�tmax� b/q, so this justifies our having dropped the � _z term

in Langevin equation (25), provided q� b.

C. �D fi 01 limit

For very small �D, one must take �tmax very large in the

Monte-Carlo evaluation in order to capture the collisional

caging effect, and this makes the numerical evaluation ineffi-

cient. It is therefore useful to rescale time and position in the

following manner: t̂ ¼ t=T; ẑ ¼ z=Z; where T ¼ eiej=ðlqDÞ
and Z¼ TV, with V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eiej=lq

p
. In these scaled coordinates,

Eqs. (25) and (26) become

d2ẑ

dt̂
2
¼ qD

V3

ẑ

ð1þ ẑ2Þ3=2
þ ~̂a ; (38)

ð1
�1

dt̂h~̂aðtÞ~̂að0Þi ¼ 2 : (39)

As D ! 0þ, the Coulomb-interaction term can be neglected

in Eq. (38) except for reflecting particles at ẑ ¼ 0, which

have scaled velocities in the range jv̂zj <
ffiffiffi
2
p

. Thus, the

equation of motion becomes the same as in FP theory,

d2ẑ

dt̂
2
¼ ~̂a þ Aðẑ; v̂zÞ ; (40)

except that particles reflect at ẑ ¼ 0 if they are in the velocity

range jv̂zj <
ffiffiffi
2
p

: the reflector acceleration A is

Aðẑ; v̂zÞ ¼ �2v̂2
z Signðv̂zÞHð

ffiffiffi
2
p
� jv̂zjÞdðẑÞ ; (41)

FIG. 5. The function �g, plotted versus scaled velocity �vz0
, for scaled diffu-

sion coefficient �D ¼ 0:1. The solid line is the FP theory, given by Eq. (33).

The dashed line is the Boltzmann theory for repulsive interactions (from

Fig. 2). Blue dots and red dots are Monte-Carlo evaluations of the function,

for repulsive and attractive Coulomb interactions, respectively. There are 5

evaluations for each velocity.

FIG. 6. Monte-Carlo evaluations of �h plotted versus the scaled diffusion

coefficient �D for both repulsive and attractive Coulomb interactions. The

dashed horizontal line at �h ¼ 2 gives the FP result, while the lines at 0 and 4

give the Boltzmann theory for attractive and repulsive interactions, respec-

tively, and the line at 5.899 is the D! 0þ repulsive result enhanced by colli-

sional caging (see Secs. V C and VI).

FIG. 7. Monte-Carlo evaluations of �h evaluated for a range of maximum

times, and for three values of �D. There are 3 evaluations shown for each �D
and �tmax value.
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where H(x) is the Heaviside step function. Particles that

encounter the reflector receive an impulse
Ð

dtA ¼ �2v̂z suf-

ficient to reflect their velocity. Note that Eqs. (39)–(41) are

independent of �D.

We may then evaluate �g and �h via the Monte-Carlo

method by choosing initial conditions �vz0
and �z0 as we did

previously, determining the change in relative velocity D�v
using Eq. (18) as the particles escape to infinity, then rescal-

ing coordinates and time and integrating the equations of

motion using Eq. (40). Under this rescaling, the new “initial”

position is ẑ0 ¼ 0, and the new “initial” velocity is v̂z0
¼ �vz0

þD�v. More precisely, particles with v̂z0
< 0 have ẑ0 ¼ 0�

and particles with v̂z0
> 0 have ẑ0 ¼ 0þ.

The result of the Monte-Carlo evaluation of �g using this

method is shown in Fig. 8 for t̂max ¼ 0þ and t̂max ¼ 64. For

t̂max ¼ 0þ, the result for �g matches what is expected in

Boltzmann theory (the solid line). However, for large t̂max,

the result is enhanced by collisional caging. In the Monte-

Carlo simulation particles are observed to return and reflect

several times, adding to the overall relative velocity change.

The value t̂max ¼ 64 is sufficiently large so that the result for

�g is independent of further increases in t̂max. A polynomial

fit to the Monte-Carlo evaluations, of the form

�g ¼
a0 þ a2�v2

z0
þ a3j�vj3z0

; j�vz0
j <

ffiffiffi
2
p

0; j�vz0
j >

ffiffiffi
2
p

(
(42)

yields a0¼ 3.056, a2¼�1.254, a3¼�0.1938. This fit is

constrained so that �g ¼ 0 at �vz0
¼

ffiffiffi
2
p

. The fit is displayed as

the dashed curve in Fig. 8. Twice the area under this curve

yields �h ¼ 5:894 [see Eq. (29)]. Direct Monte-Carlo evalua-

tions of �h, where �vz0
is chosen randomly rather than on a uni-

form grid, yield similar values, with an overall average value

of �hþ ¼ 5:899ð1Þ (the þ standing for repulsive interactions).

This value is displayed in Fig. 6 as the upper dashed line. On

the other hand, for attractive interactions, the corresponding

value is �h� ¼ 0.

Some other statistical measures of the collisional caging

can be extracted from the Monte-Carlo simulation. If we

choose particles in the simulation with initial velocities

uniformly distributed in the range �
ffiffiffi
2
p

< �vz0
<

ffiffiffi
2
p

, the

fraction of particles that, after their first Boltzmann interac-

tion, return with sufficiently low velocity to reflect at least

once more, is 21.1%. The fraction of particles that return and

reflect at least nr times is shown versus nr in Fig. 9. The line

in the figure is a fit to the data of the form a expð�b nrÞ
where a¼ 0.35 and b¼ 0.9.

Figure 10 shows the PDF of the time needed for a parti-

cle to complete one, two, or three reflections. For large

times, these PDFs show a scaling of roughly t̂
�1:82
r (the

straight line on the log-log plot). This scaling of the PDF

implies that the mean time needed to complete a given num-

ber of reflections is infinite. This same divergence also

occurs for the first passage time in simple diffusion problems

when a system boundary is at infinity, as is the case here.21

This is because the particles can wander over large distances

before returning to the reflector at z¼ 0.

VI. A FOKKER-PLANCK SOLUTION OF THE �Dfi01

LIMIT

It is useful to note that the �D ! 0þ Langevin model of

Sec. V C maps on to a Fokker-Planck equation for the distri-

bution function of a particle, f ðẑ; v̂z; t̂; ẑ0; v̂z0
Þ:

@f

@ t̂
þ v̂z

@f

@z
þ Aðẑ; v̂zÞ

@f

@v̂z
¼ @2f

@v̂2
z

þ dðt̂Þdðẑ � ẑ0Þdðv̂z � v̂z0
Þ;

(43)

where A is the acceleration due to the reflector, given by

Eq. (41). We can relate f to the function �hð �DÞ required in the

velocity diffusion coefficient [see Eq. (28)]. First, note that

Eqs. (29) and (37) combine as

�h ¼ 2

ð1
�1

d�vz0

ð1
0

ds D�vð�z0ðsÞ ; �vz0
Þ : (44)

Second, note that D�v consists of two contributions in the

limit �D ! 0þ, as discussed in Sec. V C. These are the contri-

bution D�vBð�z0; �vz0
Þ from the first Boltzmann interaction with

the force center in Eq. (25), and the contribution D�vcðẑ0; v̂z0
Þ

from subsequent reflections as diffusing particles return,

caused by collisional caging:

D�vð�z0; �vz0
Þ ¼ D�vBð�z0; �vz0

Þ þ D�vcðẑ0; v̂z0
Þ : (45)

FIG. 8. The function �g plotted versus scaled velocity �vz0
, for repulsive inter-

actions and for scaled diffusion coefficient �D ¼ 0þ. Solid line: Boltzmann

theory (see Eq. (22) and Fig. 2). Dashed line: Eq. (42). Dots: Monte-Carlo

evaluations for t̂max ¼ 0þ and t̂max ¼ 64. There are 5 Monte Carlo evalua-

tions for each �vz0
value.

FIG. 9. Dots: Fraction of particles in the Monte Carlo simulation that return

to reflect nr or more times. The line is an exponential fit discussed in the text.
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Here, ẑ0ð�z0; �vz0
Þ is either 0þ or 0�, and v̂z0

, the velocity after

the first Boltzmann interaction, is given by Eq. (16)

ẑ0 ¼ 0þ ; �vz0
> �

ffiffiffiffiffi
2s
p

0� ; �vz0
< �

ffiffiffiffiffi
2s
p

	
(46)

and

v̂z0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2

z0
þ 2� 2s

q
Sign ð�vz0

þ
ffiffiffiffiffi
2s
p
Þ ; (47)

where we have applied Eq. (36) to write �z0 in terms of s.

Now, the velocity step due to collisional caging is twice

the time-integrated momentum flux onto the reflector at

ẑ ¼ 0, since each particle collision with the reflector causes a

momentum change of �2v̂z to the particle. This implies

D�vc ¼
ð1
0

dt̂

ð0
�
ffiffi
2
p

dv̂z 2v̂2
z f ð0þ; v̂z; t; ẑ0; v̂z0

Þ

�
ð1
0

dt̂

ðffiffi2p
0

dv̂z 2v̂2
z f ð0�; v̂z; t; ẑ0; v̂z0

Þ : (48)

The first integral in Eq. (48) arises from the momentum flux

onto the ẑ ¼ 0þ side of the reflector, and the second integral

is from the flux on the opposite side.

The velocity step DvB due to the first Boltzmann interac-

tion was evaluated in Sec. IV, as D�vB ¼ v̂z0
� vz0

. The con-

tribution �hB of D�vB to �hþ � lim �D!0þ
�h is

�hB ¼ 2

ð1
0

ds

ð1
�1

d�vz0
D�vB

¼ 2

ð1
0

ds

ð1
0

d�vz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2

z0
þ 2� 2s

q
Signð�vz0

þ
ffiffiffiffiffi
2s
p
Þ

h

þ Signð��vz0
þ

ffiffiffiffiffi
2s
p
Þ
i

¼ 4

ð1
0

ds

ðffiffiffi2s
p

0

d�vz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2

z0
þ 2� 2s

q
¼ 4 : (49)

This is the same result derived previously in Sec. IV.

The contribution �hc of D�vc to �hþ is

�hc ¼ 2

ð1
0

ds

ð1
�1

d�vz0
D�vcðẑ0ð�z0; �vz0

Þ; v̂z0
ð�z0; �vz0

ÞÞ : (50)

To simplify this expression, note that Eqs. (46) and (48)

imply that ẑ0 is a function of v̂z0
alone,

ẑ0 ¼
0þ ; v̂z0

> 0

0� ; v̂z0
< 0

	
(51)

and therefore Dvc ¼ D�vcðv̂z0
Þ. Also, symmetry implies that

f ð�ẑ;�v̂z; t̂; 0�;�v̂z0
Þ ¼ f ðẑ; v̂z; t̂; 0þ; v̂z0

Þ ; (52)

and this reflection symmetry, when applied to Eq. (48),

implies Dvcðv̂z0
Þ ¼ �Dvcð�v̂z0

Þ. When this symmetry is

applied to Eq. (50), we obtain

�hc ¼ 2

ð1
0

ds 2

ðffiffiffi2s
p

0

d�vz0
D�vcðv̂z0

Þ ; (53)

where we have used Eq. (47). Again applying Eq. (47), we

can convert the integral over �vz0
to one over v̂z0

, obtaining

�hc ¼ 4

ð1
0

ds

ðffiffi2p
ffiffiffiffiffiffiffiffi
2�2s
p

dv̂z0

v̂z0
D�vcðv̂z0

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂2

z0
þ 2s� 2

q : (54)

The integral over s can also be performed, resulting in the

simple expression

�hc ¼ 4

ðffiffi2p
0

dv̂z0
v̂2

z0
D�vcðv̂z0

Þ : (55)

Combining Eqs. (55), (48), and (49) then yields

�hþ ¼ 4þ 8

ð0
�
ffiffi
2
p

dv̂zv̂
2
z feqð0þ; v̂zÞ

�8

ðffiffi2p
0

dv̂zv̂
2
z feqð0�; v̂zÞ; (56)

where

feqðẑ; v̂zÞ ¼
ðffiffi2p
0

dv̂z0
v̂2

z0

ð1
0

dt̂ f ðẑ; v̂z; t̂; 0þ; v̂z0
Þ (57)

is an equilibrium solution of the FP equation. This function

satisfies the time and velocity integral of Eq. (43):

v̂z
@feq

@ẑ
þAðẑ; v̂zÞ

@feq

@v̂z
¼@

2feq

@v̂2
z

þdðẑ�0þÞv̂2
z Hðv̂zÞHð

ffiffiffi
2
p
� v̂zÞ;

(58)

where H(x) is the Heaviside step function.

FIG. 10. Dots: Probability distribution function for the time needed to return

and reflect 1 (blue), 2 (red), or 3 (green) times. The line is a power law fit to

the slope of the curves discussed in the text.

052108-9 Daniel H. E. Dubin Phys. Plasmas 21, 052108 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

68.111.137.3 On: Tue, 27 May 2014 23:12:27



We have solved Eq. (58) numerically using a non-

uniform grid method. Details are in the Appendix. Figure 11

displays a contour plot of the solution near the reflector,

shown as a red line at z¼ 0 for jv̂zj <
ffiffiffi
2
p

. There are discon-

tinuities in the solution at the reflector ends, at v̂z ¼ 6
ffiffiffi
2
p

,

caused by the difference between particles that pass and

those that reflect. This difference produces rapid variation in

the solution that is difficult to capture accurately in a numeri-

cal method. The discontinuities can be seen in Fig. 12, which

shows the solution for feq along the front ðẑ ¼ 0þÞ and rear

ðẑ ¼ 0�Þ faces of the reflector, and beyond.

On large scales, far from the origin, the presence of the

reflector is unimportant and the solution approaches the equi-

librium solution ffreeðẑ; v̂zÞ of the FP equation with no boun-

daries or reflectors, which can be obtained from the free

particle FP Green’s function,

Gðẑ; v̂z; t̂; ẑ0; v̂z0
Þ ¼

ffiffiffi
3
p

2pt̂
2

e
�3ðẑ�ðẑ0þv̂z0

t̂ÞÞ2

t̂3 þ3ðẑ�ðẑ0þv̂z0
t̂ÞÞðv̂z�v̂z0

Þ

t̂2 �ðv̂z�v̂z0
Þ2

t̂

(59)

via the integral

ffreeðẑ; v̂zÞ ¼
ðffiffi2p
0

dv̂z0
v̂2

z0

ð1
0

dt̂ Gðẑ; v̂z; t̂; 0; v̂z0
Þ : (60)

(Eq. (59) is the solution of Eq. (43) in the absence of a reflec-

tor, i.e., for A¼ 0.22) The large scale solution is displayed as

a contour plot in Fig. 13.

The time integral in Eq. (60) must be carried out

numerically in general, but in some special cases there are

analytic expressions available. For example,

ð1
0

dt̂Gð0; v̂z; t̂; 0; v̂z0
Þ ¼

ffiffiffi
3
p

2pðv̂2
z þ v̂zv̂z0

þ v̂2
z0
Þ
: (61)

The result for ff reeð0; v̂zÞ that follows from applying Eq. (61)

to Eq. (60) is displayed in Fig. 12. As expected, at large

velocities the free-particle distribution approaches the solu-

tion of Eq. (58).

The solution for feq is numerically integrated in Eq. (56)

to obtain �hþ ¼ 5:8984ð5Þ, where the estimated inaccuracy is

due to the finite grid resolution. This value for �hþ is in close

agreement with the value found using Monte Carlo integra-

tion, �hþ ¼ 5:899ð1Þ.

VII. DIFFUSION COEFFICIENT AND SLOWING-DOWN
TIME

We now have enough information to evaluate the paral-

lel velocity diffusion coefficient due to long-range (i.e.,

guiding-center) collisions given by Eq. (28). Noting that the

maximum and minimum impact parameters are still kD and

b, respectively, and that long-range guiding center collisions

must have impact parameters larger than rc, the limits on the

remaining impact parameter integral in Eq. (28) are

Di ¼
X

j

eiej

mi

� �2

njfijð0Þ
ðkD

maxðb;rcÞ

2p
dq
q

�hð½q=d�5=2Þ : (62)

FIG. 11. Contour plot of the solution feqðẑ; v̂zÞ to the equilibrium FP equa-

tion, Eq. (58). The red line at ẑ ¼ 0 for jv̂zj <
ffiffiffi
2
p

is the reflector.

FIG. 12. Solution feq of Eq. (58) versus velocity for ẑ ¼ 0 (shown using a

log scale), on both the front and back faces of the reflector (i.e., ẑ ¼ 0þ and

ẑ ¼ 0�). Note the discontinuities at v̂z ¼ 6
ffiffiffi
2
p

. The slight oscillation in the

solution at these discontinuities is an artifact of the grid. Also shown for

comparison is the solution ffree in the absence of the reflector, given by

Eq. (60).

FIG. 13. Solution feq of Eq. (58) on large distance and velocity scales.
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Noting that ½q=d�5=2 ¼ �D, and using the results for �h shown

in Fig. 6, we see that the integral breaks into three pieces:

one with q
 d where �h ¼ �hþ or �h ¼ �h� (depending on the

sign of the Coulomb interaction); another with q� d where
�h ¼ 2; and the remaining piece, with q of order d. This third

piece yields a constant of order unity whose value depends

on the sign of the interaction, and which we call C6. The

sum of the three pieces gives Di to logarithmic order, assum-

ing that kD/max(b,rc)� 1:

Di ¼
X

j

eiej

mi

� �2

njfijð0Þ2p �h6 lnmðd=max½b; rc�Þ
�

þ 2lnmðkD=max½d; rc�Þ þ C6g; (63)

where lnmðxÞ � lnðmax½1; x�Þ. The second logarithm is due

to FP collisions with large impact parameters, while the first

logarithm is due to 1D Boltzmann collisions with small

impact parameters, enhanced by collisional caging in the

case of repulsive interactions. This result has the form

expected from Eq. (24), except that �hþ ¼ 5:899 rather than 4

because of collisional caging.

Note that d=b � 1=C6=5 and kD=d � 1=C3=10 where C is

the Coulomb coupling parameter. Thus, in a weakly coupled

plasma with C 
 1, the arguments of the logarithms in Eq.

(63) are large and depend on d, if the magnetic field is big

enough so that rc< d. One, therefore, typically neglects the

constants C6, because the logarithms are large. However, for

completeness, the values of these constants are Cþ¼�3.1

and C�¼ 1.3. Note, however, that these values depend on

the exact cutoffs used in obtaining the logarithms, and these

values are beyond the scope of the theory presented here.

For example, we do not know if the actual upper impact pa-

rameter cutoff is kD or 2kD; we only know that it is of order

kD. We therefore neglect the constants C6 in what follows,

noting that the logarithms are well-defined only up to con-

stants of order unity.

Equation (63) includes only the 1D long-range colli-

sions. To this, one must add the effect of collisions that scat-

ter the cyclotron velocity vector, arising from impact

parameters in the range q< rc. These 3D collisions are

treated by the classical theory6,7,18 and yield

D3D
i ¼

X
j

eiej

mi

� �2

njfijð0Þ
8p
3

lnmðmin½rc; kD�=bÞ : (64)

The total diffusion coefficient is the sum of Eqs. (63) and

(64), and the slowing rate is given by Eq. (2). The slowing

down rate has the expected scaling, �i ¼
P

j njvijb
2 ln K,

where vij ¼
ffiffiffiffiffiffiffiffiffiffiffi
2pTl
p

=mi and lnK is an improved “Coulomb

logarithm” [given by the sum of the logarithms from Eqs.

(63) and (64)]:

ln K ¼ 4

3
lnmðmin½rc; kD�=bÞ þ �h6lnmðd=max½b; rc�Þ

þ 2lnmðkD=max½d; rc�Þ: (65)

This dimensionless factor is valid for any magnetic field

strength provided that the colliding species have roughly com-

parable masses and is plotted versus temperature for proton-

proton collisions in Fig. 14(a) and for electron-electron

collisions in Fig. 14(b). The factor is evaluated for three den-

sities in the regime rc< kD, and compared to the classical fac-

tor 4=3lnðrc=bÞ due to short-range 3D collisions. (For species

with very disparate masses such as electrons and ions, Eq. (65)

neglects the intermediate magnetization regime referred to in

the introduction, where electrons are magnetized with rce< kD

but ions are not magnetized.) Note that in the weakly magne-

tized regime where rc> kD, only 3D collisions enter the loga-

rithm; whereas in strongly magnetized regime where rc< b,

only long-range collisions contribute to the slowing down

since D3D
i approaches zero4 exponentially due to an adiabatic

invariant associated with the collision dynamics.20 More gen-

erally, long-range contributions to the Coulomb logarithm tend

to dominate over 3D collisions at higher magnetic fields and at

lower temperatures and densities.

VIII. SUMMARY

We have evaluated the collisional slowing rate for a

weakly coupled plasma in the regime rc< kD, discovering

several novel physical effects. The collisional slowing rate is

enhanced by long-range guiding-center collisions. A new

length scale d separates impact parameters into two ranges,

one for q> d where collisions are described by FP theory and

the other for q< d where binary Boltzmann-like collisions

occur. The slowing-down rate depends on the sign of the

Coulomb interaction between colliding species. Finally, when

the Coulomb interaction is repulsive, an enhancement of the

slowing-down rate occurs, caused by “collisional caging.”

Experiments are currently in progress that are operating

in the regime rc< kD, and that may be able to observe the

enhanced collisional slowing effects discussed in this paper.

One experiment measures the damping rate of magnetized

plasma waves due to collisional drag between species in a

multispecies nonneutral ion plasma.23 A second experiment

FIG. 14. Coulomb logarithm versus

temperature for 3 densities (in cm�3)

and magnetic field B¼ 3T, for (a)

proton-proton collisions; (b) e–e colli-

sions. Also shown is the 3D contribu-

tion, ð4=3Þlnðrc=bÞ (the lower dotted

line).
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in a strongly magnetized antimatter plasma uses collisional

energy transfer from antiprotons to electrons to cool the

antiprotons.24

The theory developed here assumes that the plasma is

thermal, with a Maxwellian relative velocity distribution. It is

fairly straightforward to generalize to non-Maxwellian distri-

butions; this will be outlined in a future publication. For

example, if the plasma has large-scale fluid motions, then

shear in these motions can cause particle-particle interactions

to be decorrelated faster than velocity diffusion predicts.10

Such shears have been shown to limit test particle diffusion.25

If there is a shear rate s in the fluid velocity U (given by

s ¼ jrUj), then particles are decorrelated in a time 1/s as

they are pulled apart by the shear flow. The theory presented

here is correct only if s is small enough so that stmax 
 1

where tmax � tB= �D is the correlation time for 1D collisions

without shear. This inequality depends on the collision

impact parameter q, and the dependence can be estimated as

stmax � ðs=�Þðb=qÞ. Therefore, s<� is sufficient to ensure

that the theory presented here is correct for all impact param-

eters that enter Eq. (63). The effect of larger shears on the

slowing rate will be considered in future work.

The 1D long-range collisions considered here are in the

regime where both species are magnetized such that their cy-

clotron radii are small compared to kD. However, for species

with disparate masses, it is possible for the light species to

be magnetized while the heavy species is not. It is an open

question whether collisions in this intermediate magnetiza-

tion regime must include the effects of collisional caging and

Boltzmann collisions considered here. This will be the sub-

ject of future investigations.

Previous transport theories of 1D long-range interac-

tions9,10,15,17 have not considered the effect of small-impact-

parameter Boltzmann collisions. The previous work, based

on FP theory, needs to be re-evaluated to account for such

collisions. For the coefficients of viscosity and thermal con-

duction, which are dominated by collisions with impact pa-

rameters of order kD or larger, we believe that Boltzmann

collisions will have a negligible contribution. The same can-

not necessarily be said for the coefficient of cross-magnetic

field test particle diffusion,10 where impact parameters less

than d can contribute. We will consider the effect of

Boltzmann collisions on cross-magnetic field test particle

diffusion in future work.
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APPENDIX: NUMERICAL SOLUTION OF THE FP
EQUATION

In order to solve Eq. (58) for feqðẑ; v̂zÞ numerically, we

use a nonuniform grid, transforming ẑ and v̂z to new varia-

bles sz and sv through the transformation ẑ ¼ ẑðszÞ and

v̂z ¼ v̂zðsvÞ. We choose

ẑ ¼ sz=ð1� s2
z Þ

3 ; �1 < sz < 1;

v̂z ¼ sv=ð1� s2
vÞ

3; �1 < sv < 1;
(A1)

so that the grid is densest for ẑ and v̂z of 0(1), but extends to

infinity. In these coordinates, Eq. (58) becomes

v̂zðsvÞu0ðszÞ
@feq

@sz
¼ u1ðsvÞ

@feq

@sv

þ u2ðsvÞ
@2feq

@s2
v

; (A2)

where u0ðszÞ¼ 1=@ẑ=@sz; u1ðsvÞ¼ u0ðsvÞ@u0=@sv, and u2ðsvÞ
¼ u2

0ðsvÞ. The source term and the reflector in Eq. (58) are

accounted for in the boundary conditions, as described

below.

We then use a uniform grid in (sz, sv) choosing

sz ¼mDz ;m¼�Mzþ 1; �Mzþ 2;…; Mz� 2; Mz� 1 (A3)

and

sv ¼ ðnþ 1=2ÞDv ; n ¼ �Mv;…; Mv � 1; (A4)

where Dz¼ 1/Mz and Dv¼ 1/(Mvþ 1/2).

Boundary conditions are fmn¼ 0 for m¼6 Mz or n¼Mv

or n¼�Mv� 1 (i.e., feq¼ 0 at infinity). In order to deal with

the reflector and the source at z¼ 0 we break fmn into a solu-

tion fþmn for z� 0þ, and a solution f�mn for z� 0�. The z¼ 0

boundary conditions are then

f�0n ¼ f�0;�n�1 ; �
ffiffiffi
2
p
� vn � 0;

f�0n ¼ fþ0;n ; jvnj >
ffiffiffi
2
p

;

fþ0n ¼ fþ0;�n�1 þ vn ; 0 � vn �
ffiffiffi
2
p

;

where vn ¼ v̂zðsvðnÞÞ is the velocity at grid point n. The first

boundary condition is the reflecting condition on the rear

face of the reflector, the second is the continuity condition

beyond the reflector, and the third is the reflecting condition

on the front face, including the effect of the source term in

the equation. Thus, fþ0n is the value of f for z just greater than

the source at z¼ 0þ.

The equations for fþ and f� are finite-differenced on the

grid using the Crank-Nicholson method.26 The method is

second-order accurate in both Dv and Dz.

The finite-differenced equations are

FIG. 15. Numerical values of �hc versus grid resolution. Values with the

same Mz are connected as an aid to the eye. The Mz¼ 50 and Mz¼ 100 val-

ues are too close to tell apart on this scale, differing by 2	 10�5 or less.
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vnu0m�1
2

f 6
mn�f 6

m�1n

Dz
¼1

2
u1n

f 6
mnþ1� f 6

mn�1

2Dv
þ

f 6
m�1nþ1�f 6

m�1n�1

2Dv

� �

þ1

2
u2n

f 6
mnþ1�2f 6

mnþf 6
mn�1

Dv2
þ

f 6
m�1nþ1�2f 6

m�1nþf 6
m�1n�1

Dv2

� �
:

(A5)

In Fig. 15, we show values of �hc obtained by numerical

integration of Eq. (56) for different values of Mv and Mz up to

Mv¼ 51 200 and Mz¼ 100. For any given value of Mv,

Mz¼ 50 is large enough to obtain a converged value of �hc

accurate to within 2	 10�5. However, large Mv values are

required for convergence in Mv. Extrapolating the values

shown in Fig. 15 we obtain �hc ¼ 1:8984, with a rough error

estimate of 5	 10�4 based on the observed oscillations in the

computed value of �hc as Mv increases.
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