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Plasma loss due to apparatus asymmetries is a ubiquitous phenomenon in magnetic plasma

confinement. When the plasma equilibrium has locally-trapped particle populations partitioned by

a separatrix from one another and from passing particles, the asymmetry transport is enhanced. The

trapped and passing particle populations react differently to the asymmetries, leading to the

standard 1=� and
ffiffiffi
�
p

transport regimes of superbanana orbit theory as particles collisionally scatter

from one orbit type to another. However, when the separatrix is itself asymmetric, particles can

collisionlessly transit from trapped to passing and back, leading to the enhanced diffusion and

mobility that is calculated here. The effect of this collisionless scattering across an asymmetric

separatrix on the damping rate of trapped particle diocotron modes is also considered. VC 2011
American Institute of Physics. [doi:10.1063/1.3594584]

I. INTRODUCTION

Magnetically-confined plasmas often have one or more

locally-trapped particle populations, either by accident or

design, partitioned by separatrices from one another and

from passing particles. This paper examines the effect of

these trapped particles on neoclassical transport (transport

due to external field asymmetries) and on the related issue of

damping (or growth) of certain collective plasma modes. In

the low collisionality regimes associated with fusion plas-

mas, strong neoclassical transport is caused by particles that

cross these separatrices in the presence of magnetic or elec-

trostatic field asymmetries.

Collisional scattering (at rate �) is often regarded as the

main mechanism driving the separatrix crossing.1–4 However,

collisionless particle orbits can also cross the separatrices,

causing enhanced transport. Here we consider the case of a

magnetized rotating plasma column with a h-asymmetric

separatrix in the axial motion, and find that this results in

enhanced radial transport that is independent of � over a range

of �. At low collisionality this collisionless separatrix crossing

can provide the dominant neoclassical transport mechanism.

The physics of transport due to this collisionless separa-

trix crossing mechanism is straightforward but has not been

thoroughly analyzed. Trapped and passing particles typically

experience different error fields because the fields vary spa-

tially and trapping isolates particles in different spatial

regions. This leads to differing cross-field drift steps in the

different regions. Any mechanism (such as collisions) which

allows particles to randomly pass from region to region

results in diffusion as the drift steps vary randomly. A com-

monly studied example of this effect, adapted from superba-

nana transport theory,5 is displayed in Fig. 1, showing a

projection of orbital drift motion onto the plane perpendicu-

lar to B. Circular drift orbits for particles trapped along B in

two separate regions, labeled 1 and 2, are displaced from one

another and from orbits that can pass between them by dis-

tance Dr, because the field errors acting in each region differ.

When collisions scatter the particle velocity, particles can

transit from trapped to passing and back at rate �, leading to

radial diffusion that scales according to the standard 1=� andffiffiffi
�
p

collisional transport regimes of superbanana theory. The

1=� regime occurs when � & jx0j, where x0 is the rotation

frequency of the drift motion.6 In this case particles do not

complete a full drift orbit before they are trapped or

detrapped, leading to a random radial drift step with magni-

tude of order Drjx0j=� occurring at rate �. The diffusion

coefficient in the 1=� regime is then

Dr � ft� Dr
x0

�

� �2

; �&x0; (1)

where ft is the fraction of trapped particles

The
ffiffiffi
�
p

regime occurs for � < jx0j, and is due to a colli-

sional boundary layer with energy width DWc, where

DWc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TV0�=jx0j

p
; (2)

that forms around the separatrix energy V0 separating trapped

and passing particles.1,2,6–8 Here x0 is the bounce average of

x0, evaluated at (or near) the separatrix energy. Particles in

this boundary layer transit between trapped and passing every

orbital period, taking random steps with magnitude of order

Dr, and leading to a
ffiffiffi
�
p

scaling for the radial diffusion

Dr � jx0jf�Dr2; �. jx0j; (3)

where f� � DWce�V0=T=
ffiffiffiffiffiffiffiffi
V0T
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=jx0j

p
e�V0=T is the frac-

tion of particles in the boundary layer. [Both Eqs. (1) and (3)

assume that V0 is of order T].

However, in this paper we focus on the effect of an

asymmetry on the separatrix itself. As particles drift, such an

asymmetry can allow them to cross the separatrix without

needing collisions to do so. If the separatrix energy is h
dependent (where h is the azimuthal angle) (Fig. 1), varying
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from V0 � DV to V0 þ DV as h varies on a drift surface, then

every orbital period particles with parallel energies in the

range V0 � DV to V0 þ DV transit between passing and

trapped. They can be trapped in either regions 1 or 2, leading

to radial diffusion that scales as

Dr ¼ fDV jx0jDr2; (4)

where fDV � DVe�V0=T=
ffiffiffiffiffiffiffiffi
V0T
p

is the fraction of particles in

the energy range V0 � DV to V0 þ DV. This diffusion is in-

dependent of collision frequency, and hence dominates the

transport when DV > DWc, i.e., when

� <
jx0jDV2

V0T
: (5)

In Sec. II, we present a more detailed analysis of this

novel transport mechanism for the case of purely electro-

static field errors, which applies to non-neutral plasma

experiments. We then consider the effect of finite collisional-

ity on the transport. Modifications of the theory to account

for magnetic trapping will be presented elsewhere. In

Sec. III, we compare this theory to numerical simulations of

the particle transport, and find that nonlinear effects limit the

validity of the theory to a range of � with a lower bound pro-

portional to Dr2 [see Eq. (122)]. In Sec. IV, we consider the

effect of separatrix asymmetries on the frequency and damp-

ing of a class of plasma modes called “trapped particle dio-

cotron modes.” In Sec. V, we summarize our results.

II. TRANSPORT DUE TO STATIC ASYMMETRIES

A. Plateau regime

Consider a nominally cylindrical plasma column,

trapped axially by an electrostatic potential /0, and trapped

radially by a uniform axial magnetic field B (Fig. 2). Par-

ticles with charge q and mass M bounce back and forth along

the magnetic field and rotate in the h direction due to the

E� B drift at frequency x0ðr; zÞ ¼ ðc=qBrÞ@/0=@r. A

“squeeze” potential is applied to a central electrode that cre-

ates two trapped particle populations, labeled 1 and 2, parti-

tioned from passing particles by a separatrix (Figs. 2 and 3).

The maximum height of the squeeze potential Vs varies in

azimuthal angle h, because the electrodes are split into sec-

tors that can be biased to different potentials. We assume

VsðhÞ ¼ V0 þ DV cos mh (6)

for some integer m.

Passing particles have energy larger than Vs and can

access both sides of the trap. Trapped particles, with energy

less than Vs, are trapped on one side of the squeeze potential.

The h-dependence in Vs causes some radial transport but we

will neglect this effect, assuming for simplicity that the axial

extent of the squeeze potential is small compared to the col-

umn length, so that particles spend only a small amount of

time in the squeezed region (Fig. 3). Rather, we assume that

radial transport is caused by a static asymmetry potential

d/ðr; h; zÞ that acts over the entire column to cause radial

E� B drifts. For simplicity the form of the asymmetry is

taken to be a single Fourier mode,

d/ðr; h; zÞ ¼ eðr; zÞ cos ‘ðhþ aÞ; (7)

where a is the phase angle between the asymmetry potential

and the separatrix potential (see Fig. 2). In Fig. 2, d/ is due

to potentials applied on sectored electrodes, but the asymme-

try could also be due to an order e tilt of the magnetic field

with respect to the axis of symmetry of the electrodes, at an

angle a with respect to the separatrix asymmetry. We will

see that the transport depends on a.

For simplicity we also assume that the axial bounce fre-

quency pvt=ðL1 þ L2Þ is large compared to x0 (the plasma is

“rigid”). Here, vt ¼
ffiffiffiffiffiffiffiffiffiffi
T=M

p
is the thermal speed, and

L1 þ L2 is the plasma length (see Fig. 3). Particles can then

be thought of as rods of charge undergoing bounce-averaged

2-D drift dynamics. Throughout this section, and in Sec. IV,

we employ this bounce-averaged approximation. This

approach neglects axial kinetic effects such as the bounce-

FIG. 2. (Color online) 3D schematic of the electrodes in a typical nonneu-

tral plasma experiment, including segmented electrodes used to create the

field error d/ and the squeeze potential Vs.

FIG. 3. (Color online) Schematic of the confinement potential as a function

of axial position z.

FIG. 1. Drift orbits in the plane perpendicular to B. Particles trapped along

the magnetic field in regions 1 and 2 have orbits displaced by different field

errors. Passing particles average out the errors.
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rotation resonances considered in standard neoclassical

transport.7 The validity of the bounce-average approximation

is tested using simulations that retain axial kinetics, as dis-

cussed in Sec. III.

We also neglect collisions in this section. Later, in

Sec. III, we will see that collisions are essential, but can be

ignored when deriving the theory. This is similar to the theory

for the plateau regime in standard neoclassical transport, and

so we refer to the regime where the theory is valid (described

in Sec. III) as the plateau regime, not to be confused with the

plateau regime of standard neoclassical theory.

The linearized bounce-averaged equations of motion are

dh
dt
¼ x0;

dph

dt
¼ � @d/

@h
¼ ‘ei sin ‘ðhþ aÞ; (8)

where the overbar denotes a bounce average, for instance,

x0 ¼
Þ

dzx0=vz

s
; (9)

where

s ¼
þ

dz=vz (10)

is the bounce orbit period; ph ¼ qBr2=2c is the canonical

angular momentum of the guiding center, and ei is the

bounce average of e for i ¼ 1; 2 or p (i.e., trapped of type 1

or 2, or passing, see Fig. 3). The value of the bounce average

depends on the type of orbit as well as particle energy

because e depends on z and trapped and passing particles av-

erage over different z positions. In Eq. (8), we have linear-

ized by neglecting small variations in dh=dt due to d/.

Furthermore, particles transition from trapped to passing

when their energy E satisfies

E ¼ VsðhÞ ¼ V0 þ DV cos mh: (11)

Particles with energies in the range

jE� V0j < DV (12)

cross the separatrix from trapped to passing as they rotate in

h. According to Eq. (11) there are m values of h, h0n,

n ¼ 0;… m� 1, where such particles become trapped, and

m others h1n, where they become passing particles,

h0n
¼ �hE=mþ 2pn=m; n ¼ 0; :::m� 1;

h1n
¼ hE=mþ 2pn=m; n ¼ 0; :::m� 1; (13)

where

hE ¼ Signðx0Þcos�1½ðE� V0Þ=DV�: (14)

When particles become trapped, we assume that they are

trapped in region 1 or 2 with probability p1 and p2, respec-

tively, where p1 þ p2 ¼ 1. For large bounce frequency com-

pared to x0, and for general trapping potential /0, p1, and p2

are given by the fraction of time a trapped particle with

energy near Vs spends in each region

p1 ¼
s1

s1 þ s2

; p2 ¼
s2

s1 þ s2

; (15)

where s1 and s2 are the bounce orbit periods in regions 1 and

2, respectively, evaluated near the separatrix energy. For the

idealized trap potential shown in Fig. 3, p1 ¼ L1=ðL1 þ L2Þ
and p2 ¼ L2=ðL1 þ L2Þ. Also, the bounce-averages of e near

the separatrix energy are related by

ep ¼ p1e1 þ p2e2: (16)

This random trapping assumption breaks down when the rota-

tion frequency is not small compared to the bounce frequency,

or when both collisions and ei are “sufficiently small.” This is

discussed further in Sec. III, in relation to Fig. 10.

The random nature of the retrapping is responsible for

radial diffusion, since particles trapped in regions 1 and 2

follow different drift orbits. The overall change in ph in one

rotation period can be found by integration of Eq. (8)

between separatrix crossings

Dph ¼
Xm�1

n¼0

�
en

x0

cos ‘ðh1n
þ aÞ � cos ‘ðh0n

þ aÞ½ �

þ ep

x0

cos ‘ðh0nþ1
þ aÞ � cos ‘ðh1n

þ aÞ
� ��

; (17)

where en is a random variable that for each n takes the values

e1 and e2 with probability p1 and p2, respectively. Then tak-

ing the average of Eq. (17) over en and using Eqs. (13), (14)

and (16) implies

hDphi ¼
Xm�1

n¼0

ep

x0

½cos ‘ðh0nþ1
þ aÞ � cos ‘ðh0n þ aÞ� ¼ 0

(18)

and

hDp2
hi ¼

4ðe1 � e2Þ2

x2
0

p1p2sin2 ‘hE

m

	 
 Xm�1

n¼0

sin2‘ aþ 2pn

m

	 

:

(19)

The sum can be performed analytically, yielding

hDp2
hi ¼

2ðe1 � e2Þ2

x2
0

p1p2 sin2 ‘hE

m

	 


m
2sin2‘a ; 2‘

m 2 Integers

1 ; 2‘
m 62 Integers

(
: (20)

The radial diffusion coefficient Dr can then be obtained by

integrating over the distribution of energy, F0ðEÞ, which is

normalized so that
Ð

dEF0 ¼ 1,

Dr ¼
c

qBr

	 
2 ðDV

�DV

dE
1

2p=jx0j
hDp2

hi
2

F0ðEÞ: (21)

By a change of variables from energy E to hE ¼ cos�1

ðE� V0=DVÞ, the integral can be performed analytically,
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assuming that DV � V0 so that we may replace functions of

energy by their values at E ¼ V0, for example F0ðEÞ by

F0ðV0Þ, and x0ðEÞ by x0ðV0Þ. The result is9

Dr ¼
jx0jDV

2p
F0ðV0Þ

ðe1 � e2Þ2

E
2

r

p1p2D‘m

�
2sin2‘a; 2‘

m 2 Integers

1; 2‘
m 62 Integers

(
;

(22)

where

D‘m ¼ m
4‘2 � m2sin2p‘

m

4‘2 � m2
: (23)

For instance, D11 ¼ 4=3 and D12 ¼ 2 (the latter value

obtained using ‘‘Hôpital’s rule). In Eq. (22) it is convenient

to introduce the bounce-averaged radial force Er related to

x0 through x0 ¼ �Erc=qBr. The diffusion coefficient is in-

dependent of collision frequency, and scales as 1=B, as

expected for a bounce-averaged process (note that

x0 / 1=B). It is linear in the magnitude DV of the separatrix

asymmetry and is quadratic in the difference in the bounce

averaged asymmetries e1 and e2 for trapped particles. For

‘ ¼ m ¼ 1, the case considered in Ref. 5, the diffusion coeffi-

cient is proportional to sin2a, and hence vanishes for a ¼ 0 or

p, the only cases considered in Ref. 5. The reason for this can

be understood from Eq. (17). For a ¼ 0 or p, and ‘ ¼ m ¼ 1,

Dph ¼ 0 because h1 ¼ �h0 ¼ hE [see Eq. (13)]; so there is

no net drift step. A sketch of these orbits is shown for this

case in Fig. 4(a). For ‘ ¼ 1 the trapped portions of the orbit

are shifted circles as in Fig. 1, which may be compared to

Fig. 2 of Ref. 5. Trapped particles move radially, but due to

the symmetry of the orbit particles always transit from

trapped to passing and back at the same radius, so the result-

ing drift orbit is closed and there is no net radial step. How-

ever when a 6¼ 0, particle orbits are trapped and detrapped at

different radii, leading to radial steps [Fig. 4(b)].

For the model stellerator fields considered in Ref. 5,

trapping and detrapping at different radii could happen if one

includes additional symmetry-breaking magnetic or electric

fields in the model, that act differently on different particle

populations (because these populations access different spa-

tial locations). Of course, for a ¼ 0 or p the diffusion does

not completely vanish; collisional effects not kept in the

above analysis yield finite diffusion consistent with Ref. 5.

B. Collisional effects

Collisional effects can be described by solving the relevant

transport equation for the perturbed distribution function in the

presence of the asymmetries. Following the analysis of Ref. 7

for neoclassical transport arising from electrostatic asymme-

tries, we write the distribution function f ðr; h; z; pzÞ as

f ¼ f0 1� d/
T
þ xrg

T

	 

; (24)

where f0ðr; z; pzÞ is the particle distribution in the absence of

asymmetries,

f0 ¼
N0ðrÞe� p2

z =2Mþ/0ðr; zÞ½ �=T

2p
ffiffiffiffiffiffiffiffiffiffiffiffi
2pMT
p Ð

dze�/0=T
(25)

and where N0 ¼
Ð

dhdzdpzf0 is the h and z integrated particle

density. Also,

xr ¼ @h/0i=@ph þ T@ ln N0=@ph (26)

is the fluid rotation frequency, h/0i is the mean potential at

radius r integrated over f0 in z, and gðr; h; EÞ is the nonadia-

batic portion of the perturbed distribution. For future refer-

ence, note that the distributions f0 and F0 are related by

F0ðEÞ ¼
2pf0

N0

X
i

siðEÞ; (27)

where the sum is overall phase space regions at the given

energy. The z- and h-integrated radial flux is given in terms

of the E� B drift due to d/,

Cr ¼ �
cxr

qrBT

ð
dhdzdpzf0

@d/
@h

g: (28)

From the form of xr, this implies that the flux is the sum of

diffusion and mobility terms,

Cr ¼ �l
@h/0i
@r
� Dr

@N0

@r
; (29)

where the diffusion coefficient is

Dr ¼
c

qrB

	 
2 ð
dhdzdpz f0

@d/
@h

g=N0; (30)

and the mobility coefficient is l ¼ DrN0=T:
In the limit of large axial bounce frequency compared to

rotation frequency, the distribution g satisfies the following

bounce-averaged linearized transport equation:7

x0

@g

@h
� Ĉg ¼ @d/

@h
; (31)

where Ĉ is the collision operator. A derivation of Eq. (31) is

given in Sec. IV. Here we assume the collision operator to be

FIG. 4. (Color online) Sketch of a drift orbit in the plane perpendicular to B
for a particle near the separatrix energy and for ‘ ¼ m ¼ 1 and (a) a ¼ 0; (b)

a 6¼ 0. When a ¼ 0 trapped orbits are displaced to the left and right, respec-

tively, with respect to passing orbits as in Fig. 1, and the orbits close. When

a 6¼ 0 trapped displacements are tilted by angle a with respect to the trap-

ping region, and orbits do not close. Trapped orbit centers are shown by the

small dots.
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Ĉg ¼ �ET2 @
2g

@E2
; (32)

describing diffusion in energy, where �E is the energy diffu-

sion rate of particles at the mean separatrix energy V0. For

the potential shown in Fig. 3, this rate is related to � via

�E ¼ 2V0

�

T
: (33)

This form of collision operator assumes collisional effects

are weak, with both DW and DV small compared to V0. That

is, energy diffusion is important only in a boundary layer

around the separatrix. For this reason we can also evaluate

x0 and @d/=@h at the separatrix energy. Equation (31) can

then be recognized as a driven diffusion equation. Boundary

conditions are that g is periodic in h, and f0g is integrable in

energy.

Equation (31) must be solved separately in the trapped

and passing regions, since @d/=@h is discontinuous across

the separatrix. The solutions in each region, g1, g2, and gp,

respectively, are linked by the flow across the separatrix for

energies in the range jE� V0j < DV. At the separatrix

energy VsðhÞ, continuity of phase space density implies

g1jE¼Vs
¼ g2jE¼Vs

¼ gp

��
E¼Vs

: (34)

Justification of these boundary conditions at the separa-

trix is nontrivial. Differences in the bounce averaged distri-

butions g1 and g2 actually generate higher order bounce

harmonics in gp as particles cross the separatrix. We neglect

these higher harmonics here, assuming they rapidly phase

mix due to bounce motion. Theoretical examination of the

effect of higher bounce harmonics on the transport will be

considered in future work.10 In Sec. III, we will compare pre-

dictions of the bounce averaged theory to simulations that

keep the bounce motion.

The three equations for g1, g2, and gp can be simplified

by replacing the trapped distributions g1 and g2 by gþ and

Dg, where

gþ ¼ p1g1 þ p2g2;

Dg ¼ g2 � g1; (35)

which implies

g1 ¼ gþ � p2Dg;

g2 ¼ gþ þ p1Dg: (36)

Then the equations in the trapped regions can be added and

subtracted to obtain

x0

@gþ

@h
� �ET2 @

2gþ

@E2
¼ x0

@gp

@h
� �ET2 @

2gp

@E2
¼
@d/p

@h
; (37)

x0

@Dg

@h
� �ET2 @

2Dg

@E2
¼ @D/

@h
; (38)

where D/ ¼ d/2 � d/1, d/p is the bounce averaged poten-

tial in the passing region, and the boundary conditions on the

separatrix become

gpjE¼Vs
¼ gþjE¼Vs

; DgjE¼Vs
¼ 0: (39)

In Eq. (37) we have used d/p ¼ p1d/1 þ p2d/2, valid for

energies near the separatrix. Since gp and gþ satisfy the same

differential equation with boundary condition 39, the solu-

tion for these functions is simply

gþ ¼ gp ¼
d/p

x0

þ Cp (40)

where Cp is an undetermined constant whose value does not

affect the radial flux. The remaining equation for Dg must be

solved numerically in general, in the energy range

E < VsðhÞ, with boundary condition Dg ¼ 0 on E ¼ Vs. In

the collisionless limit �E ¼ 0, the solution is

lim
�!0

Dg ¼ D/ðhÞ � D/ðh0n
Þ

x0

for h0n
< h < h1n

;

V0 � DV < E < V0 þ DV; (41)

lim
�!0

Dg ¼ D/ðhÞ
x0

þ A ; E < V0 � DV; (42)

where A is a constant. In fact, for �E ¼ 0, A could be any func-

tion of E, but for small but finite �E it is a constant whose value

is determined by the values of ‘, m, �̂E and a.

If ‘=m 2 Integers, or if a ¼ np=‘ for integer n and 2‘=m
is an odd number, the constant A approaches A ¼ �D/
ðp=mÞ=x0, so that Dg is continuous (but with infinite first deriv-

ative in energy when a 6¼ 0) at E ¼ V0 � DV [Figs. 5(a), 6(a)

and 7(a)]. Otherwise, Dg develops a discontinuity along

E ¼ V0 � DV as �E ! 0, and A! 0 [Fig. 8(a)]. The solution

for Dg is zero along the portion of the separatrix where particles

go from passing to trapped, but as �E ! 0 there is also a

FIG. 5. (Color online) Contour plot of the scaled nonadiabatic distribution

h‘m for ‘ ¼ m ¼ 1 and a ¼ 0 at (a) �̂ ¼ 0; b) �̂ ¼ 0:2.

FIG. 6. (Color online) Contour plot of the scaled nonadiabatic distribution

h‘m for ‘ ¼ m ¼ 1 and a ¼ p=2 at (a) �̂ ¼ 0 and (b) �̂ ¼ 0:2.
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discontinuity along the trapped to passing portion of the separa-

trix (the portion for which sgnðx0Þ sin mh > 0) [Figs. 6(a) and

8(a)], unless a ¼ 0 and 2‘=m 2 Integers [Figs. 5(a) and

7(a)].

These discontinuities are smoothed out by collisions.

For finite �E the solution can be written as

Dg ¼ ðe2 � e1Þ
x0

h‘mðh; e; �̂; aÞ; (43)

where e ¼ ðE� V0Þ=DV is scaled energy,

�̂ ¼ �ET2=ðx0DV2Þ (44)

is a scaled collision frequency, and h‘m satisfies

@h‘m
@h
� �̂ @

2h‘m
@e2

¼ �‘ sin ‘ðhþ aÞ (45)

with the boundary condition

h‘mje¼cos mh ¼ 0: (46)

The solution is required in the energy range e < cos mh.

Numerical solutions for h‘m are shown in Figs. 5(b), 6(b), 7(b),

and 8(b) for various values of ‘, m, �̂, and a. Details of the nu-

merical method are discussed in Appendix A. For small �̂ one

can see the development of the discontinuity at e ¼ �1 and

along the separatrix at e ¼ cos mh, as expected from Eqs. (41)

and (42). Also, for large negative e values, the solution

approaches the collisionless form,

lim
e!�1

h‘m ¼ cos ‘ðhþ aÞ þ C; (47)

where C is a constant whose value depends on ‘, m, �̂, and a.

This large negative energy regime produces no radial trans-

port; transport is due solely to the boundary layer region near

the separatrix.

For �̂ � 1 this boundary layer is broad and the boundary

condition can be approximated by h‘mje¼0 ¼ 0. An analytic

solution for h‘m in this large collisionality regime then fol-

lows immediately:

lim
�̂!1

h‘m ¼ Re½expði‘ðhþ aÞÞ

� ð1� expð
ffiffiffiffiffiffiffiffiffiffiffiffi
j‘=2�̂j

p
ð1þ isgnð‘�̂ÞÞ e�: (48)

Here we see the appearance of an exponential collisional

boundary layer in the distribution (the Stokes layer11), which

smoothes out the separatrix discontinuity of h‘m that occurs

in the plateau regime theory of Sec. II A. The dimensionless

width of this boundary layer is roughly
ffiffiffiffiffiffiffiffiffiffi
�̂=j‘j

p
, implying a

dimensional energy width of order DWc=
ffiffiffiffiffi
j‘j

p
. When DWc is

large compared to DV (i.e., when �̂ � 1), the separatrix

asymmetry is no longer important and Eq. (48) holds (assum-

ing DWc � V0).

The solution for g1, g2, and gp can be used in Eq. (30) to

obtain the radial diffusion coefficient. We first change varia-

bles to energy in Eq. (30), obtaining

Dr ¼
c

qBr

	 
2 ð
dhdE

X
i

siðEÞ
f0
N0

gi
@d/i

@h
; (49)

FIG. 7. (Color online) Contour plot of the scaled nona-

diabatic distribution h‘m for ‘ ¼ 1, m ¼ 2, and a ¼ 0 at

(a) �̂ ¼ 0 and (b) �̂ ¼ 0:5.

FIG. 8. (Color online) Contour plot of the scaled nona-

diabatic distribution h‘m for ‘ ¼ 1, m¼ 2, and a ¼ p=2

at (a) �̂ ¼ 0 and (b) �̂ ¼ 0:5.
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where the sum is over all phase space regions that exist at

given energy E. Then, breaking the energy integral up into

passing and trapped particle regions, and using Eqs. (15) and

(27), we obtain

Dr ¼
c

qBr

	 
2 ðp

�p

dh
2p

� ð
E>VsðhÞ

dEF0gp

@d/p

@h

þ
ð

E<VsðhÞ
dEF0 p1g1

@d/1

@h
þ p2g2

@d/2

@h

	 


: (50)

Then substituting for g1, g2, and gp from Eqs. (36), (40), and (43)

yields

Dr ¼ p1p2

c

qBr

	 
2 ðp

�p

dh
2p

ð
E<VsðhÞ

dEF0Dg
@D/
@h

¼ DV

2p
F0ðV0Þ

c

qBr

	 
2 ðe1 � e2Þ2

x0

p1p2D̂‘mð�̂; aÞ

¼ x0DV

2p
F0ðV0Þ

ðe1 � e2Þ2

E
2

r

p1p2D̂‘mð�̂; aÞ; (51)

where assume DV and DWc � V0, and where the dimension-

less coefficient D̂‘m is given by

D̂‘mð�̂; aÞ ¼ �‘
ðp

�p
dh
ðcos mh

�1
deh‘mðh; e; �̂; aÞ sin ‘ðhþ aÞ:

(52)

Substituting for sin ‘ðhþ aÞ from Eq. (45) and integrating by

parts allows us to write D̂‘m as

D̂‘mð�̂; aÞ ¼ �̂
ðp

�p
dh
ðcos mh

�1
de

@h‘m
@e

	 
2

; (53)

proving that D̂‘m > 0 provided that �̂ > 0.

The a-dependence of D̂‘mð�̂; aÞ can be obtained by not-

ing that the solution of Eq. (45) for h‘m can be written as

h‘m ¼ cos ‘ðhþ aÞ þ Re½expði‘aÞg‘m�
¼ cos ‘aðcos ‘hþ Reg‘mÞ � sin ‘aðsin ‘hþ Img‘mÞ;

(54)

where g‘mðh; e; �̂Þ satisfies

@

@h
� �̂ @

2

@e2

	 

g‘m ¼ 0 (55)

with boundary condition

g‘mje¼cos mh ¼ � expði‘hÞ: (56)

Equations (55) and (56), a diffusion problem with oscillatory

boundary condition, is similar to Stoke’s second problem,11

except that here the location of the boundary also oscillates

as e ¼ cos mh. Substituting Eq. (54) into Eq. (52) or (53)

yields

D̂‘mð�̂; aÞ ¼ D̂0ð‘; m; �̂Þ � D̂1ð‘; m; �̂Þ cos 2‘a

þ D̂2ð‘; m; �̂Þ sin 2‘a; (57)

where

D̂0ð‘; m; �̂Þ ¼ �̂
2

ð
dhde

@g‘m
@e

����
����
2

¼ ‘

2
Im

ð
dhdeg‘m expð�i‘hÞ;

(58)

D̂1ð‘; m; �̂Þ ¼ � �̂
2

Re

ð
dhde

@g‘m
@e

	 
2

¼ ‘

2
Im

ð
dhdeg‘m expði‘hÞ; (59)

D̂2ð‘; m; �̂Þ ¼ � �̂
2

Im

ð
dhde

@g‘m
@e

	 
2

¼ � ‘
2

Re

ð
dhdeg‘mexpði‘hÞ � ‘p

2
d2‘�m: (60)

Furthermore, we find that D̂1ð‘; m; �̂Þ ¼ 0 if

2‘=m 62 Integers, and D̂2ð‘; m; �̂Þ ¼ 0 for all values of its

arguments. Thus, the a-dependence of Eq. (57) is consistent

with the �̂ ! 0 case given by Eq. (22), since cos 2‘a
¼ 1� 2 sin2‘a. Using this identity it is useful to rewrite

Eq. (57) as

DVD̂‘m ¼ sgnð�̂ÞDWcD̂c

þ sgnð�̂ÞDV
D̂DVsin2‘a; 2‘=m 2 Integers

D‘m; 2‘=m 62 Integers

(
;

(61)

where

D̂DVð‘; m; �̂Þ ¼ 2D̂1ð‘; m; �̂Þsgnð�̂Þ; (62)

and

sgnð�̂ÞD̂cð‘; m; �̂Þ

¼ DV

DWc
D̂0 �

DV

DWc

D̂1; 2‘=m 2 Integers

D‘msgnð�̂Þ; 2‘=m 62 Integers
:

(

(63)

Using Eqs. (51) and (61) we summarize the results for radial

diffusion due to an asymmetric separatrix in the presence of

collisions as

Dr ¼
jx0j
2p

F0ðV0Þ
ðe1 � e2Þ2

E
2

r

p1p2

DWcD̂c þ DV
D̂DVsin2‘a; 2‘=m 2 Integers

D‘m; 2‘=m 62 Integers

(" #
;

(64)

where D‘m is given by Eq. (23), and the positive-definite

dimensionless functions D̂c and D̂DV are plotted in Fig. 9.

These functions are symmetric in �̂, so only the range �̂ > 0

is plotted. The constant D‘m equals lim
�̂!0

D̂‘m for the case

2‘=m 62 Integers [see Eq. (22)], so that D̂c represents colli-

sional corrections to the transport that vanish as �̂ ! 0.

For 2‘=m 2 Integers, D̂c ! 0 as �̂ p with p ’ 1=2 for

‘ ¼ m ¼ 1, and p ’ 5=12 for ‘ ¼ 1, m ¼ 2. The former case
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is consistent with the results of Ref. 5, which found diffusion

scaling as �1 when a ¼ 0 (recall that for 2‘=m 2 Integers and

a ¼ 0, Eq. (61) implies that D̂‘m / DWcD̂c / �̂1=2þp). On the

other hand, when 2‘=m 62 Integers, the behavior of D̂c as

�̂ ! 0 is complicated by narrow boundary layers in the solu-

tion for g, resulting in what may be a weak, possibly logarith-

mic, divergence in D̂c as �̂ ! 0 when ‘ ¼ 1 and m ¼ 3.

However even if D̂c is weakly divergent and negative for

�̂ ! 0, D̂‘m still approaches the plateau regime value D‘m since

DVD̂‘msgnð�̂Þ ¼ DWcD̂c þ DVD‘m when 2‘=m 62 Integers.

The coefficient D̂DV represents the a-dependent transport

induced by the separatrix asymmetry, for 2‘=m 2 Integers.

This latter coefficient dominates the diffusion at small �̂, while

D̂c dominates at large �̂. In the limit of small collisionality,

lim
�̂!0

D̂DVð‘; m; �̂Þ ¼ 2D‘m; (65)

so that Eq. (64) approaches Eq. (2) as �̂ ! 0.

On the other hand, for �̂ !1 D̂0 follows from

Eqs. (48) and (52):

lim
j�̂j!1

D̂0 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffi
j‘�̂j=2

p
sgn�̂: (66)

Also, large �̂ asymptotic forms for D̂1 are obtained in Appen-

dix A which may be used along with Eq. (62) to yield

lim
j�̂j!1

D̂DV¼

pj‘j; 2j‘=mj¼1;

0 1

j�̂jj ‘mj�
1
2

	 

; 2j‘=mj>1 and 2‘=m2 Integers;

0; 2j‘=mj 62 Integers:

8>><
>>:

(67)

More detailed asymptotic results for special values of m and

‘ can also be found in Appendix A. For instance

lim
j�̂j!1

D̂DV ¼ j‘j3=2 pffiffiffiffiffiffiffiffi
8j�̂j

p ; jmj ¼ j‘j: (68)

These results, together with Eqs. (2), (33), (44), (63), and (66),

imply that

lim
j�̂j!1

D̂c ¼ p
ffiffiffiffiffi
j‘j

p
: (69)

III. TRANSPORT SIMULATIONS

Simulations of field error transport have been performed

in order to test the theory. The simulation method is the same

as that described in Ref. 7. Guiding-center equations of

motion (including motion along the magnetic field) are inte-

grated forward in time. The magnetic field is taken to be uni-

form and the electric field is assumed time-independent, so

collective dynamics such as plasma waves is not included.

The parallel force law is modified to include a collisional drag

term and a random force in order to model the Fokker-Planck

collision operator for parallel velocity diffusion, with constant

collision frequency �. Radial diffusion is measured by evalu-

ating the mean-square change in radial position of the par-

ticles, where the mean is evaluated by averaging over several

thousand particle trajectories with initial radial positions iden-

tical, initial axial and h positions uniformly distributed in

½�L; L� and ½0; 2p�, respectively, and initial parallel velocities

sampled from a Maxwellian distribution at temperature T.

Simulations were performed in the idealized electro-

static potentials of Fig. 3. The confinement potential was

taken to be reflecting walls at z ¼ 6L, and the separatrix

potential at z ¼ 0 was infinitely narrow in z. Also the asym-

metry potential d/ðz; hÞ was taken to be

d/ðz; hÞ ¼ e sgnðzÞ cos ‘ðhþ aÞ: (70)

Thus, particles travel at constant velocities except when they

reflect at the ends or pass z ¼ 0, where they may be reflected

if their parallel kinetic energy is less that of the squeeze

potential VsðhÞ given by Eq. (6). In the absence of collisions,

total energy H is conserved, where for z 6¼ 0,

H ¼ Mv2
z

2
þ x0ph þ d/ðz; hÞ: (71)

Results of the radial diffusion evaluations are displayed in

Fig. 10 versus collision frequency �, for the case ‘ ¼ m ¼ 1,

where the phase angle a ¼ 1, and for several e values. The pa-

rameters of the squeeze potential were V0 ¼ 0:5T and

DV ¼ 0:1T. In Fig. 10(a), the rotation frequency was

x0 ¼ 0:05vt=L, where vt ¼
ffiffiffiffiffiffiffiffiffiffi
T=M

p
is the thermal speed, so

that the bounce-averaged diffusion theory should be a reasona-

ble approximation since for this choice of x0 the average

bounce frequency is large compared to x0. In Fig. 10(b) the

rotation frequency is 10 times larger. In Fig. 11, the phase

angle a is varied at fixed � ¼ 10�5vt=L, displaying the

expected sin2a dependence.

At larger � values, the simulations display the expectedffiffiffi
�
p

scaling of Eq. (3), which holds up to the point that

� > x0, after which the expected 1=� scaling of Eq. (1)

occurs (not shown). As � decreases to the point where the

collisional boundary layer width DWc is less than DV [see

Eq. (5)], the diffusion becomes independent of �, with a

value predicted by Eq. (22) with

F0ðEÞ ¼ e�E=T=
ffiffiffiffiffiffiffiffiffi
pET
p

; (72)

p1 ¼ p2 ¼ 1=2; and e1 ¼ �e2 ¼ e.
However, at even smaller values of �, the simulation

results diverge from the theory, eventually approaching zero

FIG. 9. (Color online) Scaled diffusion coefficients D̂c and D̂Dv for ‘ ¼ 1

and m ¼ 1 (solid), m¼ 2 (dashed) and m¼ 3 (dotted), plotted vs scaled colli-

sion frequency �̂.
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as � ! 0. For e ¼ 0:01T the approach to zero is roughly

monotonic with decreasing �, but for e ¼ 0:0001T there is

first an increase in diffusion with decreasing � before Dr

begins to decrease. We will explain these two phenomena

separately.

In the limit as � ! 0, Dr approaches zero because of

nonlinear (finite e) effects not included in the previous quasi-

linear analysis. In the collisionless limit, separatrix crossing

and particle capture in one of the two trapping regions is a

phase mixing process that allows some initial collisionless

relaxation of the particle distribution. However, particle

energy is conserved, and this limits the total possible change

in ph, or alternately, in parallel kinetic energy. Kinetic ener-

gies for particles near the separatrix energy cannot change

by more than roughly DV, since changes larger than this

would take the particles into integrable phase space regions

that are either always trapped or always passing. It is impos-

sible to access such regions because to do so requires cross-

ing KAM surfaces.

Thus, when collisions are neglected the diffusion van-

ishes because phase mixing of the distribution leads to the

formation of a stationary state. Although Eq. (22) is inde-

pendent of collision frequency, collisions are implicitly

required in order to refresh the distribution function before it

can phase mix, keeping it close to a Maxwellian.

This collisionless relaxation is similar to the formation of

a BGK state via phase mixing that is responsible for the van-

ishing diffusion in standard banana-regime transport as � ! 0.

Unlike standard neoclassical theory, however, here this colli-

sionless relaxation is stochastic as particles in the separatrix

region are chaotically trapped and untrapped. This makes the

process much more difficult to describe analytically than for

the standard banana regime. However, we can estimate the

time required for collisionless relaxation as the time tr needed

for a particle to collisionlessly diffuse in kinetic energy by

order DV due to the random trapping/untrapping that occurs

every rotation period,7 changing kinetic energy by 6e

tr �
DV2

jx0je2
: (73)

When collisions are added to the dynamics, the distribu-

tion is driven back toward Maxwellian form, as particles

undergoing collisionless trapping and detrapping are

replaced by new particles due to velocity-scattering colli-

sions. The time tc required to collisionally refresh these par-

ticles is of order

tc �
DV2

2�ET2
: (74)

This is the time for kinetic energy to diffuse by DV. When

tc < tr, i.e., when

�E >
jx0je2

T2
; (75)

collisions prevent collisionless relaxation to a BGK state.

This is the regime where the previous quasilinear theory is

valid. However, when tc > tr, the distribution function

FIG. 11. (Color online) Diffusion coefficient vs phase angle a for

‘ ¼ m ¼ 1, V0 ¼ 0:5 T, DV ¼ 0:1 T, e=T ¼ 10�3, x0L=vt ¼ 0:05, and

�L=vt ¼ 10�5. Dots are simulation results, solid line is Eq. 22.

FIG. 10. (Color online) Diffusion coefficient determined via simulation vs

collision frequency, for ‘ ¼ m ¼ 1;V0 ¼ 0:5T, DV ¼ 0:1T, and three e val-

ues: e=T ¼ 10�2, e=T ¼ 10�4, and e! 0. The phase angle is a ¼ 1 in all

cases. (a) x0L=vt ¼ 0:05. (b) x0L=vt ¼ 0:5.
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collisionlessly mixes over the separatrix region. One can

then estimate the radial diffusion in the manner of banana

orbit theory. Particles now take large radial steps associated

with a change in kinetic energy of order DV, implying

through energy conservation that

Dr � DV

Er
: (76)

After time tc the particles are collisionally replaced, implying

a radial diffusion of order

Dr �
hDr2i

tc
F0ðV0ÞDV

� 5�E
DV

Er

	 
2 T2

DV
ffiffiffiffiffiffiffiffi
TV0

p e�V0=T ; tr < tc: (77)

This “banana regime” estimate is consistent with the roughly

�1 scaling of the simulation results at low collision frequen-

cies (see Fig. 10). The “fudge factor” of 5 in this scaling for-

mula is chosen to provide a reasonable fit to the simulation

data.

We now turn to the increase in diffusion as � decreases,

observed when e ¼ 10�4 T, particularly at larger rotation fre-

quencies [Fig. 10(b)]. This phenomenon is caused by an

increase in the correlation time of radial velocity fluctuations

as e! 0 and � ! 0. In this limit Dr=e2 diverges because

there are initial conditions for which the trapping process is

no longer random. Particles with parallel speed vz that satis-

fies jpvz=L ¼ kx0 for any integers j and k follow periodic

orbits. When j and k are chosen so that parallel energy satis-

fies Eq. (12), particles take repeated radial steps as they are

trapped and detrapped, rather than the random steps assumed

in the previous theory. For finite e or finite �, changes in par-

allel velocity eventually take the orbits out of resonance, but

for small e and � the resonances last long enough to affect the

transport. This can be seen by using a simulation that

employs a quasilinear form for the dynamics, allowing paral-

lel velocity to change due to collisions but neglecting parallel

velocity change due to the asymmetry potential. The resulting

diffusion coefficient diverges as � ! 0 (see Fig. 10).

One can estimate a bound on the collision frequency

above which these resonances are unimportant via the follow-

ing argument. In a drift rotation period a particle’s energy

changes through collisions by roughly DWc. This results in a

change DhE in hE of roughly DWc=DV �
ffiffiffiffiffiffi
j�̂j

p
[see

Eq. (14)], which shifts the angular location of particle trap-

ping by this amount. If DhE > jx0js where s is the bounce

period, then the particle’s axial position is randomized by col-

lisions at the time of trapping, which implies resonances are

wiped out by collisions. Taking s of order pvt=ðL1 þ L2Þ
implies that collisions wipe out resonances when

j�̂j& 1

R2
(78)

where R ¼ pvt=jx0jðL1 þ L2Þ is the rigidity.12 Alternately,

one can write this as

�

jx0j
&

DV

TR

	 
2

: (79)

For the simulations with DV ¼ 0:1 T and R ¼ 30 [Fig.

10(a)] or 3 [Fig. 10(b)] this implies �=jx0j& 10�5 in Fig.

10(a) and �=jx0j& 10�3 in Fig. 10(b). One can see that

resonances do not appear to enhance the diffusion when � is

greater than these limiting values.

Collisions also directly affect the z position of the par-

ticles, through velocity diffusion. The mean square variation

in z due to collisions in one rotation period is roughly

hDz2i � �v2
t =jx0j3: (80)

If this variation is larger than L, collisions randomize which

side a particle is trapped on. This estimate yields

�

jx0j
&

1

R2
; (81)

which requires larger collision frequency than Eq. (79).

Therefore, collisional randomization of hE supercedes the

randomization of z.

We have also performed simulations of radial particle

transport in potentials with separatrix regions of finite axial

extent, using an axial trapping potential of the form

/ðz; hÞ ¼ T
z

L

� �8

þ ðV0 þ DV cos hÞe�ðbz=LÞ4
� 


(82)

where L is a scale length, and for two values of b, b ¼ 11:2,

and b ¼ 22:4. Both values of b correspond to rather narrow

separatrix regions (see Fig. 12), but the second case has a

separatrix that is twice as narrow as the first. In addition,

there is an applied error potential of the form

d/ ¼ c
Tz

L
sin h; (83)

corresponding to phase angle a ¼ p=2, and ‘ ¼ m ¼ 1. In

these potentials, the radial transport can be thought of as

roughly a sum of two independent processes: transport

caused by d/ as discussed in this paper, and transport caused

by DV itself, which was previously neglected. This latter

FIG. 12. (Color online) Potential /ðz; h ¼ p=2) from Eq. 82, taking

V0 ¼ 0:5T used in the simulations of Fig. 13. Solid line: b ¼ 11:2. Dotted

line: b ¼ 22:4.
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transport is described by the standard theory of neoclassical

transport discussed in many previous papers. For small DV
this transport scales roughly as DV2 (the quasilinear plateau

or Pfirsch-Schluter regime). Mathematically, we may write

Dtotal ¼ De2 þ DstandardDV2; (84)

with the first term due to separatrix-crossing transport dis-

cussed in previous sections, and the second term standard

neoclassical transport due to DV alone. Here we have fac-

tored out dependences on e and DV, respectively, as this is

important in what follows.

Simulations of the diffusion in the potentials of Eqs. (82)

and (83) were performed for different values of DV, c, b, and

�. The resulting total diffusion coefficients are displayed in

Fig. 13. For c ¼ 0 (diamonds) the diffusion is due only to

standard neoclassical transport from DV and is displayed for

the two separatrix width parameters b. We observe that the

transport scales roughly as the (separatrix width)2 (i.e., b�2).

This is because a radial step Dr caused by DV is proportional

to the time Dt over which DV acts as particles move axially

past the field error. The interaction time Dt is shorter for nar-

rower separatrix regions,

Dstandard / Dr2 / Dt2 / b�2: (85)

For c ¼ 0:042 (circles, squares), we observe the expected

enhancement to the diffusion discussed in previous sections.

When DV ¼ 0, we observe transport scaling as
ffiffiffi
�
p

with the

correct magnitude (solid squares, and the solid line, which is

the theory of Eq. (64) evaluated for DV ¼ 0). To compare to

theory we note that z=L ’ 0:5 for trapped particles near the

separatrix energy V0 ¼ 0:5 T, so that e ¼ 0:021 T; and for

such particles �E ’ 0:6 �. These values come from bounce-

averages in the potential of Eq. (82), as discussed in relation

to Eqs. (9) and (10). When DV 6¼ 0, the transport also scales

as expected from Eq. (64), with enhancement due to colli-

sionless separatrix crossing provided that � is not too small;

otherwise the nonlinear effects discussed in relation to

Eq. (77) reduce the diffusion.

Note that no resonance effects are observed in these sim-

ulations, as they were in Fig. 10 at small � and e: the total

diffusion is roughly monotonic in �. This is probably

because e ¼ 0:021 T in Fig. 13 is not small enough. How-

ever, if e were reduced by one to two orders of magnitude in

order to enter the regime where resonances produce an

observable effect [c.f., Fig. 10(b)] the diffusion due to e
would be reduced by two to four orders of magnitude, so that

it would be negligible compared to the diffusion due to DV
alone [see Eq. (84)]. To observe the resonances, we would

have to reduce the separatrix region width (increase b) by

one or two orders of magnitude as well, since Dstandard scales

of b�2 [c.f. Eq. (85)]. Thus, these resonances are important

only for exceptionally narrow separatrix regions, ten to one

hundred times narrower than shown in Fig. 12.

IV. DAMPING AND FREQUENCY SHIFT OF TRAPPED
PARTICLE MODES

The transport theory described in previous sections can

also be used to predict the damping rate and frequency shift

of certain collective modes. This can be understood as a

transport process, where the mode potential d/ acts as a field

error that torques on the plasma. This torque reacts back on

the mode, causing damping and a frequency shift.

The collective modes we will consider here are dioco-

tron modes modified by application of the squeeze potential

Vs. As discussed by previous authors,2 the squeeze potential

creates a new “trapped particle” diocotron mode whose

potential changes sign across the squeeze region. We gener-

alize these results for the case of a h-dependent squeeze,

given by Eq. (6).

The trapped particle mode potential d/ is similar in

form to that considered in the previous transport sections.

Just as before, d/ creates an adiabatic and a nonadiabatic

response in the perturbed particle distribution function df ,

df ¼ f0 �
d/
T
þ xrg

T

	 

(86)

where df satisfies the linearized drift-kinetic equation includ-

ing collisions:

@df

@t
þ vz

@df

@z
� @/0

@z

@df

@pz
� @d/

@z

@f0

@pz

þ x0

@df

@h
� @d/

@h
@f0
@ph
¼ Ĉdf ; (87)

and where Ĉ is the linearized collision operator. Substituting

for df from Eq. (86), and using Eq. (25) for f0, yields

@g

@t
þ vz

@g

@z
� @/0

@z

@g

@pz
þ x0

@g

@h
¼ @d/

@h
þ 1

xr

@d/
@t
þ Ĉg;

(88)

FIG. 13. (Color online) Total diffusion Dtotal in a potential with a finite-

width separatrix region, given by Eqs. (82) and (83). Solid symbols are

results for b ¼ 11:2, and open symbols are for a narrower separatrix region

with b ¼ 22:4. Circles: DV ¼ 0:2T; e ¼ 0:021T. Squares: DV ¼ 0,

e ¼ 0:021T. Diamonds: DV ¼ 0:2T, e ¼ 0. Lines are theory given by

Eqs. (64) and (84). For the dashed line, Dstandard is obtained numerically

from an interpolation of the simulation results for b ¼ 11:2, e ¼ 0, and

DV ¼ 0:2T (solid diamonds).
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where Ĉg � f�1
0 Ĉðf0gÞ.

Assuming that xb=jx0j � 1, we take a bounce average

of Eq. (88), acting with ð1=sÞ
Þ

dz=vz. We also take g ’ g in

both Eqs. (86) and (88) (i.e., we use the bounce average of g
in these equations). This results in the following bounce-

averaged kinetic equation for gðh; t; EÞ:

@g

@t
þ x0

@g

@h
� Ĉg ¼ @d/

@h
þ 1

xr

@

@t
d/; (89)

where Ĉ is the bounce-averaged collision operator given

approximately by Eq. (32)

The diocotron mode dispersion relation follows from

applying the solution of Eq. (89) to Poisson’s equation,

r2d/ ¼ �4pq2

ð
dpzdf ¼ d/

k2
D

� 4pq2xr

T

ð
dpz f0g; (90)

where kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=ð4pe2n0Þ

p
is the Debye length and

n0 ¼
Ð

dpzf0 is the density. As before, the bounce-average of

d/ in Eq. (89) takes different values in the two trapping

regions 1,2 and the passing region ðpÞ, with solutions g1, g2

and gp, matched across the separatrix according to Eq. (34).

We again simplify by writing g1 and g2 in terms of gþ and

Dg [see Eqs. (35) and (36)], after which we find that gþ satis-

fies the same equation as gp,

@gþ

@t
þ x0

@gþ

@h
� Ĉgþ ¼ @gp

@t
þ x0

@gp

@h
� Ĉgp

¼
@d/p

@h
þ 1

xr

@

@t
d/p; (91)

and Dg satisfies

@Dg

@t
þ x0

@Dg

@h
� ĈDg ¼ @D/

@h
þ 1

xr

@

@t
D/ (92)

where D/ ¼ d/2 � d/1. Equation (92) is solved with bound-

ary condition

DgjE¼Vs
¼ 0: (93)

In terms of Dg, gþ, and gp, Poisson’s equation becomes

r2d/� d/

k2
D

¼� 4pq2xr

T

ð
E<Vs

dpzf0gþ þ
ð

E>Vs

dpzf0gp

�

þ
ð

E<Vs

dpzf0Dg½HðzÞp1 � Hð�zÞp2�


;

(94)

where HðzÞ is the Heaviside step function. These step func-

tions are used here to demarcate region 1(z < 0) and region

2(z > 0).

The solution for d/ breaks into two distinct eigenmo-

des.2 The symmetric diocotron mode has Dg ¼ 0 and

d/1 ¼ d/2. The antisymmetric (trapped particle) mode has

gþ ¼ gp ¼ 0 and

p1d/1 ¼ �p2d/2: (95)

Here we focus on the antisymmetric mode. We write

d/ ¼
X
‘

d/‘ðr; zÞei‘h�ixt (96)

with

d/‘ ¼
w‘ þ f‘ for ‘ ¼ ‘
f‘ for ‘ 6¼ ‘

�
(97)

where w‘ is the eigenfunction of the ‘th mode in the absence

of collisions and for no separatrix asymmetry ðDV ¼ �E ¼ 0Þ,
and f‘ is the finite �E and DV correction to the eigenfunction.

Substituting Eq. (96) into Eq. (92), we write the solution

for Dg as

Dg ¼
X
‘

‘xr � x

‘x0 � x

D/‘

xr
e�ixt½ei‘h þ g‘mðx̂; e; hÞ� (98)

where x̂ ¼ x=x0, D/‘ ¼ d/‘2
� d/‘1

, e ¼ ðE� V0Þ=DV,

and where g‘m satisfies a finite-frequency version of Eq. (55),

@

@h
� ix̂� �̂ @

2

@e2

	 

g‘m ¼ 0 (99)

with boundary condition

g‘mðx̂; e ¼ cos mh; hÞ ¼ � exp i‘h: (100)

Here we have dropped small Oð�=xÞ terms involving energy

derivatives of x0 and D/‘, since the main energy depend-

ence arises from the narrow boundary layer in g‘m.

In the absence of collisions or separatrix asymmetry, the

solution for g‘m is g‘m ¼ 0 (i.e., there is a discontinuity at the

separatrix), and only the ‘ ¼ ‘ term is required in Eq. (98).

When �E or DV are unequal to zero, g‘m 6¼ 0. An expression

for damping and frequency shift can be obtained using stand-

ard perturbation theory methods. Substituting Eqs. (96)–(98)

into (94) yields the equation

0 ¼ L̂x‘ ei‘hw‘ þ
X
‘

ei‘hf‘

2
4

3
5þ 4pq2

T

X
‘

ei‘h

ð
E<VsðhÞ

dpz
‘xr � x

‘x0 � x
f0D/‘g‘m p1HðzÞ � p2Hð�zÞ½ �

(101)

where the operator L̂x‘ is

L̂x‘/ ¼ r2/� /

k2
D

þ 4pq2

T

ð
E<VsðhÞ

dpz
‘xr � x
‘x0 � x

� f0 p1HðzÞ � p2Hð�zÞ½ �ð/2 � /1Þ: (102)

This operator is Hermitian with respect to the norm defined

by ðw; /Þ ¼
Ð

d3rw	/, provided that ‘x0 � x 6¼ 0 through-

out the plasma (i.e., there is no spatial Landau damping13).

To see this, note thatð
dzw	

ð
E<Vs

dpzf0 p1HðzÞ � p2Hð�zÞ½ �ð/2 � /1Þ

¼
ðVs

0

dEf0

þ
2

dz

vz
w	p1 �

þ
1

dz

vz
w	p2

	 

ð/2 � /1Þ

¼
ðVs

0

dE

2p
F0N0p1p2ðw

	
2 � w

	
1Þð/2 � /1Þ; (103)
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where in the second line we used dpz ¼ dE=vz and in the last

line we used Eqs. (15) and (27). Also, w‘ satisfies the eigen-

value problem

L̂
ð0Þ
x‘w‘ ¼ 0 (104)

where for a nontrivial solution x must be chosen to be the

(real) frequency x‘ of the trapped particle mode and where

L̂
ð0Þ
x‘ is equal to L̂x‘ in the limit DV ¼ 0.

Equation (104) can be simplified for the case of a long

plasma column with a short squeeze region (narrow separa-

trix). We can then neglect the energy dependence of x0, and

using Eqs. (95) and (26), and assuming that all quantities are

independent of z far from the squeeze, Eq. (104) becomes

1

r

@

@r
r
@w‘

@r
� ‘

2

r2
w‘ �

w‘

k2
D

1� ftð Þ

þ 4pq2

‘x0 � x
‘
@N0

@ph

nt

N0

w‘ ¼ 0; (105)

where nt ¼
Ð

E<V0
dpzf0 is the trapped particle density and

ft ¼ nt=n0 is the trapped particle fraction. This equation cor-

rects an error in Ref. 2, where @N0=@phðnt=N0Þ was incor-

rectly written as @nt=@ph. Note that Eq. (105) is independent

of the length of each end, L1 and L2, so the trapped particle

mode frequency x‘ is independent of the lengths (in this

approximation). The eigenfunction w‘ is connected in each

end by Eq. (95).

An equation for the (complex) frequency shift

Dx ¼ x� x‘ is then found by multiplying Eq. (101) by

e�i‘hw	‘ , integrating overall space, using the Hermitian prop-

erty of L̂x‘, along with Eqs. (103) and (104), and writing

L̂
ð0Þ
x‘ ¼ L̂

ð0Þ
x‘‘
þ Dx@L̂

ð0Þ
x‘‘
=@x‘. The result is

Dx
ð

d3r w	‘
@L̂
ð0Þ
x‘

@x
w‘

 !
þ 4pq2

T

ð
rdr

dh
2p

p1p2N0ðrÞ

�
ðVs

V0

dE
‘xr � x
‘x0 � x

F0 jDw‘j
2 þ

X
‘

Dw
	
‘Df‘e

ið‘�‘Þh

0
@

1
A

2
4

þ
X
‘

ðVs

0

dE
‘xr � x
‘x0 � x

F0Dw
	
‘D/‘g‘mei‘h

3
5 ¼ 0; (106)

where for notational convenience we have replaced x‘ by x
everywhere. The first integral in the square bracket (includ-

ing the h-integration) is order maxðDV2; DVDWÞ and so can

be neglected. In the third integral we may take

D/‘ � Dw‘d‘‘. Also, using the same manipulations as in

Eq. (103), we may write

ð
d3rw	‘

@L̂
ð0Þ
x‘

@x
w‘ ¼

4pq2

T

ð
rdr

dh
2p

N0ðrÞ

�
ðV0

0

dEp1p2

‘ðxr � x0Þ
ð‘x0 � xÞ2

F0jDw‘j
2:

(107)

Thus, to lowest order in DV and �E, the complex frequency

shift of the trapped particle diocotron mode is

Dx ¼
�
Ð

rdrdhp1p2N0ðrÞ
Ð Vs

0
dE‘xr�x

‘x0�xF0jDw‘j
2g‘mexpð�i‘hÞ

c
qB‘T

Ð
drdh@N0

@r

Ð V0

0
dEp1p2

F0jDw‘j
2

ð‘x0�xÞ2

(108)

where in the denominator we have substituted for xr from

Eq. (26).

Equation (108) can be related to our previous transport

coefficients by noting that g‘m is nonzero only in a boundary

layer around Vs, so that we may approximate F0ðEÞ by

F0ðV0Þ, and x0ðEÞ by x0ðV0Þ. Taking the imaginary part of

Eq. (108) and defining the mode damping rate c ¼ �ImDx,

one obtains

c ¼
Ð

rdr‘xr�x
‘x0�xp1p2N0ðrÞDVF0ðV0ÞjDw‘j

2
ImW‘m

2pc
qB ‘T

Ð
dr@N0

@r

Ð V0

0
dEp1p2

F0jDw‘j2

ð‘x0�xÞ2
(109)

where

W‘mðx̂; �̂Þ ¼
ð

e<cos mh
dedhg‘m expð�i‘hÞ: (110)

In Appendix A we show that W‘m depends on ‘ and x
only in the combination ‘� x̂. Furthermore, comparing Eq.

(110) to Eq. (58) reveals that ImW‘m is a finite-frequency

version of the scaled diffusion coefficient D̂0:

ImW‘mðx̂; �̂Þ ¼
2

‘
D̂0ð‘� x̂; m; �̂Þ: (111)

Thus, the damping rate can be understood by considering

angular momentum conservation. The imaginary part of the

numerator of Eq. (14) is proportional to the z- and h-inte-

grated rate of radial expansion of the plasma [see Eq. (29),

and recall that ImW‘m is a scaled diffusion coefficient].

Angular momentum conservation requires that this expan-

sion be balanced by loss of angular momentum in the mode:

0 ¼ qB

c

ð
r2 ~Crdr � 2cP; (112)

where P is the angular momentum of the mode, c ¼ �ImDx
is the mode damping rate, and ~Cr is the Doppler-shifted ra-

dial flux equivalent to Eq. (29),

~Cr ¼ �
~DrN0

T

qrB

c
xr �

x
‘

� �
; (113)

where ~Dr is the frequency-dependent diffusion coefficient

given by Eq. (30), but with g determined by the solution to

Eq. (89). This diffusion coefficient is related to W‘m by the

Doppler-shifted version of Eq. (51), replacing Dr by ~Dr and

D̂‘m by ð‘=2Þ Im W‘m according to Eq. (111),

~Dr ¼
1

4p
DVF0ðV0Þ

c

qBr

	 
2 ‘2jDw‘j
2

‘x0 � x
p1p2 Im W‘m: (114)

Equations (112)–(114), together with the following expres-

sion for mode angular momentum:14

P ¼ � ‘
2

4

c

qB

ð
dr
@N0

@r

ðV0

0

dEp1p2F0ðEÞ
jDw‘j

2

ð‘x0 � xÞ2
; (115)

062114-13 Neoclassical transport and plasma mode damping Phys. Plasmas 18, 062114 (2011)



lead immediately to Eq. (109). A derivation of Eq. (115) is

given in Appendix B.

In the limit as �̂ ! 0, finite-frequency generalizations of

the plateau regime theory of Sec. IIA can be used to deter-

mine W‘m. The plateau regime solution of Eq. (55) in the

separatrix region is

lim
�̂!0

g‘m¼�expði‘h0n
þ ix̂ðh�h0n

ÞÞ; h0n
<h<h1n

; �1<e<1

(116)

and applying this result to Eq. (110) yields

lim
�̂!0

W‘m¼
m3 sin2p

m ð‘� x̂Þþ2im½4ð‘� x̂Þ2�m2sin2 p
mð‘� x̂Þ�

ð‘� x̂Þ½4ð‘� x̂Þ2�m2�

¼
m3 sin2p

mð‘� x̂Þ
ð‘� x̂Þ½4ð‘� x̂Þ2�m2�

þ2iD‘�x̂;m

‘� x̂
: (117)

In the opposite limit j�̂j ! 1, the solution of Eq. (99)

for g‘m is a finite-frequency version of Eq. (48),

g‘mðe;hÞ¼�exp i‘hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘�x̂
2�̂

����
����

s
1þisgn

‘�x̂
�̂

	 
� 

e

( )
; e<0

(118)

and when this result is applied to Eq. (110) we obtain

lim
�!1

W‘m ¼ �p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�̂

‘� x̂

����
����

s
1� isgn

‘� x̂
�̂

	 
� 

: (119)

When this expression is used in Eq. (14), and the weak

energy dependence of p1, p2, x0, and Dw‘ is neglected, and

N0 is replaced by n0 (due to the long column approximation),

the damping rate derived in Ref. 2 is recovered, except that

here we correct an error in the denominator; the expression

@nt=@r in Ref. 2 should be replaced by ft@n0=@r,

lim
j�̂j!1

c ¼
� jXcjffiffi

p
p

v2
t

Ð
rdr n0 þ

‘
v2

t

X2
c r
@n0

@r

‘x0�x

 !
e�V0ðrÞ=T jDw‘j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=j‘x0 � xj

p
Ð

dr@n0

@r ft
jDw‘j

2

ð‘x0�xÞ2
; (120)

where Xc ¼ qB=mc is the cyclotron frequency. Here we have

used Eq. (26) for xr , Eq. (72) for F0, and Eqs. (33) and (44) for

�̂. Also we have used the fact that sgnðð‘� x̂Þ=�̂Þ < ð>Þ0
for this mode when q < ð>Þ0, which follows from the solution

of Eq. (105) for monotonically decreasing density profiles.2

Note how the DV dependence cancels in this large collisionality

limit, because
ffiffiffî
�
p
/ 1=DV. The denominator is negative for

monotonically decreasing density, and the numerator is nega-

tive under typical experimental conditions, leading to a damped

mode.

V. CONCLUSIONS

We have presented a new theory of radial transport due

to applied field errors in the presence of an asymmetric sepa-

ratrix that creates local trapped particle populations. The

mean separatrix energy V0, the separatrix asymmetry DV, and

the global asymmetry strength e were assumed to follow the

ordering e� DV � V0, and the bounce frequency along

the magnetic field xb was assumed to be large compared to

the E� B drift rotation frequency x0.

Because of the separatrix asymmetry some particles can

collisionlessly transit from passing to trapped and back dur-

ing their orbital motion, causing radial diffusion when the

phase shift a is nonzero or when mode numbers ‘ and m sat-

isfy 2‘=m 62 Integers.

The effect of collisions on the diffusion was also consid-

ered. Several regimes were identified: 1=� and
ffiffiffi
�
p

regimes,

similar to those regimes in superbanana transport theory; the

new �0 regime that occurs when � satisfies

e2

V0T
.

�

jx0j
.

DV2

V0T
; (121)

and a new “banana-like” regime where Dr / � that occurs for

�. jx0j
e2

V0T
: (122)

The theory presented here focuses on the enhancement

of neoclassical transport caused by a global asymmetry d/ in

the presence of an asymmetric separatrix potential DV. These

results neglect transport caused by bounce-rotation resonan-

ces which depends on d/ but is independent of DV, and is

described by standard neoclassical theory.7,15 Our theory also

neglects transport caused by DV itself, which is independent

of d/. This transport can also be described using standard

neoclassical theory. Both effects must be added to the separa-

trix-crossing transport discussed in this paper when compar-

ing to experiments, although there are parameter regimes

where the separatrix-crossing transport dominates.16

We observed in simulations that for low to moderate

plasma rigidity R, bounce-rotation resonances can enhance

the transport provided that e and � are sufficiently small, and

the axial extent of the separatrix region is also sufficiently

small (cf., Figs. 10 and 13). The bounce-averaged theory pre-

sented here neglects these resonances. A more general theory

incorporating the resonances will be presented elsewhere.10

In addition to these results, expressions were derived for

damping and frequency shift of trapped particle diocotron

modes. Both damping and frequency shift were found to

depend on the separatrix asymmetry, but not on phase shift a
because the mode rotates with respect to the separatrix asym-

metry, averaging over the phase shift. It is possible to create

separatrix asymmetries that rotate at the same rate as the

mode, in which case a phase shift dependence of the damping
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and frequency shift would reappear. This situation will be

considered in future work.

Although the theory presented here was developed for

the cylindrical geometry of nonneutral plasmas, results

should also apply to toroidal plasmas where locally-trapped

particles and asymmetric separatrices exist, such as stellara-

tors. Other authors have also considered the effect of asym-

metric separatrices on transport for such geometries,5,17–20

where the effect of separatrix crossing is often discussed in

terms of an abrupt change in the parallel adiabatic invariant

of the bounce motion. However, the effect of nonzero phase

angle a has not been previously considered to our knowl-

edge. In our quasilinear transport model, changes in the par-

allel adiabatic invariant at the separatrix do not play an

important role. Rather, the transport is due to differences in

the drift dynamics of trapped and untrapped particles in the

presence of symmetry-breaking magnetic or electric field

errors that cause particles to detrap and retrap at locations

corresponding to different flux surfaces [Fig. 4(b)]. The mod-

els of stellerator electric and magnetic fields used in the pre-

viously-mentioned neoclassical transport studies excluded

such errors. In future work we will adapt the analysis of this

effect to toroidal magnetic confinement geometries.
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APPENDIX A: NUMERICAL SOLUTION FOR THE
NONADIABATIC DISTRIBUTION

In this appendix, we describe a numerical method for

the solution of Eq. (99), via an expansion in basis functions.

We write the general solution as

g‘mðh; eÞ ¼
X1

n¼�1
an exp½inhþ ane� (A1)

where an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðn� x̂Þ=�̂

p
, and the branch of the square root

is chosen so that Re an > 0. To match the boundary condi-

tion at e ¼ cos mh, we require that the coefficients an satisfy

X1
n¼�1

an exp½inhþ an cos mh� ¼ � expði‘hÞ (A2)

for all h. A numerical solution of this uncountably infinite

set of coupled linear equations can be found by multiplying

both sides by exp½�ið‘þ mn0Þh� and integrating over h. This

implies that an is nonzero only for

n ¼ ‘þ mn (A3)

for any integer n, and that these an’s satisfy the coupled lin-

ear equations

X1
n¼�1

a‘þmnIn�n0 ða‘þmnÞ ¼ �dðn0Þ; (A4)

where InðxÞ is a modified Bessel function of order n and

dðn0Þ is a Kronecker delta function. Cutting off the sum at

jnj ¼ N and keeping equations only for jn0j 
 N, we can

solve these 2N þ 1 coupled equations numerically. We find

that small values of �̂ (e.g., 0:01. �̂. 0:1) require large N
(up to a few hundred) and high precision arithmetic (up to a

few hundred significant figures) in order to obtain convergent

results for g‘m. This is because, for small �̂, g‘m exhibits

rapid variation (boundary layers) along e ¼ �1 and along

those portions of the separatrix curve e ¼ cos mh for which

sgnð�̂Þ sin mh > 0.

To determine W‘m, we apply Eqs. (A1) and (A3) to

Eq. (110), yielding

W‘m ¼ 2p
X1

n¼�1

a‘þmn

a‘þmn
Inða‘þmnÞ: (A5)

The dependence of a‘þmn on x̂ implies that W‘m depends

on the parameters ‘ and x̂ only in the combination ‘� x̂.

Similarly, application of Eqs. (A1) and (A3) to Eq. (59)

yields, for 2‘=m an integer,

D̂1 ¼ p‘Im
X1

n¼�1

a‘þmn

a‘þmn
I2‘

mþn
ða‘þmnÞjx̂¼0 ; (A6)

and D̂1 ¼ 0 for 2‘=m not an integer. In the limit �̂ !1,

only a‘ and a‘6m need be kept in Eqs. (A4) and (A6), and

Taylor expansion of the Bessel functions leads to the limiting

solutions a‘ ! 1 and a‘6m ! 1
2
a‘, which implies

lim
j�̂j!1

D̂1 ¼ sgn�̂
pj‘j
2
; jmj ¼ 2j‘j

0 ; jmj 6¼ 2j‘j

�
: (A7)

These limiting forms can be seen in Fig. 9, using Eq. 62.

Keeping more terms in the sums allows one to improve

on Eq. (A7). For jmj < 2j‘j one finds that D1 ! 0 like

1=j�̂j ‘=mj j�1
2. For instance, for the case jmj ¼ j‘j, one obtains

lim
j�̂j!1

D̂1 ¼ j‘j3=2 psgnð�̂Þ
4
ffiffiffiffiffiffiffiffi
2j�̂j

p ; jmj ¼ j‘j: (A8)

For jmj ¼ 2j‘j one finds that

lim
j�̂j!1

D̂1 ¼
j‘jp
2

1þ 2�
ffiffiffi
3
p

4j�̂j j‘j
	 


sgnð�̂Þ; jmj ¼ 2j‘j:

(A9)

A second numerical method allows the regime of small

�̂ to be probed more easily than the previous method. In this

method we transform Eq. (55) by defining a new variable

x ¼ e� cos mh, so that the separatrix boundary e ¼ cos mh
becomes the line x ¼ 0. Then Eq. (55) becomes

@g‘m
@h
þ m sin h

@g‘m
@x
¼ �̂ @

2g‘m
@x2

; (A10)

with boundary conditions, g‘mðh; 0Þ ¼ �ei‘h, g‘m finite as

x! �1. To solve this equation, we expand g‘m in a Fourier

series in h,

g‘mðh;xÞ¼
XN

n¼�N

cnðxÞeið‘þmnÞh: (A11)
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This implies that cnðxÞ satisfies coupled ODEs,

ið‘þ mnÞcn þ
m

2i

@cn�1

@x
� @cnþ1

@x

	 

¼ �̂ @

2cn

@x2
: (A12)

To solve these homogeneous coupled ODEs, we look for sol-

utions of the form cnðxÞ ¼ anesx. Substitution into Eq. (A12)

yields a set of 2N þ 1 homogeneous coupled equations

ið‘þ mnÞan þ
ms

2i
ðan�1 � anþ1Þ � �̂s2an ¼ 0: (A13)

The requirement that these equations have a nontrivial solu-

tion yields a polynominal in s, whose roots we call sr. For

each root sr there is a corresponding set of coefficients anr that

solves Eq. (A13). We construct the solution for g‘m by form-

ing a linear combination of those solutions with Re sr � 0, so

as to match the boundary condition as x! �1,

g‘m ¼
XN

n¼�N

X
r

0
Aranre

srxþið‘þmnÞh (A14)

where the prime on the sum over r means that only those

roots with Re sr � 0 are included. The constants Ar are deter-

mined by matching g‘m to the boundary condition at x ¼ 0,

XN

n¼�N

X
r

0
Aranre

ið‘þmnÞh ¼ �ei‘h; (A15)

which implies X
r

0
anrAr ¼ �dn0: (A16)

These linear equations are solved for Ar numerically. This

approach, while more complicated than the previous

approach, has the advantage that boundary layers in the solu-

tion along the separatrix e ¼ cos h are now nearly independ-

ent of h when described in the ðx; hÞ coordinates, so that far

fewer Fourier modes are required to resolve them.

Finally, the diffusion coefficients D̂0 and D̂1 are

obtained by substituting Eq. (A14) into Eqs. (58) and (59),

and performing the integrals over e and h. Here we note thatðcos mh

�1
de

ðp

�p
dh ¼

ð0

�1
dx

ðp

�p
dh: (A17)

The result of the integrations is

D̂0 ¼ p‘Im
X

r

0 Ara0r

sr
; (A18)

D̂1 ¼
p‘Im

P
r
0Arað�2‘=mÞr

sr
; 2‘

m 2 Integers

0; 2‘
m 62 Integers

(
: (A19)

These equations must be modified if s ¼ 0 is a root of

Eq. (A13), which occurs when ‘=m is an integer. Let us call

this root s0. In this case the corresponding coefficients are,

according to Eq. (A13), an0 ¼ dn�‘=m. This value of s leads

to a constant term in g,X
n

an0A0eið‘þmnÞh ¼ A0: (A20)

When integrated over e and h in Eqs. (58) and (59), this con-

stant term yields a correction to Eqs. (A18) and (A19),

D̂0 ¼ p‘Im
A0

2
d‘m þ

X
r

00 Ara0r

sr

" #
;
‘

m
2 Integers (A21)

D̂1 ¼ p‘Im
A0

2
d‘m þ

X
r

00
Ara�2‘

mr

sr

" #
;
‘

m
2 Integers (A22)

where the 00 on the sums denotes that only roots sr with

sr 6¼ 0 and Re sr � 0 are kept.

A similar approach can be used to obtain expressions for

W‘m. This exercise is left to the reader.

APPENDIX B: ANGULAR MOMENTUM IN THE
TRAPPED-PARTICLE DIOCOTRON MODE

In this appendix, we employ a 2-time scale analysis to

obtain an expression for the angular momentum of a trapped

particle diocotron mode. The analysis assumes that the mode

amplitude varies slowly with time,

D/ ¼
X
‘

U‘ðkt; EÞei‘h�ixt (B1)

where the ordering parameter k� 1 is used to denote slow

time variation. (Throughout we suppress dependence on r
since this dependence does not affect the argument.) Like-

wise, the perturbed distribution function Dg is also assumed

to be of the form

Dg ¼
X
‘

G‘ðkt; EÞei‘h�ixt: (B2)

We substitute these forms into the drift kinetic equation,

Eq. (92), and neglect collisions. The result is

k _G‘ � ixG‘ þ i‘x0G‘ ¼ i ‘� x
xr

	 

U‘ þ

k _U‘

xr
: (B3)

Writing G‘ ¼ G0 þ kG1 and solving for G0 to lowest order

in k yields

G0 ¼
‘xr � x
‘x0 � x

U‘

xr
; (B4)

which is the same collisionless response used previously. To

first order in k, we obtain

G1 ¼ �i
_U‘

xr

‘ðxr � x0Þ
ð‘x0 � xÞ2

: (B5)

Now, the rate of change of angular momentum due to the

above amplitude variation is given by

_P¼
ð

rdrdhdzdpz
@d/
@h

df

¼
ð

rdrdh
ðV0

0

dEp1p2

@D/
@h

N0F0

2p
xr

T
Dg

¼
ð

rdr

ðV0

0

dEp1p2

X
‘

ð�i‘ÞU	‘
xr

T
G‘N0F0; (B6)
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where we have used Eqs. (15), (27), (36), and (86). Substitut-

ing for G0 and G1 from Eqs. (B4) and (B5), we find that the

term involving G0 vanishes due to the sum over ‘ (x is anti-

symmetric in ‘ but jU‘j2 is symmetric); and the term involv-

ing G1 can be written as

_P ¼ �
ð

rdr

ðV0

0

dEp1p2

X
‘

1

2T

d

dt
jU‘j2‘2 xr � x0

ð‘x0 � xÞ2
N0F0:

(B7)

The right hand side is a total time derivative, allowing us to

integrate and so obtain the mode angular momentum. Noting

that U‘ is nonzero only for 6‘ and is equal to Dw‘=2, and

that xr � x0 ’ c
qB

T
N0

@N0

@r , we obtain Eq. (115).
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