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Abstract A new theory of cross-magnetic field transport due to like-
particle collisions is presented. The new theory supercedes the traditional
theory in the parameter regime where the Debye length is large compared
to the Larmor radius (Ap>> ry); the flux predicted by the new 1:h»s‘320r3,r2
exceeds that predicted by the traditional theory by a factor of O(r fr{7)>>1.
Furthermore, transport due to lightly damped waves can enhance the flux in
certain cases. The elementary step in the new transport process is due to
the EXB drift of 2 particle guiding center which occurs during a binary col-
lision. Previous discussions of like-particle transport considered only the
regime ry >> Ap; inthis case the step in the guiding center position is due
to collisional scattering of the velocity vector. The regime ry, << ?\D is
standard for magnetically confined pure electron plasmas. Experiments are
discussed in which transport toward thermal equilibrium is measured in
such plasmas. The measured flux agrees with the new theory rather than
the traditional theory.

" Presented at the US-Japan Wofkship ""Statistical Plasma Physics, ' Nagoya,
February 1986.
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I, lIatroduction

This talk describes a new theory of cross-magnetic field transport due
to like-particle interactions and the consequences of this theory for the trans-
port toward thermal equilibrium of a pure electron plasma. A pure electron
plasma consists of an unneutralized collection of electrons contained by elec-
tric and magnetic fields. It is well known that under ideal conditions such
plasmas can achieve confined thermal equilibrium states, 1 1n order to ex-
plain experiments now underway at UCSD, 2 it is necessary to consider a
hitherto unexamined regime in the theory of like-particle transport: the
regime in which rj << Ap, where r; is the electron Larmor radius and
Ap is the electron Debye length, Traditional theories3’ 4 of transport due to
like-particle collisions were intended to describe ion-ion interactions in
neutral plasmas and were formulated for the regime r, >> A . The trans-
port mechanism considered in the new theory yields a particle flux which
greatly exceeds that predicted by the traditional theory in the regime
T << ?LD

The ratio of the particle ﬂux in_the new theory to that in the trad1twna.1
theory will be seen to be of O(RD/rL } under the assumption that electrons
interact only via a Debye-shielded potential., Furthermore, an even larger
flux is possible if collective effects are taken into account. However, in the
regime of current experiments, theory indicates that the influence of collec-
tive effects on the transport is probably negligible,

Experiments have measured the transport toward thermal equilibrium,
and these experiments will be discussed in the last part of the talk, Briefly,
the scaling of the measured flux with the magnetic field strength follows the
new theory rather than the traditional theory, and the magnitude of the flux
agrees with the new theory, not the traditional theory. While these conclu-
sions bode well for the new theory, the experiments are still in a preliminary
stage and much work remains to be done.

II. Theory of Like-Particle Transport

Consider a pure electron plasma in slab geometry bounded by two con-
ducting plates at x=0 and x=x,. A counstant magnetic field in the z-direction
permeates the plasma. The plasma is assumed to be homogeneous in the y
and z directions; density and potential gradients are assumed to be functions
ouly of x (see Fig. 1). (In this talk we take the temperature T to be con-
stant for the sake of simplicity.)
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Let us first consider the flux from a fluid dynamic, or macroscopic,
perspective. The electric field and pressure gradient produce a fluid drift
given by

[ epe—— [eE +2 2 (nkT}}i? : (1)
e

where Qe is the electron cyclotron frequency, n(x) is the density, E(x) the
electric field and m is the electron mass,

Because of viscosity, the shear in this fluid drift gives rise to a force
density F(x) which may be written as
d 2.dv a
= Ax — . 2
Ex) =g nmvax — y (2)
where v and Ax are frequency and length scales which characterize the
collisional dynamics and the combination nmv (.lﬁsx)2 is the viscosity. The
particle flux in the x-direction is due to the FXB drift and is given by

1 d 2 2 d[eE 1 d
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P (x) = - FXzo
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The quantities v and &x must be determined through a microscopic
description of the plasma. In both the traditional theory and the new theory,
v can be identified as the collision freguency [i.e., v~ O(w_/n AS)] .. How-
ever, the traditional theory and the new theory yield different predictions for
Ax (i.e., dx = ry, and Ap » respectively).

I, Scaling in the Traditional Theory

The traditional theory3' 4 was intended to describe transport due to ion-
ion collisions in neutral plasmas and implicitly assumes that Ay <<r; . The
range of the interaction between two particles is assumed to be much smaller
than the Larmor radius; effectively, collisions are treated as interactions at
a point. During a collision, the position of a particle does not change, but
the guiding center changes abruptly as a result of collisional scattering of
the velocity vector (see Fig. 2).

Consider two guiding centers at r and

1G.C. ‘{’ZG.C_ , separated in

the x-direction by Ax. The electrons associated with these guiding centers
are at ry and r, andthe equation for the x-component of the guiding
center position is

X5 c. = *- vlee .
where v_ is the y-component of the particle velocity. As the electrons

approach within a Debye-length of one another, their velocity vectors scatter
producing a change in guiding center position;

AXG.C. = -évylﬂe
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However, conservation of momentum implies that

1
Axl +t§x2 o

Alv., +v. ] =0
G.cC. Gc.c. Ye ly 2y

so the guiding centers step in equal and opposite directions. Thus, if Ax=0,
there is no net flux in the x-direction from the collision; that is, the flux goes
to zero as Ax approaches zero. In fact, as we stated in the last section and
as we will soon prove, I'y & Ax?, for small Ax. Furthermore, we see from
this analysis that &x ~ ry since guiding centers further apart than ~2rg,
cannot interact (recall that we assume J\D << ry; we also neglect collec-
tive effects here). Substituting bx~rp in Eq.(3) implies that the flux in
the traditional theory scales as
traditional 4

o«

vr . | (4)

1-x ' L

We now compare this scaling with that obtained in the new theory of trans-
port.

1V, The New Theory of e-e Transport

In this section we determine the scaling of the flux due to e-e colli-
sions in the regime where r; <<ip . This is the typical regime for mag-
netically confined pure electron plasmas. In this case, most electrons
collide via a guiding center drift mechanism which is quite different than the
poiunt collisions of the traditional theory. This mechanism is illustrated in
Fig. 3. Assume, as before, that collective effects may be neglected so that
electrons interact via a Debye-shielded potential. Then as electrons spiral
along adjacent magnetic field lines and approach within a Debye length of
one another, the interaction electric field causes the electrons to EXB
drift; it is this drift which produces the basic transport step in the new
theory. The drifts are still in equal and opposite directions but now the
length scale of the interaction is of O(Ap). Thus the flux in the new theory
scales like

pnew 2., 2

x er-RD . (5)

which is O(J\DZIrLZ) larger than in the traditional theory.

, In a recent paper, 5 O'Neil calculated the flux according to the EXB
drift theory of collisions assuming that the electrons interact ouly via a
Debye-shielded potential. He finds

feT o nb) K60 g (55 5E) ©)
where
I v A 2 2
K(x) = 372 P3 1og(‘;"r) roAp -
96 nlD t
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The form of K(x) does indeed follow the scaling of Eq. (5). The logarithmic
term in the collision frequency is due to the effect of neighboring electrons
with nearly the same velocities. These electrons interact for long times and
hence take relatively large steps. The minimum value of Av/vy may be set
by various mechanisms. One mechanism is decorrelation due to collisions,
which gives Av/vy ~ (n?LD)‘ll?’. Another possible value for Av is set by
the difference in EXB drift velocities of electrons a Debye length apart;
Av/vt ~ (¢/B wp](dE/dx).

V. Collective Effects: A Scaling Argument

O'Neil's treatment of the new theory cannot be considered rigorous,
since he made the ad-hoc assumption that two electrons interact only through
a Debye-shielded potential, Here, we relax this assumption and recognize
that two electrons can interact over a distance which is much larger than a
Debye length through the emission and absorption of lightly damped waves.
The damping rate (and emission rate) for a given mode is inversely related to
the interaction length characterizing the mode [i.e., Vv L=V /Bx, where v
is the group velocity and vj, the Landau damping ratel. Fgor modes charac-
terized by the interaction length Ax>> Ap s we will find the effective inter-
action frequency :

w A
D
M R @
ni _
P

where f~ 10-3 is a dimensionless constant which enters through a sum over
modes. From Egq. (3}, it follows that

W

waves P 2

T f —3 T Ax AD (8)
nKD

Comparing this to Eq. (5) we see that transport due to waves will be
important provided that

f>? ?\D/Ax . (9}

The largest possible value of Ax is the slab thickness Xq» so if the plasma
is large enough or Ap small enough, the scaling argument indicates that
wave transport can be important. We will see that in the regime of the trans-
port experiments the inequality is not satisfied implying that transport due to
‘waves is probably negligible. However, in experiments on cryogenic plasmas
which are underway, wave transport may be important.

Of course, for Hx sufficiently large, the microscopic theory does not
reduce to fluid dynamic equations which incorporate the notion of a local vis-
cosity. The local theory, as expressed in Eq.(3), implicitly assumes that Ax
is smaller than the spatial scale length characterizing the variation of the
density and electric field.
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VI, Flux Calculation Using the B.B.G,K.Y. Hierarchy

This section provides a flux calculation which incorporates the general
physical ideas presented in the last section. Using a reduced guiding center
form of the B.B.G, K.Y, hierarchy, we recover the result of O'Neil in one
limit and obtain corrections due to collective effects in another limit, We use
a guiding center form of the hierarchy since large impact parameter collisions
dominate the particle transport. The hierarchy is formed on a reduced phase
space incorporating only parallel velocity U and guiding center position X.

From the first equation of this B,B.G,.K.Y. hierarchy {or simply from
inspection) one can see that the electron flux in the x-direction is given by the
expression

S -8 3 8¢12
Fx =mﬂe -[d X, ——BY1 gIZdUI dTJ2 . {10)

where ¢, is the unshielded interparticle potential and gy, is the two-
particle correlation function, In order to calculate the flux, we must calcu-
late the correlation function. The equation for gy can be obtained from the
B.B.G.K.Y, hierarchy. By neglecting 3-particle correlations we obtain

. il o¢ .

¢ ~-e 121 8 9 e 12| 8 8

-4 £ -|-£j]g = — [ - }ff +—-—-—--—-—-[—'-“"“"]f—f5 (11)
l:at 1 21712 m le BUl BUZ 12 er Byl Bxl sz 172

where f1 = f(xl. U.,t) is the one-particle distribution function,

1
E(x.) of of
fh=y OB _ _1° _8h

C e
1 1 8z, B ayl"}s' 8%, m ox, oU_ '

and
2
Vo= 4TrefhdU1 .

We will solve this equation for g8y, assuming that g evolves towards its
equilibrium form at a rate large compared to the rate of change of f (the so-
called 'Bogoliubov ansatz'). We therefore neglect the time dependence of f
when solving for g, We first write g as

_ {0) (1)
B2 "By VT By,

where g(lg) is the solution of Eq. (11) in the B = = limit, Since the flux goes

to zero as B = =, this limit describes a plaema which will achieve thermal
equilibrium along field lines, but can still support arbitrary density gradients
across the field in equilibrium. We assume g&z reaches its equilibrium

form ou a scale much faster than g 112 si.e. that thermal equilibrium is quickly
set up along the field lines., This assumption relies on the existence of small
impact parameter collisions which thermalize the velocity distribution. These
collisions do not coutribute substantially to transport and are not included
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directly in the guiding center analysis; they enter the theory only implicitly.
Solving for 8(103 under this assumption yields the resuit ‘

(0) _ {0}
812 = iU (UG5

(0)

12 is independent of velocity, fM is a Maxwellian at temperature T,
and G(O) satisfies

where G

12
0 _e 3 0) e , _
Gl?_ T d %g n(x3) ¢13 st T ¢12 = 0 .
. (1 . .

The equation for 8,2 1s then

2 (1) _

[8t+£1+£2]g12-512" (12)
where

it
SlZ = aYl [v(xl)—v(xz)] .

It is then not difficult6 to show that the solution for gglz) is given by a
product of the Green's functions for the two linear Vlasov operators £, and
£5; when g 12 is integrated over velocities we then find

t
gau au_ = [ a [ &®%. %% so.-() bont) Soe (13)
1299, 99, 1 @ % 0my7(8) Buy5(t) Sg5
0

where 8n,7 is the density response function (Green's function integrated over
velocity) flor the linear Vlasov equation:

bn 7 = fafﬁ au (142)

where
i) —
{-az-l-xl]éfﬁ -. §(x1-x1) 5(t) fM(Ul). (14b)

We now use Eq. (13) to determine the flux in two interesting limits,
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VII, Rederiving O'Neil's Result, Plus Some 'Singular Behavior'

It is possible to retrieve Eq. (6) by assuming that the density response
function is highly localized, i.e. the response of the plasma to a perturbation
propagates only a short distance compared to the density and potential gradi-
ent scales. Inthis case the density reponse is the same as that for an in-

finite homogeneous plasma, and we may then schematically write the Fourier

transform with respect to Xy of 6n1T as

— ' (15)

D(x,)

1

where D(il) is the "local' dielectric function for a homogeneous plasma with
properties determined by the density and potentials at El . Since Eq. (13)

shows that g is proportional to a product of density response functions it
should then not be surprising that

1y 1

g, ~

12 2
|D

This equation contains the origin of the 'singular behavior' to which the
title of this subsection refers, but before we get to that I want to write down
the result for the flux that one obtains by making this local approximation. It

(16)

is . ’
: —2 =2 2 .
- 2,2 [dwd31’€ ke Ky |2(5)] a® E 1)
x 3 oL"d 4 4 2 -2, .-22 _ 2 kT '’
A
L (2m° & |D(x1)| k(1477 dx)

where k = kip, w=w/w_, §E=0/N2 |EZ| and Z is the plasma dispersion
function. For the sake of simplicity, we have taken the density to be constant
in determining Eq. (17), although there is (at least theoretically) no problem
in keeping the deusity arbitrary. We see that the flux does indeed depend on

[D|-2, but the point is that if we now substitute for D the Debye shielding
dielectric,

D=1+1/k% , (18)

we regain O'Neil's result, after performing the w, k inteprals, This should
not be surprising since by using Eq. (18) we assume that the plasma acts only
to Debye-shield the interparticle interaction, which is the same as sumption
made by O'Neil, ‘

However, if we naively substitute the full plasma dielectric into Eq. (17)
and attempt to perform the integrations, we run into a problem, The dielectric
function exhibits zeros at frequencies (k) = W, - iy corresponding to the dis-
persion relation of waves which propagate in the plasma. This implies |D|-2
has singularities at the wave frequencies and it is not difficult to show that,
for small v,
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4D -2

duw
r

k (19)

fdw ~l
Ipj% v

which becomes very large as the wave damping becomes small. This diver-
gence is, in fact, an indication that processes involving lightly damped waves
may be important for the transport. However, there is clearly something
wrong because Eq. (19) implies that waves which are completely undamped
provide an infinite contribution to the transport, In fact such waves should
not cause transport at all since by definition they do not interact with the
electrons and can neither be launched nor absorbed in the inter-electron
interaction process.

The resolution of this paradox lies in the assumption behind Eq. (15),
i.e. that the density response is highly localized. This is clearly viclated if
there are lightly damped waves excited by a perturbation. In fact, since we
are dealing with a2 system of finite thickness x,, normal modes will, in
general, be excited by a perturbation., In the next section, we will calculate
the contribution of the normal modes to the transport and compare this con-
tribution to the non-resonant contribution obtained by O'Neil.

VIII, Transport Due to Modes

As we saw in the last section, the local approximation for dn given
schematically by Eq. (15) fails to describe the plasma response when lightly
damped waves are excited. Such waves set up modes in the plasma slab and
a more natural description of the excitation is as a sum of eigenmodes.

Fourier transforming Eq. {14} with respect to Y1-Yps 2]~ 2 and t,
we may write the Fourier-transformed density response function gn =

11 ~
én(xl,xi.ky, kz’ w) as

2
0. = ———— Z(E-) 1+ ——— 1y )¢ _(x)
11 'JEthkzl 1 o }\n n 1 n 1

k B e / 2 2 2. .2
= + ——— =
where &, (w 5 ) \Evtlkzl, K (x,) kx(xl)ﬂcY tk ) and ¢

satisfies the eigenmode equation

2

d 2

— Pk )AL b x)=0, b (0) = b (x1 =0,

dxl

and
2

2 AHE 260 g, K9 2 2

by () = - 2 & 2E) -k -k,
Aplx)) 1 »vatlkzlne
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The eigenvalue A (uw, » k) can be thought of as a global dielectric func-
tion; that is, A, 0 at the wave frequency w = wn( » k)= i'yn( + k) cor-
responding to the eigenmode Y, By using the time-asymptotic form of the
inverse transform for g(l), we obtain

12
.. 4Tre2[dmdkydkz k; Z Lbn(xl)LIJ:;(xl)(l . kz(xl))l o
* er (Z'I'r)3 ZVZ kz n,n lf . ln no
t z n
where

X4 .
1 - =f dSEld:Tc'z 6%’ n(;(l)n(iz)[v(;cl) - v(?cz)] b hbtx,)

0

and (_3(0) = Ex(o)(xl, X

12 ,w,ky, kz)

2

is the Fourier transform of G(lg.) .

Note that one term in the flux is proportional to a factor of the form
1/Agh, . Since A, (w, kg, k,) vanishes for w=w -iy , it follows that A_ is
small for @ near W provided that Y, is small, that is, that mode n is weak-
ly damped. There is a large contribution to the flux from two weakly damped
modes with nearly equal frequencies, since A and A= are both small in
the same frequency range. However, it is important to note that the con-
tribution from n=m is small since Re(Inn) = 0. I the damping and fre-
quency difference Aw = W, - Wy are small, it is not difficult to show that

do  _ ™ 2Y - iAw
< * 2 -2 °
A A ax_ 8x. Lw” + 4y
n n

n

*

B!

dw  ouw_
n T

where v = (v_ + yﬁ}lz. In the limit that the system becomes homogeneous
and infinite, t?ie frequency difference AW between modes can approach zero
and the frequency integral again diverges as y~!, as in the local approxima-
tion of Sec, VII. Inhomogeneities and the finite system size now limit the
value of Aw and thus limit the size of the integral. This effect is in gualita-
tive agreement with the argument presented in Sec. V in which we set the
maximum value of Ax at Xg o thus limiting the size of the flux due to collec-
tive effects.

In order to make a quantitative estimate of the flux due to collective
effects, we must determine eigenfrequencies and eigenmodes, which is in
general a rather difficult (though well-defined) calculation. We therefore
have limited ourselves to a special case in which we take the density to be
‘constant and the electric field sufficiently slowly varying so that eigenmodes
for a homogeneous plasma slab are good approximations. Substituting

10
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and
Z 2
2
v = LYEZ(B) ym 2y
n 3.2 xz y Z
D 0

we then find that, in the limit of small ?foxo » the flw: due to collective
effects is

o
1..c-::lleci:we - C E 1 mTl N mix
=

where we have Fourier-transformed the gradient in the electric field;

o

1 dE _ E . mrx
W dx Nm sin ~ + N0 '
m=1 .0

_ _ P 2
Cf- 13 nDrL A
no D

2
d

and I, is arwavenumber integral similar to that in Eq. (17 } but which is
finite as wave damping approaches zero. It is found that 1., scales, for
small ?‘.dxo , like

where Tc* is the wavenumber (in units of the Debye length) of plasma modes
with a damping length equal to x;; k ~ 0.2-0.3. This wavenumber enters
because modes with damping which is too great have a small Ax, while modes
with damping that is too small do not interact with the electrons. In other
words, modes with wavenumber k dominate the collective transport. Thus,
flux due to collective effects scales like

6 w
collective ~% P 2
T'x k - 13 thon {21)
0D
%0

Comparing this with Eq, (8), we see that the coefficient f is given by f ~ k

Furthermore, Eq.(9), the criterion for transport due to waves being important,
becomes 6

-k
k » KD/xo ’ (22)

11
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which implies Ap/x, € 107>, However, in the current transport experiments
KD/xO ~ 0.1 where for x4 we use the radius of the plasma. Thus, this theory
indicates that transport due to waves is unimportant and the result of O'Neil is
essentially correct for these experiments. However, we must redo the calcula-
tion for more realistic plasmas in cylindrical geometry before a final conclu-
sion can be drawn. Experiments on cryogenic plasmas with much smaller
values of lDfxo are currently underway, and in these experiments transport
due to waves may play a more important role,

IX., Experimental Results

We now turn to a discussion of the results of experiments conducted at
UCSD which have measured the transport to thermal equilibrium in a confined
pure electron plasma column, The confinement geometry is shown schemati-
cally in Fig. 4. Electron plasmas are created by heating a filament, which
emits electrons. The electrons stream along the magnetic field and are cap-
tured by applying negative biases to the cylinders A and C, Typical densities
are in the range of n~ 107cm=™3, temperatures T ~ 1 eV, with magnetic fields
B ~ 100 Gauss. The radius of the plasma r_ is typically about 2 cm, and

ry, ~ 0.25 mm while Ay ~ 2.5 mm, so we are within the range of validity of
O'Neil's theory.

Density and temperature measurements as a function of radius are made
by grounding cylinder C, which allows the electrons to stream along field lines
out the end of the machine. Electrons on a particular field line pass through a
collimator and the number of electrons and their temperature are measured.
Radial profiles are then cbtained by moving the collimator and repeating the
experiment several times,

It is well-known that such plasmas can achieve confined thermal equilib-
rium states.] Lack of space prevents a complete digscussion of these states;
suffice to say that the existence of such states depends on cylindrical symmetry
of the system as well as the fact that particles with only one sign of charge are
confined, Ina given magnetic and external electrostatic field, the thermal
equilibrium may be characterized by a temperature T, total number of
particles N and a rotation frequency W (W is a constant since in thermal
equilibrium the plasma must be a rigid rotor). Thermal equilibrium density
profiles for a given ® and T and different N are shown in Fig. 5.

When the plasma is initially created, it is not in thermal equilibrium,
i.e., T and w are not constants. However, the profile evolves with time
towards thermal equilibrium. Such evolution has been observed experiment-
ally (see Fig.6). The density profile, which is originally quite irregular,
relaxes to a curve resembling those shown in Fig.5, and the rotation fre-
quency becomes independent of radius. Furthermore, the amount of time
required for the plasma to come to equilibrium, 7, may be measured as a
function of external parameters, and compared to the predictions of theory.
For instance, the traditional theory of transport predicts that, everything
else held constant, T scales like B4, while the new theory predicts that 7
scales like B2 (see Egs. (4) and (5)). In unpublished work, Driscoll has

12
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estimated T experimentally; the results are plotted in Fig, 7, While the
estimation is crude and can be considerably improved, T clearly agrees
with the B2 scaling of the new theory and disaprees with the B4 scaling of
the traditional theory. Furthermore, the magnitude of the measured T is
in agreement with O'Neil's theory but is orders of magnitude out of agree-
ment with the traditional theory.

X. Conclusion

A new theory of cross-magnetic field transport due to like-particle
collisions was developed and experimental tests of the theory were described.
The theory supercedes traditional theories of transport in the regime ry, <<
and experimental results in this regime are consistent with the new theory
rather than the traditional theory. The effects of waves on the transport
process were considered, and it was found that waves are not important in
the operating regime of current transport experiments, but may be more im-
portant for cryogenic plasma experiments which are currently underway.
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Fig, 2. A collision in the traditional
~ theory. Electron and initial
guiding center positions are

given by dots and crosses,

Fig. 1. Configuration of plasma slab
for theory of sections II- VIII,

respectively.
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Fig. 3. A collision in the new theory. A) Electrons, labelled 1
and 2, stream along field lines. B} End on view: the
electrons EXE drift in their interaction electric field,
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Fig. 4. Schematic diagram of plasma containment device.
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Fig. 5. Theoretical prediction of thermal equilibrium density
profiles for given ®, T and varying N.
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Fig. 6. Density and rotation frequency pro-

files at 3 different times. Solid
curves: immediately after plasma
formation (t =0). Dotted curves:

t =.5 sec. Dashed curves: t = 2 sec.
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Fig. 7. Scaling of equilibration time T
with magnetic field. Dots are
experimental points. Dashed
lines show that T scales like
B2 rather than B4,




