
Equilibrium and Dynamics of Multispecies
Nonneutral Plasmas with a Single Sign of Charge

Daniel H. E. Dubin

Department of Physics, University of California at San Diego, La Jolla, CA USA 92093-0319

Abstract. The phenomenon of centrifugal separation in a rotating multispecies plasma column is
discussed. Rate equations for collisional separation are derived. Two electrostatic instabilities that
are driven by centrifugal effects are also considered: a diocotron mode and a drift wave.
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Many experiments on nonneutral plasmas involve multiple plasma species. Some
experiments deliberately mix species in order to apply techniques such as sympathetic
cooling, where one species is cooled (or otherwise manipulated) through its interactions
with another cold species [1, 2, 3]. However, even experiments on “single species”
plasmas often have contaminants. For instance, “pure” ion plasmas can contain isotopes
of a given species [4]; and charge exchange or other chemical reactions with neutral
background gas also often lead to increased contamination over time [5]. Even pure
electron plasmas can be contaminated by negative ions (e.g. H−) [6].

These multispecies nonneutral plasmas have several characteristics not shown by
single species plasmas. For instance, they exhibit collective waves such as ion sound
waves, drift waves and ITG waves that do not occur in single species plasmas [7]. Here
we consider the phenomenon of centrifugal separation, which requires species with
different masses, considering several mechanisms by which this separation can occur.
For simplicity we focus on cases where all species have the same charge q.

EQUILIBRIUM PROFILES

Nonneutral plasmas magnetically confined in Penning-Malmberg traps rotate about their
axis of symmetry, and this rotation produces a centrifugal separation of plasma species
with heavier species pushed to the outside of the plasma. The degree of separation
depends on plasma temperature T and rotation frequency ωr. Assuming that the plasma
is in thermal equilibrium (uniform T and rigid rotation at frequency ωr for all species),
the density of two species a and b are in the ratio given by the Boltzmann factor

na(r)
nb(r)

=Cab exp
[

1
2T

(ma−mb)ω
2
r r2
]

(1)

where ma and mb are particle mass for each species, r is cylindrical radius, and Cab is
a constant determined by the overall concentration of each species. Separation requires
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FIGURE 1. Electron and H− densities (dashed and solid lines respectively) versus radius in a thermal
equilibrium at three temperatures: T = 0, T = 300 K and T = 1 eV. At T = 0 the species are completely
separated, while at T = 1 eV they are mixed. In all cases B = 0.5 Tesla.

that the magnitude of the exponent be greater than unity at a radius r within the plasma,
which implies

ωrr >
√

2T/|ma−mb|. (2)

This inequality can also be written in terms of total plasma density n0 = ∑
a

na, if we

assume a low temperature plasma whose radius is much larger than the Debye length,
so that total density within the plasma is nearly uniform. If we further assume that the
plasma density is well below the Brillouin limit for all species, then rotation is due
mostly to the E×B drift [8],

ωr ≈
2πqcn0

B
, (3)

and then Eq. (2) can be written as

n0r > 7×105cm−2B(Tesla)

√
T (K)

|ma−mb|(amu)
. (4)

For instance, a room temperature e−H− plasma in a 1 Tesla magnetic field with radius
rp = 1 cm requires a total density greater than roughly 107 cm−3 to exhibit significant
centrifugal separation. Example density profiles are exhibited in Fig. 1 for three tem-
peratures. All three cases have the same particle number and total angular momentum.
At the lowest temperature there is complete separation between species, with a small
vacuum gap ∆r between species given by [9]

∆r
rp

(2+
∆r
r1

) = ωr
(mH−me)c

eB
, (5)



where r1 is the radius of the (inner) electron column. In this example the gap is only
0.005 cm. At higher temperature the species interpenetrate in such a way that Eq. (1)
is satisfied but the total density n0 is nearly uniform within the plasma. This is because
when ωr(mb−ma)c/qB� 1, radial electrostatic force dominates over the centrifugal
force, so total charge density, determined mainly by electrostatic and magnetic force
balance, is largely unaffected by the weak centrifugal effects. Thus each species density
is in ratio given by Eq. (1), but the total density is nearly uniform.

COLLISIONAL SEPARATION STATES

Centrifugal separation is driven by various processes, for instance, collisions between
species. The following fluid analysis provides rate equations for collisional centrifugal
separation.

For a plasma column that has not yet come to thermal equilibrium, the fluid rotation
frequency ωra for each species (labeled a) can differ from one another, as determined by
radial force balance:

0 = na

[
qE(r)+

qB
c

ωrar+maω
2
ra

r
]
− ∂pa

∂r
(6)

where E(r) is the radial electric field and pa = naTa is the pressure for species a. This
can be solved for ωra . It is convenient to write the solution as

ωra = ωE(r)+
c

qBna(r)r
∂pa

∂r
−

ω2
ra

Ωca

, (7)

where ωE(r) = −E(r)c/Br is the E × B drift frequency, and Ωca = qB/mac is the
cyclotron frequency of species a. The last term is the centrifugal correction to the
rotation rate, assumed small.

Since each species generally rotates at a different rate, there is a collisional drag
between species that causes the separation. Here we assume a simple drag force on
species a of the form

Fdrag a =−∑
b

νabmar(ωra−ωrb) (8)

where νab is the frequency of collisions between species a and b. The form of this drag
force can be verified, and an expression for νab can be derived, from kinetic theory [10].
In turn, this drag force (in the θ direction) produces an F×B drift in the radial direction
that causes centrifugal separation. Using Eqs. (7) and (8), the radial particle flux Γra of
species a is

Γra = na
cFdrag a

qB

= −∑
b

Dab

Ta

[
∂pa

∂r
− na

nb

∂pb

∂r
+na(mbω

2
rb
−maω

2
ra
)r
]

(9)



where Dab = νabr2
ca

is a diffusion coefficient and rca =
√

Ta/ma/Ωca is the thermal
cyclotron radius for species a. The first two terms in Eq. (9) are diffusive fluxes, and the
last is a mobility flux due to the centrifugal force acting on each species.

Note that this flux vanishes when Ta(r) = Tb(r) = T , ωra(r) = ωrb(r) = ωr and the
species densities are in ratio given by Eq. (1) (i.e., they are in thermal equilibrium). It
can further be shown that the flux given by Eq. (9) drives the system toward this thermal
equilibrium state, since it causes a monotonic increase in entropy [11]. However, the
flux described by Eq. (9) leaves the total density unaffected, because the total flux ∑

a
Γra

vanishes. This can be seen by writing the total flux as

∑
a

Γra = −
(

c
qB

)2

∑
a,b

manaνab

[
1
na

∂pa

∂r
− 1

nb

∂pb

∂r
+(mbω

2
rb
−maω

2
ra
)r
]

= 0. (10)

(Momentum conservation implies that manaνab = mbnbνba, so the sum is antisymmetric
under interchange of species labels and hence vanishes.) Evolution of total density
requires extra fluxes not included in Eq. (9), such as viscous flux due to shears in
the rotation frequency. However, total density need not change by very much during
centrifugal separation, if ωr(mb−ma)c

qB � 1. For example, for the density profiles shown
in Fig. 1, total density is almost the same in each case (with the largest variation in n0
occurring at the species edges).

The rate R of centrifugal separation implied by Eq. (9) can be estimated, assuming
that mobility is on the same order, or less than, the diffusive flux. This rate is then
roughly the rate required for particles to diffuse across the plasma radius rp,

R ∼ Dab

r2
p
∼ 0.1s−1

( n0

107cm−3

)√µ(amu)
T (K)

1
(B(Tesla)rp(cm))2 (11)

where we have estimated the diffusion coefficient using Ref. [11], and where µ is
the reduced mass for the two plasma species. This rate is typically slow compared to
many other plasma timescales, so it is worth considering whether processes other than
collisions can lead to centrifugal separation.

DIOCOTRON INSTABILITY

We therefore turn to collective plasma instabilities that can be driven by centrifugal
forces. In neutral plasma confinement such instabilities play an important role, as they
are related to the well-known interchange instabilities that grow on MHD timescales.
Here we consider purely electrostatic instabilities in keeping with the typical low density
(low “beta”) of nonneutral plasmas.

We first consider the diocotron mode in a multispecies nonneutral plasma column,
showing that it can be driven unstable by centrifugal effects under certain conditions.
The diocotron mode is a 2-D disturbance [in the (r− θ) plane] of the plasma density
and potential, propagated by drift motion. In the low-density regime (ωr/Ωca � 1 for



all species), it is well-described by the following 2-D linearized continuity equation for
each species,

∂δna

∂t
+ωra

∂δna

∂θ
+δvr

∂na

∂r
= 0, (12)

where δna(r,θ, t) is the perturbed density, na(r) is the equilibrium density profile, ωra(r)
is the equilibrium drift rotation frequency given approximately by

ωra = ωE −
ω2

ra

Ωca

, (13)

and δvr is the perturbed radial fluid velocity. We assume that this velocity is well-
described by E × B drift dynamics (this can be verified by a more detailed analysis
in the low density regime [7]), writing

δvr =−
c

Br
∂δφ

∂θ
, (14)

where δφ(r,θ, t) is the perturbed electrostatic potential. The system of differential equa-
tions is closed by the Poisson equation,

∇
2
δφ =−4πq∑

a
δna. (15)

Fourier analyzing in θ and t, we assume perturbed quantities vary as eiωt+i`θ. Equa-
tions (12) and (14) can then be combined to yield

δna =
`c
Br

δφ
∂na/∂r
`ωra−ω

. (16)

A dispersion relation for ω is then obtained by substituting Eq. (16) into Eq. (15):

∇
2
δφ =−4πq`c

Br
δφ∑

a

∂na/∂r
`ωra−ω

. (17)

This equation can be solved for ω and δφ(r), with the homogeneous boundary condition
that δφ = 0 at the conducting wall radius rw. The usual diocotron mode dispersion
relation is obtained by substituting ωra = ωE , in which case Eq. (17) depends on na only
through the sum n0 = ∑

a
na; all species have identical E×B dynamics when centrifugal

effects are neglected. However, when centrifugal effects are added via Eq. (13), new
modes appear near the E×B rotation frequency `ωE . For the case of the zero temperature
density profiles shown in Fig. 1, a standard analysis shows that the new modes have
frequencies given, to lowest order in ωE(m2−m1)c/qB, by the expression

ω = `ωE ±

√
|
`ω2

E
qB
|c(m2−m1)(1− r2`

1 /r2`
p )

(
1+O

(
ωE(m2−m1)c

B

))
. (18)



Here, the small gap between species is neglected, r1 is the inner radius separating species
with species 1 in the region 0 < r < r1, and rp is the outer plasma radius with species 2
in the region r1 < r < rp.

These modes are self shielded, producing no potential perturbation outside the plasma,
and are unstable if m2 < m1, that is, if the heavy species resides on the inside of the
plasma column. The instability has been observed in particle-in-cell simulations, to be
described in a separate publication. The resulting turbulent flow tends to mix the species
but does not separate the heavy species on the outer plasma edge at low temperature,
as would be expected in thermal equilibrium. This is not surprising since there is no
temperature dependence in the diocotron dynamics, so there is no way for this instability
to discriminate between low temperatures that lead to separation and high temperatures
that do not.

DRIFT-WAVE INSTABILITY

However, there are other temperature-dependent modes that can be driven unstable by
centrifugal effects. These are the well-known drift waves, of great importance to neutral
plasma confinement. In a multispecies nonneutral plasma it has been shown that these
waves can also occur under circumstances where one species (labeled species 1) behaves
adiabatically in the potential perturbation

δn1 '−
qδφ

T1
n1(1+ iβ) (19)

(where β is the nonadiabatic correction, assumed small) while the other species (labeled
2) behaves nonadiabatically, as a 2-D fluid with density perturbations given by Eq. (16).
As discussed in Ref. [7], the mode is approximately described by a dispersion relation
of the form

∇
2
δφ =

δφ(1+ iβ)
λ2

D1

+
4π`qc

Br
δφ

∂n2/∂r
ω− `ωr2

(20)

where λ2
D1

= T1/4πq2n1. The first term on the right describes a Debye-shielding response
by the adiabatic species, and the second term is the same 2-D drift response as for
diocotron modes. These responses require that

ω− `ωr1 � kzv1 , and ω− `ωr2
>∼ 4kzv2, (21)

where kz is the parallel wave number of the mode, and va is the thermal speed of species
a.

A local dispersion relation can be obtained by replacing ∇2 by −k2, which yields

ω− `ωr2 =
`ω∗

(1+ iβ)
(22)

where

ω
∗ =

T1c
Brn1

∂n2

∂r
/(1+λ

2
D1

k2) . (23)



0.0 0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

r HcmL

fH
rL

Ha
rb
.u
ni
tsL

l = 2
nr = 1

nr = 2

nr = 3

FIGURE 2. Three unstable drift wave eigenmodes for the plasma densities shown in Fig. 1 (with thick
lines), taking T = 1 eV and B = 0.5T , for `= 2 and nr = 1, 2, and 3. Modes are found by solving Eq. (26).
Dashed lines are the imaginary part and solid lines are the real part.

Applying this local dispersion relation to the requirements (21) for a drift-wave yields

rc1

rn1

∂n2

∂r
� kz

`
<∼ 4

rc2

rn1

∂n2

∂r
(24)

where we assumed kλD < 1. It is possible to satisfy these inequalities provided the
mass ratio m1/m2 is sufficiently small and ` is sufficiently large (but kλD1 < 1). Taking
` <∼ r/λD1 and T1 = T2 = T , the right inequality becomes

kz <∼ 4
rc2

λD1n1

∂n2

∂r
= 4

ωp2

Ωc2

√
n1n2

∂n2

∂r
, (25)

implying that the plasma column must be fairly long when ωp2/Ωc2 � 1.
An example where these requirements are satisfied is shown by the T = 300K profiles

in Fig. 1. The density profiles of the electron-H− plasma are thermal equilibrium profiles
when T = 300K, but if the temperature is raised to T = 1eV these profiles become
drift-wave unstable. A solution of Eq. (20) in a 100 cm long plasma with a conducting
boundary at a radius of 2cm, yields a series of unstable modes for different ` numbers,
a few of which are displayed in Fig. 2. The real part of the frequencies and the growth
rates for some of the modes are shown in Fig. 3. In these calculations β is taken to be
given by the expression for collisionless guiding-center motion [7],

β =

√
π

2
ω− `(ωE +ωD1)

k2
z v1

(26)

where ωD1 =
T c

qBn1r
∂n1
∂r is the diamagnetic drift frequency of species 1 (the nearly adia-

batic species).
These unstable modes would be expected to rapidly saturate and produce transport

that leads to mixing of the ions and electrons, driving the plasma toward the mixed 1 eV
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FIGURE 3. Real and imaginary parts of the drift wave frequency for the same plasma as in Fig. 2
versus azimuthal mode number `, for radial mode number nr = 1. Here, ω′ = ω− `ωi(r) is plotted at
r = 0.5 cm, so as to subtract out the large rotational Doppler shift in the mode frequency. At r = 0.5 cm,
ωi(r) = 9.25×105s−1.

thermal equilibrium state shown in Fig. 1. Cooling the plasma back to 300K would return
the ions to the periphery, allowing a repetition of the experiment in a fully-confined
plasma.

In conclusion, we have discussed how centrifugal force in multispecies nonneutral
plasma can affect the equilibrium and dynamics, focusing on the phenomenon of cen-
trifugal separation. While collisional centrifugal separation rates are fairly slow in many
cases, these rates can be greatly enhanced by the diocotron and drift wave instabilities
discussed here.
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