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8.5 Conclusion 191

References 192

PART III MATHEMATICAL ASPECTS

9 The Theory of Large Deviations and Applications to Statis-
tical Mechanics 195
9.1 Introduction 196
9.2 A Basic Probabilistic Model 198
9.3 Boltzmann’s Discovery and Relative Entropy 199
9.4 The Most Likely Way for an Unlikely Event To Happen 205
9.5 Generalities: Large Deviation Principle and Laplace Principle 212
9.6 The Curie-Weiss Model and Other Mean-Field Models 219
9.7 Equivalence and Nonequivalence of Ensembles for a General Class

of Models in Statistical Mechanics 229

References 242

10 Solving Ordinary Differential Equations when the coefficients
have low regularity : a kinetic point of view (after R. Di Perna
and P.L. Lions) 247
10.1 The Cauchy-Lipschitz Theorem 249
10.2 The method of characteristics and the transport equation: a link

between the non-linear, finite dimensional ODE, and a linear,
infinite dimensional system 254

10.3 The Di Perna-Lions theory 266
10.4 Appendix 281

References 285

11 Mean Field Limit for Interacting Particles 287
11.1 Introduction 288
11.2 Well-posedness of the microscopic dynamics 288
11.3 Existence of the macroscopic limit 289
11.4 Physical space models 289
11.5 Macroscopic limit in the regular case 290
11.6 Well-posedness for singular kernels 292
11.7 An almost-everywhere approach 294

References 297

12 On the Origin of Phase Transitions in Long- and Short-range
Interacting Systems 299
12.1 Introduction 300



Contents

12.2 Nonanalyticities in short- and long-range systems 303
12.3 Phase transitions, configuration space topology, and energy land-

scapes 306
12.4 Conclusions and outlook 313

References 316

PART IV GRAVITATIONAL INTERACTION

13 Statistical Mechanics of Gravitating Systems: an Overview 321
13.1 Overview of the key issues and results 322
13.2 Phases of the self gravitating system 327
13.3 Isothermal sphere 332
13.4 An integral equation to describe nonlinear gravitational cluster-

ing 335
13.5 Inverse cascade in non linear gravitational clustering: The k4 tail 338
13.6 Analogue of Kolmogorov spectrum for gravitational clustering 340

References 345

14 Statistical Mechanics of the Cosmological Many-body Prob-
lem and its Relation to Galaxy Clustering 348
14.1 Introduction 349
14.2 Modifications and the General Form of the GQED 355
14.3 Properties of the GQED 359
14.4 Simulations and Observations 364
14.5 Conclusion 366

References 369

15 A Lecture on the Relativistic Vlasov–Poisson Equation 371
15.1 The basic equations 372
15.2 Physical interpretation 373
15.3 Mathematical results 375

References 378

PART V COULOMB AND WAVE-PARTICLE INTERACTION

16 Plasma Collisional Transport 381
16.1 Estimates 382
16.2 Kinetic Theory of E x B Drift Diffusion, and Experiments 388
16.3 Heat Conduction across B 397
16.4 Collision Operator for Long-Range Interactions 400
16.5 Heat Conduction, Viscosity and Diffusion due to Long-Range

Collisions 411
16.6 Enhanced Transport in Nearly 2D Plasmas 422

References 436



Contents

17 Wave-particle interaction in plasmas: an intuitive approach 439
17.1 Outlook 441
17.2 Basics of collective motion 445
17.3 Cold beam-plasma instability 446
17.4 Hot beam and plasma 454
17.5 Hamiltonian chaos and diffusion 462
17.6 Conclusion 469

References 471

18 Long-Range Interaction in Cold Atom Optics 473
18.1 Introduction 474
18.2 Cold atom optics toolbox 475
18.3 Long range forces in atom optics 480
18.4 Collective atomic recoil lasing 483
18.5 Conclusion 489

References 491

19 Collective Instabilities in Light-Matter Interactions 493
19.1 Introduction 494
19.2 The Free Electron Laser (FEL) 494
19.3 Collective Atomic Recoil Lasing (CARL) 498
19.4 Conclusion 510

References 511

PART VI DIPOLAR INTERACTION IN CONDENSED MATTER

20 Dipolar interactions 515

21 Magnetic dipolar interactions, isolated systems and micro-
canonical ensemble 517





Part I

Statistical Dynamics





Part II

Hydrodynamics



Part III

Mathematical Aspects



Part IV

Gravitational Interaction



Part V

Coulomb and Wave-Particle
interaction





16

Plasma Collisional Transport

Daniel H.E. Dubin

University of California at San Diego, Physics Department 0319, 9500 Gilman Drive,
La Jolla CA 92093 USA



Plasma Collisional Transport

16.1 Estimates

The question addressed in the following lectures dates from the earliest days of plasma
physics research: how do collisions in a plasma affect the transport (i.e., redistribution)
of energy, momentum, and particles? Surprisingly, several aspects of this venerable
problem remain incompletely understood. As befits lectures at a school on long-range
interactions, many of these thorny issues relate to the long-range nature of the Coulomb
interaction.

We will first review some basic concepts relating to collisions in plasmas. Consider
a particle of mass m with velocity v = (vx, vy, vz). The probability density associated
with the velocity is, in thermal equilibrium, given by a Maxwellian distribution,

fmax(v) =
e−mv2/2T

(
√

2πT/m)3
, (16.1)

where T is the temperature. The thermal speed v̄ of a collection of particles with
temperature T is the RMS velocity associated with this distribution,

v̄2 =
∫

d3v v2
xfmax(v) =

∫
d3v v2

yfmax =
∫

d3v v2
zfmax

= T/m. (16.2)

Exercise 16.1 For two particles taken from distribution (16.1), show that the distribution
of their relative velocities, vr = v1 − v2, is also Maxwellian but at twice the temperature:

frel(vr) =
e−mv2

r/4T

(
p

4πT/m)3
(16.3)

To estimate the rate of collisions ν between particles, assuming they all have charge
e, we rather arbitrarily define this rate as the mean rate at which the relative velocity
for two colliding particles scatters by 90◦ or more. Two particles separated by impact
parameter ρ (see Fig. 16.1) and with initial relative velocity vr = v1 − v2 require, for
scattering 90◦ or more, that

ρ <∼
e2

mv2
r

. (16.4)

The rate ν at which such collisions occur is

ν =
∫

d3vr nfrel(vr)vr ×
∫ e2/mv2

r

0
2πρdρ (16.5)

where n is the particle density. The first integral in this expression gives the flux of
particles impacting on a given charge, and the second integral over impact parameters
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Fig. 16.1 Collision between two particles in an unmagnetized plasma.

estimates the cross-section for 90◦ scattering. Performing the ρ integral and using
eqn (16.3) yields

ν =
√
π

2
nv̄b2

∫ ∞

vmin

dvr e−v2
r/4v̄2

vr
, (16.6)

where b ≡ e2/T is the distance of closest approach, and we have introduced a lower
cutoff vmin to the relative velocity integral since otherwise the integral diverges log-
arithmically. Such divergences are a common problem in plasma kinetic theory, and
extra physical effects must be added to the model to determine the cutoffs. In this case,
we note that vr → 0 is equivalent to the maximum impact parameter approaching ∞
[see Eqn. (16.4)], so vmin is set by the maximum reasonable ρ. This is usually taken
to be the Debye length λD, defined as

λD ≡
√

T/4πe2n, (16.7)

which implies that

vmin =

√
e2

mλD
. (16.8)

The Debye length is the length over which potentials are shielded out in a plasma.
If a stationary test charge Q is placed in a plasma consisting of two species with
charges ±e at densities n+ = n− = n, in thermal equilibrium the density is perturbed
by the presence of Q according to Boltzmann distributions

n +
(−)

= n e∓eφ/T , (16.9)

where φ is the potential, which satisfies Poisson’s equation

∇2φ = −4πQδ(r) − 4πen+ + 4πen−. (16.10)

Substituting for n+ and n−, linearizing in φ (assuming eφ/T ) 1) and solving yields
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φ(r) = Q
e−

√
2r/λD

r
. (16.11)

The factor of
√

2 arises because two species do the shielding: like charges are repelled
from Q and opposite charges are attracted, and each shielding effect is additive. Re-
turning to our expression for the collision rate we note that vmin ) v̄ for typical
plasmas for which λD/b * 1, in which case, to “logarithmic accuracy,” the velocity
integral in eqn (16.6) can be approximated by

∫ v̄

vmin

dvr

vr

∼= ln
(

v̄

vmin

)
=

1
2

ln
(
λD

b

)
, (16.12)

where in the second form we substituted for vmin from eqn (16.8). This approximation
to the actual integral in eqn (16.6) neglects an additive constant of order unity, which
is reasonable provided that ln(λD/b) * 1. Typical values of ln(λD/b) are of order 10 in
the experiments we will consider later. In other words, a change in our estimate of vmin

by a factor of 2 makes only a small change in ν. That is why only an estimate of vmin

is needed. Thus, the collision rate in a plasma scales as (Spitzer 1956; Montgomery
and Tidman 1964)

ν ∼ nv̄ b2 ln
(
λD

b

)
, (16.13)

≡ ν0 ln
(
λD

b

)
. (16.14)

As density increases ν increases since collisions become more likely; and as temperature
increases ν decreases because higher velocity particles are harder to deflect. The rate
ν0 ≡ nv̄b2 will appear often in the following analyses.

Exercise 16.2 Estimate ν for a virialized globular cluster of 106 solar mass stars, with mean
density 1 star/cubic light year. Note that Debye shielding does not occur in self gravitating
systems, so λD must be replaced by the system radius.

16.1.1 Transport in Unmagnetized Plasmas

The mean free path ' of a particle is the mean distance the particle travels between
collisions, given by

' + v̄/ν. (16.15)

After each collision time ν−1, the particle’s velocity is randomized, so that its path
resembles a “random walk” with step size of order '. This leads to diffusion of a
distribution of such particles: the mean square change in position increases linearly
with time t, as

〈[r(t) − r(0)]2〉 = 2Dt/3. (16.16)

Here, the average 〈 〉 is over the distribution of initial conditions and D is the particle
diffusion coefficient, which may be estimated as
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D ∼= ν'2 ∼ v̄2

ν
. (16.17)

Equation (16.17) also holds in gases with short-range interactions; the long-range
nature of the Coulomb interaction does not affect this estimate. Smaller collision fre-
quency implies larger diffusion, due to the increase in the mean free path.

The particle density n(x, t) for a diffusive process follows the diffusion equation

∂n

∂t
=

∂

∂x
D
∂n

∂x
. (16.18)

Similar equations govern the transport of energy and momentum in a plasma. A plasma
with a nonuniform temperature T (x, t) evolves through collisions according to the heat
equation,

C
∂T

∂t
=

∂

∂x
κ
∂T

∂x
(16.19)

where C is the specific heat and κ is the thermal conductivity. The ratio χ = κ/C
has units of a diffusion coefficient and is termed the thermal diffusivity. Similarly
momentum transport in a system for which the fluid velocity is sheared, V = Vy(x, t)ŷ,
is also governed by a diffusion equation:

mn
∂Vy

∂t
=

∂

∂x
η
∂Vy

∂x
(16.20)

where η is the shear viscosity (we do not consider flows for which bulk viscosity is
important). The ratio λ = η/mn also has dimensions of a diffusion coefficient and is
called the kinematic viscosity.

In an unmagnetized plasma
χ ∼ λ ∼ D, (16.21)

since particles carry their energy and momentum with them as they diffuse (Spitzer
1956; Simon 1955; Spitzer and Harm 1952).

16.1.2 Magnetized Plasma: Classical Theory of Collisional Transport

When a uniform magnetic field B = Bẑ is applied, collisional transport is reduced
in the directions transverse to the field. This is because an isolated charge no longer
travels in a straight line trajectory, but rather executes circular cyclotron motion
with radius rc = v⊥

Ωc
, where v⊥ =

√
v2

x + v2
y is the perpendicular particle speed and

Ωc = eB/mc is the cyclotron frequency, which is the frequency (in radians/sec) of the
circular motion. For an isolated particle the center of the circular orbit, termed the
“guiding center” position, is fixed (except for the uniform motion along B). However,
when two particles collide, the guiding centers of the two particles step across the
magnetic field.

In classical transport theory this cross-field step happens because of the velocity
scattering that we described previously in an unmagnetized plasma. In the collision,
the perpendicular velocity v⊥ for each particle changes leading to a change ∆r in the
guiding center position; see Fig. 16.2. The mean size of such steps is of order
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Fig. 16.2 Typical collision between two particles in a magnetized plasma.

r̄c = v̄/Ωc, (16.22)

the mean cyclotron radius. The rate of these steps is the collision rate ν, so we can
estimate the diffusion coefficient as

D = ν r̄2
c . (16.23)

Comparing to eqn (16.17), we see that the mean free path has been replaced by the
cyclotron radius because the magnetic field limits the cross-field motion to a distance
of order r̄c. Again, thermal diffusivity and kinematic viscosity are of order D. These
coefficients were worked out rigorously in the early days of plasma physics (Spitzer
1956; Longmire and Rosenbluth 1956; Simon 1956; Rosenbluth and Kaufmann 1958;
Braginskii 1958; Braginskii 1965), and are given in Table 16.1.1 Interestingly, to my
knowledge none of these coefficients have ever been measured experimentally to better
than order of magnitude accuracy, mainly because of the difficulty of producing a
quiescent magnetized plasma where collisional transport is not swamped by competing
effects such as instabilities or turbulence.

16.1.3 Long-Range Collisions

The classical theory has been used for decades to evaluate transport due to collisions in
a magnetized plasma. However, the validity of the theory is limited by the assumption
that transport is due primarily to collisions that scatter the perpendicular velocity
vector. In fact, collisions with large impact parameters (“long-range” collisions) that
do not lead to appreciable velocity scattering can dominate the collisional transport.

1Not all authors agree on the values of the numerical coefficients for χ and λ. The coefficients
quoted in Table 16.1 are those given in Braginskii (1965) for ion-ion collisions.
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Fig. 16.3 Typical collision with impact parameter ρ ∼ λD between two particles in a mag-
netized plasma where r̄c # λD.

For example, consider the situation where the magnetic field is sufficiently strong
so that λD > r̄c. The velocity-scattering collisions pictured in Fig. 16.2 occur only for
guiding centers separated across B by a distance of order r̄c; but many more collisions
occur with larger impact parameters ρ of order λD. These collisions do not look like
those in Fig. 16.2; such a collision is shown in Fig. 16.3.

No appreciable perpendicular velocity scattering occurs in these collisions, but
momentum and energy are still transported across the magnetic field. For instance,
consider energy transport. Through such long-range collisions, a particle on one mag-
netic field line can transfer parallel energy to a particle on a field separated by a Debye
length (by exchange of parallel velocities). The distance over which energy is transfered
is now λD, with exchanges occurring at rate ν, so the thermal diffusivity is

χ ∼ ν λ2
D. (16.24)

This is much larger than that given by the classical theory (Table 16.1) when λD > r̄c

(Psimopolis and Li 1992; Dubin and O’Neil 1997). A similar argument for momentum
transport yields kinematic viscosity

λ ∼ ν λ2
D (16.25)

as well (O’Neil 1985).
Furthermore, the exchange of energy and momentum is not limited to interactions

between particles separated by only λD. Particles can transfer energy by emitting
and absorbing weakly-damped waves that travel large distances across the plasma
(Rosenbluth and Liu 1976; Dubin and O’Neil 1997). While the impact parameter for
such “collisions” is limited only by the plasma size, the effective rate of collisions
is smaller than ν because the fluctuation energy in lightly-damped plasma waves is
a small fraction of the total fluctuation energy in the plasma. Even so, we will see
that detailed calculations predict lightly damped waves can dominate the energy and
momentum transport in plasmas that are sufficiently large.

Particle diffusion also occurs due to the long-range collisions shown in Fig. 16.3. The
origin of the diffusion is the E×B drift that occurs as charges encounter one another
(Lifshitz and Pitaevskii 1981). To understand E×B drifts, consider the dynamics of a
particle in a uniform magnetic field Bẑ and a uniform electric field Ex̂. The particle’s
motion is given by
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m
dv
dt

= e

(
E +

v × B
c

)
. (16.26)

The solution to this linear ODE for v(t) is a sum of a particular and homogeneous
solution. The homogeneous solution is simply the circular cyclotron motion described
previously. The particular solution (for the case where E ⊥ B) is

vE×B =
E× B

B2
c = −E

B
cŷ. (16.27)

This velocity, the E × B drift, is superimposed on the cyclotron motion.
Now consider the collision between two particles, shown in Fig. 16.3. Assuming

that Ωc * vr/λD and λD * rc, the electric field between the charges varies slowly
compared to the cyclotron motion and can be taken to be nearly uniform in space
and time. This immediately leads to an E×B drift velocity due to the perpendicular
component of E, given by eqn (16.27), which for an electric field of order e/λ2

D yields

vE×B ∼ e

λ2
DB

c. (16.28)

This drift acts for a time td ∼ λD/vr ∼ λD/v̄ as particles pass one another, implying
a cross-magnetic-field step ∆r = vE×Btd, or

∆r ∼ e

λDB

c

v̄
. (16.29)

The rate of these collisions is roughly nv̄λ2
D, so the particle diffusion coefficient D is

D ∼ nv̄λ2
D ∆r2

= ν0r̄
2
c , (16.30)

neglecting constants of order unity and logarithmic factors. Thus E×B drift diffusion
due to long-range collisions has roughly the same scaling as the diffusion due to the
velocity scattering described by the classical theory (Lifshitz and Pitaevskii 1981; An-
deregg et al. 1997; Dubin 1997). In lecture 2 we will see that in one set of experiments
the E× B diffusion is about 10 times the classical theory.

It should be noted that velocity-scattering collisions still occur when λD > r̄c, due
to collisions with impact parameter ρ ! r̄c. The classical transport coefficients describe
these collisions, except that the maximum impact parameter appearing in the Coulomb
logarithm is no longer λD, but rather r̄c (Montgomery et al. 1974). When λD > r̄c the
total transport is a sum of classical transport due to collisions with impact parameters
ρ less than r̄c, and long range transport due to collisions with ρ > r̄c.

16.2 Kinetic Theory of E x B Drift Diffusion, and Experiments

16.2.1 Integration Along Unperturbed Orbits

In this lecture we will rigorously calculate the diffusion due to E × B drifts that
we estimated in the previous lecture, and we will compare the result to experimental



Kinetic Theory of E x B Drift Diffusion, and Experiments

Table 16.1 Classical Theory of Collisional Transport

D χ λ

4
3

√
πν0r̄2

c ln(ρmax
b ) 16

9

√
πν0r̄2

c ln(ρmax
b ) 2

5

√
πν0r̄2

c ln(ρmax
b )

ν0 = nv̄b2, ρmax =
{

λD , λD<r̄c

r̄c , λD>r̄c

measurements (Anderegg et al. 1997). As before, we assume an infinite uniform plasma
in the regime λD > r̄c, and concentrate on the motion of the guiding centers only since
cyclotron motion is not important in this process.

We consider the interaction of two like particles, labeled 1 and 2, following the
motion of the guiding centers. Equations of motion for the guiding center of particle
1, at position r1 = (x1, y1, z1) with axial velocity vz1 , are

dx1

dt
= − c

eB

∂φ12

∂y1
,

dy1

dt
=

c

B

∂φ12

∂x1
,

dz1

dt
= vz1 ,

dvz1

dt
= − 1

m

∂φ12

∂z1
(16.31)

where φ12 = e2/|r1 − r2| is the Coulomb potential energy. For particle 2 the equations
of motion are obtained by interchanging labels 1 and 2 in eqns 16.31).

As the particles pass one another, they step across the magnetic field. The step in
the x direction for particle 1, δx1, is given by integrating dx1/dt:

δx1 =
ce

B

∫ ∞

−∞
dt

y1 − y2

[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]3/2
. (16.32)

In order to evaluate this integral, we assume that the interaction between the particles
only weakly perturbs the particle orbits, so we use the unperturbed orbits in the
integrand, taking zr ≡ z1 − z2 = vrt, x1 − x2 = const., y1 − y2 = const. This well-
known approximation method is called the method of integration along unperturbed
orbits (IUO). Then eqn (16.32) yields

δx1 =
2ce

B|vr |ρ2
(y1 − y2), (16.33)

where ρ =
√

(x1 − x2)2 + (y1 − y2)2 is the impact parameter. This result has the same
scaling as the previous estimate, eqn (16.29).

Diffusion of particle 1 can now be determined as a series of uncorrelated steps
δx1 due to collisions with an incident flux of particles 2 streaming past 1 along the
magnetic field:

D =
1
2
〈∆x2〉
∆t

=
1
2

∫ ∞

−∞
dvrnfrel(vr)

∫ ∞

0
ρ dρ

∫ 2π

0
dθ|vr |(δx1)2. (16.34)

Substituting for (δx1)2 from eqn (16.33) and for the distribution of relative z-velocities
frel(vr) = e−mv2

r/4T /
√

4πT/m, the integral over θ can be performed but the integrals
over vr and ρ must be cut off due to logarithmic divergences:
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D =
1
2

(
2ce

B

)2 n√
4πT/m

2
∫ ρmax

ρmin

dρ

ρ

∫ ∞

vmin

dvr

|vr|
e−mv2

r/4T . (16.35)

We deal with the logarithmically-divergent ρ integral by positing that Debye shielding
acts to cut off the long-ranges, giving ρmax = λD, and that the E×B drift approxima-
tion breaks down at short ranges, giving ρmin = r̄c. For ρ < r̄c the velocity scattering
collisions described by the classical theory dominate. The classical diffusion arising
from this range of impact parameters, given in Table 16.1, must be added to eqn
(16.35).

The divergence in vr is a bit more subtle. It comes about because when vr → 0,
particles may interact for a long time and take a correspondingly large drift step–see
eqn (16.33). Here we note that in reality particle velocities do not remain constant
forever–collisions with surrounding particles cause vr to diffuse, so even if it is initially
zero it does not remain so. On average, particles with vr = 0 initially will obey

〈v2
r〉 = 2Dvt (16.36)

where Dv is the velocity diffusion coefficient due to collisions, Dv ∼ νv̄2. Since, on
average,

√
〈v2

r 〉 increases like
√

Dvt, the rms relative z position
√
〈z2

r 〉 will also increase,
like

√
Dv t3/2. The interaction between the particles is reduced by order unity once

zr has increased from 0 to ρ, which requires a time of order (ρ/
√

Dv)2/3. The mean
relative speed over this time is vmin = ρ(

√
Dv/ρ)2/3 = (Dvρ)1/3. Using this result

in eqn (16.35) yields the following expression for the diffusion coefficient across the
magnetic field due to E × B drifts in the regime λD > r̄c:

DIUO = 2
√
πν0r

2
c ln

(
v̄

|Dv
√
λDrc|1/3

)
ln

(
λD

r̄c

)
(16.37)

where ν0 ≡ nv̄b2.
We label the diffusion coefficient as DIUO because integration along unperturbed

orbits was used in the derivation. We will find that this method needs to be modified,
because integration along unperturbed orbits contains a subtle error.

Another effect, shear in the background plasma flow, can also set an effective
minimum relative velocity. Particles separated by ρ would then have vmin ∼ Sρ where
S = |∇V| is the shear rate of the flow. Equation (16.37) assumes that S is sufficiently
small that vmin is set by collisions, not shear.

16.2.2 Experiments

We will now compare this prediction to experimental measurements, performed in
a pure ion plasma in our group at UCSD (Anderegg et al. 1997). The plasma is a
collection of roughly 1010 Mg+ ions confined in a Malmberg-Penning trap geometry,
shown in Fig. 16.4. Cylindrical electrodes are biased so as to provide an axial potential
well for the ions. Radial confinement is provided by an axial magnetic field. The plasma
rotates about the axis of symmetry at frequency ωr, providing a v×B force to balance
the radial electric field Er: radial force balance implies

eωrrB

c
= e Er + mω2

rr (16.38)
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Fig. 16.4 Nonneutral plasma confined in a Malmberg-Penning trap.

and axial force balance implies Ez = 0 in the plasma. Solving eqn (16.38) for Er and
applying Poisson’s equation ∇ · E = 4πen, we obtain the following relation between
rotation frequency and density:

n =
mωr

2πe2
(Ωc − ωr). (16.39)

Pure ion plasmas can be confined in a quiescent near thermal-equilibrium state
for arbitrarily long time periods (Dubin and O’Neil 1999). In the experiments, n ∼
107 cm−3, B runs from 1–4 Tesla, and T could be varied over the range 0.03eV <
T < 3eV. For such plasmas, the Debye length is greater than the cyclotron radius so
transport due to long range collisions is an important effect.

Exercise 16.3 Show that the maximum possible density (called the Brillouin density nB)
is related to the magnetic field by

nB = mΩ2
c/8πe2,

and find nB for Mg+ ions in a 1 Tesla magnetic field.

In order to measure diffusion across the magnetic field lasers are used to tag some
of the ions via their spins. First, a laser directed across the column intersects all ions
as the plasma rotates and pumps them all into the sz = +1/2 spin state. This beam
is then turned off and a second “tagging” beam, directed along the trap axis, pumps
ions in the beam into the sz = −1/2 state. This can be done very quickly compared to
the rate at which particles diffuse out of the beam. After this tagging beam is turned
off, the sz = −1/2 ions (the “test particles”) diffuse across the magnetic field. A weak
probe beam that does not change the spin is then used to measure the density nt(r, t)
of the test particles, through their fluorescence in the probe beam. Given nt(r, t), one
can obtain the radial test particle flux Γr through the continuity equation,

∂nt

∂t
= −1

r

∂

∂r
(rΓr), (16.40)

which implies
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Fig. 16.5 Measured test particle diffusion compared to eqn (16.37) (dashed lines), the clas-

sical theory (lower solid lines), and the improved theory discussed in Section 2.3 (upper solid
lines) [from Anderegg (1997)].

Γr(r, t) =
∫ r

∞
r′dr′

∂nt

∂t
(r′, t). (16.41)

We compare Γr to Fick’s law, which states that in a diffusive process the flux of test
particles is proportional to the gradient in their concentration:

Γr = −Dn
∂

∂r

(nt

n

)
. (16.42)

Note that while nt diffuses, n remains fixed since the plasma is in equilibrium. Rather,
the concentration of test particles eventually becomes uniform. Also, experiments were
performed on near-thermal-equilibrium plasmas which rotate rigidly, so we assume that
vmin is set by collisions, not flow shear.

The experimentally-determined values of Γr are found to be proportional to n ∂/∂r
(nt/n), and their ratio yields D. Results for D using this method are displayed in
Fig. 16.5 versus plasma temperature for a range of magnetic field strengths and densi-
ties. The figure shows that the measured diffusion is roughly 10 times the classical the-
ory prediction from Table 16.1, but is also about 3 times the prediction of eqn (16.37)
for E×B drift collisions. Evidently the theory presented so far requires modification.

16.2.3 Correction to Integration Along Unperturbed Orbits

The IUO technique used in deriving eqn (16.37) gives a diffusion coefficient which is up
to three times too small because of a subtle “collisional caging” effect. To understand
this, we will start the calculation over again using a slightly different approach, based
on the Green-Kubo expression for spatial diffusion,

D =
1
2

( c

B

)2
∫ ∞

−∞
dt〈Ey(t)Ey(0)〉 (16.43)

where Ey(t) is the fluctuating electric field acting on a test particle, labeled “1,”
due to its collisions with other particles as they stream by. This fluctuating field
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creates a fluctuating velocity vx(t) = cEy/B that is responsible for the diffusion in x.
Equation (16.43) can be derived from the equation of motion dx/dt = vx(t), which
implies

〈x2〉(t) =
∫ t

0
dt′dt′′〈vx(t′)vx(t′′)〉. (16.44)

The derivation relies on three assumptions: (1) 〈vx(t′)vx(t′′)〉 is a function only of t′−t′′

(the fluctuating velocities are stationary); (2) this correlation function approaches zero
for |t′ − t′′| > τ (the “autocorrelation time”); and (3) times of interest satisfy t * τ .
Using these assumptions, it is not difficult to show that 〈x2〉 = 2Dt with D given by
eqn (16.43) (Reif 1965).

The electric field in eqn (16.43) can be expressed as a Fourier transform:

Ey(t) = −
N∑

j=2

e

∫
d3k

(2π)3
4πeiky

k2
eik·∆rj(t) (16.45)

where ∆rj(t) = r1(t) − rj(t) is the difference between the test particle position and
that of particle j. Their relative position evolves according to

∆rj(t) = ∆rj(0) + ẑvrt + z̃r(t), (16.46)

where vr is the initial relative velocity, and z̃r(t) is the fluctuating relative position
change caused by collisions:

d2z̃r/dt2 = eEz(t)/m, (16.47)

where Ez(t) is a fluctuating electric field due to interactions with the plasma.

Exercise 16.4 Show that
〈eikz z̃r(t)〉 = e−k2

zDv|t|3/3 (16.48)

where Dv = (e/m)2
R ∞
0

dt′〈Ez(t′)Ez(0)〉 is the velocity diffusion coefficient, assuming that
t & τ where τ is the autocorrelation time for the fluctuations in Ez(t).

Equation (16.43) then becomes

D =
1
2

(ce

B

)2 N∑

j=2

N∑

%=2

∫ ∞

−∞
dt

∫
d3kd3k′

(2π)6
(4πi)2kyk′

y

k2k′2 〈eik·∆rj(t)+ik′·∆r!(0)〉. (16.49)

In order to evaluate the average, we assume that initial conditions for the particles
are uncorrelated, so that the probability distribution for these initial conditions is a
product of the distribution function for each separate charge. Also, we assume that
the fluctuations in Ez(t) are uncorrelated from the initial conditions, so that

〈eik·∆rj(t)+ik′·∆r!(0)〉 = 〈eik·(∆rj(0)+vrt)+ik′·∆r!(0)〉 × e−k2
zDv |t|3/3. (16.50)

It is then not difficult to show that
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〈
∑

j

∑

%

eik·∆rj(0)+ik′·∆r!(0)〉 =
N − 1

V

∫
d3∆rj(0)

∫
dvrfrel(vr)

×ei(k+k′)·∆rj(0)

= n(2π)3δ(k + k′)
∫

dvrfrel(vr). (16.51)

Applying this expression to eqn (16.49) and performing the k′ integral, the diffusion
coefficient may be expressed as

D =
(4π)2

2

(ce

B

)2
n

∫ ∞

−∞
dvrfrel(vr)

∫
d3k

(2π)3
k2

y

k4

∫ ∞

−∞
dt eikzvrt−k2

zDv |t|3/3. (16.52)

We write d3k in cylindrical coordinates (k⊥, θ, kz), and define k̄z = kz/k⊥ and t̄ =
k⊥vrt. Then eqn (16.52) can be written as

D =
(ce

B

)2
n

∫ ∞

−∞
dvr

e−mv2
r/4T

√
4πT/m

∫ ∞

0
k⊥dk⊥

1
k2
⊥|vr|

∫ ∞

−∞
dt̄J(D̄v, t̄) (16.53)

where D̄v = Dv/(3k⊥v3
r) and

J(D̄v, t̄) =
∫ ∞

−∞

dk̄z

(1 + k̄2
z)2

eik̄z t̄−k̄2
zD̄v |t̄|3 . (16.54)

This function is plotted versus t̄ in Fig. 16.6.
We require the integral over t̄ of J in the expression for D, eqn (16.53). The result

of this integration depends on the value of D̄v. For D̄v = 0, it is clear that

∞∫

−∞

dt̄ J(0, t̄) = 2π (16.55)

since
∫ ∞
−∞ dt̄eik̄z t̄ = 2πδ(k̄z). This result, together with imposition of the appropriate

cutoffs, leads back to eqn (16.37), as expected since D̄v = 0 is equivalent to the
integration along unperturbed orbits. On the other hand, when D̄v /= 0, but D̄v → 0,
one can show the following:

lim
D̄v→0+

∫ ∞

−∞
dt̄ J(D̄v, t̄) = 6π (16.56)

This is 3 times the result one obtains for D̄v identically equal to zero (Dubin 1997).

Exercise 16.5 Verify eqn (16.56). (Hint: transform variables. See Dubin (1997) for details.)



Kinetic Theory of E x B Drift Diffusion, and Experiments

10
-5

0.0001

0.001

0.01

0.1

1

0.1 1 10 100 1000 10
4

D
v
=.1

D
v
=.01

D
v
=.001

D
v
=.0001

D
v
= 0

J(
t,

 D
v
 )

t

Fig. 16.6 The function J(D̄v , t̄).

Even an infinitesimal amount of velocity diffusion makes a large change to the result
for D, increasing it by a factor of 3. Equation (16.56) can be verified by numerical inte-
gration, and the result is displayed in Fig. 16.7. Note that as vr → 0, D̄v → ∞ because
D̄v = Dv/3k⊥v3

r . Also, Fig. 16.7 shows that for D̄v >∼ 1,
∫ ∞
−∞ J(D̄v, t)dt → 0. This

provides a natural cutoff to the logarithmically divergent vr integral in eqn (16.53)
at vmin ∼ (Dv/3k⊥)1/3. This is the same minimum velocity as used in deriving
eqn (16.37), but expressed in k-space. Then after performing the vr integral to loga-
rithmic order, eqn (16.53) becomes:

D =
6
√
π

v̄

(ce

B

)2
n

∫ ∞

0

dk⊥
k⊥

ln
(

v̄

(Dv/3k⊥)1/3

)
. (16.57)

Next, the logarithmic divergence in k⊥ is cut off at λ−1
D and r−1

c for the same reasons
as we cut off the ρ integral in eqn (16.35), resulting in

D = 3DIUO (16.58)

where DIUO is the result of integration along unperturbed orbits (D̄v = 0), given by
eqn (16.37).

Integration along unperturbed orbits fails to capture the extra factor of 3 because
when D̄v = 0, as assumed in IUO, particles only collide once as they pass one another
along the magnetic field. However, when D̄v is small but finite, particles encounter one
another many times as their relative velocities diffuse: eventually, particle velocities
reverse and the pair collides again. Effectively, collisions with surrounding particles
(responsible for the velocity diffusion) cause a colliding pair to interact over a longer
period of time than would occur in the absence of collisions (this is the “collisional
caging” effect referred to at the beginning of the section: surrounding particles “cage”
the interacting pair). This longer interaction time can be seen directly in the plot of
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J̄(D̄v, t̄) versus time, in Fig. 16.6. For D̄v = 0, J̄ displays a single peak at t̄ = 0, due to
the single collision. However for D̄v small but finite, a second peak appears, caused by
further collisions between the pair as their diffusing relative velocity changes sign. This
peak occurs at t̄ ∼ 0.1/D̄v. These multiple collisions are responsible for the increase
(by a factor of 3) of the diffusion D.

Another way to think of the factor of 3 increase is that our estimate vmin ∼ (Dvρ)1/3

was incorrect. One can rewrite 3 ln(v̄/(Dvρ)1/3) as ln(v̄/v′min) where v′min = νρ is
an improved estimate for the minimum relative velocity. This is much smaller than
(Dvρ)1/3, and comes about because particles interact for a much longer time than our
previous estimate suggested–see Fig. 16.6.

Returning now to the effect of fluid shear on the transport, we note that shear will
supercede collisions when S > ν, so that vmin = Sρ rather than νρ. Accounting for
fluid shear then yields

D = 2
√
π ν0r

2
c ln

(
λD

rc

)
ln

(
v̄

Max(S, ν)
√
λDrc

)
. (16.59)

Equation (16.59) can be verified by including fluid shear from the beginning in
the previous diffusion calculation; however the details are too complex to include
here. One portion of the calculation is considered in exercise 16.6. Also, in a previous
description of the effect of fluid shear on diffusion (Driscoll et al. 2002), a multiplicative
parameter α was introduced to account for the enhancement factor. Equation (16.59)
is equivalent to that description since the enhancement is included through use of our
improved estimate for the minimum relative velocity.

In comparing theory to experiment we assume S < ν since the plasmas are near
thermal equilibrium, rotating rigidly. Figure 16.6 shows the experiments compared to
the improved theory of eqn (16.58), or equivalently, (16.59).
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Exercise 16.6 Derive eqn (16.59) for the case D̄v = 0 (i.e. vmin determined by shear) by
repeating the analysis that leads to (16.58), but setting z̃r = 0 in eqn (16.46) and keeping
shear, replacing the equation by ∆rj(t) = ∆rj(0) + ẑvrt + ŷS∆xt.

16.3 Heat Conduction across B

In this lecture we consider the problem of heat conduction across a strong magnetic
field, in a plasma for which r̄c ) λD. Following Psimopolis and Li (1992), we employ
an approach based on an ad hoc generalization of the Boltzmann collision operator
that describes isolated two-particle collisions. Weaknesses in this approach will become
apparent, but it has the advantage of being quite straightforward, and it points out
the necessity of deriving a new collision operator that is capable of properly handling
long-range interactions.

Based on the estimate discussed in Lecture 1, we consider a picture of collisions as
shown in Fig. 16.3: 2 particles on field lines separated by ρ ∼ λD interact as they pass
by one another. Initially, their parallel velocities are vz1 and vz2 respectively. After
their interaction their velocities are v′z1

and v′z2. The change in kinetic energies of each
particle results in transfer of energy across B.

In such a one-dimensional collision, relative energy Er of the two particles is con-
served:

Er =
mv2

r

4
+

e2

(ρ2 + z2
r)1/2

(16.60)

where zr = z1−z2 is the relative position. This implies that the initial and final relative
speeds are the same: |vr| = |v′r|. However, the sign of vr can change. If, initially (when
zr * ρ),

mv2
r

4
<

e2

ρ
(16.61)

the repulsive Coulomb potential will cause the particles to reflect from one another so
that v′r = −vr. If, on the other hand, inequality (16.61) is not satisfied, the relative
energy is sufficient to overcome the repulsion and particles do not reflect so that
v′r = vr. Combining these results with momentum conservation, vz1 + vz2 = v′z1

+ v′z2
,

we find that when inequality (16.61) is satisfied

v′z1
= vz2 and v′z2

= vz1 (16.62)

i.e. particles exchange velocities; if eqn (16.61) is not satisfied their velocities are
unchanged by the interaction.

Now, consider the effect that these interactions have on a distribution of particles
f(x1, vz1 , t), described by a Maxwellian with varying temperature T (x1, t):

f(x1, vz1 , t) =
n e−mv2

z1
/2T (x1,t)

√
2πT (x1, t)/m

. (16.63)

In a Boltzmann picture (Lifshitz and Pitaevskii 1981), the number of particles
in element dvz1 at position x1, f(x1, vz1 , t)dvz1 , varies in time as collisions remove



Plasma Collisional Transport

particles from this element, and other collisions introduce particles into the element.
The rate of removal is the number of particles in dvz1 , f(x1, vz1)dvz1 , multiplied by
the total number of collisions per unit time,

∫
dx2dy2

∫
dvz2 |vr|f(x2, vz2 , t), (16.64)

where vr = vz1−vz2 , and the integral over x2 and y2 must satisfy eqn (16.61); otherwise
there is no change in the velocities due to the interaction. Similarly, the rate at which
collisions introduce particles into the element is

dvz1

∫
dx2dy2

∫
dvz2 |vr|f(x1, vz2 , t)f(x2, vz1 , t), (16.65)

since particles that begin at velocity vz2 will end up with velocity vz1 in a collision
with a particle moving at that velocity. Taking the difference between these two rates
yields the overall rate of change of f(x1, vz1):

d

dt
f(x1, vz1 , t) =

∫
dx2dy2

∫

mv2
r/4<e2/ρ

dvz2 |vr|

×(f(x1, vz2 , t)f(x2, vz1 , t) − f(x1, vz1 , t)f(x2, vz2 , t)). (16.66)

The right-hand side is similar in form to the Boltzmann collision operator, except
that the distribution functions are evaluated at different points in space, x1 and x2.
This is important in order to describe heat conduction caused by energy-transferring
collisions.

The rate of change of temperature may now be found by integrating eqn (16.66)
over mv2

z1
, and substituting for f from eqn (16.63):

∂T

∂t
(x1, t) =

1
n

∫
dvz1mv2

z1

∂f

∂t
(x1, vz1 , t)

=
∫

dx2dy2

∫

mv2
r/4<e2/ρ

dvz1dvz2

|vr|m2nv2
z1

2π
√

T1T2

×[e−m(v2
z2

/T1+v2
z1

/T2)/2 − e−m(v2
z1

/T1+v2
z2

/T2)/2] (16.67)

where T1 = T (x1, t) and T2 = T (x2, t).
By interchanging the dummy variables vz1 and vz2 , eqn (16.67) can be expressed

as
∂T1

∂t
=

∫
dx2 F (x1, x2, t) (16.68)

where the function F is odd under interchange of x1 and x2:

F (x1, x2, t) =
∫

dy2

∫
dvz1dvz2

|vr|m2n

4π
√

T1T2
(v2

z1
− v2

z2
)

×[e−m(v2
z2

/T1+v2
z1

/T2)/2 − e−m(v2
z1

/T1+v2
z2

/T2)/2]. (16.69)
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Since F (x1, x2, t) is odd under interchange of x1 and x2, we will write it as

F (x1, x2, t) = F̄ (X, xr, t) (16.70)

where X = (x1 +x2)/2, xr = x2 −x1, and F̄ is odd in xr (i.e. F̄ → −F̄ as xr → −xr).
This transformation implies that

x1 = X − xr/2 , x2 = X + xr/2. (16.71)

Then ∫
dx2F (x1, x2, t) =

∫
dx2F̄ (

x1 + x2

2
, x2 − x1, t) (16.72)

and converting the integration variable to xr we obtain
∫

dx2F =
∫

dxrF̄ (x1 +
xr

2
, xr). (16.73)

We now assume that values of xr required in eqn (16.68) are small (of order λD)
compared to the scale of variation of T (x1, t), so that we may Taylor expand F̄ in the
first argument, obtaining

∫
dx2F =

∫
dxrF̄ (x1, xr, t) +

∂

∂x1

∫
dxr

xr

2
F̄ (x1, xr, t). (16.74)

The first integral vanishes because F̄ is odd in xr . Converting F̄ back to F using
eqn (16.70) and (16.71) yields

∂T1

∂t
=

∂

∂x1

∫
dxr

xr

2
F (x1 −

xr

2
, x1 +

xr

2
, t). (16.75)

Substituting for F from eqn (16.69) and Taylor expanding T (x1 ± xr/2, t), to first
order in xr, we obtain the heat equation:

∂T1

∂t
=

∂

∂x1
(χ
∂T1

∂x1
) (16.76)

where the thermal diffusivity χ is given by the expression

χ =
∫

dx2dy2

∫

mv2
r/4<e2/ρ

dvz1dvz2

x2
r

2
|vr|m3n

8πT 3
1

(v2
z1

− v2
z2

)2e−m(v2
z1

+v2
z2

)/2T1 . (16.77)

The integrals over velocity can be most easily performed by converting to relative
and center of mass variables, and the result is

χ =
1
π

nv̄b2

∫
dx2dy2

x2
r

ρ2
. (16.78)

Exercise 16.7 Derive eqn (16.78) from eqn (16.77).
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Converting to polar coordinates for which dx2dy2 = ρdρdθ, and xr = ρ cos θ, we can
perform the θ integral in eqn (16.78), yielding

χ =
√
πnv̄b2

∫ ∞

0
ρdρ. (16.79)

This result is clearly divergent at large impact parameters. The range of impact pa-
rameters must be cut off due to Debye shielding, so we take ρmax = λD, yielding

χ =
√
π/2 nv̄b2λ2

D. (16.80)

Note however that unlike previous logarithmic divergences, a change in ρmax by a
factor of 2 causes a large change in χ, by a factor of 4. Thus, eqn (16.80) can only
be regarded as an estimate; the numerical coefficient is unknown. Furthermore, our
treatment of collisions as isolated two-body events breaks down at impact parameters
of order λD, since many other particles surrounding the colliding pair intervene. This
approach, while a useful exercise, points to the need for a proper derivation of a
collision operator to replace eqn (16.66); one which can rigorously describe the effect of
long range interactions without assuming they consist of isolated two-body collisional
events. This will be the topic of lecture 4.

16.4 Collision Operator for Long-Range Interactions

In this lecture we will derive a new collision operator that describes collisional inter-
actions between particles separated by a Debye length or more in a plasma for which
r̄c ) λD.

16.4.1 Plasma Response to a Moving Charge

As a first step we will examine the response of a magnetized plasma to a moving
charge Q with velocity v0ẑ along the magnetic field Bẑ. Previously we analyzed how
a plasma responds to a stationary charge by Debye-shielding the charge. When the
charge is moving the plasma response is more complicated: the possibility exists that
the charge will emit plasma waves. This response should be an integral component of
our collision operator, since the operator must describe interactions between moving
charges, including the self-consistent plasma response.

The moving charge creates a potential disturbance δφ(r, t) that follows from Pois-
son’s equation:

∇2δφ = −4πe

∫
δfdvz − 4πQδ(r − v0ẑt), (16.81)

where δf(r, vz, t) is the perturbation away from the equilibrium distribution func-
tion f0(vz). This perturbation can be obtained by solving the guiding-center Vlasov
equation

∂f

∂t
+ vz

∂f

∂z
+

e

m
Ez

∂f

∂vz
= 0. (16.82)

Here we assume for simplicity that B is very large so only motion along z is needed, and
we neglect cyclotron motion and E × B drifts (Chen 1974). Linearizing the equation
in δφ, taking δf = f − f0 we obtain the linearized Vlasov equation
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∂δf

∂t
+ vz

∂δf

∂z
− e

m

∂δφ

∂z

∂f0

∂vz
= 0. (16.83)

We will solve eqns. (16.81) and (16.83) for δφ(r, t) via a Fourier Laplace transform,
writing

δφ(r, t) =
∫

d3k

(2π)3

∫

C

dp

2πi
eik·r+ptδφkp (16.84)

where δφkp is the Fourier-Laplace amplitude, and the contour C runs from −i∞ to
i∞, to the right of any poles in δφkp. Applying the Fourier-Laplace transform to
eqn (16.83) yields

(p + ikzvz)δfkp −
e

m
ikzδφkp

∂f0

∂vz
= δfk(t = 0), (16.85)

where δfk(t = 0) is the Fourier transform of δf(r, t = 0). We assume that initially
the plasma is unperturbed so δfk(t = 0) = 0. Then solving eqn (16.85) for δfkp and
substituting the result into the Fourier-Laplace transform of eqn (16.81),

−k2δφkp = −4πe

∫
dvzδfkp −

4πQ

p + ikzv0
(16.86)

yields the following expression for δφkp,

δφkp =
4πQ

k2Dkp

1
p + ikzv0

, (16.87)

where Dkp is the linear plasma dieletric function:

Dkp = 1 − 4πe2ikz

mk2

∫
dvz

∂f0/∂vz

p + ikzvz
. (16.88)

This function describes the shielding response of the plasma. As written, eqn (16.88)
is correct only for Re(p) > 0 since the Laplace transform contour C must run to the
right of all singularities, and the vz integral in eqn (16.88) is singular at Re(p) = 0.
For Re(p) ≤ 0, eqn (16.88) must be analytically continued: the vz integration contour
must be deformed below the real line in the complex vz plane, so that p remains above
the vz integration contour (Krall and Trivelpiece 1986).

Equation (16.87) must now be substituted in eqn (16.84) to obtain δφ(r, t). The
inverse Laplace transform in eqn (16.84) has two types of poles in the integrand: zeroes
in Dkp and the pole at p = −ikzv0. We will assume that all zeroes at Dkp are damped,
i.e. these zeroes are at Re p < 0, so that they produce a time-dependent response in
δφ that damps away, giving no contribution at large times. The undamped pole, at
p = −ikzv0, yields

δφ(r, t) = 4πQ

∫
d3k

(2π)3
eik·r−ikzv0t

k2Dk,−ikzv0+ε
(16.89)

where ε is a positive infinitesimal used to ensure that the integration in p has passed
to the right of singularities in Dkp (this is equivalent to deforming the vz integration
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contour below the pole at vz = v0). Equation (16.89) implies that δφ = δφ(x, y, z−v0t),
i.e. the potential is a stationary perturbation as seen in the frame of the moving charge.

In order to complete our examination of the plasma response to the moving charge,
we need to understand the plasma dielectric function Dk,ikzv0+ε. This function clearly
depends on the velocity v0 of the charge. If v0 = 0, eqn (16.88) implies

Dk,0 = 1 − 4πe2

mk2

∫
dvz

vz

∂f0

∂vz
. (16.90)

If f0 is given by a Maxwellian distribution, ∂f0/∂vz = −vzf0/v̄2, and eqn (16.90)
yields

Dk,0 = 1 +
1

k2λ2
D

, (16.91)

the dielectric response for static Debye shielding. Using this in eqn (16.89) leads to
δφ(r, t) = Qe−r/λD/r, as expected for Debye shielding of a stationary charge due to a
single plasma species.

For v0 /= 0, the plasma response is more complicated. Defining ω = kzv0, and again
assuming that f0 is given by a Maxwellian, the dielectric function can be written as

Dk,−iω+ε = 1 +
kz

k2λ2
D

∫ ∞

−∞
dvzfmax(vz)

vz

kzvz − ω − iε
. (16.92)

Since ω = kzv0 is real and ε is a positive infinitesimal we can use the Plemelj
formula to break the integral into a principal part and an imaginary contribution from
the pole at ω = kzvz − iε:

Dk,−iω+ε = 1 +
kz

k2λ2
D




∞∫

−∞

Pdvz
fmax(vz)
kzvz − ω

+ iπ

∞∫

−∞

dvzfmax(vz)vzδ(kzvz − ω)





= 1 +
1

k2λ2
D

[
a

(v0

v̄

)
+ ib

(v0

v̄

)
sgn(kz)

]
(16.93)

where the real functions a(x) and b(x) are defined as

a(x) ≡
∞∫

−∞

P
ds√
2π

se−s2/2

s − x
, b(x) ≡

√
π

2
xe−x2/2. (16.94)

Then the potential surrounding the charge is found by substituting eqn (16.93) in
eqn (16.89).

Exercise 16.8 Show that δφ(x, y, z − v0t) can be written as

δφ =
Q
r

g

„
ρ
λD

,
z − v0t
λD

«
(16.95)

where ρ2 = x2 + y2, r2 = z2 + ρ2, and the shielding function g(ρ, z) is
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Fig. 16.8 Contour plots of the shielding function g(ρ, z) at v0/v̄ = 0, 1 and 3.

g(ρ, z) =
2
π

r Re

»Z ∞

0

k⊥dk⊥J0(k⊥ρ)

Z ∞

0

dkz
eikzz

k2
z + k2

⊥ + a(v0/v̄) + ib(v0/v̄)

–
. (16.96)

(Hint: Evaluate eqn (16.89) in cylindrical coordinates, scaling k to the Debye length.)

The shielding function is plotted in Figs. 16.8 and 16.9 for several values of the
particle speed v0. At v0 = 0 the static Debye shielding response is evident; g(ρ, z) =
e−

√
ρ2+z2 . However, for v0 /= 0 the dynamical shielding is incomplete, and as v0

increases beyond v0/v̄ ∼ 2 − 3 a damped wave develops behind the moving charge.
This wave is due to weakly damped plasma waves that are resonant with the particle:
i.e. waves whose phase velocity in the z-direction, ω/kz, matches the speed v0 of the
particle. Such resonant waves are strongly excited by passage of the particle.

Exercise 16.9 Taking v0 = ω/kz in eqn (16.93) and assuming v0 & v̄, show that D is
approximately

Dk,−iω+ε ( 1 −
ω2

pk2
z

ω2k2
+

ib sgn(kz)
k2λ2

D

. (16.97)

Mathematically, the waves are excited by near-zeros in Dk,−iω+ε, which provide a
large contribution to the integral in eqn (16.89). A near zero in D exists for ω/kz * v̄,
at

ω2 ∼=
ω2

pk
2
z

k2
, (16.98)

(see Exercise 16.9) which is the dispersion relation for magnetized plasma waves. Note
that the small imaginary term in eqn (16.97) yields a negative imaginary part to ω,
causing the waves to slowly damp. This is the origin of the wavelike response to the
passage of the particle when v0 * v̄. These waves, a form of Cerenkov radiation, are
similar to the wake observed behind a moving boat. They carry energy and momentum
away from the particle, which can be reabsorbed by particles a great distance away.
This has important consequences for plasma thermal conduction and viscosity, as we
will see.
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Fig. 16.9 Plot of g(0, z) for v0/v̄ = 0, 1, 2 and 3.

Equation (16.95) can also be used to determine the drag force on the moving
charge due to the plasma. By subtraction of the bare Coulomb potential Q/|r| from
eqn (16.95), the remaining potential δφp(ρ, z − v0t) can be obtained. This potential,
due to the plasma only, creates a force F = −∂δφp(0, z)/dz|z=0 that acts on the
moving charge to slow it down. One can show that the force scales as F ∼ −mνv0

for v0/v̄ ) 1, as one might expect. (The logarithmic divergence in ν [see eqn (16.13)]
arises from a large k logarithmic divergence in the derivative with respect to z of the
wavenumber integral in eqn (16.96), which must be cut off at k = b−1.)

16.4.2 Collision Operator for Long-Range Collisions

We now use what we have learned about the shielding response of a plasma to a
moving charge in order to derive the collision operator, including self-consistent plasma
shielding effects. We assume a plasma in a uniform magnetic field Bẑ with several
species of charges with mass mα, charge eα, and density nα(x), where α is a species
label (e.g. α = electron, or ion). Each species has a distribution function fα(x, vz , t).
In the absence of collisions, this distribution would satisfy the guiding-center Vlasov
equation

∂fα
∂t

+ vz
∂fα
∂z

+
E0 × ẑ

B
c ·∇fα +

eα
mα

E0z

∂fα
∂vz

= 0, (16.99)

where E0 = −∇φ0 is the plasma electric field, given by Poisson’s equation,

∇2φ0 = −4π
∑

∞
eα

∫
fαdvz . (16.100)

Equation (16.99) keeps the E × B drift that was neglected in eqn (16.82), as it is
important in determining viscosity and diffusion due to long range collisions.

The assumption that fα = fα(x, vz , t) and E0 = E0(x, t)x̂ implies that eqn (16.99)
reduces to

∂fα
∂t

= 0, (16.101)

implying that any function of x and vz alone is an equilibrium solution of eqn (16.99).
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Normally, one chooses as an initial condition for eqn (16.99) a smooth function of
x and vz . However in reality the plasma consists of a set of discrete particles. If one
therfore chooses as the initial condition,

fα(r, vz , t = 0) =
Nα∑

i=1

δ(r − ri(0))δ(vz − vzi(0)), (16.102)

i.e. a series of δ-functions at the Nα discrete positions and velocities of the charges
in each species α, the solution to the Vlasov-Poisson system can still be found in
principle, but it will contain all the detailed information concerning the microscopic
interactions between individual charges.

Exercise 16.10 Show that the solution to eqn (16.99) with initial conditions (16.102) is
given by the Klimontovitch density ηα(r, vz, t),

ηα(r, vz, t) =
NαX

i=1

δ(r− ri(t))δ(vz − vzi(t)), (16.103)

where (ri(t), vzi(t)) is the phase-space trajectory of the ith particle of species α. [Hint: sub-
stitute eqn (16.103) into eqn (16.99).]

As shown in Exercise 16.10, the Klimontovitch density satisfies eqn (16.99) with
initial condition (16.102), i.e.,

∂ηα
∂t

+ vz
∂ηα
∂z

+
E× ẑ

B
c ·∇ηα +

eα
mα

Ezα
∂ηα
∂vz

= 0 (16.104)

where
E = −∇Φ (16.105)

and
∇2Φ = −4π

∑

α

eα

∫
dvzηα. (16.106)

Equation (16.104) is often referred to as the Klimontovitch equation (Krall and Trivel-
piece 1986), although the only difference between it and the Vlasov equation is the form
of the initial condition. This is a big difference, however, since a smooth Vlasov distri-
bution has a different microscopic form than the Nα particles moving along chaotic tra-
jectories described by the Klimontovitch density ηα(r, vz , t). The connection between
these two pictures of the plasma (smoothed and discrete) may be made by averaging
over an ensemble of initial conditions for the discrete particle positions and velocities,
assuming that each individual particle i in species α has position ri and velocity vzi

initially distributed according to a smooth probability density fα(xi, vzi , t = 0)/Nα.
Then at later times the following function fα(x, vz , t) is defined by the average over

initial conditions:
〈ηα(r, vz , t)〉 ≡ fα(x, vz , t). (16.107)

One may easily show using eqn (16.103) that 〈ηα(r, vz , t = 0)〉 = fα(x, vz , t = 0), so
eqn (16.107) is consistent with the initial conditions.
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The averaged distribution function fα does not satisfy the Vlasov equation; rather,
it evolves slowly in time due to collisions. An equation for fα can be obtained by
applying the above-described averaging procedure to the Klimontovitch equation itself:

∂fα
∂t

+ vz
∂fα
∂z

+ 〈E× ẑ

B
c ·∇ηα〉 + 〈 eα

mα
Ezα

∂ηα
∂vz

〉 = 0. (16.108)

It is useful to break E and ηα into a smooth averaged part and a fluctuation due to
discreteness:

ηα = fα(x, vz , t) + δηα(r, vz , t) , E = E0(x, t)x̂ + δE(r, t). (16.109)

Then eqn (16.108) can be written as

∂fα
∂t

= Cα[f ] (16.110)

where the collision operator Cα[f ] is

Cα[f ] = −∇ · 〈 c

B
δE × ẑδηα〉 −

∂

∂vz
〈 eα
mα

δEzδηα〉 (16.111)

and the notation Cα[f ] denotes a functional dependence on fβ for all β. This depen-
dence is implicit in eqn (16.111) through the dependence of the fluctuations δηα and
δE on fβ, and may be uncovered by subtracting eqn (16.108) from eqn (16.104) to
obtain equations for the fluctuations δηα and δE. If one assumes that the fluctuations
are small, one may linearize the resulting equation in the fluctuations to obtain

∂δηα
∂t

+ vz
∂δηα
∂z

+ Vy
∂δηα
∂y

+
δEyc

B

∂fα
∂x

+
eα
mα

δEz
∂fα
∂vz

= 0, (16.112)

where Vy(x, t) = −cE0/B is the mean E × B drift of the plasma in the y-direction,
δE = −∇δφ and

∇2δφ = −4π
∑

α

eα

∫
dvzδηα. (16.113)

We solve eqn (16.112) using a Laplace transform in time and Fourier transforms in z
and y. Also, we assume that the fluctuations evolve rapidly in time compared to the
slow time variation of fα so that we may assume fα and Vy are time-independent in
eqn (16.112). Therefore in what follows we take fα = fα(x, vz) and Vy = Vy(x). The
solution to eqn (16.112) is then

δηα(r, vz , t) =
∫

c

dp

2πi
ept

∫
dkydkz

(2π)2
eikyy+ikzzδη̂α(x, ky, kz , vz, p) (16.114)

where δη̂α satisfies

(p + ikzvz + ikyVy)δη̂α =
(

iky
c

B

∂fα
∂x

+ ikz
eα
mα

∂fα
∂vz

)
δφ̂+ δη̂α0 (16.115)

when δφ̂(x, ky , kz, p) is the Fourier-Laplace transform of δφ, and δη̂α0(x, ky , kz, vz) is
the Fourier transform of the initial condition for δηα, δηα0(r, vz).
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Exercise 16.11 Show that, if one assumes particles are uncorrelated,

〈δηα0(r, vz)δηβ0(r
′, v′

z)〉 = fα(x, vz)δαβδ(r− r′)δ(vz − v′
z) (16.116)

and

〈δη̂α0(x, ky, kz, vz)δη̂β0(x′, k′
y, k′

z, v′
z)〉 = fα(x, vz)δαβδ(x − x′)(2π)2

δ(ky + k′
y)δ(kz + k′

z)δ(vz − v′
z). (16.117)

Equation (16.115), when combined with Poisson’s equation for the fluctuating po-
tential δφ̂ yields the following expression for δφ̂:

δφ̂(x, ky , kz, p) = −4π
∑

α

eα

∫
dx′ψ(x, x′, ky, kz, p)

∫
dv′zδη̂0α(x′, kz, kz , v′z)
p + ikzv′z + ikyVy(x′)

(16.118)
where ψ is a Green’s function for the potential, satisfying

∂2ψ

∂x2
−

[
k2

y + k2
z − 4πi

∑

α

e2
α

mα

∫
dvz

ky

Ωα

∂fα

∂x + kz
∂fα

∂vz

p + ikzvz + ikyVy

]
ψ = δ(x − x′), (16.119)

and where Ωα = eαB/mαc is the cyclotron frequency for species α.
Equation (16.118) says that potential fluctuations at position x with wavenumbers

(ky, kz) and frequency ω = ip are driven by discreteness in the particle distribution
described by δη̂0α, through the shielded Green’s function ψ. Note that if fα(x, vz) were
independent of x we could Fourier transform eqn (16.119) in x to obtain

ψ = −
∫

dkx

2π
eikx(x−x′)

k2Dkp
(16.120)

where Dkp is a generalization of the plasma dielectric discussed in the previous section:

Dkp = 1 − 1
k2

∑

α

4πie2
α

mα
kz

∫
dvz∂fα/∂vz

p + ikzvz + ikyVy
. (16.121)

Comparing eqn (16.120) to eqn (16.89) reveals that ψ is a similar function to the
function δφ discussed previously; it describes a Debye-shielded plasma response when
p + ikyVy → 0, and a wavelike response for |Im p| * kz v̄.

In order to evaluate the collision operator, we require the two averages 〈δEyδηα〉
and 〈δEzδηα〉. (One can show by symmetry that 〈δExδηα〉 is zero.) These can be
evaluated by first expressing δEy (or δEz) and δηα in terms of their Fourier-Laplace
transforms and then using eqn (16.115):
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〈δEy
(z)

δηα〉 = −i

∫
dk′

ydk′
zdkydkz

(2π)4

∫

c

dpdp′

(2πi)2
e(p+p′)t+i(ky+k′

y)y+i(kz+k′
z)z

×k′
y

(z)

[
i

eα
mα

(
ky

Ωα

∂fα
∂x

+ kz
∂fα
∂vz

)
〈δφ̂(x, k′

y , k′
z, p

′)δφ̂(x, ky, kz , p)〉

+ 〈δφ̂(x, k′
y , k′

z, p
′)δη̂0α(x, ky , kz, vz)〉

]
/(p + ikyVy + ikzvz). (16.122)

In turn, the two averages appearing in eqn (16.122) can be expressed in terms of the
averages over initial fluctuations, given by eqn (16.117), by substituting eqn (16.118)
for δφ̂:

〈 δφ̂(x, k′
y , k′

z, p
′)δη̂0α(x, ky , kz, vz)〉

= −4π
∑

β

eβ

∫
dx′dv′z

ψ(x, x′, k′
y, k′

z, p
′)

p′ + ik′
zv

′
z + ik′

yV ′
y

〈δη̂0α(x′, k′
y, k′

z , v
′
z)δη̂0β(x, ky , kz, vz)〉

= −4πeα
ψ(x, x,−ky ,−kz, p′)
p′ − ikzvz − ikyVy

(2π)2δ(ky + k′
y)δ(kz + k′

z)fα(x, vz) (16.123)

and

〈 δφ̂(x, k′
y , k′

z, p
′)δφ̂(x, ky , kz, p)〉

= (4π)2
∑

α

∑

β

eαeβ

∫
dx′dv′zdx′′dv′′z

ψ(x, x′, k′
y, k′

z, p
′)ψ(x, x′′, ky, kz , p)

(p′ + ik′
zv′z + ik′

yV ′
y)(p + ikzv′′z + ikyV ′′

y )

×〈δη̂0α(x′, k′
y, k′

z, v
′
z)δη̂0β(x′′, ky, kz , v

′′
z )〉

= (4π)2
∑

β

e2
β

∫
dx′dv′z

ψ(x, x′, k′
y, k′

z , p
′)ψ(x, x′, ky, kz , p)

(p′ + ikzv′z + ikyV ′
y)(p + ikzv′z + ikyV ′

y)

×(2π)2δ(ky + k′
y)δ(kz + k′

z)fβ(x′, v′z), (16.124)

where V ′
y ≡ Vy(x′).

We must now perform the inverse Laplace transforms in eqn (16.122). In so doing
note that poles in ψ are damped with Re p < 0, so that at large times these poles do
not contribute to the fluctuations. The only contributions that remain at large times
arise from the resonant denominators, and lead to a time-independent result, just as in
the case discussed in Sec. 4.1. It is useful to consider the contribution to eqn (16.122)
of eqns (16.123) and (16.124) separately. Equation (16.123) contributes the term

−4πi

∫
dkydkz

(2π)2
ky
(z)

eαψ(x, x,−ky ,−kz, i(kyVy + kzvz))fα(x, vz) (16.125)

and eqn (16.124) contributes the term

− (4π)2
eα
mα

∑

β

e2
β

∫
dkydkz

(2π)2

∫
dx′dv′zky

(z)

(
ky

Ωα

∂fα
∂x

(x, vz) + kz
∂fα
∂vz

(x, vz)
)

× |ψ(x, x′,+ky,+kz,−i(kyVy+kzvz))|
2
fβ(x′, v′z)πδ(ky(Vy−V ′

y)+kz(vz−v′z)) .(16.126)
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Here in evaluating the inverse Laplace transform we have used the identity

lim
t→∞

Re
ei(ω′−ω)t − 1

i(ω′ − ω)
= πδ(ω − ω′). (16.127)

(Only the real part contributes by symmetry of the integrand.) Also, we have used the
identity

ψ(x, x′,−ky,−kz, iω) = ψ∗(x, x′, ky, kz ,−iω) (16.128)

which follows from eqn (16.119).
Expression (16.125) can be rewritten in a form that looks more like (16.126) by

means of an identity that follows from eqn (16.119). Multiplying this equation by
ψ∗(x, ky , kz,−iω), integrating over x, and taking the imaginary part, yields

Im ψ∗(x′, x′, ky, kz ,−iω) = Im
∫

dx

(
ψ∗(x, x′, ky, kz ,−iω)

∂2ψ

∂x2
(x, x′, ky, kz,−iω)

−4πi
∑

β

e2
β

mβ

∫
dvz

ky

Ωβ

∂fβ

∂x + kz
∂fβ

∂vz
|ψ(x, x′, ky, kz − iω)|2

ikzvz + ikyVy − iω + ε



 (16.129)

where the infinitesimal ε in the denominator arises from the fact that the values of the
Laplace transform variable p = −iω must always lie to the right of poles. The first term
in the integral over x vanishes because, on integration by parts, it has no imaginary
part. Application of the Plemelj formula to second term allows one to extract the
imaginary part analytically, yielding

Imψ∗(x′, x′, ky, kz,−iω) = −4π
∑

β

e2
β

mβ

∫
dxdvz |ψ(x, x′, ky, kz,−iω)|2

×
(

ky

Ωβ

∂fβ
∂x

+ kz
∂fβ
∂vz

)
πδ(kyvz + kyVy − ω). (16.130)

If we apply this identity to expression (16.125) and combine it with expression (16.126)
we obtain the result

〈δEy
(z)

δηα〉 = eα
∑

β

(4πeβ)2
∫

dkydkz

(2π)2
ky
(z)

∫
dx′dv′z

× |ψ(x, x′, ky, kz ,−i(kyVy + kzvz))|2πδ(ky(Vy − V ′
y) + kz(vz − v′z))

×
[

1
mβ

(
ky

Ωβ

∂f ′
β

∂x′ + kz

∂f ′
β

∂v′z

)
fα − 1

mα

(
ky

Ωα

∂fα
∂x

+ kz
∂fβ
∂vz

)
f ′
β

]
,(16.131)

where fα = fα(x, vz) and f ′
β = fβ(x′, v′z). This result, along with eqn (16.111), provides

the collision operator for long-range interactions in a magnetized plasma.
The operator describes shielded interactions between particles on different field

lines at x and x′. The interaction is moderated by the Green’s function ψ, which de-
scribes a Debye-shielded potential when the particles move slowly compared to v̄, and
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describes wave emission and absorption when they move rapidly. The δ function im-
plies that the important interactions are resonant, so that a given Fourier component of
the interaction provides a steady, time-independent force. The product of distribution
functions in the square bracket is somewhat similar in form to the previous Boltzmann
operator, eqn (16.66), representing the rate at which particles at (x, vz) enter and leave
the phase space element dxdvz due to collisions with particles at (x′, v′z).

The collision operator satisfies several conservation laws. First, it clearly conserves
particle number for each separate species, Ṅα =

∫
dxdvz

∂fα

∂t = 0. Second, total mo-
mentum along the field is conserved:

Ṗz =
∑

α

∫
dxdvzmαvz

∂fα
∂t

= −
∑

α

∫
dxdvzmαvzCα[f ] = 0. (16.132)

This follows by integration by parts of eqn (16.132), which yields

Ṗz =
∑

αβ

(4πeαeβ)2
∫

dkydkz

(2π)2
kz

∫
dxdvzdx′dv′z|ψ|2

×πδ(kv(Vy − V ′
y) + kz(vz − v′z))[...] (16.133)

where [...] stands for the square bracket in eqn (16.131). However, this bracket is anti-
symmetric under interchange of the dummy variables (x, vz) and (x′, v′z) and therefore
the integral vanishes by symmetry, proving eqn (16.132). (Note that this requires |ψ|2
to be symmetric on an interchange of x and x′. Proof of this is left as an exercise.)

Similar arguments imply that canonical momentum

Py =
∑

α

eαB

c

∫
dxdvzxfα (16.134)

is conserved, as well as energy

E =
∑

α

∫
dxdvz

(
mαv2

z

2
+ eαφ0

)
fα. (16.135)

Exercise 16.12 Prove Ṗy = Ė = 0.

Finally, one can show that the collision operator maximizes the entropy functional
S[f ] where

S = −
∑

α

∫
dxdvzfα ln fα. (16.136)

Exercise 16.13 Show that Ṡ ≥ 0.
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16.5 Heat Conduction, Viscosity and Diffusion due to Long-Range
Collisions

In this lecture we will use the collision operator derived in the previous lecture to
determine the cross-magnetic field heat conduction and viscosity of a plasma due to
long-range collisions. We will also revisit the diffusion problem considered in Lecture 2.

16.5.1 Heat Conduction

As discussed in Lectures 1 and 3, the mechanism for heat conduction due to long-range
collisions involves only motion parallel to the magnetic field Bẑ, and yields a result
for the thermal conductivity that is essentially magnetic-field independent. Therefore
in what follows we simplify the derivations by taking B → ∞ so that we can neglect
E×B drift corrections of O(1/B). Also, we assume that there is only a single species.
Furthermore, we assume that close velocity-scattering collisions not described by our
collision operator keep the distribution function f a local Maxwellian with temperature
T (x, t):

f(x, vz , v⊥, t) =
n

(
√

2πT (x, t)/m)3
e−m(v2

z+v2
⊥)/2T (x,t). (16.137)

Here we have explicitly kept the dependence of f on v⊥ ≡
√

v2
x + v2

y because it will
play a role in what follows. (We dropped this dependence in the previous two lectures
because it was not needed.)

An evolution equation for the plasma temperature follows from the B → ∞ version
of eqn (16.110):

∂f

∂t
= − e

m

∂

∂vz
〈δEzδη〉. (16.138)

This equation implies that plasma kinetic energy density, K = 3
2nT (x, t), evolves

according to

3
2
n
∂T

∂t
=

∫
d3v

m(v2
z + v2

⊥)
2

∂f

∂t
= e

∫
dvzvz〈δEzδη〉. (16.139)

The last expression is merely the Joule heating due to the parallel current fluctuations.
This heats the parallel kinetic energy, but velocity-scattering collisions are assumed
to be sufficiently rapid so that the energy is quickly shared with the perpendicular
degrees of freedom, implying that the specific heat per particle is 3/2. This is why we
kept perpendicular energy in f .

Using eqn (16.131) for 〈δEzδη〉 and eqn (16.137) for f , we have

3
2
n
∂T

∂t
= −e2

m
(4πe)2

∫
dkydkz

(2π)2

∫
d3vd3v′dx′k2

zvz

× |ψ|2(x, x′, ky, kz,−ikzvz)πδ(kz(vz − v′z))ff ′m

(
v′z

T (x′)
− vz

T (x)

)
,(16.140)

which implies
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∂T

∂t
=

2
3
me2n(4πe)2π

∫
dkzdkz

(2π)2

∫
dvzdx′|kz|v2

z

× |ψ|2 (x, x′, ky, kz ,−ikzv2)
2π

√
T (x)T (x′)

e−mv2
z(1/T (x)+1/T (x′))/2

(
1

T (x)
− 1

T (x′)

)
.(16.141)

This is very similar in form to eqn (16.68), obtained using the approximate Boltzmann
formalism. Just as in that analysis, the integrand is odd under interchange of x and x′.
If we (incorrectly) assume that the Green’s function ψ is local, i.e. a sharply-peaked
function of x − x′, we may obtain a local heat conduction equation using the same
argument as in Lecture 3:

∂T

∂t
=

∂

∂x
χ
∂T

∂x
(16.142)

where

χ =
2
3
me2n

(4πe)2π
T 3(x)

∫
dkydkz

(2π)3

∫
dvzdx′|kz |v2

ze−mv2
z/T (x)

× |ψ|2(x, x′, ky, kz ,−ikzvz)
(x − x′)2

2
. (16.143)

Also, when |ψ|2 is sharply peaked in x − x′, we can use the Fourier-transform form,
eqn (16.120), for ψ, which implies that

∫
|ψ|2 (x − x′)2

2
dx′ = 2

∫
dkx

2π
k2

x

k8|Dk,−ikzvz |4
, (16.144)

where Dkp is given by eqn (16.88) [or eqn (16.93) with v0 = vz].

Exercise 16.14 Using eqn (16.120) prove eqn (16.144).

Then the local form of the thermal diffusivity due to long-range collisions is

χ =
2
3
(4πe2)2

mn

T 3

∫
d3k

(2π)3

∫
dvze

−mv2
z/T v2

z |kz |k2
x/|k2Dk,−ikzvz |4. (16.145)

If we approximate the dielectric function by a Debye-shielded form,

Dk,−ikzvz = 1 +
1

k2λ2
D

, (16.146)

then the integrals can be performed, yielding

χDebye =
√
π

18
nv̄b2λ2

D =
e2

72
√
πmv̄

. (16.147)

However, we have seen in Lecture 4 that eqn (16.146) is correct only for vz = 0. For
vz > v̄, the dielectric exhibits near-zeros at kzvz = ±kzωp/k, which cause the integrand
in eqn (16.145) to blow up. This can be seen by using scaled variables k̄ = kλD and
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v̄z = vz/v̄ in eqn (16.145), and noting that D is a function only of |k̄|, v̄z and the sign
of k̄z [see eqn (16.93)]. Then writing d3k in spherical coordinates and integrating over
solid angles yields

χ =
4
3π

nv̄b2λ2
D

∞∫

0

dk̄g(k̄) (16.148)

where

g(k̄) =
π

2
k̄5

∞∫

−∞

dv̄z
v̄2

ze−v̄2
z

[(k̄2 + a(v̄z))2 + b2(v̄z)]2
(16.149)

with the functions a and b given by eqn (16.94). Note that for small k̄ there is a near
zero in the denominator of the integrand where k̄2 + a = 0 and |b| ) 1, due to weakly
damped waves.

The function g(k̄) is plotted in Fig. 16.10, and has a nonintegrable singularity
at small k̄. Our expression for thermal conduction diverges because weakly-damped
waves are excited, and these waves transfer energy large distances across the plasma.
This causes a breakdown in the local approximation used to obtain eqn (16.145) from
eqn (16.141).

In order to obtain a non-divergent heat equation we must go beyond the local
approximation. Returning to eqn (16.141), we instead assume only that T (x) is nearly
uniform,

T (x) = T + δT (x) (16.150)

and we expand eqn (16.141) in small δT , obtaining

∂T

∂t
=

2
3
me2n

(4πe)2π
T 3

∫
dkydkz

(2π)3

∫
dvzdx′|kz |v2

ze−mv2
z/T

× |ψ|2(x, x′, ky, kz,−ikzvz)(δT (x′) − δT (x)). (16.151)

Also, to lowest order in δT we can treat the plasma as a uniform slab of width L and
we expand ψ in Fourier modes of the slab:

ψ(x, x′, ky, kz ,−ikzvz) =
2
L

∑

kx

sin(kxx) sin(kxx′)
k2Dk,−ikzvz

(16.152)

where kx = nπ/L, n = 1, 2, ...∞, and k2 = k2
x + k2

y + k2
z .

For large plasmas with L * λD, we evaluate the integrals in eqn (16.151) asymptot-
ically in the small parameter ε ≡ πλD/L. Since |ψ|2 appears in eqn (16.151), a double
sum over kx appears, as

∑
kx

∑
k′

x
. However the flux is dominated by kx + k′

x; other-
wise the integral phase-mixes away upon integration over x′ [because δT (x) varies
slowly but sin kxx varies rapidly for kx of O(λ−1

D )]. Writing sin(kxx′) sin(k′
xx′) =

1/2[cos(kx − k′
x)x′ − cos(kx + k′

x)x′] and dropping the second term because of phase-
mixing, we obtain
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∂T

∂t
=

2
3
me2n

(4πe)2π
T 3

∫
dkydkz

(2π)3

∫
dvzdx′

×|kz|v2
ze−mv2

z/T 1
L2

∑

kx

∑

∆kx

1
k2Dk,−ikzvz k′2D∗

k′,−ikzvz

× cos(∆kxx) cos(∆kxx′)(δT (x′) − δT (x)) (16.153)

where ∆kx = k′
x − kx.

As ε → 0 the integrand takes two asymptotic forms, depending on the size of
kλD. These forms can be asymptotically matched at kλD = 0.4. For kλD > 0.4,
there are no lightly-damped waves and 1/D varies slowly in k. Then Taylor expanding
1/k′2Dk′,−ikzvz in ∆kx one finds that the (∆kx)0 term in eqn (16.153) vanishes because

∑

∆kx

cos∆kxx

L∫

0

dx′ cos∆kxx′(T (x′) − T (x)) = 0. (16.154)

One may show this directly by writing T (x) and T (x′) as Fourier cosine series, and
performing the integral in eqn (16.154). Also the (∆kx)1 term in eqn (16.153) vanishes
because it is odd in ∆kx, and the O(∆k2

x) term leads back to the local form for the
heat equation with χ given by eqn (16.145), except that the integral over k in χ is
limited to kλD > 0.4.

For kλD < 0.4, lightly-damped waves provide the main contribution to the integral.
When vz approaches a zero of the dielectric function, 1/Dk,−ikzvzD

∗
k′,−ikzvz

becomes
sharply peaked at the points vz = v0 and vz = v′0, where v0 and v′0 satisfy

k2λ2
D + a(v0/v̄) = 0 (16.155)

and
k′2λ2

D + a(v′0/v̄) = 0; (16.156)

see eqn (16.93). Note that for kλD ) 1 each equation has two solutions, since a is an
even function and a < 0. When kλD ) 1, v0 is such that b(v0/v̄) ) 1, and similarly
for b′ ≡ b(v′0/v̄). Then upon integrating over the sharp peaks we obtain

∫

k2k′2

dvz

Dk−ikzvz D∗
k−ikzvz

+
∫

dvzλ4
D

[ ∂a
∂v0

(vz − v0) + ib sgn(kz)][ ∂a
∂v′

0
(vz − v′0) − ib′ sgn(kz)]

=
2πλ4

D
∂a
∂v0

∂a
∂v′

0

γ̄ − i∆v sgn(kz)
γ̄2 + ∆v2

(16.157)

where γ̄ = b/∂a/∂v0 + b′/∂a/∂v′0 and ∆v = v0 − v′0. [This result must be doubled to
account for the second negative solution of eqns (16.155) and (16.156).] Substituting
this expression into eqn (16.153), the imaginary part vanishes because it is odd both
in kz and under interchange of kx and k′

x. Also, we note that one can add to the rhs of
eqn (16.157) any function that is independent of ∆kx [this follows from eqn (16.154)].
We therefore subtract πλ4

D/(b ∂a/∂v0), which causes the integrand to vanish at ∆kx =
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0. Turning the sum over kx ≥ 0 into an integral over all kx, dividing by two and
multiplying by two because eqn (16.155) has two roots for v0, yields

∂T waves

∂t
=

2
3
me2n

(4πe)2π
T 3

λ4
D

∫

kλD>0.4

d3k

(2π)3

∫
dx′|kz |v2

0e
−mv0/T

× 1
πL

∑

∆kx

(
2π

∂a
∂v0

∂a
∂v′

0

γ̄

γ̄2 + ∆v2
− π

b ∂a
∂v0

)

× cos∆kxx cos∆kxx′(δT (x′) − δT (x)). (16.158)

The main contribution arises from ∆kx ) kx, allowing us to take ∂a/∂v0 + ∂a/∂v′0,
and γ̄ + 2b sgn(kz)/(∂a/∂v0). This also implies ∆v = −2kx∆kx/(∂a/∂v0) [see eqns (16.155)
and (16.156)].

If we now integrate by parts in x′ and define ∆kx = jπ/L, we can write eqn (16.158)
as

∂T waves

∂t
=

2
3
me2n

(4πe)2πλ4
D

T 3

∫

kλD<0.4

d3k

(2π)3
|kz |v2

0e
−mv2

0/T

×
∞∑

j=1

T̂j
∂

∂x
(sin∆kxx)

∂a/∂v0

b

∆v2/∆k2
x

4b2 + ∆v2(∂a/∂v0)2
(16.159)

where T̂j ≡ 2/L
∫

dx′ sin (jπx′/L) ∂T/∂x′ is the Fourier coefficient of the temperature
gradient. Finally, we add to eqn (16.159) the contribution from kλD > 0.4 to obtain
the total rate of change of T (Dubin and O’Neil 1997):

∂T

∂t
=

∂

∂x

∞∑

j=1

(χlocal + χwaves
j )T̂j sin

jπx

L
. (16.160)

Here,

χlocal =
4
3π

nv̄b2λ2
D

∞∫

0.4

dk̄g(k̄), (16.161)

is the local contribution to the thermal diffusivity, with g given by eqn (16.149). Also,

χwaves
j =

4
3π

nv̄b2λ2
D

0.4∫

0

dk̄h(k̄, jε) (16.162)

is the wave contribution to the thermal diffusivity, where

h(k̄, ε) = π

∫
dΩk̄2|k̄z |

v̄2
0e−v̄2

0

∂a
∂v̄0

b(v̄0)
k̄2

x

b2(v̄0) + k̄2
xj2ε2

, (16.163)

v̄0 = v0/v̄, and dΩ is the element of solid angle that arises in d3k̄ = k̄2dk̄dΩ. When
evaluating eqn (16.163), recall that v̄0 is a function of kλD through the solution of
eqn (16.155); it is the (scaled) phase velocity of weakly-damped plasma waves.
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Table 16.2 Wave contribution to heat flux

jε χj
waves/(e2/mv̄)

0.1 0.0115
0.05 0.0262
0.01 0.102
0.005 0.167
0.001 0.518
0.0005 0.859
10−4 2.93
10−5 19.0

The functions g(k̄) and h(k̄, jε) are plotted in Fig. 16.10. For jε ) 1, they can be
matched at k̄ ∼ 0.4. Note that h is not divergent at small k̄ so the heat flux is now
finite, depending on the scale length Lj = L/jπ of the temperature gradient through
the parameter jε.

A numerical integration yields

χlocal = 0.0652e2/mv̄ = 0.819ν0λ
2
D. (16.164)

Equation (16.164) is an order of magnitude larger than the value obtained from simple
Debye shielding, eqn (16.147). This is because the interaction cannot be accurately
characterized by the simple Debye-shielding dielectric response, even when kλD > 0.4.
Off-resonant plasma waves greatly increase g(k̄) compared to the form g(k̄) would
take using simple Debye shielding, gDebye(k̄) obtained by setting a = 1 and b = 0 in
eqn (16.149),

gDebye(k̄) =
π3/2

4
k̄5

(1 + k̄2)4
. (16.165)

Only for k̄ >∼ 3 do the functions approach one another–see Fig. 16.10.
Values for χwaves

j are provided in Table 16.5.1. These values differ slightly from
those in Dubin and O’Neil (1997), because here we use a more accurate solution to
eqn (16.155) in determining the function h(jε, k̄). Table I of Dubin and O’Neil (1997)
provides values of κj

waves = 3/2 nκj
waves. Some other references [e.g. Dubin (1998) and

Hollman et al. (2000)] quote a different value of χ based on a “neutral plasma” heat
capacity of 5/2 rather than 3/2 (i.e. the heat capacity at constant pressure rather
than at constant volume). The resulting factor of 3/5 must be accounted for when
comparing formulas for χ in those papers with those quoted here.

The table shows that when the scale length of the temperature gradient Lj is
greater than about 100λD, emission and absorption of lightly damped waves is the
dominant heat transport mechanism. For Lj less than this, a local theory of thermal
conduction suffices, with χlocal given by eqn (16.164).

Experiments have tested the theory in the regime where λD > r̄c and Lj < 100λD,
where the transport is local (Hollmann et al. 2000). In the experiments, the laser-
diagnosed Mg+ plasma described in Lecture 2 is again used. Now the lasers are used
both to manipulate the initial plasma temperature, and to diagnose the resulting
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Fig. 16.10 The functions g(k̄), gDebye(k̄) and h(jε, k̄) for three values of jε.

temperature evolution. First, the plasma is brought to a near-uniform temperature
with a slight peak at r = 0. Then the laser is turned off, and the evolution of T (r, t) is
recorded. Using the same basic methodology for measuring test particle transport, the
temperature data is compared to the prediction of Fourier’s Law, that radial heat flux
is proportional to the local temperature gradient. The coefficient of proportionality is
the local thermal diffusivity χlocal. Results of several such measurements are shown in
Fig. 16.11 and compared to both eqn (16.164) and the classical theory (Table 16.1),
versus temperature. Here n7 is density in units of 107 cm−3, and B is in Tesla. The
results are independent of magnetic field and density, as predicted by eqn (16.164),
and are in quantitative agreement with the theory within a factor of 2.

16.5.2 Viscosity

We now consider viscous relaxation due to long-range collisions in a plasma for which
there is a shear flow with V = Vy(x)ŷ. For simplicity we assume a single species with
uniform density and temperature. The distribution function is then

f(vz) =
ne−mv2

z/2T

√
2πT/m

. (16.166)

Viscous relaxation in such a plasma manifests itself through a cross field particle
flux Γx. This flux arises because the shear flow creates a shear stress in the y-direction
(i.e. a force density):

Fy =
∂

∂x
η
∂Vy

∂x
(16.167)

[see eqn (16.20)]. In a magnetized plasma this force density creates an F×B drift (the
equivalent to an E× B drift except for a general force rather than an electric field):

Γx =
c

eB
Fy =

c

eB

∂

∂x
η
∂Vy

∂x
. (16.168)
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Fig. 16.11 Comparison of experimentally-measured thermal diffusivity to theory. Solid line

is eqn (16.164), dashed lines are classical theory at different densities and magnetic fields
used in the experiment. The factor of 3/5 arises due to a different definition of χ used in

Hollmann et al. (2000).

Using eqns (16.110), (16.111) and (16.131) we can obtain the following expression for
the particle flux due to long-range collisions, which should be equivalent to eqn (16.168):

Γx =
∫

dvz
c

B
〈δEyδη〉

=
ec

mB
(4πe)2

∫
dx′dv′zdvz

∫
dkydkz

(2π)2
kyπδ(kz(vz − v′z) + ky(Vy − V ′

y))

×|ψ|2(x, x′, ky, kz ,−ikyVy − ikzvz)
m2n2

2πT 2
kz(vz − v′z)e

−m/2T (v2
z+v′2

z ) .(16.169)

Using the δ-function, we may replace the kz(vz −v′z) term in the integrand by ky(V ′
y −

Vy). Hence, the flux is proportional to a difference in the fluid velocity at points x and
x′.

If |ψ|2 is assumed to be a sharply peaked function of x−x′, a local approximation to
the flux can be made, just as was done previously for heat transport. We then obtain,
in a manner entirely analogous to the derivation of the local form of heat conduction,

Γx =
c

eB

∂

∂x

(
mnλ

∂Vy

∂x

)
(16.170)

with the kinematic viscosity λ given by

λ =
(4πe2)2n

T 2

∫
dvze

−mv2
z/T

∫
d3k

(2π)3
k2

xk2
y

|kz ||k2Dk,−ikzvz |4
. (16.171)
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Here we have simplified the expression for λ by assuming B is large so that we can
neglect kyVy compared to kzvz. This expression for the local kinematic viscosity due to
long range collisions can be easily evaluated if one assumes a Debye-shielded response,
D = 1 + 1/k2λ2

D. Noting the logarithmic divergence at small kz must be cut off at
kz min = Max(S, ν)/v̄ in order to properly account for velocity diffusion (and include
the factor of 3 enhancement effect due to collisional caging discussed in Lecture 2), we
can write eqn (16.171) to logarithmic order as (O’Neil 1985)

λ =
(4πe2)2n

T 2

√
πv̄

∫
dk⊥k⊥dθ

(2π)3
k4
⊥ sin2 θ cos2 θ
(k2

⊥ + λ−2
D )4

2

λ−1
D∫

kzmin

dkz

|kz |

=
√
π

6
nv̄b2λ2

D ln(
ωp

Max(S, ν)
). (16.172)

However, if we use the full dielectric response we again find a nonlocal contribution
due to lightly-damped waves that cannot be neglected. A calculation analogous to that
given previously for thermal conduction yields

Γx =
n

Ωc

∂

∂x

∞∑

j=1

(λlocal + λwaves
j ) V̂j

sin jπx

L
(16.173)

where V̂j is the jth Fourier coefficient of ∂Vy/∂x,

V̂j =
2
L

L∫

0

dx
∂Vy

∂x

sin jπx

L
. (16.174)

Here λlocal is the local contribution due to wave numbers kλD > 0.4, given by

λlocal = 0.0465
e2

mv̄
ln(

ωp

Max(S, ν)
) = 0.585ν0λ

2
D ln(

ωp

Max(S, ν)
), (16.175)

roughly twice the result given by simple Debye shielding, eqn (16.172). The wave
contribution is

λwaves
j = nv̄b2λ2

D ln(
ωp

Max(S, ν)
)

0.4∫

0

dk̄⊥hλ(k̄⊥, jε) (16.176)

with

hλ =
4k̄5

⊥e−v̄2
0

∂a
∂v̄0

b(v̄0)

2π∫

0

dθ
cos2 θ sin2 θ

b2(v̄0) + (k̄⊥jε)2 cos2 θ
, (16.177)

where the functions a and b are given by eqn (16.94), v̄0 = v0/v̄ is the solution to
eqn (16.155) taking kz = 0, and k̄⊥ = k⊥λD.
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Table 16.3 Wave contribution to viscosity

jε λwaves
j (ln(ωp/Max(S, ν))e2/mv̄)

0.1 1.45 × 10−3

0.05 3.19 × 10−3

0.01 1.06 × 10−2

0.005 1.61 × 10−2

0.001 4.11 × 10−2

0.0005 6.29 × 10−2

10−4 0.181
10−5 0.955

Table 16.4 Transport coefficients due to long-range collisions in a single species plasma with

λD > r̄c. In this regime these coefficients must be added to the classical results (Table 16.1).

D χ λ
2
√
πν0r̄2

c ln(λD
r̄c

) ln( v̄
γ
√
λD r̄c

) 0.0652 e2/mv̄ 0.0465(e2/mv̄) ln(ωp

γ )
+ wave contribution + wave contribution
important for important for

Lj > 100λD Lj > 103λD

S ≡ |∂Vy/∂x| , ν0 ≡ nv̄b2, γ ≡ Max(S, ν)

The wave contribution is tabulated in Table 16.5.2. One can see that waves are
important to viscous transport only when the scale length of the shear flow Lj = L/jπ
exceeds roughly 1000 Debye lengths.

The wave contribution to viscosity is an order of magnitude smaller than the corre-
sponding contribution to thermal conduction. Evidently weakly damped plasma waves
transmit energy more efficiently than momentum. So far there have been no experi-
ments to test these results in detail. However, some experiments have been performed
that measured viscosities consistent with eqn (16.175) (Kriesel and Driscoll 2001).
More experiments need to be done to test the density, temperature and magnetic field
dependence of the viscosity coefficient.

Table 5.3 summarizes our results for the flux of particles, energy and momentum
caused by long range collisions.

16.5.3 Diffusion Revisited, and the Ludwig-Soret Effect

As a final application of the new collision operator, we reanalyze particle diffusion due
to long range collisions where there are several species and temperature gradients. We
also consider the effects of lightly damped waves on diffusion. We will find that such
effects are negligible, justifying our neglecting them in Lecture 2. By including temper-
ature gradients, we will predict a new transport coefficient related to the Ludwig-Soret
effect, wherein a temperature gradient induces a particle flux in a multi-species system.

The system is assumed to be at temperature T (x), and as always velocity-scattering
collisions keep the distribution function for each species in a local Maxwellian form,
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fα(x, vz) =
nα(x)√

2πT (x)/mα

e−mαv2
z/2T (x). (16.178)

Equation (16.131) then implies the following expression for the particle flux of species
α:

Γαx(x) =
∫
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We assume that |ψ|2 is strongly peaked in x− x′, so that everywhere in the integrand
except in |ψ|2 itself we may take x′ = x. The δ function then implies vz = v′z, and
eqn (16.179) becomes

Γαx = −
∑

β

(
Dαβ

∂nα

∂x
− D̄αβ

∂nβ

∂x

)
+ γα

∂T

∂x
(16.180)

where

Dαβ =
(

4πeβc

B

)2 nβ

2T
√
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∫
dkydkz

(2π)2
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|kz|

∫
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z/2T (16.181)

is the diffusion coefficient of species α due to collisions with species β and D̄αβ is an
“off-diagonal” diffusion coefficient, producing a flux of species α due to gradients in
other species. The diffusion coefficient D̄αβ is related to Dαβ via

eβnβD̄αβ = eαnαDαβ. (16.182)

Note that when there is only a single species, eqns (16.180) and (16.182) imply that
the diffusive flux vanishes, as expected. For a single species the flux is viscous, not
diffusive. When there are two species with identical mass and charge that have some
other property that discriminates them, such as their spin, eqn (16.180) and (16.182)
are equivalent to eqn (16.42) for the flux of test particles through a background plasma
of like particles.

The Ludwig-Soret coefficient γα provides the particle flux of species α due to a
temperature gradient:

γα =
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. (16.183)
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The above expressions for Dαβ and γα are evaluated under the assumption that
|ψ|2 is sharply peaked. Spatial variation in the coefficients of eqn (16.119) can then be
neglected, from which Parseval’s theorem implies

∫
dx′|ψ|2 =

∫
dkx

2π
1

|k2Dk,−ikzvz |2
. (16.184)

Thus, eqn (16.181) may be written as

Dαβ =
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4πeβc

B
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z/2T .

(16.185)
Noting the log divergence at small kz and cutting it off in the usual manner at kz min =
Max(S, ν)/v̄ and kz max = k⊥, eqn (16.185) becomes
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(16.186)
where k̄⊥ ≡ k⊥λD. While the denominator does exhibit near zeros due to lightly
damped waves, these occur only for k̄⊥ < 1. However, the integrand is dominated by
the logarithmic divergence at large k̄⊥, which we cut off at k̄⊥ + λD/r̄c, where here
r̄c is the mean cyclotron radius for species α and β.

In this range of k̄⊥ the integrand can be approximated by neglecting a and b (i.e.
using unshielded interactions), yielding
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Thus, lightly-damped waves have a negligible effect on the diffusion coefficient, jus-
tifying the analysis of Lecture 2. For a single species, eqn (16.187) is the same as
eqn (16.59).

Applying the same analysis to the Ludwig-Soret coefficient, eqn (16.183), yields

γα =
∑

β

nαmβDαβ − nβmαD̄αβ

2T (mα + mβ)
. (16.188)

As expected, this coefficient vanishes in a single species system.

16.6 Enhanced Transport in Nearly 2D Plasmas

The theory of transport due to long range collisions, summarized in Table 16.5.2,
assumes plasmas of infinite extent along the magnetic field direction ẑ. However, new
effects come into play for plasmas that are of finite length Lz when both the collision
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frequency ν and shear rate S are small compared to the frequency ωB = πv̄/Lz

at which particles bounce from end to end of the plasma. When this axial bounce
frequency is large, particles encounter one another many times as they bounce, just as
in the collisional caging phenomenon discussed in Lecture 2, except that now the ends
of the plasma (rather than surrounding particles) act to cage the particles. The effect
of these multiple encounters is to increase the correlation time of the interactions,
leading to larger particle diffusion and viscosity (we will see that thermal diffusion is
largely unaffected).

This effect is already contained in our collision operator. Let us apply it to a system
of finite length with periodic boundary conditions in z of length Lz; the argument
can be generalized to more realistic boundary conditions (Dubin and O’Neil 1998).
Imposition of periodic boundary conditions has the effect of replacing the integral
over kz in eqn (16.179) by a sum,

∫
dkz → 2π

Lz

∑
kz

. This sum includes a kz = 0
term, representing the z-averaged (or “bounce-averaged”) interaction. In our previous
derivations this term did not enter. The contribution of kz = 0 to the flux is

Γkz=0
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B

∑
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(4πeβ)2
∫

dx′ dky
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∂nα
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]
, (16.189)

where we have dropped temperature gradients for simplicity.
If Vy(x) is not a monotonic function of x, the δ function allows resonant interactions

between separate x and x′ points that obey Vy = V ′
y , leading to enhanced viscosity

(Dubin and O’Neil 1988). However, if Vy(x) is monotonic only x = x′ satisfies Vy = V ′
y

and eqn (16.189) predicts a diffusive contribution to the flux with a diffusion coefficient
D2D

αβ given by

D2D
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∑
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(
4πeβc
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)2

nβ

∫
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2πLz
|ky|

π|ψ|2(x, x, ky , 0,−ikyVy)
|∂Vy/∂x| . (16.190)

The integral over ky is logarithmically divergent at large ky. In this range, the Green’s
function is unshielded, eqn (16.119) becoming

∂2ψ

∂x2
− k2

yψ = δ(x − x′) (16.191)

which implies ψ(x, x) = 1/(2|ky|) at large ky. Substituting this form into eqn (16.190)
yields, to logarithmic accuracy

D2D
αβ =

∑

β

(
4πeβc

B

)2 nβ

4Lz|S|
ln

(
ky max

ky min

)
(16.192)

where ky max and ky min are cutoffs determined, as always, by physics outside of the
model equations used to obtain the result (Chavanis 2000; Jin and Dubin 2001; Dubin
2003). We neglect for the moment the rather subtle effects that enter into these cutoffs,
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and instead compare eqn (16.192) to our previous expression for Dαβ , eqn (16.187).
This expression included only kz /= 0 terms, and is now referred to as D3D

αβ . The ratio
of D2D

αβ to D3D
αβ is roughly

D2D
αβ

D3D
αβ

∼ ωB

S
, (16.193)

where we have neglected constants of order unity, and the logarithmic factors.
Thus, when ωB > S, the kz = 0 (2-dimensional) contribution to the diffusion

dominates. Also, note that the 2D contribution scales with B as B−1 (since S ∝ 1/B)
rather than B−2.

The effect of large axial bounce frequency on transport can be understood from
the following simple argument. The rapid axial bounce motion can be averaged out,
which effectively replaces the particles by rods of charge with charge per unit length
q ≡ e/Lz. The charged rods then E×B drift in the electric field created by the other
rods. This model is also called a point vortex gas, for reasons that will soon become
apparent. The equations of motion for this 2-dimensional system of charged rods are

dxi

dt
= − c

B

∂

∂yi
φ(xi, yi, ..., xN , yN);

dyi

dt
=

c

B

∂

∂xi
φ(x1, y1, ..., xN , yN ). (16.194)

As first noted by Taylor and McNamara (1971), the magnetic field can be scaled out
of these equations by scaling time as t̄ = ct/B. Thus, a change in B simply changes
the time scale of the dynamics without affecting the orbits in any other way. An
increase in B by a factor of 2 slows the dynamics down by this factor. Particle flux
due to diffusion or viscosity must therefore scale as B−1. For the case of diffusion, the
generalized Fick’s law [eqn (16.180)] then implies that diffusion coefficients scale as
1/B for this system, as we obtained in eqn (16.192). Also, for viscosity, particle flux
proportional to 1/B implies that λ ∝ B1 [see eqn (16.170)] and recall that Vy ∝ 1/B),
which is larger than the B0 scaling obtained previously. Viscosity and particle diffusion
are increased because the correlation time of density and potential fluctuations is now
set by slow E× B drift motion rather than relatively fast motion along the magnetic
field.

Also, this 2D plasma model implies heat flux scaling as 1/B as well, but this flux
is only a small correction to the previous O(B0) results of Lectures 3 and 5.

We can use the intuition gained from the model of the plasma as a collection of
charged rods to understand eqn (16.192) in more detail. Rods with charge per unit
length q = e/Lz drift past one another due to the flow shear, S = ∂Vy/∂x, and as
they interact they take an E×B drift step across the magnetic field. The E×B drift
motion of 2 rods in a shear flow S is an integrable problem in Hamiltonian mechanics
(Jin and Dubin 2001), described by the Hamiltonian

H(x, y) = −1
2

qB

c
Sx2 + q2 ln(2

√
x2 + y2) (16.195)
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Fig. 16.12 Streamlines for rods in a shear flow. (a) qS < 0 (retrograde flow); (b) qS > 0

(prograde flow).

where ±(x, y) is the location of each rod compared to the center of charge, and the
dynamics is viewed in a frame where the center of charge is stationary. The equations
of motion for one of the two rods are

dx

dt
=

c

qB

∂H

∂y
,

dy

dt
= − c

qB

∂H

∂x
, (16.196)

and the other rod is at −(x, y). The rods move along surfaces of constant H shown in
Fig. 16.12a and 16.12b for the two cases qS < 0 and qS > 0. When qS < 0 (termed
“retrograde flow”) a separatrix exists in the flow, whose width is

' =
√
−qc/BS (16.197)

at y = 0. Rods in the shaded region of the figure take an E × B drift step ∆x ∼ '.
The number of such interactions per unit time is roughly S'2n2D as rods are swept
past one another by the flow, where n2D ≡ nLz is the number of rods per unit area.
Thus, the diffusion coefficient is roughly

D2D ∼ S'2n2D · '2

=
(qc

B

)2 n2D

|S| , (16.198)

in agreement with the scaling of eqn (16.192).
In fact, collisions between rods with impact parameters ρ ! ', that result in reflec-

tions as depicted in Fig. 16.12a, are not included in eqn (16.192) (which was derived
through linearization, i.e. integration along unperturbed orbits). The linearization re-
quires the orbits are only slightly perturbed, and so eqn (16.192) applies only for
impact parameters larger than '. This sets one estimate for ky max; ky max ∼ '−1. For
impact parameters less than ', a detailed Boltzmann calculation of the diffusion (Jin
and Dubin 2001) yields

D2D
Boltzmann = 16

(qc

B

)2 n2D

|S| ln2(0.17n2D'
2). (16.199)
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This result must be added to eqn (16.192) to obtain the total diffusion. Equation (16.199)
is only valid if n2D'2 < 1, which requires strong shear or low density. For n2D'2 " 1
(large densities, low shear), the two particle picture of collisions shown in Fig. 16.12a
is incorrect because other particles intervene. Only eqn (16.192) is required to describe
the diffusion in this high density low shear regime.

Note however, that if qS > 0 (termed “prograde flow”), there is no separatrix in the
flow (see Fig. 16.12b); instead, two rods trap one another in their mutual interaction,
circulating indefinitely. Diffusive steps are only taken when these trapped rods interact
with others, disrupting the circulation. No rigorous theory for this situation has been
developed, and we do not expect eqn (16.192) to accurately describe this case. Thus,
eqn (16.192) only applies to the case qS < 0 [or for multiple species, (qα + qβ)S < 0;
see Dubin (2003)].

Another issue that must be addressed is the physics of the cutoffs in the logarithmic
divergence of eqn (16.192), ky min and ky max. These wavenumbers are set, respectively,
by maximum and minimum distance scales along the flow direction. The maximum
distance scale is determined by the system size. In a rotating plasma with circular
cross section transverse to the magnetic field, the maximum distance at radius r is the
circumference 2πr, which sets ky min ∼ 1/r. The minimum distance scale is set by two
possibilities: the distance ' (see Fig. 16.12a) or a distance δ =

√
D2D/|S| determined

by the diffusion itself. Particles separated by a distance less than δ diffuse apart before
they shear apart, contradicting the assumption of integration along unperturbed orbits
used in deriving eqn (16.192). Thus, we take ky max = 1/max(δ, ').

One more issue must be addressed before we compare eqn (16.192) to results from
experiments and computer simulations. Equation (16.192) indicates that as the flow
shear S decreases, transport increases. This is because adjacent rods have less relative
velocity and interact for a longer time as S decreases. However, as S → 0 this breaks
down: the relative motion of rods is no longer set by the shear flow, but rather by the
diffusion process itself. Rods diffuse apart a distance of order the Debye length λD at
a rate of order D2D/λ2

D. If we simply replace S by this rate in eqn (16.192) we obtain
(assuming λD > '),

(D2D)2 ∼
(

4πec

B

)2 nλ2
D

4Lz
ln

(
r

λD

)

=
(

4πqc

B

)2 n2Dλ2
D

4
ln

(
r

λD

)
. (16.200)

This is an estimate of the diffusion coefficient in a shear-free plasma in the 2-dimensional
limit, first put forward in Taylor-McNamara (1971) and Dawson et al. (1971). If the
temperature is sufficiently high so that the Debye length is greater than the plasma ra-
dius rp, one should replace λD by rp, and set the logarithm to unity since its argument
is only an estimate. In this case the result is usually referred to as Taylor-McNamara
diffusion, and can be written as

DTM =
qc

2B

√
N

π
(16.201)
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Fig. 16.13 Sketch of Dawson-Okuda vortices.

where N = πr2
pn2D is the number of charges in the plasma. Another way to under-

stand diffusion in this limit is through the action of long-wavelength density/potential
fluctuations (see Fig. 16.13). A density fluctuation with size scale of order rp would,
on average, have a magnitude of order δn2D ∼

√
N n2D/N and cause an E × B drift

velocity of order (c/B) qδn2Drp. The “diffusive step” is of order rp in such a fluctua-
tion, and the rate of the steps is the circulation rate in the fluctuation, (c/B) qδn2D.
Thus,

DTM ∼ c

B
qδn2D r2

p

=
qc

πB

√
N, (16.202)

which has the same scaling as eqn (16.201). If we replace the spatial size rp of these
fluctuations by λD, we recover the scaling of eqn (16.200). These fluctuations are often
referred to as “convective cells” or “Dawson-Okuda vortices.” For nonzero shear, the
Dawson-Okuda vortices are pulled apart by the flow shear, reducing the radial scale of
the diffusive steps. This is why D2D given by eqn (16.192) decreases with increasing
S.

Experiments and simulations have been performed on plasmas in the 2D regime, to
test eqn (16.192). In the simulations, N identical charged rods are randomly placed in
a plasma with circular cross-section, and their 2D E×B drift motion is followed using
eqn (16.194). To add flow shear, an external radial electric field is also applied, and
radial diffusion of the rods is measured. The resulting diffusion coefficient is plotted
versus N for four different shear rates in Fig. 16.14. In the figure γ = 4πqc/B in
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Fig. 16.14 Diffusion measured in simulations for 4 different shear rates, versus number of

rods N . Here s = SB/(2πqcn2D) is a scaled shear rate and γ = 4πqc/B. Solid lines are

eqn (16.192) added to eqn (16.199). Dashed line is eqn (16.201).

the “circulation” associated with a rod (which happens to have units of a diffusion
coefficient) and s = 2S/n2Dγ is a scaled shear rate. For s < 0 eqn (16.192) (with
eqn (16.199) added) accurately predicts the diffusion. For s = 0 eqn (16.201) works
well. [Note that random placement of the rods corresponds to infinite temperature and
hence λD * rp, so eqn (16.201) should be used rather than eqn (16.200).]

For s > 0, corresponding to the case qS > 0 for which eqn (16.192) is not expected
to apply, the measured diffusion is an order of magnitude less than eqn (16.192) pre-
dicts (triangles). As yet there is no theory available for this case.

Experiments on Mg+ ion plasmas have also measured diffusion, as discussed in
Lecture 2, and when ωB > |S| the experiments do observe the expected scaling of D
with shear (Fig. 16.15). When shear is large enough so that ωB/|S| < 1, the plasma is
in the 3D regime described by eqn (16.59); but when shear is smaller, the results show
the expected increase of the diffusion as shear decreases, although the magnitude is off
by about a factor of 2 compared to eqn (16.192) (Driscoll et al. 2002). For comparison,
the Taylor-McNamara zero-shear result of eqn (16.202) is also shown.

16.6.1 Continuum limit and 2D Euler flow

So far these lectures have focused on collisional transport theory. However it is worth
mentioning that the model introduced in this lecture, of a magnetized plasma as a
collection of charged rods moving via E × B drift dynamics in 2 dimensions, has
interesting implications beyond the area of transport theory. We briefly review some
aspects of the extensive research in this area. In the continuum limit of the model (i.e.,
neglecting collisions) the system is described by the Vlasov equation for the 2D rod
density n2D(x, y, t),
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∂n2D

∂t
− c

B
∇φ× ẑ ·∇n2D = 0 (16.203)

where the electrostatic potential φ(x, y, t) is related to n2D via the 2D Poisson’s equa-
tion

∇2
⊥φ = −4πqn2D. (16.204)

This plasma model is isomorphic to a two-dimensional neutral inviscid fluid, which is
described by Euler’s equations for the vorticity ζ(x, y, t) = ẑ ·∇×V(x, y, t), where V
is the flow velocity in the x-y plane. Euler’s equations are

∂ζ

∂t
+ V ·∇ζ = 0 (16.205)

where the fluid velocity V is related through the incompressibility condition ∇ ·V = 0
to a stream function ψ(x, y, t),

V = ẑ ×∇ψ, (16.206)

and ψ is given in terms of ζ by
∇2

⊥ψ = ζ. (16.207)

Comparing eqns (16.203)–(16.204) to eqns (16.205)–(16.207), we see that vorticity ζ
is related to density n2D through

ζ = −4πqn2D
c

B
, (16.208)

and the stream function is related to the electrostatic potential via

ψ =
cφ

B
. (16.209)

Using these relations, a 2D plasma can be employed to study 2D Euler flow. The
2D Euler equations are a useful paradigm for various fluid flows occurring in nature,
from turbulence in soap films to large-scale atmospheric flows such as hurricanes, or
Jupiter’s great red spot. Also, eqs (16.194), describing the E × B motion of charged
rods, are the same as the equations of motion for a point vortex gas consisting of N
point vortices with identical circulation γ = 4πqc/B. (Circulation is the area integral
over the vorticity.) The point vortex gas has been employed as a model for turbulent
flow for many years.

Experiments on pure electron plasmas, carried out in the 2D regime where ωB *
ν, S, have investigated several aspects of 2D Euler flow, and have observed some strik-
ing new phenomena. In these experiments, the electron plasma is trapped in a Pen-
ning trap configuration similar to those used in the previously-described transport
experiments using Mg+ ion plasmas; see Fig. 16.4. One must change the sign of the
confinement voltages to contain electrons rather than ions.

To diagnose the plasma the end confinement electrode voltage is rapidly brought to
ground, allowing the electrons to stream out along the magnetic field. An accelerating
voltage increases their parallel energy to around 10 kV and they impact a phosphor
screen (not shown in the figure). A camera image of the glowing phosphor provides
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Fig. 16.15 Experimental measurement of diffusion in the 2D regime compared to

eqn (16.192). Here s is the scaled shear rate (see Fig. 16.14). Here the plasma length is

referred to as Lp.

a direct measurement of n2D(x, y, t). Although the measurement is destructive, by
repeatedly creating the same initial condition and allowing it to evolve for different
times, a time history for n2D(x, y, t) can be built up, providing a complete record of
the dynamics of the 2D flow. Movies starting from various initial conditions can be
found on the nonneutral plasma website, http://nnp.ucsd.edu.

Figure 16.16 shows a sequence of images in which two vorticity patches (electron
columns) undergo merger (Fine et al. 1991). Well-separated vortices would simply
rotate around one another due to their self-interaction. However, if the vortices are
sufficiently closely spaced, the flow field of one distorts the other. This distortion lowers
their self-energy, and in order to conserve total energy the vortices must therefore move
closer together. (This energy argument is more intuitive if one thinks of the vortices
as electron columns; the energy is just the repulsive potential energy of the columns,
including their self and mutual interaction.) This results in merger when the vortices
are sufficiently close together.

Figure 16.17 shows the merger time as a function of 2D/2Rv where 2D is the initial
separation and 2Rv is the initial vortex diameter. The time for merger increases by a
factor of 104 as D/Rv passes from 1.5 to 1.8. These results are in good agreement with
analytical theory and numerical computation for 2D ideal fluids (Moore and Saffman
1975; Saffman and Szeto 1980; Rossow 1977; Melander et al. 1988). The eventual
merger for D/Rv " 2 is caused by slow expansion of the vortices due to the weak
viscous effects analyzed previously in these lectures.

This merger process is an important element in the dynamics of more complex 2D
flows. An example is shown in Fig. 16.18 (Fine et al. 1995). Starting from a highly-
unstable filamented initial condition, the filaments of vorticity quickly form many
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Fig. 16.16 Merger of two like-sign vortices.

intense vortices. The vortices subsequently advect chaotically, and merge when they
are advected within the merger radius. The mergers are a manifestation of the “in-
verse cascade” (Kraichnan 1967) of energy in 2D turbulence: mergers take filamented
vorticity and clump it into larger-scale vorticity patches.

The relaxation of 2D turbulent flow to an equilibrium state has been considered by
many authors. Some theories describe the relaxation process as ergodic mixing of the
vorticity, resulting in maximization of an entropy functional S[ζ] (Onsager 1949; Joyce
and Montgomery 1973; Smith 1991; Lynden-Bell 1967; Miller et al. 1992; Robert and
Sommeria 1992). Other theories extremize other functionals, such as the enstrophy
Z2(ζ) =

∫
d2rζ2 (Bretherton and Hardvogel 1976; Leith 1984). Such theories predict

smoothly-varying (though not necessarily monotonic) equilibrium states, unlike the
rather sharply-peaked final vorticity observed in Fig. 16.18. Evidently, maximum en-
tropy theories do not explain the final state in these experiments because the turbulent
mixing is not fully ergodic–vorticity trapped in the cores of strong vortices does not
ergodically mix throughout the flow.

Other theories (McWilliams 1990; Carnevale et al. 1991, Weiss and McWilliams
1993) describe the turbulent relaxation process as a series of merger events, resulting
ultimately in one final vortex. For the flow depicted in Fig. 16.18 such theories describe
the evolution rather well (Fine et al. 1995). However, a slightly different unstable
initial condition results in a very different final state (Fig 16.19). In this evolution
merger events occur initially, but then stop and the final state consists of several
strong vortices in a rigidly rotating regular pattern. These patterns are referred to as
vortex crystal states, and were not predicted by any previous theory of relaxing 2D
inviscid turbulence.
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Fig. 16.17 Merger time versus vortex separation.

Fig. 16.18 Free relaxation of a turbulent flow.

Fig. 16.19 Formation of a vortex crystal from relaxation of 2D turbulence. Here τR is the
overall rotation time of the vorticity patch.



Enhanced Transport in Nearly 2D Plasmas

Fig. 16.20 Comparison of experimental crystal patterns (upper) to regional maximum en-

tropy theory (lower).

It is now understood that vortex crystal states occur because the strong vortices
interact with a low-vorticity background that surrounds them. This background may
be present initially, or in the case of Fig. 16.19 may be produced by the merger process
as filaments of vorticity are thrown off (see Fig. 16.16) and subsequently mixed. As
the strong vortices mix the background, they maximize its entropy and this causes the
strong vortices to “cool,” falling into a minimum energy state. In fact, by maximizing
the entropy S[ζb] of the background vorticity ζb, subject to the constraint that there
are a given number of strong vortices, the observed vortex crystal patterns can be
predicted (Fig. 16.20). This is referred to as “regional maximum entropy theory” since
only the background is ergodically mixed to a maximum entropy state, while the
vorticity trapped in the strong vortices is not mixed (Jin and Dubin 1998).

The number of strong vortices in the final state is determined by a competition
between the merger process and the cooling process. The rate at which mergers occur
slows as the number of vortices decreases, and the rate of cooling increases as the
background vorticity increases. Both effects act to eventually arrest mergers and form
vortex crystals. However, since both the merger and cooling process involve chaotic
dynamics, we can only estimate the number of strong vortices in the final state (Jin
and Dubin 2000).

The interaction of strong vortices with a lower-vorticity background is important
in the formation of vortex crystals, and is also important in a number of other ap-
plications. For instance, the motion of hurricanes on a rotating planet is influenced
by the north-south gradient in the Coriolis parameter, which can be thought of as a
(potential) vorticity gradient (Rossby 1948; Liu and Ting 1987; Carnevale et al. 1991;
Reznik 1992; Smith 1993; Sutyrin 1994). The location of Jupiter’s great red spot, and
of other storms, can also be understood as due to the interaction of the storms with
the background vorticity gradients due to Jupiter’s strong zonal winds (Schecter et al.
2000).

Figure 16.21 shows that clumps (strong vorticity excesses) ascend a background
vorticity until they reach a peak, whereas holes (strong vorticity deficits) descend the
gradient (Rossby 1948; Liu and Ting 1987). This gradient-driven separation helps or-
ganize storms into bands of like-sign vortices on planets (such as Jupiter) with strong
zonal winds, with holes in vorticity troughs and clumps at vorticity peaks (Schecter et
al. 2000). The opposite motion of clumps and holes can be understood by momentum
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Fig. 16.21 Motion of a clump (and a hole) up (and down) a background vorticity gradient.
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Fig. 16.22 Local mixing of the background vorticity increases 〈r2〉b. By conservation of Pθ,

clumps and holes react oppositely.

conservation. When there is just one strong vortex in an isolated background vor-
ticity patch, the conserved angular momentum consists of two pieces: a background
contribution and a vortex contribution:

Pθ = γb〈r2〉b + γvr2
v, (16.210)

where γb > 0 is the circulation of the background, 〈r2〉b is the mean-square radius of
the background patch, γv is the circulation of the strong vortex (positive for clumps
and negative for holes) and rv is the radial location of the vortex. The strong vortex
mixes and flattens the θ-averaged background vorticity, as is visible in Fig. 16.21, and
is shown schematically in Fig. 16.22. As the background is leveled, it is evident from
Fig. 16.22 that 〈r2〉b increases. To conserve Pθ, eqn (16.210) implies that r2

v must
decrease for clumps (γv > 0), and increase for holes (γv < 0).

The radial speed of clumps moving up a vorticity gradient can also be predicted.
In fact we have already calculated it, in Lecture 5. There, the flux of a species α due
to a density gradient in a different species β was given by

Γα = D̄αβ
∂nβ

∂r
(16.211)

(changing from planar to cylindrical coordinates). This flux is Γα = nαvr where vr is
the radial velocity of species α up the density gradient due to species β. However, in
the 2D regime we have seen that vorticity and density are the same, so eqn ( 16.211)
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predicts the velocity of a species α vortex up the vorticity gradient due to another
species β. Using eqns (16.192) and (16.182) we then obtain

vr =
γv

4|S| ln
(rv

'

) ∂ζb
∂rv

(rv), (16.212)

where we have converted from plasma units to fluid units using eqn (16.208), and the
circulation of the strong vortex (species α) is related to charge qα per unit length as
γv = −4πcqα/B. Equation (16.212) works well in predicting the speed of strong vor-
tices up or down a background gradient, provided that γvS < 0, the case of retrograde
flow discussed previously (see Fig. 16.12a). For retrograde flow, most of the flow is
only slightly perturbed by the strong vortex, and so a quasilinear calculation using
integration along unperturbed orbits is valid. However for prograde flow with γvS > 0
(Fig. 16.12b) the flow around the strong vortex is trapped and integration along unper-
turbed orbits does not work. For the background vorticity patch shown in Fig. 16.21,
clumps are retrograde (γvS < 0) and holes are prograde (γvS > 0), so eqn (16.212)
works for clumps but not holes. Holes are observed to move an order of magnitude
slower than the clumps–see Fig. 16.23. This same nonlinear effect was responsible for
the observed decrease in diffusion in simulations where qS > 0–see Fig. 16.14. As yet,
no rigorous theory describes the velocity of prograde holes, although a “mix and move”
estimate does appear to work (Schecter and Dubin 1999, Schecter et al. 2000).

16.6.2 Acknowledgments

The author thanks the organizers of the Les Houches lectures for the opportunity to
contribute to the workshop. The author also thanks Jo Ann Christina for typing and
proofreading the manuscript, Prof. C. F. Driscoll and Dr. F. Anderegg for useful scien-
tific discussions, and Prof. T. M. O’Neil for many years of advice and encouragement.



References

Anderegg, F., Huang, X.-P., Driscoll, C. F., Hollmann, E. M., O’Neil, T. M. and
Dubin, D. H. E. (1997). Test particle transport due to long range interactions.
Physical Review Letters, 78, 2128-31.

Braginskii, S. I. (1958). Transport phenomena in a completely ionized two-temperature
plasma. Sov. Phys. JETP, 6, 358–69.

Braginskii, S. I. (1965). Transport processes in a plasma. Review of Plasma Physics,
Vol. 1 (edited by M.A. Leontovitch). Consultants Bureau, New York, pp. 205–311.

Bretherton, F. P. and Haidvogel, D. B. (1976). Two- dimensional turbulence above
topography. J. Fluid Mech., 78, 129–54.

Carnevale, G. F., Kloosterziel. R. C. and Van Heijst, G. J. F. (1991). Propagation of
barotropic vortices over topography in a rotating tank. J. Fluid Mech., 233, 119–39
(1991).

Chavanis, P.-H. (2000). Quasilinear theory of the 2D Euler equation. Physical Review
Letters, 84, 5512–5.

Chen, F. (1974). Introduction to plasma physics. Plenum Press, New York.
Dawson, J. M., Okuda, H. and Carlile, R. N. (1971). Numerical simulation of plasma
diffusion across a magnetic field in two dimensions. Physical Review Letters, 27,
491–4.

Driscoll, C. F., Anderegg, F., Dubin, D. H. E., Jin, D.-Z., Kriesel, J. M., Hollmann,
E.M. and O’Neil, T. M. (2002). Shear reduction of collisional transport: Experiments
and theory. Physics of Plasmas, 9, 1905–1914.

Dubin, D.H.E. (1997). Test particle diffusion and the failure of integration along
unperturbed orbits. Physical Review Letters, 79, 2678–81.

Dubin, D.H.E. (1998). Collisional transport in nonneutral plasmas. Physics of Plas-
mas, 5, 1688–94.

Dubin, D.H.E. (2003). Collisional diffusion in a two-dimensional point vortex gas or
a two-dimensional plasma. Physics of Plasmas, 10, 1338–50.

Dubin, D. H. E. and Jin, D.-Z. (2000). Characteristics of two-dimensional turbulence
that self-organizes into vortex crystals,Ó Physical Review Letters, 84, 1443–6.
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