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ABSTRACT

The normal modes of a trapped ion crystal are derived using an approach based on the Hermitian properties of the system’s dynamical
matrix. This method is equivalent to the standard Bogoliubov method, but for classical systems, it is arguably simpler and more general in
that canonical coordinates are not necessary. The theory is developed for stable, unstable, and neutrally stable systems. The method is then
applied to ion crystals in a Penning trap. Reduced eigenvalue problems for the case of large applied magnetic fields are developed, for which
the spectrum breaks into E � B drift modes, axial modes, and cyclotron modes. Thermal fluctuation levels in these modes are analyzed and
shown to be consistent with the Bohr–van-Leeuwen theorem, provided that neutrally stable modes associated with crystal rotations are
included in the analysis. An expression for the rotational inertia of the crystal is derived, and a magnetic contribution to this inertia, which
dominates in large magnetic fields, is described. An unusual limit is discovered for the special case of spherically symmetric confinement, in
which the rotational inertia does not exist and changes in angular momentum leave the rotation frequency unaffected.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021732

I. INTRODUCTION

This paper examines the normal modes of an ion crystal confined
in the static electric and magnetic fields of a Penning trap. Such ion
crystals, consisting of anywhere from a few to thousands of ions, are
employed in a variety of applications ranging from fundamental stud-
ies of quantum entanglement, quantum simulation, and frequency
standards1–6 to studies of the properties of strongly coupled plas-
mas.7–10 Linear normal modes of oscillation in these crystals are used
as a diagnostic and manipulation tool in some of these studies, and a
detailed understanding of the modes is essential to the success of this
work.

In this paper, we lay out a general theory for the normal modes.
In previous work, normal modes of a periodic correlated Coulomb lat-
tice in a uniform magnetic field were found using Fourier meth-
ods,11–15 taking advantage of the periodicity of the system, and in Refs.
16–18 by using a Bogoliubov transformation.19–21 In Ref. 22, the nor-
mal modes for a nonuniform 2D planar ion crystal in Penning trap
geometry were found, using a method that employed a preliminary
diagonalization of the potential matrix and that required the solution
of a quadratic eigenvalue problem, but that can nevertheless be
connected to a non-canonical version of the approach employed in
this paper (see Appendix B). Here, we consider the general case of a
nonuniform 3-dimensional magnetized ion crystal, from which the

previous 2D results can be obtained as a limit. Some of the modes in
3D nonuniform crystals have been previously described,10,23 but a gen-
eral theory for all of the modes has not been previously published to
our knowledge.

In the first half of the paper (Sec. II), we develop a theory for the
normal modes of a general linearized classical Hamiltonian system.
The theory differs from the standard Bogoliubov approach mentioned
above, focusing on the Hermitian properties of linearized
Hamiltonians. There are some advantages to our approach: canonical
coordinates are not required and extra transformations to/from the
creation/annihilation representation of the dynamics (necessary in the
Bogoliubov method) are avoided. We include an analysis of neutrally
stable modes, since such modes often occur in trapped ion crystals,
associated with rotations in symmetric external trap fields. This
requires a discussion of the differing forms of the diagonalized
Hamiltonian when constants of the motion are in involution (i.e., their
Poisson bracket vanishes) or are not in involution. For completeness,
we also consider the modes of an unstable Hamiltonian system. We
find that canonical coordinates remain mixed in pairs of exponentially
growing and decaying mode amplitudes in such a way that the system
energy remains conserved as mode amplitudes grow and decay.

In the paper’s second half (Sec. III), we apply this theory to deter-
mine the modes of an ion crystal and consider two examples in detail,

Phys. Plasmas 27, 102107 (2020); doi: 10.1063/5.0021732 27, 102107-1

Published under license by AIP Publishing

Physics of Plasmas ARTICLE scitation.org/journal/php

https://doi.org/10.1063/5.0021732
https://doi.org/10.1063/5.0021732
https://doi.org/10.1063/5.0021732
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0021732
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0021732&domain=pdf&date_stamp=2020-10-14
https://orcid.org/0000-0003-0547-0696
mailto:ddubin@ucsd.edu
https://doi.org/10.1063/5.0021732
https://scitation.org/journal/php


a Coulomb cluster consisting of two charges and a 3D Coulomb crystal
with N � 1. For the former system, all of the normal modes can be
evaluated analytically. In the latter case, the modes are evaluated
numerically. Averages over thermal fluctuations are discussed. The
fluctuation energy associated with vibrations as well as rotations is
analyzed. Expressions for thermal fluctuation amplitudes are shown to
be consistent with the Bohr–van-Leewen theorem,24 provided that any
contributions from zero-frequency rotational modes are included in
the averages.

In relation to the rotational modes, expressions for rotational
inertia of an ion crystal are developed, including a novel magnetic
addition to the rotational inertia. This magnetic addition, arising from
the vector-potential portion of the angular momentum, is a dominant
contribution in many experiments that employ large magnetic fields.
A surprising magnetic effect is discussed for the case of a spherically
symmetric trap potential, in which the rotational inertia ceases to exist.
Under these conditions, variations in angular momentum leave the
rotation frequency unaffected but instead change the crystal’s orienta-
tion with respect to the magnetic field. This phenomenon is connected
to the occurrence of constants of the motion (components of the angu-
lar momentum) that are not in involution.

In the large magnetic field limit of interest in many of the experi-
ments, reduced eigenvalue problems are developed that separately
describe cyclotron, axial, and E�B drift eigenmodes. As far as we
know, the reduced eigenvalue problems for cyclotron and E�B
modes have not be written down previously for a general nonuniform
crystal structure, although these limits have been considered for peri-
odic lattices.16,17 We also describe the coupling between axial and
E�B modes that occurs in three-dimensional crystals. These reduced
eigenvalue problems provide some intuition as to the form of the
eigenmodes and eigenfrequencies in large magnetic fields.

II. NORMAL MODES OF A LINEARIZED HAMILTONIAN
SYSTEM

The determination of the normal modes of a system of coupled
linear oscillators is a venerable problem in mathematical physics, with
applications in a variety of scientific fields. The standard solution is a
textbook problem in classical mechanics, in which normal modes are
found by solving for the eigenvectors and eigenvalues of combined
kinetic and potential energy matrices that arise in a linearized
Lagrangian of the form L ¼ T � V , where T and V are kinetic and
potential energies, respectively.25 The coordinate transformation relat-
ing particle displacements to a sum over the eigenmode amplitudes
(the “normal coordinates” for the oscillators) is a point transforma-
tion, and as such can be easily handled in the context of Lagrangian
mechanics. However, for more general Lagrangians in which coordi-
nates and velocities are mixed (for instance, through velocity-
dependent potentials that arise in the application of a magnetic field),
point transformations are no longer adequate. Problems of this nature
arise, for example, in the modes of an ion crystal in a Penning trap, the
study of vibrational modes of molecules in applied magnetic fields,
and in the normal modes of crystals of point vortices in 2D Euler
flow.26,27 A transformation mixing both positions and momenta is
now required in order to diagonalize the Hamiltonian.

A general approach to the solution of this problem is the
Bogoliubov transformation,19–21 a linear transformation in which the
symplectic condition28 for canonical transformations is imposed, and

conditions required to diagonalize the Hamiltonian are then deter-
mined. The standard Bogoliubov transformation was developed with
quantum problems in mind, and formulated in terms of creation and
annihilation operators which are related to the position and momen-
tum by a linear transformation. This approach is reviewed in
Appendix D.

In this paper, we use a method that is formulated specifically for
the classical problem. To our surprise, we have not come across a dis-
cussion of this method in any previous publication, so we lay out the
theory in some detail (however, the literature on Hamiltonian meth-
ods is vast and it is possible, even likely, that this approach is not
novel). This method focuses on the Hermitian properties of the matrix
operators that appear in linearized Hamiltonian systems, rather than
on the symplectic condition. Normal modes are obtained as eigenvec-
tors and eigenfrequencies of the dynamical matrix D that determines
the linear equations of motion. We derive a Hermitian property of this
matrix (with respect to an inner product involving the system
Hamiltonian) that is then used to show that the eigenvectors form a
complete orthogonal set under certain conditions involving the system
stability with respect to small perturbations. Diagonalization of the
system energy is easily accomplished using these eigenvectors, without
imposing the symplectic condition on the linear transformation.

The added requirement that the transformation to normal mode
coordinates be canonical is then satisfied through a specific normaliza-
tion condition on the eigenvectors. Once this condition is imposed,
the transformation is equivalent to the Bogoliubov transform. The
equivalence to the Bogoliubov method is discussed in detail in
Appendix D of the paper.

Although our diagonalization method is equivalent to the
Bogoliubov method, for classical systems, it is arguably more straight-
forward in both its derivation and its application, as extra transforma-
tions from the creation/annihilation representation to the position/
momentum representation are not required. Furthermore, it is possi-
ble to apply our method to linearized non-canonical Hamiltonian sys-
tems, since our method does not require canonical coordinates. We
describe an example of this approach to diagonalizing a non-canonical
system in Appendix B: the ion crystal in a position-velocity space rep-
resentation. We have also used a continuum version of this method in
calculations involving the normal modes of a non-canonical conserva-
tive system of fluid equations.29,30

A linearized Hamiltonian system is a dynamical system with N
coordinates q ¼ ðq1;…; qNÞ and associated canonical momenta
p ¼ ðp1;…; pNÞ whose Hamiltonian has the quadratic form

Hðz; tÞ ¼ 1
2
z �H � zþ fðtÞ � z; (1)

where z ¼ ðq; pÞ is the system phase-space configuration vector, fðtÞ
is a “forcing” vector, and H is the Hamiltonian matrix, a matrix of
coefficients independent of z and which, for our purposes, is also
assumed to be time-independent. (There is also considerable interest
in the time-dependent problem, particularly in the area of linear
control theory and in generalizations of parametric resonance to mul-
tidimensional systems.31–33) Suitable choices of the off diagonal coeffi-
cients in H allow the matrix to be of symmetric form, satisfying
Hij ¼ Hji.

The linear equations of motion that arise from this Hamiltonian
are, in vector form, given in terms of the Poisson bracket ½�; �� as
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_z ¼ z;H½ �

¼ z; z½ � �
@H
@z

¼ J �H � zþ J � f
¼ D � zþ J � f ; (2)

where we introduce the dynamical matrix D ¼ J �H as well as the
fundamental symplectic matrix28 J � ½z; z�. The fundamental sym-
plectic matrix is given, in block form, by

J ¼ 0; 1
�1; 0

� �
; (3)

where 1 and 0 are the unit and zero tensors, respectively. The matrix is
antisymmetric and expresses the basic Poisson bracket relationships
½qi; qj� ¼ ½pi; pj� ¼ 0 and ½qi; pj� ¼ �½pj; qi� ¼ dij, where dij is the
Kronecker delta.

We will consider the normal modes of this linearized
Hamiltonian system. The normal modes are unforced (i.e., f ¼ 0) sol-
utions of Eq. (2) that are assumed to have a time dependence of the
form

zðtÞ ¼ expð�ixtÞux; (4)

for some (possibly complex) frequency x and some (time-indepen-
dent, possibly complex) vector ux. Substituting Eq. (4) into Eq. (2)
and assuming f ¼ 0 then yields an eigenvalue problem for x and ux,

�ixux ¼ D � ux: (5)

Thanks to the Hamiltonian nature of the linear dynamical equa-
tions, the eigenfrequencies x and eigenvectors ux of Eq. (5) have the
following three properties:

1. The eigenvectors ux form an orthogonal set with respect to a
generalized inner product defined for any complex vectors a and
b as ða; bÞ � a� �H � b:
ðux;u�xÞ ¼ 0, provided that x 6¼ �x�.

2. A given eigenvalue x is real, provided that the corresponding
eigenvector satisfies ðux;uxÞ 6¼ 0.

3. For each eigenmode ðx;uxÞ for which x 6¼ 0, there is a second
eigenmode ð�x�;u�x� Þ for which u�x� ¼ u�x. Thus, for real x
the x 6¼ 0 eigenmodes come in 6x pairs.

It is straightforward to prove these properties. Property 3 arises
from the fact that the dynamical matrixD has real coefficients. Taking
the complex conjugate of Eq. (5) then yields

�ið�x�Þu�x ¼ D � u�x; (6)

showing that u�x is also an eigenvector of D with eigenfrequency�x�,
which completes the proof of property 3.

Properties 1 and 2 follow from the fact that iD is a Hermitian
(self-adjoint) matrix with respect to the above-defined inner product,
which we prove below. It is well-known that the eigenvalues and
eigenvectors of a Hermitian matrix satisfy properties 1 and 2. These
properties of Hermitian matrices are often referred to as the spectral
theorem, and a proof may be found in many linear algebra
textbooks.34

The Hermitian property of the matrix iD is defined by the rela-
tionship ða; iD � bÞ ¼ ðb; iD � aÞ�, which must be satisfied for all

vectors a and b. Dividing out the factor of i and using the definition of
the inner product, this Hermitian relationship can be expressed as

a� �H �D � b ¼ �b �H �D � a�: (7)

(A matrix D that satisfies this equation is sometimes referred to as
“anti-Hermitian” with respect to H, due to the negative sign in the
equation.) Consider the matrix L � H �D ¼ H � J �H that appears in
the above expression. This matrix is antisymmetric: Lji ¼ �Lij. This
follows from the symmetry and antisymmetry, respectively, of the
matricesH and J:

Lji ¼ HjkJklHli ¼ Hkjð�JlkÞHil ¼ �HilJlkHkj ¼ �Lij: (8)

The antisymmetry of L proves Eq. (7), which in turn proves that
iD is Hermitian.

A. Stable system

We can use properties 1–3 in order to analyze the evolution of
the solution zðtÞ to the dynamical equations. First consider the sim-
plest case, of a stable system for which ðux; uxÞ 6¼ 0 for all modes, so
that all eigenfrequencies x are real (property 2). Assume also (for sim-
plicity) that there are no x¼ 0 modes, and that all mode frequencies
are different. Cases which have one or more neutrally stable (x¼ 0)
modes introduce certain technical issues that are addressed in Sec. II B,
and examples of such neutral modes will be considered in Sec. III.
Degeneracies (�x ¼ x for two or more separate eigenvectors) can be
handled easily by orthogonalizing degenerate eigenvectors within the
subspace created by these vectors; see, for example, Ref. 25.

Under these assumptions, the set of 2N eigenvectors ux then
form an orthogonal set in the 2N dimensional vector space for the
phase-space vector z, spanning the vector space and thus forming a
complete set. We can therefore construct a representation of the vector
zðtÞ in terms of the eigenvectors:

zðtÞ ¼
X
x

axðtÞux; (9)

where the complex amplitude axðtÞ associated with each eigenvector
ux can be found by taking an inner product of both sides of Eq. (9),
applying property 1 (orthogonality) of the eigenvectors:

axðtÞ ¼
ðux; zðtÞÞ
ðux; uxÞ

: (10)

Since eigenmodes come in pairs (property 3), Eq. (9) can also be writ-
ten as

zðtÞ ¼
X
x>0

ðaxðtÞux þ a�xðtÞu�xÞ: (11)

The real nature of the vector z then implies that a�xðtÞ ¼ a�xðtÞ and
we can then write Eq. (11) as

zðtÞ ¼
X
x>0

axðtÞux þ c:c:; (12)

where c:c: stands for complex conjugate.
A differential equation for the time evolution of the complex

mode amplitude axðtÞ follows by substitution of Eq. (9) into Eq. (2).
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Taking an inner product with respect to one of the eigenvectors ux

then yields

_axðtÞ ¼ �ixaxðtÞ þ fxðtÞ; (13)

where fxðtÞ ¼ ðux; J � fðtÞÞ=ðux;uxÞ. The forcing coefficient fx can
also be written as

fxðtÞ ¼
u�x �H � J � fðtÞÞ
ðux;uxÞ

¼ �ixu�x � fðtÞ
ðux; uxÞ

; (14)

where we used D ¼ J �H and the complex conjugate of Eq. (5), along
with the symmetry and antisymmetry, respectively, ofH and J.

The system energy can be written in terms of the mode ampli-
tudes axðtÞ by substituting Eq. (9) into Eq. (1):

H ¼ 1
2

X
x

X
�x

axðtÞa�xðtÞu�x �H � ux þ
X
x

axðtÞf � ux

¼ 1
2

X
x

X
�x

axðtÞa��xðtÞu��x �H � ux þ
X
x

axðtÞf � ux

¼ 1
2

X
x

axðtÞa�xðtÞu�x �H � ux þ
X
x

axðtÞf � ux

¼
X
x>0

Hx; (15)

where in the second line we replaced the dummy index �x with ��x
using property 3, in the third line we used property 1 (orthogonality)
of the modes, and in the last line we identified the energy Hx in each
eigenmode, given by

Hx ¼ jaxðtÞj2ðux;uxÞ þ 2fðtÞ � ReðaxuxÞ; (16)

using property 3 to sum only over positive eigenfrequencies.
Note also that in many, if not all, applications, an unforced stable

oscillator has positive energy compared to the equilibrium z ¼ 0, in
which case Eq. (16) implies that ðux;uxÞ > 0.

Equations (9), (13), (15), and (16) provide a complete description
of the dynamics of a stable linearized Hamiltonian system. We have
already diagonalized the system energy in Eq. (15), without consider-
ation of canonical variables in the linear transformation from z to
mode amplitude variables ax, and we have found equations for the
evolution of each mode amplitude.

However, Eq. (16) can also be thought of as a Hamiltonian for
mode x, provided that we introduce the proper canonical variables.
These variables can be constructed using the following argument.
Consider the Poisson bracket ½ax; a��x �. This bracket can be evaluated
using Eq. (10) and the symmetry of the Hamiltonian matrix:

ax; a
�
�x

� �
¼

u�x �H � z; z½ � �H � u�x

ðux; uxÞðu�x ;u�xÞ

¼ u�x �H � J �H � u�x

ðux; uxÞðu�x ;u�xÞ

¼ u�x �H �D � u�x

ðux;uxÞðu�x ; u�xÞ

¼ �i�xu�x �H � u�x

ðux;uxÞðu�x ; u�xÞ
(17)

¼ �ix
ðux; uxÞ

dx�x ; (18)

where in the fourth line we used Eq. (5) and in the last line we used
orthogonality of the eigenvectors. Similarly, one can show that

ax; a�x½ � ¼ 0; (19)

for x and �x greater than zero. In this case, both eigenvectors in Eq.
(17) are starred. However, recall that u��x ¼ u��x , the eigenvector for a
negative frequency mode. This mode is orthogonal to all positive fre-
quency modes by property 1, proving Eq. (19).

Now, to define canonical variables based on the complex ampli-
tudes ax, we find it useful to impose the condition on these amplitudes
that for x > 0 and �x > 0,

ax; a
�
�x

� �
¼ �idx�x ; (20)

(The reason for this condition will become clear in a moment.)
According to Eq. (18), we therefore choose normalizations of the
eigenvectors such that

ðux;uxÞ ¼ x: (21)

Since both sides of this equation are positive, a normalization constant
for ux can be found to satisfy this equation. Note that only the magni-
tude of this constant is determined. The phase of the constant can be
chosen arbitrarily, which allows a certain degree of latitude in the
canonical transformation. As an aside, note also that Eqs. (19) and
(20) are analogous to the commutator relationships required for the
creation and annihilation operators in the Bogoliubov method; see
Appendix D.

We can now introduce N real-valued canonical pairs ðQx;PxÞ,
defined by

ax ¼
1ffiffiffi
2
p ðQx þ iPxÞ: (22)

In order to show that these are canonical pairs, invert Eq. (22) (and its
complex conjugate) to give Qx ¼ 2�1=2ðax þ a�xÞ and Px ¼ �i2�1=2
ðax � a�xÞ. Then,

Qx; P�x½ � ¼ � i
2
ð ax; a�x½ � � ax; a�x½ �� � ax; a

�
�x

� �
þ a�x; a�x
� �

Þ

¼ � i
2
ð0� 0þ idx�x þ idx�xÞ

¼ dx�x ; (23)

and similarly, ½Px;P�x � ¼ 0 ¼ ½Qx;Q�x �. We now see the point of
Eq. (20): this choice determines that ½Qx;Px� ¼ 1; a different choice
would lead to a value other than 1 on the right hand side of this
Poisson bracket relationship.

Applying Eq. (22) to Eqs. (15) and (16) and using the normaliza-
tion condition Eq. (21) yields the diagonalized system Hamiltonian

H ¼
X
x>0

Hx; (24)

Hx ¼
x
2
ðQ2

x þ P2
xÞ þ f1xQx þ f2xPx; (25)

where f1xðtÞ ¼
ffiffiffi
2
p

fðtÞ � ReðuxÞ and f2xðtÞ ¼ �
ffiffiffi
2
p

fðtÞ � ImðuxÞ.
Note that for our choice of canonical pairs, the Qx and Px variables
have the same dimensions of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
energy=frequency

p
, but other choices

are of course possible via a secondary canonical transformation.
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Hamilton’s equations of motion applied to Eq. (24) then yield

_Qx ¼
@H
@Px
¼ xPx þ f2x;

_Px ¼ �
@H
@Qx

¼ �xQx � f1x;
(26)

which are seen to be equivalent to Eqs. (13) and (14) after application
of Eqs. (22) and Eq. (21).

When f1x ¼ f2x ¼ 0, the equations for the x mode are unforced
and the oscillator energyHx is a constant of the motion.

Finally, we note that Eqs. (11) and (22) imply that the linear
transformation from phase-space variables z ¼ ðq; pÞ to new variables
Z ¼ ðQ;PÞ can be written as a matrix equation

z ¼ S � Z; (27)

where the 2N � 2N symplectic transformation matrix S is given by

S ¼
ffiffiffi
2
p
ðReU;�ImUÞ; (28)

and the 2N � N matrix U has columns consisting of the N eigenvec-
tors ux with x > 0, normalized as per Eq. (21). A similar result holds
for the Bogoliubov transformation, although there the phase space var-
iables z and Z are replaced by creation/annihilation pairs (see
Appendix D), and extra linear transformations between these pairs
and the phase space variables must be performed to obtain Eq. (28).

1. Thermal averages

It is well-known that the diagonalized Hamiltonian simplifies
many calculations involving the energy. For example, consider the
thermal average of a phase space function FðzÞ,

hFi ¼

ð
dzFðzÞ exp ð�HðzÞ=TÞð
dz exp ð�HðzÞ=TÞ

; (29)

where T is the temperature. In what follows, we assume that the forc-
ing coefficient f is zero.

In many cases, transformation to the canonical variables
ðQx;PxÞ can simplify such calculations. Since the transformations are
canonical, the Jacobian of the transformation is unity and the averag-
ing integrals become

hFi ¼

ð
FðzÞ

Y
x>0

dQxdPx exp ð�Hx=TÞð Y
x>0

dQxdPx exp ð�Hx=TÞ
: (30)

For instance, it is easy to show that

hQxQ�xi ¼ hPxP�xi ¼
T
x

dx�x ; (31)

hQxP�xi ¼ 0; (32)

which implies that the mean energy in each normal mode is the
temperature,

hHxi ¼ T: (33)

Similarly, the classical partition function Zc

� h�N
Ð
dz exp ½�HðzÞ=T� (where h is Planck’s constant) evaluates to

Zc ¼
Y
x>0

2pT
hx

; (34)

the same form as the well-known classical limit for oscillators that do
not have the position-momentum coupling considered in this paper.35

B. Neutrally stable system

We now return to Eq. (9) and consider a modification to it that
is necessary when there is a neutrally stable (x¼ 0) eigenmode of
Eq. (5). This modification affects the form of the Hamiltonian and
involves a new constant of the motion associated with the neutral
mode. Let us assume that there is only one such mode, whose eigen-
vector we label u0. This zero-frequency eigenvector satisfies

D � u0 ¼ 0: (35)

Thus, u0 is in the nullspace of D. By assumption, it is the only vector
in the nullspace. This eigenvector is real, sinceD is real.

The eigenvector u0 is also in the nullspace of the Hamiltonian
matrixH. This follows by applying to both sides of Eq. (35) the funda-
mental symplectic matrix J and usingD ¼ J �H:

J �D � u0 ¼ J � J �H � u0
¼ �H � u0 ¼ 0; (36)

where, in the last step, we used the identity J � J ¼ �1.
Now, there are only 2N � 1 independent eigenvectors of the

dynamical matrix D, the 2ðN � 1Þ eigenvectors with non-zero fre-
quencies, and the single zero frequency eigenvector. Since the phase
space has dimension 2N, the 2N � 1 eigenvectors no longer form a
complete set that can be used to represent general phase-space vectors z.
However, we require such a representation in order to fully diago-
nalize the Hamiltonian. We therefore need one more vector that is
orthogonal to the 2N � 1 eigenvectors. We will refer to this vector
as �u0. It is not an eigenvector of D, but can instead be obtained by
consideration of the constants of the motion. When there is a zero
frequency eigenvector, Eq. (36) implies that the Hamiltonian has a
symmetry that produces a new constant of the motion, the momen-
tum P0. This constant is

P0 ¼ u0 � J � z: (37)

The time derivative of P0 can be shown to equal zero using Eq. (2), if
we also assume that f � u0 ¼ 0:

_P0 ¼ u0 � J � _z

¼ u0 � J � ðD � zþ J � fÞ
¼ u0 � J � J � ðH � zþ fÞ
¼ �u0 �H � z� u0 � f
¼ 0 � zþ 0 ¼ 0; (38)

where, in the last step, we used Eq. (36) and the symmetry of the
Hamiltonian matrix.

We can now find the vector �u0 using the constancy of P0 in the
linear dynamics. Each oscillatory eigenmode with x 6¼ 0 must satisfy
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P0 ¼ constant, and since P0 is linear in z the only possibility is P0 ¼ 0.
Therefore, the eigenmodes all satisfy

0 ¼ u0 � J � ux: (39)

Note that this is also true for the x¼ 0 eigenvector u0, since
0 ¼ u0 � J � u0 by the antisymmetry of J. We will construct a vector �u0

that is orthogonal to all of the eigenmodes by solving the equation

u0 � J � ux ¼ �u0 �H � ux; (40)

for all eigenvectors ux. By Eq. (39), such a vector will satisfy ð�u0;uxÞ
¼ 0 for all x including x¼ 0. A necessary and sufficient condition for
solution of Eq. (40) is that �u0 satisfies

H � �u0 ¼ u0 � J: (41)

However, since H has a vector u0 in its nullspace, �u0 cannot be
obtained via a standard matrix inversion solution to Eq. (41) because
the inverse of H does not exist. In fact, the solution to Eq. (41) is
underdetermined. The right-hand-side is perpendicular (in the usual
dot-product sense) to the nullspace of H since u0 � J � u0 ¼ 0, and this
implies that only 2N � 1 of the equations in Eq. (41) are linearly inde-
pendent: the system satisfies u0 �H � �u0 ¼ 0. The solution to such a
problem can be obtained in a number of ways. For example, one can
project Eq. (41) onto the subspace that is perpendicular to u0, obtain-
ing 2N � 1 independent equations. A unique particular solution for
�u0; �up, can then obtained by specifying an extra condition on the
solution that, for example, �u0 � u0 ¼ 0. The vector �up is real, since all
coefficients appearing in the equations are real. The general solution is
this particular solution added to the nullspace eigenvector:

�u0 ¼ �up þ Cu0; (42)

for any value of the constant C. The value of C can be chosen arbi-
trarily without affecting any of our subsequent results.

We can now use this extended system of vectors to represent a
general phase space vector z:

z ¼
X
x 6¼0

axux þ a0u0 þ �a0�u0: (43)

The vectors form a complete orthogonal set so that the coefficients ax

and �a0 can be obtained by projection:

ax ¼
ðux; zÞ
ðux;uxÞ

; (44)

�a0 ¼
ð�u0; zÞ
ð�u0; �u0Þ

: (45)

However, a0 cannot be found using the standard projection method
because u0 is orthogonal to itself: according to Eq. (36),
u0 �H � u0 ¼ 0. Instead, a0 can be determined using the properties of
the fundamental symplectic matrix. Acting on both sides of Eq. (43)
with �u0 � J, we obtain

�u0 � J � z ¼
X
x 6¼0

ax�u0 � J � ux þ a0�u0 � J � u0 þ �a0�u0 � J � �u0: (46)

However, �u0 � J � �u0 ¼ 0 due to the antisymmetry of J, and also
�u0 � J � ux ¼ 0 for x 6¼ 0. This follows because, for x 6¼ 0,

�u0 � J � ux ¼
�u0 � J �D � ux

�ix ¼ �u0 � J � J �H � ux

�ix ¼ �u0 �H � ux

ix
¼ 0:

(47)

We are therefore left with

�u0 � J � z ¼ a0�u0 � J � u0 ¼ �a0�u0 �H � �u0; (48)

where in the second form we employed Eq. (41). Thus, we obtain for
a0

a0 ¼ �
�u0 � J � z
ð�u0; �u0Þ

: (49)

Returning to Eq. (43), the complex coefficients ax still come in 6x
pairs satisfying a�x ¼ a�x for x 6¼ 0. The time-dependence of these
coefficients is still given by Eq. (13). The time-dependence of a0 and
�a0 follows in the same way, by substitution of Eq. (43) into the equa-
tion of motion, Eq. (2). The result, after projecting out all the x 6¼ 0
eigenvectors, is

_a0u0 þ _�a0�u0 ¼ �a0D � �u0 þ Df

¼ �a0u0 þ Df ; (50)

where we employedD � u0 ¼ 0 and where Df ¼ J � f �
P

x 6¼0 fxux is
the projection of J � f into the ðu0; �u0Þ subspace. In the second line, we
used

D � �u0 ¼ u0; (51)

which follows from Eq. (41) by applying J to both sides, and using u0 �
J ¼ �J � u0 and J � J ¼ �1. Taking an inner product of Eq. (50) with
respect to �u0 then implies that

_�a0 ¼
ð�u0;DfÞ
ð�u0; �u0Þ

¼ � f � u0
ð�u0; �u0Þ

; (52)

where in the second line we rewrote the numerator using ð�u0;DfÞ
¼ ð�u0; J � fÞ ¼ ðJ � f ; �u0Þ ¼ �f � J �H � �u0 ¼ �f �D � �u0 ¼ �f � u0,
and in the last step we used Eq. (51).

When f � u0 ¼ 0 Eq. (52) is an expression of the conservation of
the momentum P0 in the dynamics. This can be seen by substituting
for z from Eq. (43) into Eq. (37), yielding

P0 ¼ �a0�u0 �H � �u0; (53)

where we employed Eqs. (39) and (41). Taking a time derivative and
using Eq. (52) yield _P0 ¼ �f � u0.

Finally, the dynamics of a0 follows by acting on both sides of Eq.
(50) with �u0 � J, yielding

_a0 ¼ �a0 þ
�u0 � J � Df
�u0 � J � u0

; (54)

Substituting for Df , and using J � J ¼ �1, Eq. (47), and Eq. (41), we
are left with

_a0 ¼ �a0 þ
�u0 � f
ð�u0; �u0Þ

: (55)

Thus, for f ¼ 0, a0 increases linearly in time with a rate given by �a0.
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We now return to the question of the diagonalization of the sys-
tem energy and the proper choice of canonical pairs. Substituting z
from Eq. (43) into the system energy Eq. (2), the same argument
which led to Eq. (15) now results in some new terms involving the
zero-frequency modes:

H ¼
X
x>0

Hx þ
1
2

�a20ð�u0; �u0Þ þ a0f � u0 þ �a0f � �u0; (56)

where Hx is still given by Eq. (16). Poisson brackets involving a0 and
�a0 follow from Eqs. (49) and (45):

a0; �a0½ � ¼ �
�u0 � J � z; z½ � �H � �u0

ð�u0; �u0Þ2

¼ � �u0 � J � J �H � �u0

ð�u0; �u0Þ2
¼ �u0 �H � �u0

ð�u0; �u0Þ2

¼ 1
ð�u0; �u0Þ

: (57)

This implies that a0 and the momentum P0 ¼ �a0ð�u0; �u0Þ form a
canonical pair [see Eq. (53)]. Similarly, one can also show that
½a0; ax� ¼ ½P0; ax� ¼ 0 for all x 6¼ 0.

Finally, we write the diagonalized Hamiltonian in terms of the
canonical pairs as

H ¼
X
x>0

x
2
ðQ2

x þ P2
xÞ þ f1xQx þ f2xPx

� �

þ P2
0

2ð�u0; �u0Þ
þ a0f � u0 þ P0

f � �u0

ð�u0; �u0Þ
: (58)

The dynamical equations for Qx and Px remain unchanged from
Eq. (26). The equations of motion for a0 and P0 are

_a0 ¼
@H
@P0
¼ P0
ð�u0; �u0Þ

þ f � �u0

ð�u0; �u0Þ
; (59)

_P0 ¼ �
@H
@a0
¼ �f � u0; (60)

which agree with Eqs. (55) and (52). In these equations, the inner
product ð�u0; �u0Þ can be interpreted as the inertia associated with the
momentum P0.

This completes the derivation of the diagonalized Hamiltonian
and the canonical coordinates for a neutrally stable linearized
Hamiltonian system with a single zero frequency mode.

1. Two neutral modes

Before we move on, a few remarks must be made regarding the
case when there is more than one zero frequency mode. This special
case actually arises more often than one might suspect; examples
include systems with spherical symmetry, systems with translational
or cylindrical symmetry that are also undergoing a second order struc-
tural phase transition, or systems with translational symmetry in more
than one dimension. Let us consider the case where there are two neu-
trally stable modes; the case of more than two can be understood by
an extension of this example.

Now, there are two independent eigenvectors u01 and u02 in
the nullspace of both the dynamical matrix D and the Hamiltonian

matrix H. These eigenvectors produce two constants of the motion,
P01 and P02, given by

P01 ¼ u01 � J � z; (61)

P02 ¼ u02 � J � z: (62)

Two possibilities must be separately considered: (i) u01 � J � u02 ¼ 0
and (ii) u01 � J � u02 � J12 6¼ 0. In case (i), the constants of the motion
are in involution (their Poisson bracket vanishes), while in case (ii)
they are not. This can be seen by evaluating the Poisson bracket
½P01;P02�, using Eqs. (61) and (62):

P01;P02½ � ¼ �u01 � J � z; z½ � � J � u02
¼ �u01 � J � J � J � u02
¼ u01 � J � u02 ¼ J12: (63)

2. Constants of the motion in involution

When the constants are in involution, the eigenvectors by them-
selves are not a complete set and two vectors �u01 and �u02 are required
in order to describe a general phase-space vector z according to

z ¼
X
x 6¼0

axux þ a01u01 þ a02u02 þ �a01�u01 þ �a02�u02: (64)

The need for the extra vectors �u01 and �u02 can be seen by acting on
the equation with u01 � J:

u01 � J � z ¼
X
x 6¼0

axu01 � J � ux þ a01u01 � J � u01

þ a02u01 � J � u02 þ �a01u01 � J � �u01 þ �a02u01 � J � �u02:

(65)

Conservation of P01 implies that u01 � J � ux ¼ 0, while u01 � J � u01
¼ 0 by symmetry and u01 � J � u02 ¼ 0 by assumption. Repeating the
procedure with u02 � J, we have

u01 � J � z ¼ �a01u01 � J � �u01 þ �a02u01 � J � �u02; (66)

u02 � J � z ¼ �a02u02 � J � �u01 þ �a02u02 � J � �u02: (67)

To satisfy these equations for a general vector z, we require nonzero
values for both �a01 and �a02, proving that both vectors �u01 and �u02 are
required for a complete set.

Let us now consider the solution of these equations for �a01 and
�a02, along with the determination of a01 and a02. Recall that these
latter two coefficients can be found by applying �u01 � J and �u02 � J to
Eq. (64). Noting that �u01 � J � ux ¼ �u02 � J � ux ¼ 0 [see Eq. (47)],
and that �u01 � J � �u01 ¼ �u02 � J � �u02 ¼ 0 by symmetry, we are left
with

�u01 � J � z ¼ a01�u01 � J � u01 þ a02�u01 � J � u02 þ �a02�u01 � J � �u02; (68)

�u02 � J � z ¼ a01�u02 � J � u01 þ a02�u02 � J � u02 � �a01�u01 � J � �u02: (69)

We can simplify the solution of Eqs. (66)–(69) by recalling that the
vectors �u01 and �u02 are constructed to be orthogonal to all of the
eigenvectors by solution of the (underdetermined) equations

H � �u01 ¼ u01 � J; (70)

H � �u02 ¼ u02 � J: (71)

We first use these two equations to replace Eqs. (66)–(69) by the
equivalent equations,
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�u01 �H � z ¼ �a01�u01 �H � �u01 þ �a02�u01 �H � �u02; (72)

�u02 �H � z ¼ �a02�u02 �H � �u01 þ �a02�u02 �H � �u02; (73)

�u01 � J � z ¼ �a01�u01 �H � �u01 � a02�u01 �H � �u02 þ �a02�u01 � J � �u02;

(74)

�u02 � J � z ¼ �a01�u02 �H � �u01 � a02�u02 �H � �u02 � �a01�u01 � J � �u02:

(75)

Also, we note that since Eqs. (70) and (71) are underdetermined, any
linear combination of the nullspace vectors of H can be added to par-
ticular solutions �up1 and �up2 of these equations:

�u01 ¼ �up1 þ a1u01 þ a2u02; (76)

�u02 ¼ �up2 þ b1u01 þ b2u02: (77)

It is useful to choose the constants a1; a2;b1;b2 so that �u01 � J � �u02

¼ 0. This can be accomplished, for example, by taking a1 ¼ b1 ¼ b2
¼ 0 and choosing a2 such that �up1 � J � �u02 þ a2u02 � J � �u02 ¼ 0.
Using Eq. (71), the solution for a2 is

a2 ¼ �
�up1 � J � �u02

�u02 �H � �u02
: (78)

The condition �u01 � J � �u02 ¼ 0 implies that we can drop the �a01 and
�a02 terms in Eqs. (74) and (75), so they become

�u01 � J � z ¼ �a01�u01 �H � �u01 � a02�u01 �H � �u02; (79)

�u02 � J � z ¼ �a01�u02 �H � �u01 � a02�u02 �H � �u02: (80)

Equations (79) and (80) can be solved for a01 and a02, while
Eqs. (72) and (73) can be solved for �a01 and �a02. The solutions are

a01 ¼
h12j2z � h22j1z
h11h22 � h212

; a02 ¼
h12j1z � h11j2z
h11h22 � h212

; (81)

�a01 ¼
h22h1z � h12h2z
h11h22 � h212

; �a02 ¼
h11h2z � h12h1z
h11h22 � h212

; (82)

where hij ¼ �u0i �H � �u0j; hiz ¼ �u0i �H � z, and jiz ¼ �u0i � J � z. We
assume throughout that the Hamiltonian satisfies h11h22 � h212 6¼ 0.
(This requirement has an origin similar to the requirement that the
determinant of the inertia tensor of a rigid body must be nonzero. It is
a requirement on any physical Hamiltonian system.)

The system energy can be evaluated by substituting Eq. (64) into
Eq. (1), yielding

H ¼
X
x>0

Hx þ
1
2
h11�a

2
01 þ

1
2
h22�a

2
02 þ h12�a01�a02

þ a01f � u01 þ a02f � u02 þ �a01f � �u01 þ �a02f � �u02: (83)

Canonical variables must be found in order to use this expression
as a Hamiltonian. The Poisson brackets of the zero frequency ampli-
tudes can be found using Eqs. (81) and (82). We obtain ½a01; a02�
¼ ½�a01; �a02� ¼ 0 and the nontrivial brackets

a01; �a01½ � ¼
h22

h11h22 � h212
;

a02; �a02½ � ¼
h11

h11h22 � h212
;

a01; �a02½ � ¼ �
h12

h11h22 � h212
:

(84)

Canonical pairs can be found by noting that the constants of the
motion P01 and P02 are related to �a01 and �a02 via

P01 ¼ h11�a01 þ h12�a02; (85)

P02 ¼ h22�a02 þ h12�a01; (86)

where we substituted Eq. (64) into Eqs. (61) and (62) and applied Eqs.
(70) and (71).

Using these variables along with Eq. (84), it is then an exercise to
show that ½a01; P01� ¼ ½a02;P02� ¼ 1 while ½a02; P01� ¼ ½a01; P02�
¼ ½P01;P02� ¼ 0. Thus, the canonical pairs are ða01;P01Þ and
ða02;P02Þ. We now need only invert Eqs. (85) and (86),

�a01 ¼
h22P01 � h12P02
h11h22 � h212

; (87)

�a02 ¼
h11P02 � h12P01
h11h22 � h212

; (88)

and employ these results in the Hamiltonian, which becomes

H ¼
X
x>0

Hx þ
1
2
h22P2

01 þ 2h12P01P02 þ h11P2
02

h11h22 � h212

þ h22P01 � h12P02
h11h22 � h212

f � �u01 þ
h11P02 � h12P01
h11h22 � h212

f � �u02

þ a01f � u01 þ a02f � u02: (89)

The equations of motion for P01 and P02 are then

_P01 ¼ �
@H
@a01

¼ �f � u01; (90)

_P02 ¼ �
@H
@a02

¼ �f � u02; (91)

and the equations of motion for the amplitudes a01 and a02 are

_a01 ¼
@H
@P01

¼ h22P01 þ h12P02
h11h22 � h212

þ h22f � �u01 � h12f � �u02

h11h22 � h212
; (92)

_a02 ¼
@H
@P02

¼ h11P02 þ h12P01
h11h22 � h212

þ h11f � �u02 � h12f � �u01

h11h22 � h212
: (93)

When the forcing f is zero, the Hamiltonian is independent of a01 and
a02, hence the canonical momenta P01 and P02 are constant, as
expected, and a01 and a02 both have uniform rates of change.

3. Constants of the motion not in involution

When the two zero-frequency modes satisfy J12 ¼ u01 � J � u02
6¼ 0, the constants of the motion P01 and P02 are not in involution
[Eq. (63)]. This case is easier to deal with than the previous case of
constants in involution. The Poisson bracket relationships and the
Hamiltonian now take a different form. Now the eigenvectors of D by
themselves form a complete set for any phase space vector z, allowing
us to write

z ¼
X
x6¼0

axux þ a01u01 þ a02u02: (94)

No extra vectors �u01 or �u02 are needed. If such vectors were needed,
they would satisfy Eqs. (71) and (72), but these equations no longer
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have solutions. This can be seen by, for example, taking a dot product
of u01 with Eq. (72):

0 ¼ u01 �H � �u02 ¼ u02 � J � u01 ¼ �J12 6¼ 0; (95)

a contradiction.
The amplitude coefficients a01 and a02 in Eq. (94) can now be

obtained by acting with u02 � J and u01 � J, respectively, yielding

a01 ¼ �
u02 � J � z

J12
¼ � P02

J12
; (96)

a02 ¼
u01 � J � z

J12
¼ P01

J12
; (97)

where we used u01 � J � ux ¼ u02 � J � ux ¼ 0 [see Eq. (47)] and where
the second forms in terms of the constants of the motion follow from
Eqs. (61) and (62). The coefficients ax are still obtained with the usual
inner product, see Eq. (10).

The Hamiltonian is found by applying Eq. (94) to Eq. (1),
yielding

H ¼
X
x>0

Hx þ a01f � u01 þ a02f � u02

¼
X
x>0

Hx �
P02
J12

f � u01 þ
P01
J12

f � u02; (98)

where in the second line we employed Eqs. (96) and (97). The equa-
tions of motion for P01 and P02 then follow from Eq. (63):

_P01 ¼ P01;H½ � ¼ J12
@H
@P02

¼ �f � u01; (99)

_P02 ¼ P02;H½ � ¼ �J12
@H
@P01

¼ �f � u02; (100)

which are the same as when P01 and P02 are in involution [see Eqs.
(90) and (91)]. However, now these two variables form a canonical set.
This implies that when f ¼ 0, the amplitudes a01 and a02 are time-
independent [see Eqs. (96) and (97)]. This behavior differs from the
previous case, where a01 and a02 continued to evolve at a fixed rate
when f ¼ 0 [Eqs. (92) and (93)].

C. Unstable System

We now consider the normal modes in an unstable Hamiltonian
system. Unstable conservative systems are of importance in several
contexts, such as in the study of ideal fluid and plasma instabilities.
Here, we will consider the case of a system with an unstable mode
with complex frequency x ¼ X � Xr þ ic, where Xr > 0 and c > 0
are the real frequency and growth rate, respectively, with both
assumed to be greater than zero. In addition to this complex mode, a
second mode with complex frequency X� ¼ Xr � ic must also occur.
This follows because the dynamical matrix in the eigenmode problem,
Eq. (5), has only real coefficients, which implies that, in order to solve
the characteristic polynomial in x, all complex mode frequencies must
come in pairs, Xr6ic.

Note that the above mode with frequency X� has a negative
growth rate �c and is independent of the mode required by property
3, with frequency �X�. The latter mode has a positive growth rate
and is needed (when Xr 6¼ 0) in order to construct a real solution
for the phase space configuration z, in analogy to the argument

accompanying Eq. (12). A fourth mode with frequency�X and a neg-
ative growth rate is also required by property 3 and is the complex
conjugate of the mode with frequency X�, in order to produce a real
solution for z. (If Xr ¼ 0, only two of these four modes are required,
as the others are redundant. In what follows, we assume that Xr > 0.
The Xr ¼ 0 case will be briefly discussed at the end of the subsection.)

The modes of the unstable system form an orthogonal set accord-
ing to property 1, and we use the eigenvectors associated with the
modes to describe the phase space vector z via

zðtÞ ¼
X
x>0

axðtÞux þ aXðtÞuX þ aX� ðtÞuX� þ c:c:; (101)

just as was done for a stable system. However, some differences
become apparent. According to property 2, a mode with complex
eigenfrequency X must be orthogonal to itself: ðuX;uXÞ ¼ 0. It is
therefore not possible to determine aX in terms of z using the standard
projection formula, Eq. (10). Fortunately, however, the complex mode
with frequency X� can be used to determine aX via projection.
According to property 1, this mode is orthogonal to all other eigenmo-
des (as well as itself), except for the mode with complex frequency X.
Therefore, for modes with complex frequencies Eq. (10) are replaced
by

aXðtÞ ¼
ðuX� ; zðtÞÞ
ðuX� ;uXÞ

; (102)

with an analogous expression for aX� . The dynamics of a mode with
complex frequency then follows by substitution of Eq. (101) into the
equation of motion Eq. (2), followed by projection, just as for the sta-
ble modes:

_aXðtÞ ¼ �iXaXðtÞ þ fXðtÞ; (103)

where fXðtÞ ¼ ðuX� ; J � fÞ=ðuX� ;uXÞ. This forcing coefficient can also
be written as

fXðtÞ ¼ �iX
u�X� � f
ðuX� ; uXÞ

; (104)

using the same algebraic steps which led to Eq. (14). When fX ¼ 0, the
differential equation (103) is unforced and the solution grows expo-
nentially with time at the growth rate c, aX ¼ AX exp ð�iXtÞ
/ exp ðctÞ, where AX is an integration constant determined by initial
conditions. The analogous equation for the mode with frequency X�

implies a decaying mode amplitude aX� ¼ AX� exp ð�iX�tÞ
/ exp ð�ctÞ.

The system energy can be found in terms of the mode amplitudes
by substitution of Eq. (101) into Eq. (1), just as for a stable system.
However, when the orthogonality of the eigenmodes is applied, the
energy is no longer perfectly diagonalized:

H ¼
X
x>0

Hx þ Hu; (105)

whereHu, the unstable mode contribution to the energy, is

Hu ¼ 2Re aXa
�
X� ðuX� ; uXÞ

	 

þ 2Re aXf � uX þ aX� f � uX�f g; (106)

and where the stable mode contribution Hx is unchanged, given by
Eq. (16). The non-diagonal form of Hu is required by energy
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conservation. For an unforced system, one can see that although aXðtÞ
and aX� ðtÞ have differing time dependences exp ð�iXtÞ and
exp ð�iX�tÞ, respectively (the former growing and the latter decay-
ing), the combination aXa�X� is time-independent, as required for an
energy-conserving system.

Just as for a stable system, the energy can be formulated as a
Hamilitonian when the proper canonical coordinates are introduced.
First, we consider the Poisson bracket ½aX; a�x� for Rex > 0. Using Eq.
(102) and the same series of steps as led to Eq. (18), we obtain

aX; a
�
x

� �
¼

�iX
ðuX� ;uXÞ

; x ¼ X�;

0 otherwise;

8><
>:

and similarly, ½aX; ax� ¼ 0 for all eigenfrequencies x with Rex > 0.
For canonical coordinates, we therefore choose normalization uX� and
uX such that

ðuX� ;uXÞ ¼ X: (107)

It is possible for the inner product in Eq. (107) to evaluate to the com-
plex frequency X because the vectors appearing in the inner product
are different, with different normalization coefficients. We then intro-
duce real-valued canonical pairs ðQX;PXÞ and ðQX� ;PX� Þ via the lin-
ear transformation

aX ¼
QX þ iPX�ffiffiffi

2
p ; (108)

aX� ¼
QX� þ iPXffiffiffi

2
p : (109)

With these choices, one can easily show that ½QX;PX� ¼ ½QX� ;PX� �
¼ 1 and ½QX;Qx� ¼ ½PX;Px� ¼ 0. When written in terms of these
variables, the unstable mode Hamiltonian is

Hu¼XrðQXQX� þPXPX� ÞþcðQXPX�QX�PX� Þ
þ

ffiffiffi
2
p

f � ðQXReuX�PX� ImuXþQX�ReuX� �PXImuX� Þ;
(110)

where we have also employed Eq. (107) and have taken X ¼ Xr þ ic.
Hamilton’s equations for the complex-frequency modes then yield

_QX ¼
@Hu

@PX
¼ XrPX� þ cQX �

ffiffiffi
2
p

f � ImuX� ;

_PX� ¼ �
@Hu

@QX�
¼ �XrQX þ cPX� �

ffiffiffi
2
p

f � ReuX� ;

_QX� ¼
@Hu

@PX�
¼ XrPX � cQX� �

ffiffiffi
2
p

f � ImuX;

_PX ¼ �
@Hu

@QX
¼ �XrQX� � cPX �

ffiffiffi
2
p

f � ReuX:

The first two equations represent the dynamics of the unstable mode
and may be seen to agree with Eqs. (103) and (104), once one applies
Eqs. (107)–(109). Similarly, the last two equations determine the
dynamics of the exponentially decaying mode and may be seen to
agree with Eq. (103) upon replacingX! X� in this equation.

Finally, we briefly mention a few salient points regarding the spe-
cial case Xr ¼ 0. In this case, the eigenvalue problem for the unstable
mode with frequency X ¼ ic can be written as cuic ¼ D � uic. Since c
and D are real, the unstable eigenvector uic is also real. The

corresponding mode with frequency X� ¼ �ic also has a real eigen-
vector u�ic. Since X ¼ �X�, these two modes are already paired
according to property 3, and there are no other associated complex
eigenmodes. Thus, Eq. (101) becomes

zðtÞ ¼
X
x>0

axðtÞux þ cc:þ aicðtÞuic þ a�icðtÞu�ic; (111)

with ðuic;uicÞ ¼ ðu�ic;u�icÞ ¼ 0 according to property 2, but
ðu�ic;uicÞ 6¼ 0 according to property 1. Following through with the
rest of the algebra, we find that aicðtÞ and a�icðtÞ are real; that the nor-
malization condition for canonical coordinates is ðu�ic;uicÞ ¼ c; that
the canonical coordinates can be chosen as Qc ¼ aic;Pc ¼ a�ic; and
that for this choice, the unstable mode Hamiltonian is

Hu ¼ cQcPc þ f � ðQcuic þ Pcu�icÞ: (112)

This Hamiltonian leads to the equations of motion

_Qc ¼
@Hu

@Pc
¼ cQc þ f � u�ic;

_Pc ¼ �
@Hu

@Qc
¼ �cPc � f � uic;

which agree with Eqs. (103) and (104) when X ¼ 6ic. The first equa-
tion represents the dynamics of the unstable growing mode, with the
second equation corresponding to the exponentially decaying mode.

This completes our discussion of the modes of an unstable linear-
ized Hamiltonian system.

III. NORMAL MODES OF AN ION CRYSTAL

As an example of the Hamiltonian approach outlined in Sec. II,
consider the dynamics of N positive charges confined in the fields of a
Penning trap: a uniform magnetic field B ¼ �Bẑ , with B> 0, and an
electrostatic trap potential /0ðr; zÞ that is confining in the z direction
for positive charges. In some experiments, this potential is nearly a
pure quadrupole, /0ðr; zÞ ¼ ð1=2ÞQðz2 � r2=2Þ, where Q> 0, and
this form will be used in our examples. However, this quadrupolar
form is not necessary in the general theory described below. Each par-
ticle has mass mi, charge qi > 0, and position ri, i ¼ 1;…;N . (For
negative charges in the trap, remove the �sign from B and add a
�sign to /0 so that B and Q remain positive, and treat qi > 0 as the
magnitude of each charge. This preserves the signs for all the subse-
quent coefficients and formulas used in this section.)

The charges are assumed to rotate about the z axis with some
mean rotation frequency xr > 0 (i.e., the rotation is in the positive /
direction). In a frame rotating with the charges, the system
Hamiltonian is

H ¼
X
i

ðpi �miXiAðriÞÞ2

2mi
þ Uðr1;…; rNÞ: (113)

Here, the canonical momentum for particle i is pi ¼ mi _ri
þmiXiAðriÞ where Xi ¼ qiB=ðmicÞ � 2xr is the “vortex frequency”
for particle i (the cyclotron frequency shifted by Coriolis effects) and
AðrÞ is the scaled magnetic vector potential, defined so that r� A
¼ �ẑ , where ẑ is the unit vector in the z direction. A useful gauge
choice for A is the cylindrically symmetric gauge A ¼ �ð1=2Þẑ � r.
This choice of gauge makes
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pi ¼ mi _ri �
1
2
miXiẑ � ri: (114)

The function U is the total electrostatic potential energy of the system
(as seen in the rotating frame) given by

U ¼
X
i>j

/ij þ
X
i

qi/iðri; ziÞ; (115)

where /ij ¼ qiqj=jri � rjj is the electrostatic Coulomb potential
between particles i and j (neglecting, for simplicity, image charge
effects in the surrounding electrodes), and

qi/iðr;zÞ ¼ qi/0ðr; zÞ þ
xr

2
qiB
c
�mixr

� �
r2 (116)

is the effective external potential energy for charge i as seen in the
rotating frame, including both the force from rotation through the
magnetic field and centrifugal force. For a quadrupole trap potential,
this can be written as qi/iðr;zÞ ¼ ð1=2ÞqiQðz2 þ bir

2Þ, where the
trap parameter bi � xrðB=c�mixr=qiÞ=Q� 1=2.

For positive values of the trap parameters bi andQ [or, more gen-
erally, for a potential qi/iðr; zÞ that increases from the trap center
with both increasing r and z], a (neutrally) stable ion crystal equilib-
rium exists with _r i ¼ 0 and ri ¼ Ri for equilibrium positions Ri satis-
fying @U=@Ri ¼ 0; i ¼ 1;…;N . Equilibrium configurations can be
obtained numerically by minimization of the system potential energy
U, although for small numbers of charges one can find equilibria ana-
lytically via symmetry arguments.36 For N � 1, there are typically
many such equilibria corresponding to different crystalline configura-
tions with slightly different energies and arrangements of the charges.
These crystal equilibria have been discussed in some detail in several
previous publications.9,37–39 We will consider two examples in detail.
Figure 1 displays the simplest nontrivial crystal consisting of two iden-
tical charges in a quadrupole trap, a 2-ion Coulomb cluster.36,41,42

When the trap parameter b is greater than one, the equilibrium has
the charges on the 6z axis, each at a distance d ¼ ðq=4QÞ1=3 from the
origin. When b < 1, the ions are on opposite sides of the origin in the
x–y plane, each a distance d=b1=3 from the origin, and for b¼ 1
the charges can be at any angle h with respect to the z axis. This
Coulomb cluster can be thought of as a classical version of a symmet-
ric molecule such as H2 or N2, in which the electrons are replaced by a
neutralizing background charge (the “plum-pudding” model of J. J.
Thompson). Later in this section, we will analytically evaluate the nor-
mal modes for this system, including the effect of the magnetic field.

An equilibrium configuration with larger N is displayed in Fig. 2,
which shows the r–z positions of a crystal (local minimum energy
state) consisting of N¼ 236 identical charges in a quadrupole trap
with trap parameter b ¼ 3=4. The charges tend to arrange themselves
in spheroidal shells37,38 with an average density that is determined by
the rotation rate and the external trap fields. For b < 1, the system
tends to form an oblate spheroid, which for sufficiently small b collap-
ses into the z¼ 0 plane. This particular regime of a single-plane
plasma crystal is currently of interest as a useful system for the
purposes of quantum simulation.1,2,43 For b > 1, the system forms a
prolate spheroid and for sufficiently large b the system forms a one-
dimensional Coulomb string of charges distributed along the z
axis.44,45

These equilibria are all neutrally stable with respect to rotations
about the z axis. When b¼ 1, the spherical symmetry of the effective
trap potential implies that rotations about x and y axes are also neutral
modes.

A. Perturbed Hamiltonian and the dynamical matrix
for crystal modes

In what follows, we assume that particles are displaced only
slightly from one such equilibrium, with positions ri ¼ Ri þ dri and

FIG. 1. Equilibrium of two identical charges in a quadrupole trap.

FIG. 2. r–z positions in a spheroidal Coulomb crystal of N¼ 236 identical charges
in a quadrupolar Penning trap with trap parameter b ¼ 3=4. Distances are in
terms of the distance ðq=QÞ1=3.
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momenta pi ¼ miXiAðRiÞ þ dpi. The Taylor expansion to second
order in the small displacements from equilibrium then results in a lin-
earized Hamiltonian system, with Hamiltonian

H ¼ 1
2

X
i

ðdpi þmiXiẑ � dri=2Þ2

mi
þ
X
ij

dri � Vij � drj
 !

; (117)

whereVij ¼ @2U=@Ri@Rj. The form of Vij is given in Appendix A.
This Hamiltonian can be put in the matrix form of Eq. (1) with

f ¼ 0, with phase space vector z ¼ ðr; pÞ where r ¼ ðdr1;…; drNÞ
and p ¼ ðdp1;…; dpNÞ, and with the symmetric Hamiltonian matrix
given in block form by

H ¼
Vþ C X

Xtr M�1

 !
: (118)

Here, V; C; X, and M�1 are 3N � 3N matrices. The matrix M�1 is
the inverse of the diagonal mass matrix M for the system, with the
diagonal elementsM�1ii given by the vector ðm�11 ;m�11 ;m�11 ;…;m�1N ;
m�1N ;m�1N Þ. The matrix X is the Lorentz matrix coupling positions
and momenta in the Hamiltonian. For our symmetric choice of vector
potential, the Lorentz matrix is antisymmetric and is zero everywhere
except in 3� 3 blocks along the diagonal:

X ¼
X1 0

. .
.

0 XN

0
BB@

1
CCA: (119)

Each diagonal block is, in dyadic notation, given by

Xi ¼
1
2
Xiðx̂ ŷ � ŷ x̂Þ; i ¼ 1;…;N: (120)

The symmetric matrix V ¼ @2U=@R@R is the potential energy matrix
given in block form by

V ¼

V11 V12 … V1N

V21 V22 … V2N

…

VN1 VN2 … VNN

0
BBBB@

1
CCCCA: (121)

The matrix C is a magnetic potential contribution whose elements are
zero everywhere except along the diagonal. The vector of diagonal ele-
ments Cii is given by

1
4
ðm1X

2
1;m1X

2
1; 0;…;mNX2

N ;mNX2
N ; 0Þ:

The dynamical matrix D ¼ J �H corresponding to this
Hamiltonian matrix is

D ¼
�X M�1

�V� C �X

 !
; (122)

where we used the antisymmetry of the Lorentz matrix to write
Xtr ¼ �X. The eigenvalues and eigenvectors ofD provide us with the
normal modes of the system, as per Eq. (5). As discussed in Sec. II
these modes diagonalize the system energy.

B. Center of mass modes and rotational modes

It is well-known that a few of the eigenmodes have simple ana-
lytic descriptions. In a pure quadrupole trap with a single species, there
are three “center of mass” (COM) modes that consist of a displace-
ment of the entire crystal. The axial COM mode consists of an oscilla-
tion in the z direction and has frequency xz where xz �

ffiffiffiffiffiffiffiffiffiffiffiffi
qQ=m

p
is

referred to in the literature as the single particle axial frequency; it is
the frequency at which a single trapped particle oscillates in z when
displaced from the origin. The cyclotron and E�B COM modes con-
sist of rotational motions of the center of mass on the x–y plane, with
frequencies xþ and x�, respectively, where

x6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 2x2

?6X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 4x2

?

qr
=
ffiffiffi
2
p

; (123)

and where x? �
ffiffiffi
b
p

xz is the single particle transverse frequency in
an unmagnetized trap. All three COM mode frequencies are indepen-
dent of the number of charges in the trap.

In addition, in a cylindrically symmetric trap potential (quadru-
polar or not), there is a zero frequency eigenmode which is a pure rigid
rotation about the z axis, with eigenvector u0z ¼ ðr0z; p0zÞ where

r0z ¼ ðẑ � R1;…; ẑ � RNÞ;

p0z ¼ �
1
2
ðm1X1ẑ � ẑ � R1;…;mNXN ẑ � ẑ � RNÞ

¼ 1
2
ðm1X1R1 r̂ ;…;mNXNRNr̂Þ; (124)

and where Rj is the cylindrical radius of equilibrium position Rj for the
jth ion. As was discussed previously in more general terms, this eigen-
mode corresponds to a constant of the motion, the momentum P0z
given by Eq. (37):

P0z ¼ u0z � J � z ¼ r0z � p� p0z � r

¼
X
i

Ri/̂ � dpi �
1
2
miXiRir̂ � dri

� �

¼
X
i

miR
2
i d

_/ i �miRiXidri
� �

; (125)

where in the last step we substituted for dpi using Eq. (114). The con-
stant P0z is, of course, the perturbed total canonical angular momen-
tum associated with rotations about the z axis.

The corresponding vector �u0z , required for the rotational inertia
ð�u0z; �u0zÞ [see Eq. (58)], is the solution of Eq. (41). In general, this
equation requires a numerical solution but it might also be of interest
to note that there is a case where �u0z can be evaluated analytically:
when the equilibrium consists of identical charges trapped in a quad-
rupolar trap with trap parameter b chosen to be sufficiently small so
that the crystal equilibrium is a planar crystal confined to the z¼ 0
plane. In this case (see Appendix C),

�u0z ¼ � 2p0z
3mx2

?
; 1þ X2

6x2
?

 !
r0z

 !
(126)

and the rotational inertia ð�u0z; �u0zÞ is then given by the expression

ð�u0z; �u0zÞ ¼ m
X
i

R2
i 1þ X2

3x2
?

 !
: (127)
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The first term in the parenthesis gives the usual kinetic inertia associated with rigid rotation, while the second term (which can dominate in strong
magnetic fields) arises from the electrostatic energy associated with compression/expansion of the crystal as the rotation rate changes.

C. Modes of a two particle Coulomb cluster

A few other cases allow an analytic solution for all of the modes. One example is the N¼ 2 Coulomb cluster shown in Fig. 1. Assuming that
the particles are aligned in equilibrium in the x–z plane, with particle 1 above the z¼ 0 plane and particle 2 below the plane, the potential matrix V
evaluates to

V
mx2

z
¼

bþ 1
4
ð1� 3 cos 2hÞ 0

3
4
sin 2h � 1

4
ð1� 3 cos 2hÞ 0 � 3

4
sin 2h

b� 1=2 0 0 b� 1=2 0
1
4
ð5þ 3 cos 2hÞ � 3

4
sin 2h 0 � 1

4
ð1þ 3 cos 2hÞ

bþ 1
4
ð1� 3 cos 2hÞ 0

3
4
sin 2h

b� 1=2 0
1
4
ð5þ 3 cos 2hÞ

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

: (128)

The frequencies and corresponding eigenvectors are provided in Table I. These eigenvectors are not normalized.

TABLE I. Eigenmodes for two identical charges in a quadrupole trap.

x ux ðux;uxÞ

COM modes:
xz ð0; 0; 1; 0; 0; 1; 0; 0;�imx; 0; 0;�imxÞ 4mx2

x6
1;6i; 0; 1;6i; 0;�imx6i

mX
2
;6mx�mX

2
; 0;�imx6i

mX
2
;6mx�mX

2
; 0

� �
4mðx2 þ x2

?Þ

Other modes for b > 1:ffiffiffi
3
p

xz ð0; 0; 1; 0; 0;�1; 0; 0;�imx; 0; 0; imxÞ 4mx2

xr6
1;6i; 0;�1;7i; 0;�imx6i

mX
2
;6mx�mX

2
; 0; imx7i

mX
2
;7mxþmX

2
; 0

� �
4mðx2 þ ðb� 1Þx2

zÞ

Other modes for b < 1:

xz

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p ð0; 0; 1; 0; 0;�1; 0; 0;�imx; 0; 0; imxÞ 4mx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 3x2

?

q
1;
iX
x
; 0;�1;�iX

x
; 0;�imxþ i

mX2

2x
;
mX
2
; 0; imx� i

mX2

2x
;�mX

2
; 0

� �
4mx2

0
0; 1; 0; 0;�1; 0;mX

2
; 0; 0;�mX

2
; 0; 0

� �
0

Other modes for b¼ 1:
xh6 ðrh;�rh; ph;�phÞ 4m

3
x2 X4 � x2ðX2 � 3x2

zÞ � 3X2x2
z cos 2h

x2
z sin

2h

rh ¼ �ix;X;�2ixx2 � X2 � 3x2
z sin

2h
3x2

z sin 2h

 !

ph ¼ m
X2

2
� x2;�ixX

2
;�2x2 x2 � X2 � 3x2

z sin
2h

3x2
z sin 2h

 !

0
u0z ¼ 0; 1; 0; 0;�1; 0;mX

2
; 0; 0;�mX

2
; 0; 0

� �
0

0
u0y ¼ cos h; 0;�sin h;�cos h; 0; sin h; 0;�mX

2
cos h; 0; 0;

mX
2

cos h; 0

� �
0
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We first consider b > 1, where the charges align along the z axis
in equilibrium, with h¼ 0. In this case, there is no zero frequency rota-
tional mode. In addition to the three center of mass modes, there are
three other modes in which the charges perform opposite motions,
dr1 ¼ �dr2. One of these is an axial stretch mode only along the z
axis, with frequency

ffiffiffi
3
p

xz . The other two modes consist of circular
motion in x and y at the frequencies xrþ and xr� where

xr6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 2ðb� 1Þx2

z6X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 4ðb� 1Þx2

z

qr
=
ffiffiffi
2
p

: (129)

As b! 1;xr� approaches zero frequency and the eigenvector
corresponds to a sum of rotations about the x and y axes, which are
neutral modes in the spherically symmetric b¼ 1 limit.

The energy takes the standard form for a stable system [see
Eq. (15)]:

H ¼
X
x>0

jaxj2ðux;uxÞ; (130)

with the coefficients ðux; uxÞ given in Table I.
On the other hand, for b < 1, the equilibrium is in the x–y plane.

Now, there is a zero frequency rotation about the z axis in addition to
the three center of mass modes. The associated constant of the motion
is the angular momentum given by Eq. (125). For the two ion system,

it is convenient to divide out the radii R ¼ d=b1=3 of the ions, defining
P00z ¼ P0z=R ¼ dp1y � dp2y �mXðdx1 � dx2Þ. In addition, we intro-
duce the normalized vector �u 00 ¼ �u0=R with �u0 given by Eq. (126).
The two other modes are a tilt mode consisting only of axial motion
with dz1 ¼ �dz2, at frequency xz

ffiffiffiffiffiffiffiffiffiffiffi
1� b
p

, and an “upper-hybrid”
mode consisting of elliptical motion of the charges in the x–y plane at

frequency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 3x2

?

q
. Due to the neutral mode, the energy takes the

form

H ¼
X
x>0

jaxj2ðux;uxÞ þ
1
2

P020z
ð�u00; �u 00Þ

; (131)

where the scaled moment of inertia ð�u00; �u00Þ ¼ 2mð1þ X2=3x2
?Þ, see

Eq. (127).
Finally, when b¼ 1, the system has spherical symmetry and there

are now equilibria oriented at any angle h with respect to the z axis. In
addition to the center of mass modes, there are two zero frequency
modes consisting of free rotations about the y and z axes, and two
modes whose frequencies xhþ andxh� depend on h:

xh6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 3x2

z6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2 � 3x2

zÞ
2 þ 12X2x2

z sin
2h

q
2

vuut
: (132)

As h! 0, these frequencies approach xrþ ¼ X and the stretch mode

frequency
ffiffiffi
3
p

xz . As h! p=2; xh� ! 0, andxhþ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 3x2

z

q
.

1. Nonexistence of the rotational inertia for spherical
confinement

The two zero frequency modes produce two constants of the
motion, the angular momentum P00z due to rotation of the cluster
about the z axis (again dividing the radii d sin h) and the angular

momentum P00y due to rotations about the y axis (also dividing out dis-
tance d from the axis):

P00y ¼ cos h

�
dpx1 � dpx2 þ

1
2
mXðdy1 � dy2Þ

�

� sin hðdpz1 � dpz2Þ: (133)

These two constants are not in involution, J 0xy ¼ ½P00y; P00z�
¼ 2mX cos h. Therefore, the constants do not appear in the energy, so
it takes the form given in Eq. (130).

It is instructive to compare the evolution of the b¼ 1 system to
that of the b < 1 system when the perturbed axial angular momentum
P00z is nonzero. This comparison illustrates a physical difference
between systems with constants of the motion in involution and those
for which the constants are not in involution. For b < 1, Hamiltonian
(131) implies that the angle variable d/ ¼ a0 changes linearly with
time according to

d _/ ¼ P00z
ð�u00; �u 00Þ

; (134)

because a change in angular momentum corresponds to a change in
the rotation frequency of the cluster. There is a finite scaled moment
of inertia ð�u00; �u00Þ which relates the scaled angular momentum change

P00z to the rotation frequency change d _/.
However, for b¼ 1, neither P00z nor P00y appear in the

Hamiltonian. The phase space configuration z evolves according to

z ¼ d dhu0y þ Rd/u0z þ
X
x 6¼0

axux; (135)

where u0z and u0y are given in Table I, and where

dh ¼ � P00z
J 0xyd

; (136)

and

d/ ¼
P00y
J 0xyR

; (137)

[see Eqs. (94), (96), and (97)]. Equation (137) shows that the angle d/
does not evolve in time as it did for b < 1 [see Eq. (134)]. This is
because the axial angular momentum perturbation P00z does not
change the rotation frequency of the cluster. Indeed, the moment of
inertia ð�u0z; �u0zÞ is undefined since the vector �u0z does not exist, as
discussed in Sec. II B 2.

The axial angular momentum perturbation P00z is instead accom-
plished by a rotation dh of the cluster about the y axis, as exhibited in
Eq. (136). This can occur because for X 6¼ 0 the canonical angular
momentum depends on the cylindrical radius R of the charges
(through the vector potential term), which varies as h varies—see
Fig. 1(c).

The surprising nonexistence of the rotational inertia in magne-
tized spherically symmetric crystals also occurs for larger Coulomb
clusters, provided that a cluster’s canonical angular momentum
depends on its orientation for spherical confinement. A few cases were
discussed in Ref. 39 in the context of a study of the configurations of
minimum energy as angular momentum is varied.
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D. Modes of an N¼236 particle crystal

Turning now to an example with more charges, in Figs. 3 and 4,
we display the mode frequencies for the case of the oblate spheroidal
Coulomb crystal with N¼ 236 that was shown in Fig. 2. We choose
X¼ 0 in Fig. 3 and X ¼ 20xz in Fig. 4. There is one zero frequency
mode corresponding to a rotation about the z axis, with an associated
constant of the motion corresponding to the perturbed angular
momentum. There are no degeneracies in the spectrum, except for the
two COM modes consisting of oscillations of the whole crystal in
the x–y plane at frequency x? ¼

ffiffiffi
b
p

xz . This degeneracy is broken by
the application of a magnetic field (i.e., finite X); see Eq. (123). The
density of states for these modes is similar to that displayed in Fig. 10
of Ref. 10. There are several modes with quite low frequencies,
corresponding to torsional motions of the crystal with weak restoring
forces.

For X ¼ 20xz , the mode frequencies condense into three groups:
a group of N cyclotron modes with x > X; a group of N axial modes
with x 	 1, and a group of N E�B modes with low frequencies.
Variation of X indicates that these latter mode frequencies scale with
X as 1=X. These mode groupings have been identified in previous
publications.10,17,22,40 The cyclotron modes consist primarily of cyclo-
tron motion in the x–y plane. The axial modes consist primarily of
axial oscillations, and the E�Bmodes are drifts of the particle guiding
centers in the collective electric field of the other particles as well as the
trap field. There is one COM mode in each group, and there is one
neutral mode in the E�B group, associated with rotation about the z
axis.

Apart from a few special cases such as the center of mass and
neutral modes, the eigenmodes have numerical forms the details of
which vary depending on the precise crystal structure. Nevertheless,
some of these modes are close to the sorts of modes predicted in a cold
fluid theory of the normal mode oscillations.40 In the cold fluid theory,
normal modes for a plasma confined in a quadrupolar trap were
worked out analytically in terms of Legendre functions. Frequency
shifts to these modes due to interparticle correlations were also worked

out and were found to decrease in magnitude as the mode wavelength
increases.10 An initial condition consisting of displacements associated
with a given cold fluid normal mode can be described as a superposi-
tion of exact crystal eigenmodes, with only a small number of these
eigenmodes dominating, provided that the mode is of low order (with
a wavelength large compared to the interparticle spacing).10

A single example is displayed in Fig. 5. Here, we consider a fluid
displacement of the form drfluid ¼ ðdx; dy; dzÞfluid / ðx;�y; 0Þ. Such
a displacement creates an ellipsoidal distortion of the crystal that, in
fluid theory, is associated with two modes: a cyclotron frequency
mode and an E�B diocotron mode, in which this distortion propa-
gates around the plasma in the / direction. For the case of a spheroidal
plasma with b ¼ 3=4, the frequencies of these two modes is predicted

to be xfluid ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2=4þ 0:925253x2

z

q
6X=2. In Fig. 5, we determine

the mode amplitude ax for each mode by projecting the phase-space
displacement z onto each mode using Eq. (10), with the eigenmodes
for X ¼ 20xz , and with z given by drfluid for each particle, along with
the associated canonical momentum �mXẑ � drfluid=2: z ¼ ðx1;
�y1; 0;…; xN ;�yN ; 0;�mXy1=2; �mXx1=2; 0;…; ; �mXyN=2;
�mXxN=2; 0Þ. This phase space configuration corresponds to an
initially-stationary elliptical distortion of the plasma crystal.

The resulting plot of the magnitude of the amplitude of each
eigenmode displays three strong peaks near n¼ 90, 250, 480. These
frequency peaks dominate the dynamics, as the system evolves from
this initial condition. The frequencies corresponding to each peak are,

FIG. 3. Eigenfrequencies (in units of xz) for the spheroidal Coulomb crystal shown
in Fig. 2, for vortex frequency X¼ 0, with frequencies ordered from the highest fre-
quency to the lowest non-negative frequency. The mode number n
(n ¼ 1;…; 3� 236 ¼ 708) labels the position of a given mode in this ordering.

FIG. 4. Eigenfrequencies (in units of xz) for the spheroidal Coulomb crystal shown
in Fig. 2, for vortex frequency X ¼ 20xz, ordered from the highest frequency to
the lowest non-negative frequency. Note the breaks in the frequency axis, separat-
ing modes into cyclotron, axial, and E� B branches. As shown in the previous fig-
ure, the mode number n (n ¼ 1;…; 3� 236 ¼ 708) labels the position of a given
mode in the ordering.
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respectively, x=xz ¼ 20:0464; 1:3063; 0:0461, which are, respectively,
in the cyclotron, axial, and E�B range (see Fig. 4). These frequencies
may be compared to xfluid which evaluates to xfluid=xz ¼ 20:0462;
0:0462 for the cyclotron and E�B mode, respectively. The weaker of
the three peaks at x ¼ 1:3063xz does not correspond to either of
these fluid modes, but is instead close to the cylindrically-symmetric
axial fluid mode [the (2,0) mode]40,46 with fluid frequency xfluid

¼ 1:3037xz for these conditions. In the fluid theory, this cylindrically
symmetric mode has no overlap with the h-dependent fluid displace-
ment used here. Evidently, a weak coupling to this mode occurs due to
the finite number of charges in the crystal. There also appears to be
strong coupling to some of the very low frequency E�B modes (the
broad peak on the right side of the figure), which is also not predicted
in fluid theory.

E. Thermal averages and zero frequency modes

Thermal averages over various functions are of importance in
many applications. For example, consider the average hdzjdzki for two
particles j and k. The jth and kth axial displacements appearing here
correspond to the a and b components of the phase space vector z
where a ¼ 3j and b ¼ 3k. Then, remembering that there is a zero-
frequency mode in this system, the position zj can be written in terms
of the eigenmodes via Eqs. (43), (22), and (53),

dzj ¼
X
x>0

ðQx þ iPxÞuxa=
ffiffiffi
2
p
þ c:c:þ a0u0a þ P0

�u0za

ð�u0z; �u0zÞ
; (138)

and similarly for dzk. Using Eqs. (31) and (32), the thermal averages
then yield

hdzidzji ¼ T
X
x>0

uxau�xb

ðux; uxÞ
þ c:cþ T

ð�u0z; �u0zÞ
�u0za�u0zb; (139)

where we used Eq. (21) to replace x by ðux;uxÞ, so that the expres-
sion is valid for unnormalized eigenvectors. The last term arises from
the average over the zero frequency mode momentum hP2

0i, which we
evaluated using Hamiltonian (58). There is no contribution from a0
because the neutrally stable eigenmode is a pure rotation about the z
axis by angle d/ ¼ a0, with eigenvector given by Eq. (124). This eigen-
vector has no axial component (i.e., u0a ¼ 0).

1. Thermal averages for the two particle Coulomb
cluster

We can evaluate hdzjdzki for the two particle system using the
information in Table I. For b > 1, only the axial COM mode and the
stretch mode contribute. There is no contribution from the zero fre-
quency mode because it does not exist for b > 1, since charges in equi-
librium are aligned along the z axis. We thus obtain, for b > 1,

hdz21i ¼ hdz22i ¼
2T

4mx2
z
þ 2T
12mx2

z
¼ 2T

3mx2
z
; (140)

hdz1dz2i ¼
2T

4mx2
z
� 2T
12mx2

z
¼ T

3mx2
z
; (141)

where the first term on the right hand side of each equation is from
the axial COMmode and the second term is from the stretch mode.

For b < 1, only the axial COM and the tilt mode contribute, and
again the rotational mode does not contribute because there is no axial
component of �u0 when the charges are trapped in the x–y plane, see
Eq. (126). Then, Eq. (139) yields

hdz21i ¼ hdz22i ¼
2T

4mx2
z
þ 2T
4mx2

zð1� bÞ ¼
T

2mx2
z

2� b
1� b

; (142)

hdz1dz2i ¼
2T

4mx2
z
� 2T
4mx2

zð1� bÞ ¼ �
T

2mx2
z

b
1� b

; (143)

where the first term is again from the axial COM mode and now the
second term is from the tilt mode. These averages diverge when
b! 1, as the tilt mode becomes zero frequency, allowing large fluctu-
ations in the axial displacements of the charges. Note that the equa-
tions imply that hðdz1 þ dz2Þ2i=4 ¼ T=ð2mx2

zÞ, independent of b.
This is the mean square fluctuation in the axial center of mass posi-
tion, with the expected form T=ðNmx2

zÞ for a particle of mass Nm in
a harmonic well.

Also note that none of these averages depend on the magnetic
field strength (i.e., on X), as expected from the Bohr–van Leeuwen the-
orem.24 Of course, in this example, none of the modes contributing to
the averages depended on X. A less trivial application of the theorem
arises in the evaluation of a different average, hdxjdxki. This average is
finite for an N¼ 2 cluster with equilibrium positions in the x–z plane
because zero-frequency rotations through / are in the y direction and
do not affect the average. The formula for this average is the same as
Eq. (139), except that now, a ¼ 3j� 2 and b ¼ 3k� 2. For the two
particle Coulomb cluster, and taking b > 1, we obtain

hdx21i ¼ hdx22i ¼
T
2m

1
x2
� þ x2

?
þ 1

x2
þ þ x2

?

�

þ 1
x2

r� þ ðb� 1Þx2
z
þ 1

x2
rþ þ ðb� 1Þx2

z

�
; (144)

hdx1dx2i ¼
T
2m

1
x2
� þ x2

?
þ 1

x2
þ þ x2

?

�

� 1
x2

r� þ ðb� 1Þx2
z
� 1

x2
rþ þ ðb� 1Þx2

z

�
: (145)

Each term on the right hand side depends explicitly on X, but their
sum does not. In fact, 1=ðx2

� þ x2
?Þ þ 1=ðx2

þ þ x2
?Þ ¼ 1=x2

? and
1=ðx2

r�þðb�1Þx2
zÞþ1=ðx2

rþþðb�1Þx2
zÞ¼1=ððb�1Þx2

zÞ. When

FIG. 5. The magnitude of eigenmode amplitudes ax plotted on a logarithmic scale
vs mode number n, for an initial condition corresponding to an ellipsoidal distortion
of the crystal, as described in the text.
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these formulas are applied to Eqs. (144) and (145), we obtain the X-
independent result

hdx21i ¼ hdx22i ¼
T

2mx2
z

1
b
þ 1

b� 1

� �
; (146)

hdx1dx2i ¼
T

2mx2
z

1
b
� 1

b� 1

� �
; (147)

where we used the relationship x2
? ¼ bx2

z .
Re-evaluating the averages for b < 1, we obtain

hdx21i ¼ hdx22i ¼
T
2m

1
x2
� þ x2

?
þ 1

x2
þ þ x2

?

�

þ 1

X2 þ 3x2
?
þ ðX=3x

2
?Þ

2

1þ X2=3x2
?

�
; (148)

hdx1dx2i ¼
T
2m

1
x2
� þ x2

?
þ 1

x2
þ þ x2

?

�

� 1

X2 þ 3x2
?
� ðX=3x

2
?Þ

2

1þ X2=3x2
?

�
: (149)

The first two terms are from the COM modes, the third term is from
the upper hybrid mode, and the last term is from the zero-frequency
rotational mode, where we used Eq. (126) for �u0 and Eq. (127) for
ð�u0; �u0Þ. Again, each term depends on X, but when summed the
results areX-independent:

hdx21i ¼ hdx22i ¼
2T

3mx2
?
; (150)

hdx1dx2i ¼
T

3mx2
?
: (151)

As another test of the Bohr–van Leeuwen theorem, we consider
the average hðdr1 � R̂1Þ2i ¼ hðdx1 sin hþ dz1 cos hÞ2i for the N¼ 2
cluster at b¼ 1, oriented at angle h with respect to the z-axis. Here,
R̂1 ¼ ðsin h; 0; cos hÞ is the unit vector in the direction of R1, the
equilibrium position of charge 1. This average is finite because zero-
frequency rotations of the cluster about the y or z axes have no
effect—see Table I. Only the COM modes and the modes at frequen-
cies xh6 enter the average:

hðdr1 � R̂1Þ2i ¼ hdx21i sin 2hþ hdz21i cos 2hþ 2hdx1dz1i sin h cosh

¼ sin 2h
T
2m

X
x¼x6

1
x2 þx2

?
þ cos 2h

T
2mx2

z

þ2T
X

x¼xh6

1
ðux;uxÞ

x2 sin2hþ D2 cos2hð

þ 2xD sin h coshÞ; (152)

where D ¼ 2x x2�X2�3x2
z sin

2h
3x2

z sin 2h
. The first two terms on the right hand

side of the second line arise from the three COMmodes, and for b¼ 1
they sum to T=ð2mx2

zÞ, the expected radial thermal fluctuation for a
single particle of mass 2m in a spherically symmetric harmonic well of
frequency xz. Surprisingly, perhaps, considering its complexity, the
last term sums to T=ð6mx2

zÞ. Thus we obtain

hðdr1 � R̂1Þ2i ¼
2T

3mx2
z
; (153)

which agrees with Eq. (150) when h ¼ p=2 and b¼ 1, and with Eq.
(140) when h ¼ 0.

2. Thermal averages for the N 5 236 particle crystal

As an example of thermal averages in a larger N system, in Fig. 6
we numerically evaluate the following thermal average for the N¼ 236
crystal:

PN
j¼1 hdz2j ix, where hdz2j ix ¼ 2Tjux 3jj2=ðux;uxÞ is the

mean square fluctuation in axial position zj caused by mode x, as per
Eq. (139).

We use this average to evaluate each mode’s contribution to
hdz2i ¼ N�1

PN
j¼1hz2j i via

Nhdz2i ¼
X
x>0

XN
j¼1
hdz2j ix þ

T
ð�u0z; �u0zÞ

XN
j¼1

�u2
0z 3j; (154)

see Eq. (139).
From the figure, one can see that for X¼ 0 the lowest frequency

torsional modes dominate the thermal average, as one would expect
(in the figure the mode number n is ordered from highest to lowest
frequency as shown in Fig. 3). For the case of a large magnetic field
X ¼ 20xz , cyclotron modes make a negligible contribution to the
average, as one might also expect; we obtain

P
xcyclotron

PN
j¼1 hdz2j ix

¼ 1:096� 10�6T=ðmx2
zÞ. Axial modes make a larger contribution,

contributing to the average an amount
P

xaxial

PN
j¼1 hdz2j ix

¼ 385:0969T=ðmx2
zÞ. Surprisingly, however, the low-frequency E�B

drift modes dominate by a factor of 10, contributingP
xE�B

PN
j¼1 hdz2j ix ¼ 3575:0989T=ðmx2

zÞ. One normally thinks of

E � B drift modes as motions in the x–y plane, but there can also be
substantial axial motion in these modes, as we will see; and low-
frequency torsional E�B motions make a large contribution to the
axial fluctuations. Finally, the zero-frequency rotational mode (the last
term in Eq. 154) contributes 0.2463 to the right hand side of the equa-
tion, for a total mean square fluctuation of hdz2i ¼ 3690:4421=N
¼ 16:7815 in units of T=mx2

z . This fluctuation is independent of

FIG. 6. The thermal average
PN

j¼1 hdz2j ix for each eigenmode, in units of
T=ðmx2

zÞ, for the spherioidal crystal shown in Fig. 2, and for two vortex frequen-
cies, X¼ 0 and X ¼ 20xz . For X ¼ 20xz, the contributions of cyclotron modes
(1 
 n 
 236), axial modes (236 < n 
 472), and E� B modes (n> 472) are
substantially different in magnitude.
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magnetic field strength as expected from the Bohr–van-Leeuwen theo-
rem; we have checked that precisely the same value can be computed
by summing over the X¼ 0 mode contributions shown in the figure.
Note that for X¼ 0, there is no contribution to this thermal average
from the zero frequency rotational mode, since for X¼ 0, the axial
components of the vector �u0z vanish, i.e., �u0z 3j ¼ 0; see Appendix C.

Calculations like those displayed in Fig. 6 may impact the pros-
pects of extending sensitive techniques2,3 developed for the spectros-
copy and thermometry of normal modes with single-plane ion crystals
to large three-dimensional ion crystals. The basic technique uses an
oscillating spin-dependent force with a frequency l to map motion
parallel to the magnetic field and with the same frequency l onto pre-
cession of an internal spin-degree of freedom of the trapped ion. The
spin precession can then be readout with a high signal-to-noise ratio.
Technically, the spin-dependent force is an optical dipole force created
at the intersection of two laser beams and is characterized by a wave-
length keff. Accurate spectroscopy and thermometry require the
so-called Lamb–Dicke confinement criteria, where the ion axial fluctu-
ations hdz2i are small compared to keff. This could open the door for
trapped-ion quantum simulation and sensing work1,4,5 with large
three-dimensional ion crystals. The large axial excursions of the low-
frequency E�B modes should improve the prospects for laser
Doppler cooling of these modes relative to that possible for single-
plane crystals.

F. Limiting cases

We now consider several limiting cases for which the eigenmode
problem for charges in a trap simplifies. We first consider the unmag-
netized case Xi ¼ 0. In this case, the dynamical matrix Eq. (122)
reduces to

D ¼ 0 M�1

�V 0

� �
; (155)

and the eigenvalue problem Eq. (5) corresponds to the coupled equa-
tions�ixr ¼ M�1 � p;�ixp ¼ �V � r which can be combined into a
reduced eigenvalue problem for x2, x2r ¼ M�1 � V � r. This is the
standard Hermitian eigenvalue problem for coupled unmagnetized
oscillators presented in many physics textbooks and referred to in the
introduction to Sec. II. The real eigenvectors r are found to form an
orthogonal set with respect to the reduced inner product ða; bÞ
¼ a �M � b for real vectors a and b. The mode frequencies x are
found to be real provided that the crystal equilibrium is stable (or neu-
trally stable), just as in the more general problem discussed in Sec. II.
Other features of the unmagnetized eigenmodes for an ion crystal in a
trap have been examined in previous papers and we will not comment
further on this special case.

We next turn to the case of a large magnetic field, such that
Xi � xr . As shown in Fig. 4, the normal modes now separate into
three frequency groupings. There are N E�B drift modes with low
frequencies that scale with magnetic field strength B as 1=B; N inter-
mediate frequency axial modes with frequencies that are independent
of B (for large B), and N high frequency cyclotron modes with fre-
quencies close to (but slightly larger than) Xi. If there are several spe-
cies of charge in the trap with different values of the vortex frequency
Xi, there are modes near each value. The number of modes is the

number of particles with that vortex frequency. In general, the fre-
quency difference x� Xi for these modes scales as 1=B.

Many characteristics of these strongly magnetized modes have
been considered in previous publications.10,13,16–18,22,23 Here, we pre-
sent reduced eigenvalue problems for each mode type and consider a
few special cases in more detail.

The eigenmodes in a large magnetic field can be evaluated using
degenerate perturbation theory applied to Eq. (5). We break up the
dynamical matrix D and the Hamiltonian matrix H into zeroth-order
and first order parts. The zeroth-order parts are

Hð0Þ ¼ C X
�X M�1

� �
; (156)

and

Dð0Þ ¼ J �Hð0Þ ¼ �X M�1

�C �X

� �
; (157)

while the first-order parts are

Hð1Þ ¼ V 0
0 0

� �
; (158)

and

Dð1Þ ¼ J �Hð1Þ ¼ 0 0
�V 0

� �
: (159)

The zeroth-order matrices describe the dynamics of non-
interacting charges in a magnetic field. Because the charges are non-
interacting, the eigenvectors and eigenvalues can be worked out for
each particle separately. The 6N dimensional eigenvector ux for one of
these modes consists of zeros in every element except for those ele-
ments corresponding to particle j. We label this particular eigenvector
ux ¼ uð0Þj;a where the superscript (0) indicates that it is a zeroth order
eigenvector, the subscripts j and a label the particle and the mode type,
respectively. There are five different mode types as we will see in a
moment. This eigenvector has the form

uð0Þja ¼ ð0;…; rja; 0;… pja; 0;… 0Þ:
i ¼ 1;…; j;…; N þ j;… 2N:

(160)

The vector ðrja; pjaÞ solves the six-dimensional single-particle eigen-
value problem corresponding to the particle j elements inDð0Þ:

�ixðrja;pjaÞ ¼

0 �Xj=2 0 1=mj 0 0

Xj=2 0 0 0 1=mj 0

0 0 0 0 0 1=mj

�mX2
j =4 0 0 0 �Xj=2 0

0 �mX2
j =4 0 Xj=2 0 0

0 0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

� ðrja;pjaÞ: (161)

This eigenvalue problem has five independent eigenvectors, three of
which correspond to zero-frequency modes, and two of which are
cyclotron modes with frequencies 6Xj. The positive and negative fre-
quency cyclotron eigenvectors for particle j are

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 102107 (2020); doi: 10.1063/5.0021732 27, 102107-18

Published under license by AIP Publishing

https://scitation.org/journal/php


ðrjþ; pjþÞ ¼
1

2
ffiffiffi
2
p

mjXj
ð2; 2i; 0;�imjXj;mjXj; 0Þ; x ¼ Xj; (162)

ðrj�; pj�Þ ¼ ðrjþ; pjþÞ
�; x ¼ �Xj: (163)

The negative frequency cyclotron eigenvector is the complex conjugate
of the positive frequency eigenvector, as expected from property 3.
Both eigenvectors are needed to describe the real phase space vector z
corresponding to cyclotron motion for particle j. Both modes corre-
spond to rotation of the particle position and momentum vectors in
the counterclockwise sense (the positive /̂ direction).

The three independent zero-frequency eigenvectors for particle j
are

ðrjX ; pjXÞ ¼ ð1; 0; 0; 0;�mjXj=2; 0Þ; (164)

ðrjY ; pjYÞ ¼ ð0; 1; 0;mjXj=2; 0; 0Þ; (165)

ðrjZ ; pjZÞ ¼ ð0; 0; 1; 0; 0; 0Þ: (166)

These eigenvectors correspond to displacements in the x, y, and z
directions, respectively, and are labeled as such. The nonzero momen-
tum components arise because the canonical momentum depends on
the position. There are corresponding constants of the motion
PjX;PjY ; PjZ . For example, PjX ¼ ðrjX ; pjXÞ � J � ðdxj; dyj; dzj; dpxj;
dpyj; dpzjÞ, and so on. For Xj 6¼ 0, one can check that PjX and PjY are
not in involution,

PjX ;PjY½ � ¼ mjXj; (167)

but ½PjY ; PjZ� ¼ ½PjX;PjZ � ¼ 0.
These five eigenvectors are not sufficient to form a complete set

to describe the motion of particle j; we require a sixth vector. This
problem should be familiar as it was covered in Sec. II B in the discus-
sion of neutrally stable systems. We require a vector that is orthogonal
to the other five eigenvectors. It could be found by solution of the lin-
ear algebra problem given by Eq. (41), but we can identify the solution
without any algebra:

ð�rjZ ; �p jZÞ ¼ ð0; 0; 0; 0; 0; 0; 1Þ; (168)

corresponding to a constant velocity in the z direction. There is one of
these vectors for each particle. We refer to the corresponding 6N
dimensional vector as �uj;Z , with zeroes in all elements except for those
corresponding to the jth particle:

�ujZ ¼ ð0;…; 0; �p jZ ; 0;…0Þ:
i ¼ 1;…N þ j;… 2N: (169)

These vectors are not eigenvectors, but instead satisfy

Dð0Þ � �u j;Z ¼ uð0Þj;Z=mj: (170)

The vectors are orthogonal to all of the zeroth-order eigenvectors uð0Þka ,
both with respect to a standard dot product as well as with respect to
the inner product defined by the zeroth order Hamiltonian matrix as

ða; bÞð0Þ ¼ a� �Hð0Þ � b: (171)

1. Reduced eigenvalue problem for cyclotron modes

We now employ the zeroth-order eigenvectors in order to con-
struct a cyclotron-frequency eigenmode that includes the effect of

particle interactions to the first order. Let us assume that there are Na

particles of species a, all of which have identical vortex frequency Xa,
and we will assume there are no other particles with this vortex fre-
quency. We will then use degenerate perturbation theory to solve for
the perturbed eigenmode ux, writing it as a superposition of the
degenerate zeroth order modes with frequency Xa:

ux ¼
XNa

j¼1
cjxu

ð0Þ
j;þ þ uð1Þ; (172)

where the sum over j sums only over particles of species a, the coeffi-
cients cjx are to be determined, and where uð1Þ is a small correction to
the eigenmode. By assumption, this correction is orthogonal to the
zeroth-order eigenmodes. (It will turn out that we do not need to
calculate uð1Þ.) We substitute this eigenvector into Eq. (5) and write
D ¼ Dð0Þ þDð1Þ to obtain

�ix
XNa

j¼1
cjxu

ð0Þ
j;þ � ixuð1Þ ¼

XNa

j¼1
cjxD

ð0Þ � uð0Þj;þ þ
XNa

j¼1
cjxD

ð1Þ � uð0Þj;þ

þDð0Þ � uð1Þ þDð1Þ � uð1Þ: ð173Þ

We drop the last term in this equation because it is second-

order, use the fact that Dð0Þ � uð0Þj;þ ¼ �iXau
ð0Þ
j;þ, multiply through by

i, and take a zeroth-order inner product with respect to one of the

eigenmodes uð0Þk;þ. The orthogonality and the Hermitian nature of

the matrix iDð0Þ then annihilate several terms in the equation,
leaving us with

xckxðuð0Þk;þ;u
ð0Þ
k;þÞ

ð0Þ ¼ Xackxðuð0Þk;þ;u
ð0Þ
k;þÞ

ð0Þ

þ
XNa

j¼1
cjxðuð0Þk;þ; iD

ð1Þ � uð0Þj;þÞ
ð0Þ: (174)

The inner product ðuð0Þk;þ; u
ð0Þ
k;þÞ

ð0Þ involves only particle k and, using
Eqs. (156), (160), and (162), evaluates to

ðuð0Þk;þ;u
ð0Þ
k;þÞ

ð0Þ ¼ 1
ma

(175)

[recall that all particles in Eq. (174) are of species a]. The inner product

ðuð0Þk;þ; iDð1Þ � u
ð0Þ
j;þÞ
ð0Þ involves only particles j and k in species a and

evaluates to

ðuð0Þk;þ; iD
ð1Þ � uð0Þj;þÞ

ð0Þ ¼ uð0Þ�k;þ � H
ð0Þ � iDð1Þ � uð0Þj;þ

¼ uð0Þ�k;þ � H
ð0Þ � J � iHð1Þ � uð0Þj;þ

¼ �iXau
ð0Þ�
k;þ � iH

ð1Þ � uð0Þj;þ (176)

¼ Xar
�
kþ � Vkj � rjþ

¼ 1
2m2

aXa
ð1;�i; 0Þ � Vkj � ð1; i; 0Þ

¼ 1
2m2

aXa
ðVkjxx þ VkjyyÞ; (177)

where we used the conjugate transpose of Eq. (5) in the third line,
Eqs. (158) and (160) in the fourth line, and Eq. (162) in the fifth line,
and where Vkjxx is the x̂ x̂ component of the potential matrix
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Vkj ¼ @2U=@Rj@Rk and similarly for Vkjyy . Equation (174) can then
be written in vector form as

ðx� XaÞcx ¼ F � cx; (178)

where the matrix F has components

Fjk ¼
Vjkxx þ Vjkyy

2maXa
: (179)

Thus, the frequency shift x� Xa is an eigenvalue of the matrix F. The
matrix is real and symmetric, so its eigenvalues are real and the eigen-
vectors are also real, and they form a complete orthogonal set.

Equations (178) and (179) are the reduced eigenvalue problem
for the cyclotron modes of species a. Note that only particles of this
species enter the matrix F so the matrix is Na � Na, yielding Na

eigenfrequencies that differ from Xa by a small shift, proportional
to 1=Xa.

For a stable system the shift is positive; the extra restoring force
from the oscillator potentials tends to increase the mode frequencies.
One can see this from the following argument: any displacement r of
the charges from equilibrium must increase the potential energy:
r � V � r > 0 for any real nonzero vector r. Consider now a complex
displacement r created by a superposition of cyclotron eigenvectors
for species a particles only. From Eq. (162), each particles position
change is complex, of the form vkð1; i; 0Þ for some complex amplitude
vk. Then, consider the quantity r� � V � r ¼ 2maXav� � F � v where v is
the vector of complex coefficients vk. However, r� � V � r > 0 because,
for any complex vector r ¼ aþ ib (for real a and b), r� � V � r
¼ a � V � aþ b � V � b (since V is symmetric) and both terms on the
right hand side are positive. Therefore, the quantity v� � F � v must
also be greater than zero for any vector v, which implies that the eigen-
values of F must be positive. This follows by writing v as a superposi-
tion of the real eigenvectors of F and evaluating v� � F � v.

In Fig. 7, we compare the eigenfrequencies evaluated using
Eq. (178) to the exact eigenfrequencies obtained using Eq. (5), as a test
of the perturbation theory. For the large magnetic field X ¼ 20xz , the
fractional error between the exact mode frequencies and the approxi-
mate frequencies is quite small.

The energy in cyclotron modes can be determined in terms of
the approximate cyclotron frequencies and eigenvectors. [Of course,
the energy of any given mode is also determined exactly via Eq. (16).]
Consider a phase space displacement due to species a cyclotron

modes, z ¼ 1=
ffiffiffi
2
p
 �P

x>0 ax
PNa

j¼1 cjxu
ð0Þ
jþ þ c:c:, where ax is the

amplitude of each mode. This definition, with the extra factor of
1=

ffiffiffi
2
p

, allows us to identify jckxj as ma multiplied by the speed of par-
ticle k in a given mode, for unit amplitude ax ¼ 1, because the unit
amplitude results in a cyclotron radius for this particle of jckxj=maXa,
according to Eqs. (162) and (163). Applying this phase space displace-
ment to the energy, Eq. (1), breaking the Hamiltonian matrix into
zeroth and first order parts, and using orthogonality of the cyclotron
modes along with Eqs. (175), (176), and (178), the cyclotron energy
diagonalizes:

H ¼ 1
2

X
x;�x>0

axa
�
�x

XNa

j;k¼1
ckxcj�x uð0Þ�kþ �H

ð0Þ � uð0Þjþ þ uð0Þ�kþ �H
ð1Þ � uð0Þjþ

� �

¼ 1
2

X
x;�x>0

axa
�
�x

XNa

j;k¼1
ckxcj�x

1
ma

djk þ
1

maXa
Fkj

� �

¼
X

x;�x>0

axa
�
�xcx � c�x

1
2ma
þ 1
2maXa

ð�x � XaÞ
� �

(180)

¼ 1
2maXa

X
x>0

xjaxj2cx � cx: (181)

The first term in the parenthesis in Eq. (180) gives the total kinetic
energy associated with free particle cyclotron motion: a sum of the
squares of the particle kinetic momenta in a given mode, jaxj2cx � cx,
also summed over the modes, and divided by two times the particle
mass. The second term in the parenthesis, proportional to �x � Xa, is
the relatively small positive correction to the kinetic energy due to
interactions between the charges.

2. Reduced eigenvalue problem for the axial and E 3 B
modes

Let us now turn to the axial modes and the E�B modes. These
modes can also be described using a reduced eigenvalue problem that
stems from degenerate perturbation theory applied to Eq. (5). Now,
however, we expand an eigenvector ux in terms of the zero-frequency
eigenvectors along with the extra vectors �ujZ :

ux ¼
XN
j¼1
ðXju

ð0Þ
jX þ Yju

ð0Þ
jY þ Zju

ð0Þ
jZ þ Pj�u

ð0Þ
jZ Þ þ uð1Þ; (182)

where Xj, Yj, and Zj are displacement amplitudes for particle j in the x,
y, and z directions, respectively, Pj is the axial momentum of particle j,
and uð1Þ is a small correction (which we will avoid having to evaluate
in what follows). This correction is assumed to satisfy orthogonality
conditions

uð0ÞjX � J �uð1Þ ¼ uð0ÞjY � J �uð1Þ ¼ uð0ÞjZ � J �uð1Þ ¼ �uð0ÞjZ � J �uð1Þ ¼ 0: (183)

We substitute Eq. (182) into Eq. (5) and again break D into zeroth-
order and first-order parts:

FIG. 7. Fractional difference between cyclotron frequencies evaluated using Eq.
(178) and the exact frequencies evaluated using Eq. (5) and displayed in Fig. 4, for
the same parameters as in that figure.
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�ix
XN
j¼1
ððXju

ð0Þ
jX þ Yju

ð0Þ
jY þ Zju

ð0Þ
jZ þ Pj�u

ð0Þ
jZ Þ � ixuð1Þ

¼ Dð0Þ �
XN
j¼1
ðXju

ð0Þ
jX þ Yju

ð0Þ
jY þ Zju

ð0Þ
jZ þ Pj�u

ð0Þ
jZ Þ

þDð1Þ �
XN
j¼1
ðXju

ð0Þ
jX þ Yju

ð0Þ
jY þ Zju

ð0Þ
jZ þ Pj�u

ð0Þ
jZ Þ

þDð0Þ � uð1Þ þDð1Þ � uð1Þ: (184)

We drop the last term on the right hand side, since it is second order.
Also, Dð0Þ � uð0Þja ¼ 0 for all the zero-frequency eigenmodes, so Eq.
(184) simplifies to

�ix
XN
j¼1
ððXju

ð0Þ
jX þ Yju

ð0Þ
jY þ Zju

ð0Þ
jZ þ Pj�u

ð0Þ
jZ Þ � ixuð1Þ

¼
XN
j¼1

Pju
ð0Þ
jZ =mj þDð1Þ �

XN
j¼1
ðXju

ð0Þ
jX þ Yju

ð0Þ
jY þ Zju

ð0Þ
jZ þ Pj�u

ð0Þ
jZ Þ

þDð0Þ � uð1Þ; (185)

where we also applied Eq. (170).
Now, recall from Sec. II B that we can project out zero-frequency

modes using the fundamental symplectic matrix J rather than the
inner product, since such modes are orthogonal to themselves. Acting
on Eq. (185) with ��uð0ÞkZ � J ¼ uð0ÞkZ and using the orthogonality condi-
tions (183) yields

�ixZk ¼ Pk=mk þ �uð0ÞkZ �H
ð1Þ

�
XN
j¼1
ðXju

ð0Þ
jX þ Yju

ð0Þ
jY þ Zju

ð0Þ
jZ þ Pj�u

ð0Þ
jZ Þ; (186)

where we used the identity J �D ¼ J � J �H ¼ �H. However, one can
use Eqs. (158) and (169) to check that �uð0ÞkZ �Hð1Þ ¼ 0, which annihi-
lates the sum on the right hand side so Eq. (186) simplifies to

�ixZk ¼ Pk=mk; (187)

the standard relationship between the axial position and momentum.
Now act on Eq. (185) with uð0ÞkZ � J ¼ �uð0ÞkZ , which results in

�ixPk ¼ �uð0ÞkZ �H
ð1Þ �

XN
j¼1
ðXju

ð0Þ
jX þ Yju

ð0Þ
jY þ Zju

ð0Þ
jZ þ Pj�u

ð0Þ
jZ Þ

¼ �
XN
j¼1
ðVkjzxXj þ VkjzyYj þ VkjzzZjÞ; (188)

where the second line applied Eqs. (158), (160), and (164)–(169). The
right hand side is the axial force on particle k caused by other particle
displacements from equilibrium.

Next, act on Eq. (185) with uð0ÞkY � J. Here, we will use uð0ÞkY � J � u
ð0Þ
kX

¼ �mkXk, which follows from Eqs. (167) and (63) or can be checked
directly using Eqs. (160), (164), and (165). This projection results in

ixmkXkXk ¼ �uð0ÞkY �H
ð1Þ �

XN
j¼1
ðXju

ð0Þ
jX þ Yju

ð0Þ
jY þ Zju

ð0Þ
jZ þ Pj�u

ð0Þ
jZ Þ

¼ �
XN
j¼1
ðVkjyxXj þ VkjyyYj þ VkjyzZjÞ: (189)

The right hand side is the force in the y direction on particle k caused
by displacements of other particles. The force produces an E�B drift
velocity �ixXk in the �x direction. Finally, act on Eq. (185) with
uð0ÞkX � J. This projection results in

�ixmkXkYk ¼ �
XN
j¼1
ðVkjxxXj þ VkjxyYj þ VkjxzZjÞ: (190)

The right hand side is the force in the x direction on particle k. This
force produces an E�B drift velocity�ixYk in the y direction.

Equations (187)–(190) constitute a reduced eigenvalue problem
for axial and E�Bmodes that has projected out the cyclotron modes.
However, the problem still mixes the E�B modes with the axial
plasma modes. One can see from Eqs. (189) and (190) that axial dis-
placements Zj are coupled to x and y drifts through the x and y forces
such axial displacements can produce. Also, axial accelerations can be
caused by X and Y displacements, as seen in Eq. (188).

Now, there are circumstances where this coupling vanishes. For
example, when the crystal equilibrium is a single lattice plane in the
z¼ 0 plane, symmetries of this equilibrium imply that
Vkjxz ¼ Vkjyz ¼ 0. The coupling between axial and transverse motions
also vanishes when the crystal is a one-dimensional line of charges
along the z axis. However, for more general crystal equilibria the cou-
pling is nonzero.

3. Decoupling the axial and E 3 B modes

In order to further decouple the E�B modes from the axial
modes, we must, in general, resort to an asymptotic two-timescale
analysis based on the different frequencies of these modes. The E�B
modes, with frequencies scaling as 1=B, are low frequency compared
to the axial modes provided that B is sufficiently large. This regime
implies that we may write Zj as a sum of a slowly evolving and a rap-
idly evolving contribution, Zj ¼ Zslow

j þ Zfast
j . The slow evolution, on

the E�B timescale, is conditioned on the axial particle positions being
in axial force balance:

0 ¼ �
XN
j¼1
ðVkjzxXj þ VkjzyYj þ VkjzzZ

slow
j Þ: (191)

We can regard this force balance condition as a set of coupled linear
equations for the slow axial displacements, written in vector form as
Vzx � X þ Vzy � Yþ Vzz � Zslow ¼ 0, where the tensor Vxz ¼ @U=
@X@Z and similarly for the other terms. This equation can be solved
by matrix inversion,

Zslow ¼ �V�1zz � ðVzx � X þ Vzy � YÞ: (192)

The fast motion in z is then evaluated using Eqs. (187) and (188) after
canceling the slow terms:

�ixZfast
k ¼ Pk=mk;

�ixPk ¼ �
XN
j¼1

VkjzzZ
fast
j :

(193)

This is the reduced eigenvalue problem for the axial modes.10 When
the approximations used in its derivation are poor, the full eigenvalue
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problem is available for exact results, or the reduced eigenvalue prob-
lem consisting of Eqs. (187)–(190) could be employed.

Equation (193) can be combined into a standard generalized
eigenvalue problem for x2, of the familiar type encountered in the
textbook Lagrangian theory of coupled oscillators,

x2M1 � Zfast
x ¼ Vzz � Zfast

x ; (194)

where Zfast
x is an eigenvector of axial displacements and the matrixM1

is the diagonal mass matrix of dimension N with diagonal elements
mj; j ¼ 1;…;N . The N eigenvalues x2 are the squares of the axial
mode frequencies, and can be shown to be real and positive for a stable
equilibrium, using standard arguments. The eigenvectors Zfast

x are real
and orthogonal with respect to the inner product ða; bÞz ¼ a �M1 � b.
In Fig. 8, we compare the frequencies determined using Eq. (194) to
those obtained from the exact analysis, as a test of the theory. Just as
for the cyclotron modes, the errors are small when the magnetic field
is large.

The axial eigenvectors diagonalize the axial energyHz where

Hz ¼
1
2

XN
j¼1

P2
j =mj þ

1
2

XN
j;k¼1

ZjVjkzzZk: (195)

Writing Zj ¼
P

x axZ
fast
j , where ax is the amplitude of mode x, and

applying Eqs. (193) and (194) to Eq. (195), the kinetic and potential
terms contribute equally, yielding for the axial energy the expression

Hz ¼
X
x

a2xx2ðZfast ;ZfastÞz: (196)

Turning to the E�Bmodes, we apply Eq. (192) for the slow axial
motion to Eqs. (189) and (190). These equations can then be com-
bined into a vector form. Defining a 2N dimensional transverse dis-
placement eigenvector R?x ¼ ðX;YÞ, the equations become

�ixR?x ¼ D? � R?x; (197)

whereD? ¼ G � J � V? is the dynamical matrix for E�B drift modes,
G is a diagonal 2N � 2N matrix with diagonal elements
ððm1X1Þ�1;…; ðmNXNÞ�1; ðm1X1Þ�1;…; ðmNXNÞ�1Þ, J is the
2N � 2N fundamental symplectic matrix [see Eq. (3)], and V? is the
following symmetric 2N � 2N potential energy tensor,

V? ¼
Vxx Vxy

Vyx Vyy

� �
� Vxz � V�1zz � Vzx Vxz � V�1zz � Vzy

Vyz � V�1zz � Vzx Vyz � V�1zz � Vzy

� �
:

(198)

This tensor determines the potential energy V in an E�B displace-
ment of the form ðX;Y;ZslowÞ through the expression

V ¼ 1
2
ðX;YÞ � V? � ðX;YÞ: (199)

This can be proven by writing V as

V ¼ 1
2
ðX;Y;ZslowÞ �

Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

0
@

1
A � ðX;Y;ZslowÞ; (200)

and applying Eq. (192) along with the symmetry of the matrix ele-
ments under interchange of the x, y, and z subscripts.

Equation (197) is the reduced eigenvalue problem for E�B drift
modes. The frequencies all scale as 1=B since the dynamical matrix
D? is proportional to 1=B through its dependence on G. The dynami-
cal matrix has properties that mirror the general Hamiltonian matrices
discussed in Sec. II, which in turn determine properties of the eigenm-
odes. First, the matrix iD? is Hermitian with respect to the inner
product ða; bÞ? ¼ a� � V? � b for any vector a and b. This follows
from the fact that the matrix L ¼ V? � G � J � V? is antisymmetric,
which in turn follows from the symmetry and antisymmetry, respec-
tively, of V? and J, along with the fact that G � J ¼ J � G. The proof
follows along the same path as in Eq. (8).

As discussed in relation to properties 1 and 2 in Sec. II, the
Hermitian nature of the dynamical matrix implies that the eigenfre-
quencies are real, provided that the system is at least neutrally stable,
and that non-degenerate complex eigenvectors are orthogonal with
respect to the above inner product. Also, since the matrix elements of
D? are real, the nonzero frequency modes come in 6x pairs, as per
property 3.

In Fig. 9, we compare the E�B frequencies determined using
Eq. (197) to those obtained from the exact analysis, as a test of the the-
ory. Just as for the cyclotron and axial modes, the errors are small.

The energy of an E�B mode can be written in terms of the
eigenvectors R?x. Since the E�B modes form an orthogonal set, a

FIG. 8. Fractional difference between axial frequencies x evaluated using Eq.
(194) and the exact frequencies xexact evaluated using Eq. (5) and displayed in
Fig. 4, for the same parameters as in that figure.

FIG. 9. Fractional difference between E� B frequencies x evaluated using Eq.
(197) and the exact frequencies xexact evaluated using Eq. (5) and displayed in
Fig. 4, for the same parameters as in that figure.
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general E�B displacement of the form
P

x>0 axðR?x;ZslowÞ þ c:c:,
where ax is the amplitude of a given mode, produces a diagonalized
potential energy V given by

V ¼
X
x>0

jaxj2R�?x � V? � R?x: (201)

The kinetic energy contribution to E�B modes is negligible, scaling
as 1=B2. For a cylindrically symmetric trap potential, there is an addi-
tional contribution to the potential energy from a zero frequency
mode. The analysis of this contribution follows the same procedure as
was developed in Sec. IIB. The extra energy from this mode is the
potential energy change from radial compression of the plasma due to
a change in the rotation rate.

IV. DISCUSSION

In this paper, we have detailed a method of diagonalizing the
Hamiltonian for a general linearized Hamiltonian system. The
method relies on the Hermitian properties of the dynamical
matrix D and, for a stable system, requires only the evaluation of
the eigenmodes of this matrix. For a neutrally stable system, we
found that the form of the Hamiltonian depends on whether or
not constants of the motion associated with neutral modes are in
involution. The normal mode form of the Hamiltonian was also
derived for an unstable system.

In applying this formalism to determine the normal modes of a
magnetized two-ion Coulomb cluster, we found that for spherically
symmetric confinement the rotational inertia of the cluster is unde-
fined, and we related this surprising result to the fact that constants of
the motion associated with rotations of this system are not in involu-
tion. In this case, a change in angular momentum produces a change
in crystal orientation rather than a change in rotation frequency.

Thermal fluctuations were also considered, and in particular,
fluctuations in axial position were evaluated in order to make contact
with ongoing experiments which depend, in part, on keeping these
fluctuations below the level set by the Lamb–Dicke confinement.1–5 A
somewhat surprising result of our analysis is the dominant contribu-
tion of low-frequency E�B modes to these axial fluctuations in 3D
Coulomb crystals.

This paper focused on linear modes, but nonlinear interactions
between modes are also important. One simple example of this cou-
pling is the modulation of axial mode frequencies as ions slowly shift
positions due to low-frequency E�B modes. This nonlinear behavior
will be the subject of future investigations.47

The fact that modes separate into three disparate frequency
groups in a strong magnetic field also has consequences for the energy
equilibration in such a system.17 When cooling and heating are
applied, modes with disparate frequencies can come to quite different
equilibrium energies, depending on the details of the driving.48 In par-
ticular, laser cooling of E�Bmodes may not be as efficient as for axial
and cyclotron modes because the velocities associated with these
modes are low, so their energies may not be well-equilibrated with the
other mode branches. In 3D crystals, this problem may be somewhat
alleviated by the axial motion associated with some E�B modes,
which can increase coupling between these modes and axial modes.
These effects will be subjects of further study.

The general theory presented in Sec. II kept forcing terms f in the
oscillator equations. This is because time-dependent forcing terms are

often present in ion crystal experiments, although they were not con-
sidered in Sec. III. In some experiments, oscillating fields are applied
in order to purposely interact with and excite certain modes, such as
the axial center of mass mode. Forcing can also be caused by non-
axisymmetric field errors in the external potential that are static in the
laboratory frame and by non-axisymmetric forces from laser beams
(also stationary in the lab frame). In the frame of the rotating crystal,
these forces oscillate at the rotation frequency xr, which can resonate
with normal modes. For example, for the b ¼ 3=4 crystal shown in
Fig. 2, when X¼ 0 (the Brillouin limit), the rotation rate is
xr ¼

ffiffiffiffiffiffiffi
5=4

p
xz ¼ 1:118xz , which is within the spectrum of mode fre-

quencies (see Fig. 3). It is therefore possible for forcing that is static in
the lab frame to resonantly excite normal modes in this crystal to large
amplitude. On the other hand, when X ¼ 20xz , xr is either
20:0623xz or 0:0623xz in the fast and slow rotation branches, respec-
tively, and both values lie just beyond the frequency spectrum limits
shown in Fig. 4. Resonant interactions with modes will lead to nonlin-
ear effects, plasma heating, and mode damping which are beyond the
scope of this paper’s linear analysis, and probably require a simulation
approach. The effect of interaction of modes with resonant external
forcing will be further examined in future work.
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APPENDIX A: THE POTENTIAL MATRIX

In this appendix, we work out the form of the 3� 3 potential
matrix Vjk ¼ @2U=@Rj@Rk for charges j and k with equilibrium
positions Rj and Rk, respectively. The system potential energy U is
given by Eq. (115), and substituting for this, we obtain

Vjk ¼ djk
@2

@R2
j

/jðRj;ZjÞ þ
XN
l¼1
l 6¼j

qjql
jRj � Rlj

0
B@

1
CA

þ ð1� djkÞ
@2

@Rj@Rk

qjqk
jRj � Rkj

: (A1)

Evaluating the derivatives yields the following dyadic form for the
matrix:

Vjk ¼ djk r̂ r̂
@2

@R2
j
þ ẑ ẑ

@2

@Z2
j
þ ðr̂ ẑ þ ẑ r̂Þ @2

@Rj@Zj

 !
/jðRj;ZjÞ

þdjk
XN

l¼1l 6¼jl¼1
qjql

3ðRj � RlÞðRj � RlÞ
jRj � Rlj3

� 1

jRj � Rlj5

 !

�ð1� djkÞqjqk
3ðRj � RkÞðRj � RkÞ

jRj � Rkj3
� 1

jRj � Rkj5

 !
; (A2)

where 1 is the 3� 3 unit matrix.
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APPENDIX B: DIAGONALIZING THE ENERGY USING
NON-CANONICAL VARIABLES

In order to evaluate the normal modes of oscillation of a
Coulomb crystal, we employed a Hamiltonian approach using
canonical variables in Sec. III. An alternate approach instead uses
particle velocities rather than canonical momenta, but employs
most of the same techniques as in the Hamiltonian method. In this
Appendix, we outline this non-canonical method. It is closer to the
Lagrangian approach used in Ref. 22 and is arguably easier to apply,
provided that canonical coordinates are not required.

The linearized equations of motion in the rotating frame of the
crystal equilibrium, when written in terms of the perturbed veloci-
ties dvj; j ¼ 1;…;N , are

d _ri ¼ dvi; (B1)

mid _v i ¼ �
X
j

Vij � drj �miXidvi � ẑ ; (B2)

where the 3� 3 symmetric tensor Vij ¼ rirjU.
In order to solve for the linear normal modes of oscillation of

this system, we combine Eqs. (B1) and (B2) into a single vector
equation for the 6N dimensional configuration vector
g ¼ ðdr1;…; drN ; dv1;…; dvNÞ, as was done in the Hamiltonian
method. Then, the linearized equations of motion can be written, in
analogy to Eq. (2), as

_g ¼ D0 � g; (B3)

where the 6N � 6N dynamical matrix D0 consists of four 3N � 3N
blocks,

D0 ¼ 0 1
�M�1 � V �2X

� �
; (B4)

where the Lorentz tensor X, the mass tensor M, and the potential
tensor V are the same as in Eq. (118).

The system energy E is a conserved quantity, given by

E ¼ 1
2
g � E � g; (B5)

where the symmetric energy matrix E is

E ¼ V 0
0 M

� �
: (B6)

Eigenmodes of the form gðtÞ ¼ exp ð�ixtÞwx satisfy the
eigenvalue problem

�ixwx ¼ D0 � wx: (B7)

This eigenvalue problem is essentially identical to the secondary
eigenvalue problem used to solve the quadratic eigenvalue problem
in Ref. 22.

This modified non-canonical dynamical matrix still has the
property that iD0 is Hermitian, with respect to a modified inner
product defined by ða; bÞ0 ¼ a� � E � b for vectors a and b. This can
be proven in an analogous manner to the proof for the Hamiltonian
problem in Eqs. (7) and (8). Consider the matrix L ¼ E �D0. One
can show that this matrix is antisymmetric by direct calculation
using Eqs. (B4) and (B6):

L ¼ 0 V
�V �2M �X

� �
: (B8)

The dot product of the diagonal matrix M and the antisymmetric
block-diagonal matrix X is clearly antisymmetric, and therefore L is
antisymmetric; also, it is real. This implies that a� � E � iD0 � b
¼ ½b� � E � iD0 � a��, so iD0 is Hermitian. Therefore, the eigenmodes
satisfy properties 1, 2, and 3 of Sec. II. The eigenvectors form an
orthogonal set with respect to the inner product ða; bÞ0, and so on.

The energy of the system is diagonalized by the eigenmodes.
For simplicity, we consider only the case where the system is stable
with no zero-frequency modes. Then, we may write a general phase
space configuration g in terms of the complete set of orthogonal
eigenvectors

g ¼
X
x

axwx; (B9)

where ax is the complex amplitude of mode x. As mentioned
before, property 3 of Sec. II together with the real nature of g
implies that a�x ¼ a�x. Applying this to the energy in Eq. (B5) and
using orthogonality and property 3 then yields the diagonalized
energy

E ¼
X
x>0

jaxj2ðwx;wxÞ
0: (B10)

APPENDIX C: ROTATIONAL INERTIA FOR A
COULOMB CRYSTAL

In this appendix, we evaluate the rotational inertia of a
Coulomb crystal consisting of identical ions. We then specialize the
result to a quadrupolar trap in which the ions are confined in the
x–y plane.

In order to evaluate the rotational inertia ð�u0z; �u0zÞ, we require
a solution for the vector �u0z of the equation

H � �u0z ¼ u0z � J; (C1)

where u0z is given by Eq. (124) and the Hamiltonian matrix H is
given by Eq. (118). Taking advantage of the block form of H, we
write �u0z ¼ ð�r; �pÞ, which when used in Eq. (C1) yields two coupled
equations

ðVþ CÞ � �r þX � �p ¼ �p0z ¼ �
1
2
mXR?; (C2)

Xtr � �r þm�1�p ¼ r0z ¼ ẑ � R; (C3)

where R? is the projection of the equilibrium positions R onto the
x–y plane, and where we have also imposed the assumption of a sin-
gle species plasma for simplicity, but have not yet assumed a single-
plane structure to the equilibrium. Using Eqs. (119) and (120) for
X, and the definition of C, we can write these equations as

V � �r þ 1
4
mX2�r? �

1
2
Xẑ � �p ¼ � 1

2
mXR?; (C4)

1
2
Xẑ � �r þm�1�p ¼ ẑ � R: (C5)

Taking a cross-product of Eq. (C5) then yields
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ẑ � �p ¼ �mR? þ
1
2
mX�r?: (C6)

Applying this result to Eq. (C4) implies

�V � �r ¼ mXR?: (C7)

The left hand side is the electrostatic force due to a displacement �r
of the charges. The equation requires that this force must be purely
radial. Once a solution is obtained, then �p is determined by Eq. (C5)

�p ¼ mẑ � R� 1
2
mXẑ � �r: (C8)

When these results are used to calculate the rotational inertia
�u0z �H � �u0z , the result is

ð�u0z; �u0zÞ ¼ mR? � R? þ �r � V � �r: (C9)

The first term is the usual kinetic rotational inertia of a rigid body
consisting of identical masses and the second term is the extra iner-
tia associated with potential energy from compression of the crystal.

In general, Eq. (C7) must be solved numerically, but for a sin-
gle plane equilibrium in a quadrupole trap, the solution is available
analytically. In this case, it is well-known that a purely radial pertur-
bation in the position of each charge produces a radial restoring
force, as required (this occurs in the radial breathing mode).10,22

According to Appendix B in Ref. 10, the restoring force from a
radial expansion is �V � R? ¼ �3mx2

?R?. Therefore, the solution
of Eq. (C7) is

�r ¼ � X
3x2
?
R?; (C10)

and together with Eq. (C5) this implies

�p ¼ mẑ � R 1þ X2

6x2
?

 !
: (C11)

These are the results quoted in Eq. (126). The rotational inertia, Eq.
(127), follows from the substitution of Eq. (C10) into Eq. (C9),
using Eq. (C7).

APPENDIX D: THE BOSONIC BOGOLIUBOV
METHOD REVISITED

In this appendix, we review the Bogoliubov method and
show that it is equivalent to the classical Hermitian method used in
Sec. II, while describing a version of the Bogoliubov method that
more closely follows the Hermitian method.

The Bogoliubov method for diagonalizing a linearized
Hamiltonian is couched in terms of “creation and annihilation”
pairs w ¼ ðc; c�Þ rather than the phase space coordinates
z ¼ ðq; pÞ. In terms of these pairs, the Hamiltonian for a linearized
system is

H ¼ 1
2
w� �h � w; (D1)

where the matrix h is Hermitian, h† ¼h, and has the symmet-
ric block form

h ¼ A B
B� A�

� �
; (D2)

where the N�N matrix A ¼ A† is Hermitian and the N�N matrix
B ¼ Btr is symmetric. The creation and annihilation pairs are
related to z via the linear transformation

w ¼ T � z; (D3)

where

T ¼ 1ffiffiffi
2
p 1 i1

1 �i1

� �
; (D4)

or in the component form c ¼ ðqþ ipÞ=
ffiffiffi
2
p

; c� ¼ ðq� ipÞ=
ffiffiffi
2
p

.
These creation/annihilation pairs have Poisson bracket relation-
ships that may be succinctly expressed by the equation

w;w�½ � ¼ �ir; (D5)

where the matrix r is defined as

r ¼ 1 0
0 �1

� �
: (D6)

Equation (D5) is equivalent to, and follows from, the Poisson
bracket relationships ½z; z� ¼ J. The relationship between the
Hamiltonian matrix H of Eq. (1) and the matrixh is found by sub-
stitution of Eq. (D3) into Eq. (D1), yielding

H ¼ T† �h � T: (D7)

The standard Bogoliubov approach is to find a transformation
to new creation–annihilation pairs / ¼ ða; a�Þ,

w ¼ s � /; (D8)

for some matrixs such that the Hamiltonian is diagonalized:

H ¼ 1
2
/� �k � /; (D9)

with the new Hamiltonian matrixk given by

k ¼s
† �h �s ¼ diagonal: (D10)

The added requirement that the transformation be canonical
requires ½/;/�� ¼ �ir, which using Eq. (D8) implies that s must
satisfy the symplectic condition in the creation/annihilation
representation,

s � r �s† ¼ r: (D11)

Equations (D10) and (D11) are the Bogoliubov equations for s,
whose solution provides the canonical transformation that diago-
nalizes the Hamiltonian. In what follows, we solve for s using an
approach similar to that used in Sec. II.

Consider the equation of motion for w that follows from
Hamiltonian (D1):

_w ¼ w;H½ � ¼ w;w�½ � �h � w ¼ �ir �h � w ¼ �id � w; (D12)

where we introduce the quantum dynamical matrix d � r �h.
This dynamical matrix is analogous to the matrix D introduced in
Sec. II. Now, consider eigenmodes of the form w ¼ exp ð�ixtÞwx
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for a mode of frequency x, where wx is the associated vector.
Equation (D12) implies that these vectors are eigenvectors of d
with eigenvalues x:

d � wx ¼ xwx: (D13)

These eigenvectors are related to the eigenvectors ux of the dynami-
cal matrix D by Eq. (D3), which implies that

wx ¼ T � ux: (D14)

We can now prove three properties of these eigenmodes that are
directly analogous to the three properties described in Sec. II:

1. The eigenvectors wx form an orthogonal set with respect to a
generalized inner product defined for any complex vectors a and
b as ða; bÞ � a� �h � b:
ðwx;w�xÞ ¼ 0 provided that x 6¼ �x�.

2. A given eigenvalue x is real, provided that the corresponding
eigenvector satisfies ðwx;wxÞ 6¼ 0.

3. For each eigenmode ðx;wxÞ for which x 6¼ 0, there is a second
eigenmode ð�x�;w�x� Þ for which w�x� ¼ K � w�x, where the
matrix K is

K ¼ 0 1
1 0

� �
: (D15)

Thus, for real x, the x 6¼ 0 eigenmodes come in 6x pairs.
As described in Sec. II, the first two properties are a conse-

quence of the spectral theorem for Hermitian matrices. Here, as
mentioned before, the quantum dynamical matrix d is Hermitian
with respect to the above inner product:

ða;d � bÞ ¼ ðb;d � aÞ�: (D16)

This requires that the matrix l �h �d is a Hermitian
matrix: l ¼l

†, which can be proven using the same set of steps
as shown in Eq. (8):

lji ¼hjkrklhli ¼h
�
kjrlkh

�
il ¼h

�
ilrlkhkj ¼l

�
ij: (D17)

The third property takes a bit more work than in Sec. II. Here,
we use the following property of the quantum Hamiltonian matrix
h that follows from its special form, Eq. (D2):

h ¼ K �h� � K: (D18)

Acting on both sides of the equation with r and using the identity
r � r ¼ 1 gives

d ¼ r � K � r � r �h� � K
¼ �K �d� � K; (D19)

where we used the identity r � K � r ¼ �1. Substituting Eq. (D19)
into Eq. (D13), acting on both sides with K and using K � K ¼ 1
then yields

d
� � K � wx ¼ �xK � wx: (D20)

The complex conjugate of this equation proves property 3.
We can now diagonalize the Hamiltonian using these eigen-

vectors, proceeding as described in Sec. II. We will assume for sim-
plicity that ðwx;wxÞ 6¼ 0 for all eigenmodes, so that all

eigenfrequencies are real and are also nonzero and non-degenerate.
First, we write a general vector w ¼ ðc; c�Þ in terms of a linear com-
bination of the eigenvectors wx:

wðtÞ ¼
X
x

axðtÞwx: (D21)

This is merely another way to express the Bogoliubov transfor-
mation Eq. (D8), taking the components of the vector /ðtÞ to be
axðtÞ and the transformation matrix s to have columns given by
the eigenvectors:

s ¼ ðwx1 ;wx2 ;…;wx2N Þ: (D22)

Substituting Eq. (D21) into Eq. (D1) and using orthogonality of the
eigenvectors (property 1) lead immediately to the diagonal form

H ¼ 1
2

X
x

axa
�
xðwx;wxÞ: (D23)

To make further progress, we order the eigenfrequencies such
that frequencies x1 to xN are greater than zero, and the next set of
N frequencies are their paired opposites as per property 3. This
implies thats takes the form

s ¼ ðwx1 ;…;wxN ;K � w�x1
;…;K � w�xN

Þ; (D24)

and that we can write Eq. (D21) as

wðtÞ ¼
X
x>0

axðtÞwx þ a�xðtÞK � w�x

 �

: (D25)

In order for this equation to match Eq. (D8) with / ¼ ða; a�Þ, this
requires

a�x ¼ a�x; (D26)

which implies that / has the required form

/ ¼ ðax1 ;…; axN ; a
�
x1
;…; a�xN

Þ: (D27)

We can use this result to simplify the Hamiltonian, summing only
over positive frequencies x1;…;xN :

H ¼ 1
2

X
x>0

axa
�
x ðwx;wxÞ þ ðK � w�x;K � w�xÞ
	 


: (D28)

This can be further simplified using the identity

ðK � w�x;K � w�xÞ ¼ ðwx;wxÞ; (D29)

which yields the simplified diagonalized Hamiltonian

H ¼
X
x>0

axa
�
xðwx;wxÞ: (D30)

The identity can be proven with the aid of the complex conjugate of
Eq. (D18):

ðK � w�x;K � w�xÞ ¼ wx � K �h � K � w�x ¼ wx �h� � w�x
¼ w�x �h � wx; (D31)

where we used Ktr ¼ K in the first step andh† ¼h in the last step.
Next, we ensure that the transformation to the new / variables

is canonical by requiring that their Poisson brackets satisfy
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½/;/�� ¼ �ir. In the component form, this requires ½ax; a��x �
¼ �idx;�x and ½ax; a�x � ¼ 0 (for x and �x both greater than zero).
We satisfy these equations in the same way as described in Sec. II.
Equation (D21) and orthogonality of the modes imply that

axðtÞ ¼
ðwx;wðtÞÞ
ðwx;wxÞ

: (D32)

Applying this to ½ax; a��x �, we use Eq. (D5) to obtain

ax;a
�
�x

� �
¼ w�x �h � ð�irÞ �h �w�x

ðwx;wxÞðw �x ;w�xÞ
¼ w�x �h � ð�idÞ �w�x

ðwx;wxÞðw�x ;w�xÞ

¼ w�x �h � ð�i�xw�xÞ
ðwx;wxÞðw�x ;w �xÞ

¼ �ixdx;�x

ðwx;wxÞ
; (D33)

where in the first step we used h
† ¼h, in the third step we used

Eq. (D13), and in the last step we used the orthogonality of the
eigenmodes (property 1). A similar argument [see Eqs. (18) and
(19)] shows that ½ax; a�x � ¼ 0 when x and �x are greater than zero.
Thus, the transformation is canonical, provided that we normalize
the eigenvectors so that

ðwx;wxÞ ¼ x; x > 0; (D34)

a result analogous to Eq. (21). Applying this to Eq. (D30) yields the
diagonalized Hamiltonian in the canonical form,

H ¼
X
x>0

axa
�
xx: (D35)

We can more directly connect this approach to the standard
Bogoliubov approach by applying the vector w��x � r to Eq. (D13):

w��x � r �d � wx ¼ xw��x � r � wx: (D36)

Using r � r ¼ 1 and d ¼ r �h then allows the left hand side to be
written as an inner product:

ðw�x ;wxÞ ¼ xw��x � r � wx: (D37)

The orthogonality of the eigenmodes then yields

ðwx;wxÞdx;�x ¼ xw��x � r � wx: (D38)

For x > 0, we can substitute for the inner product using Eq. (D34),
while for x < 0 we can employ Eq. (D29) to see that
ðwx;wxÞ ¼ �x; x < 0, which when used in Eq. (D38) yields

w��x � r � wx ¼ signðxÞdx;�x : (D39)

However, since the eigenvectors are columns of the transformation
matrixs [see Eq. (D24)], this equation is equivalent to

s
† � r �s ¼ r: (D40)

Taking the complex conjugate of this equation and using rtr ¼ r
yields the symplectic condition, Eq. (D11). Thus, our transforma-
tion matrix s, given by Eq. (D24) along with eigenvector normal-
izations (D34), is of the required symplectic form, and also
diagonalizes the Hamiltonian as required by the Bogoliubov
equations.

Finally, we can rederive the symplectic transformation S
between z and Z [see Eq. (27)] by employing Eq. (D3) along with
/ ¼ T � Z in Eq. (D8), which implies

S ¼ T�1 �s � T: (D41)

Since T is a unitary transformation, T�1 ¼ T† and Eqs. (D14) and
(D24) imply that T�1 �s ¼ ðU;U�Þ, which when applied to Eq.
(D41) leads back to Eq. (28), S ¼

ffiffiffi
2
p
ðReU;�ImUÞ.
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The data that support the findings of this study are available
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