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Chapter 1

Plasmas in Penning Traps

This chapter introduces the reader to the physics of plasmas in Penning traps.
After a brief discussion of what constitutes a classical plasma, and a descrip-
tion of Debye shielding, the basic equilibrium properties of non-neutral plas-
mas in Penning traps are explained. Plasma rotation, the Brillouin limit, dia-
magnetic effects, the confined thermal equilibrium state, and constants of the
motion are discussed.

1. What is a Plasma?

A plasma is a state of matter with properties quite distinct from the solid, liq-
uid, or gas phases that you are more familiar with from your physics classes. In
fact, plasma is often referred to as the "fourth state of matter".! In the follow-
ing two chapters, we will consider a few of the properties of the plasma state,
particularly as they pertain to confined plasmas in Penning traps.

A plasma is a collection of charged particles moving freely under the influ-
ence of external force fields as well as self-generated electric and/or magnetic
fields. In a plasma, these self-generated fields are sufficiently large to signifi-
cantly affect the particle dynamics. Plasmas are often produced by heating a
neutral gas until a significant fraction of the particles become ionized through
collisional processes; however, low temperature plasmas also exist in both na-
ture and the laboratory. In fact, plasma temperatures can be sufficiently low,
and/or densities can be sufficiently high, that quantum phenomena (such as
Pauli exclusion® or quantized energies®”) play an important role in the plasma
equilibrium and dynamics. However, in these chapters, I will concentrate on
those regimes where the plasma state is well-described by classical mechan-
ics. I will also neglect relativistic effects, assuming particle velocities are small
compared to the speed of light (an excellent approximation in most Penning
trap experiments).

Also, plasmas are not always charge-neutral — particularly in Penning trap
experiments, the number of negative charges does not always balance the
number of positive charges. Such plasmas are called "non-neutral".?
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Below, I consider in more detail the requirements for a system to be in the
plasma state.

1.1. The Debye length

The Debye length Ap is a fundamental length scale in plasmas. It is the length
over which static electric fields are "screened out" in an unmagnetized thermal
classical plasma. To understand what this means, consider the following sim-
ple plasma configuration: a parallel plate capacitor is introduced into a neutral
plasma consisting of electrons and singly-charged ions with equal densities n
and charges —e and +e respectively(Fig. 1). I assume that this plasma has a
well-defined temperature T, and I apply a potential V to the left capacitor elec-
trode (at position x = 0) and ground the right electrode (which is at position
x = L). If there were no plasma present, this would produce a potential be-

x=0

Fig. 1.: A neutral plasma between the plates of a capacitor shields out the ap-
plied electric field.

tween the electrodes given by
p(x)=V(Q-x/L) m

which corresponds to a uniform electric field E = V/L between the plates.
However, the plasma significantly affects this potential, reducing the electric
field to nearly zero after a "sheath" layer whose width is given by the Debye
length. This is what is meant by "plasma screening". To analyze this screening
phenomenon, I assume for simplicity that the plasma is in a thermal equilib-
rium state at temperature 7. (Here I should note, in the interests of full disclo-
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sure, that plasmas in contact with conducting plates as shown in the figure are
typically not in thermal equilibrium because the plates draw current from the
plasma, are not at the same temperature as the plasma, and may react chem-
ically with the plasma; and consequently the plasma screening that occurs is
much more complicated than the simple model put forward here. The con-
ducting plates I am using are magic plates that can be heated to the same tem-
perature as the plasma without vaporizing, and also somehow neither emit nor
absorb electrons or ions.) The thermal equilibrium model implies that the elec-
tron and ion densities 1, and n; are described by Boltzmann distributions:®

ne(x) = noexp(ep(x)/T) 2)
ni(x) = noexp(—e¢(x)/T) 3)

That is, the electrons are attracted to the plate at positive potential, increasing
their density there, while the ions are repelled from that region; and the zero
of potential is defined to be in the region where the plasma achieves density
no. (Note that in these chapters temperature is regarded as having units of en-
ergy, and therefore the Boltzmann constant kp is unnecessary. Boltzmann, the
founder of statistical mechanics and one of the great scientific innovators of the
late 19th and early 20th centuries, deserves to have a better constant named af-
ter him!)

The charge distribution arising from Egs. (2) and (3) has an appreciable ef-
fect on the electrostatic potential ¢. The potential is determined from the Pois-
son equation,

az¢
dx?

= 2 [no(x)— ni(x)]
€o
= %e [exp(eqp/T)— exp(—e/T))] @

Equation (4) can be solved subject to the boundary conditions that ¢(0) =
V and ¢ (L) = 0. For simplicity, I will facilitate this solution by linearizing the
equation in ¢, assuming that le¢ /T| < 1:

42 2
0] _znoe

dx?2 " gT ¢- ®)

The factor of two that appears on the right-hand side arises from the shield-
ing effect of the two species considered here, i.e. electrons and singly-charged
ions. If more species were added, with arbitrary charges, this factor would be
modified.!”



July 21, 2015 8:47 World Scientific Review Volume - 9in x 6in "Les Houches master" page 4

4 Contents

The solution to Eq. (5) that matches the required boundary conditions is

o exp(—v2x/Ap)—exp(v2(x —2L)/Ap)
PL=V 1—exp(—2v2L/Ap) ©)

~ Vexp(—v2x/Ap), L> Ap, (7)

where the Debye length A is defined in terms of the equilibrium density and
temperature as

E()T

noe?

— 743 T(eV)
— I g(m3y

Equation (7) implies that the electric field in the plasma is exponentially
suppressed. The positively charged capacitor plate attracts plasma electrons
and repels ions. After a sheath region which is a few Debye-lengths thick, the
electric field is nearly zero: it has been screened out by the plasma.

ADE

8

1.2. Requirements for the plasma state

These considerations lead us to our first requirement that a system be in the
plasma state: in order for the plasma to significantly affect the potential, the
Debye length must be small compared to the system size; otherwise the screen-
ing effect of the plasma is negligible:

Ap < L in the plasma state. 9)

If this requirement is not met and the Debye length is larger than L, one can see
from Eq. (6) that the potential returns to the vacuum form, Eq. (1).

A second requirement follows from certain assumptions in the preceding
analysis. In describing the ions and electron densities with Eqs (2) and (3), I
have have implicitly treated them as continuous fluids. This is only a good ap-
proximation provided that the density varies slowly on the scale of the mean
inter-particle spacing a = n,, '3 Since the density varies on the scale of the De-
bye length, it is necessary that Ap > ngl/ ®. This inequality is often rearranged
to read

noA3,>1 in the plasma state. (10)

The dimensionless quantity roA3, the number of charges in a "Debye-sphere",
is called the plasma parameter.> Some further intuition regarding this expres-
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sion can be found by rewriting Eq. (10) using Eq. (8):

(11D

T 732
ez/soa]

noA3, = [
which is the ratio of the mean kinetic energy of a particle, T, to the mean in-
teraction potential energy e?/epa between nearest-neighbors. This ratio must
be large in the plasma state, so the plasma is a nearly ideal gas of weakly-
interacting charges. However, this does not mean that one can ignore the col-
lective interaction of many charges with one-another, which gives rise to large
potentials sufficient to screen out applied fields or produce plasma waves (as
discussed in the next chapter).

Plasmas for which the plasma parameter is of order unity or even smaller
than unity are referred to as non-ideal plasmas, or strongly-coupled plasmas.!°
Since the kinetic energy per particle is on the same order as, or even smaller
than, the interaction energy, these plasmas might be better thought of as liquids
or possibly even solids. The properties of non ideal plasmas, and their study in
Penning traps, will be the subject of other chapters in this course. Here, I will
focus on "standard-issue" nearly-ideal plasmas.

Question (1 a). If the capacitor plates are 1cm apart and the plasma tem-
perature is 10eV, what density is required in order for there to be at least 10
Debye lengths between the plates?

Question (1b): The Orion Nebula is a roughly spherical mass of almost
fully-ionized Hydrogen with a radius of about 20 light years and a mean charged
particle density of roughly ny = 108m=3. If it were in thermal equilibrium (it is
not — portions of it are far from equilibrium!) with a temperature of 7=100 eV,
what would its Debye length be? Under these assumptions, would you classify
the Orion Nebula as a plasma?

2. Non-neutral plasmas in Penning traps

A non-neutral plasma is a plasma in which the number of negative and positive
charge species are unequal.® Most plasmas are at least slightly non-neutral;
such plasmas are often referred to as "quasi-neutral". In this chapter I will be
concerned with fully-unneutralized plasmas consisting only of species with the
same sign of charge. Many such plasmas that have been created and studied
experimentally: pure electron plasmas;!! mixed electron and antiproton plas-
mas;'2 mixed positron and positive ion plasmas;!3 negative ion plasmas.!* In
these experiments, the plasmas can satisfy relations (9) and(10), and therefore
exhibit strong Debye shielding of externally applied potentials.
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These fully-unneutralized non-neutral plasmas are studied for a number of
reasons. First and possibly foremost, they have exceptional confinement prop-
erties: they can be confined in a rotating thermal equilibrium state away from
surrounding walls, in an electromagnetic bottle called a Penning trap!® that
uses only static electric and magnetic fields.'® (We will see that the same cannot
be said of neutral plasmas!) The existence of a confined thermal equilibrium
state implies that the plasmas are inherently low noise and reproducible, since
there is no free energy available to drive the kinds of instabilities that plague
neutral plasma devices.

The range of densities that can be accessed by these non-neutral plasmas is
smaller than for neutral plasmas, and it depends on the strength of the confin-
ing magnetic field. Densities are typically less than 10'8m~23 for pure electron
plasmas, and even less for ions. However, the temperatures in experiments can
range over many orders of magnitude from 1 mK up to 10 eV or more, allow-
ing a range of phenomena to be studied. For example, if a neutral plasma were
cooled to 1 mK, it would immediately recombine to a neutral gas. However, in a
fully-unneutralized plasma, there is no oppositely charged species with which
to recombine. Furthermore, at such low temperatures the plasma parameter
is much smaller than unity and the plasma is strongly-coupled, exhibiting liq-
uid and even crystalline phases. This interesting behavior will be discussed by
other speakers.

Here, I will first consider the confinement characteristics of a non-neutral
plasma in a Penning trap.

2.1. The Penning-Malmberg Trap

Figure 2 shows a schematic of a Penning-Malmberg trap (a Penning trap with
cylindrical electrodes!!). Voltages are applied to the end electrodes in order to
produce a potential well in the axial direction that confines charges with a given
sign of charge (assumed positive in the case of Fig. 2). Confinement against ra-
dial plasma expansion is provided by the magnetic field B= BZ, directed along
the axis of symmetry of the trap. The plasma rotates around the axis of symme-
try, and the rotational velocity provides an inward-directed v x B force that bal-
ances the outward-directed radial electric force from the unneutralized plasma
charge.

To analyze this plasma configuration in more detail, I will apply fluid equa-
tions of motion.For a single species plasma consisting of charges with mass m,
charge g, and density 7, the momentum equation for the plasma’s fluid velocity
u is%20
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Fig. 2.: Cutaway view of the cylindrical electrodes showing a positively-charged
non-neutral plasma confined in a Penning-Malmberg trap.

du
mn(a_l_u.vu):qn(—V(j)—I—llXB)—Vp, (12)

where p is the plasma’s thermal pressure. In what follows, g is a signed quantity;
it can be either positive or negative.

Throughout the rest of this chapter, I will also assume that the plasma has
achieved a confined thermal equilibrium state. In this thermal equilibrium
state the plasma rotates, with a the time-independent fluid velocity given by the
expression u(r) = —w, 0, where cylindrical coordinates are being employed,
and w, is the rotation frequency (in radians per second). The negative sign in
this expression reflects the fact that a positively charged plasma will rotate in
the —@ direction; thus, for positive plasmas w; is a positive quantity; but for a
negative plasma w, is less than zero.

In thermal equilibrium the plasma rotation frequency is constant in time
and uniform in space; if it were nonuniform, viscous effects would cause any
such velocity shears to relax until the plasma rotates rigidly.

Also, in thermal equilibrium, the plasma pressure p is related to density
and temperature T through the ideal gas law (since the plasma is a nearly ideal
gas): p = nT, where T is time-independent and uniform in space (note that
throughout the chapter I measure T in units of energy). If the temperature were
not uniform, it would relax through thermal conduction.

First, let us consider the z-component of Eq. (12):

0=—qgn——T—. (13)
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Consider first the "zero-temperature" limit (i.e. the regime where tempera-
tures are small enough so that the second "pressure" term on the rhs can
be neglected). In this limit, the equation implies that wherever the density
is nonzero, the z-component of the electric field is zero. This is the Debye-
shielding phenomenon discussed in the previous section, in the limit of zero
Debye length. More generally, at finite T, the z-electric field is shielded out
inside the plasma within a few Debye-lengths of the plasma surface.
For finite T, Eq. (13) can be integrated to yield the Boltzmann-like relation

n(r,z)=N(r)exp[—q¢(r,z)/T], (14)

for any function N(r). This function is determined by the radial component of
the momentum equation, which is given below:

ar ar

The term on the lhs is the centripetal force density associated with rigid rotation
arising from the u- Vu term in Eq. (12). This force density must be in balance
with the radial forces from the electric potential, rotation through the magnetic
field, and pressure.

) ¢ an
—-mnwir=—qn| -+ Bw,r | —-T——. (15)

2.2. Plasma Density

By substituting Eq. (14) for the density into Eq. (15), some cancelations occur
and the result is a simple differential equation for N(7):

oN
15 =—me, - w)r N, (16)

where Q. = gB/m is the cyclotron frequency [a positive(negative) quantity
for positive(negative) charges]. This equation can be integrated and the result
combined with Eq. (14) to yield the following expression for the plasma density
in thermal equilibrium:

n(r,z)=Cexp{—ql¢(r,z)+ Perr(r)]/ T}, 17
where C is a constant of integration and where the effective potential .z is
defined as

GPerr(r)=3mawp(Q — w)r?. (18)

This quadratic potential provides radial confinement due to rotation: provided
that w,(2: — w,) > 0, the effective potential becomes large at large r, dominat-
ing over ¢ and forcing the density to become exponentially small (see Eq. (17)).
This inequality requires that 0 < w, /2, < 1 for confinement. If w,/Q, were



July 21, 2015 8:47 World Scientific Review Volume - 9in x 6in "Les Houches master" page 9

Plasmas in Penning Traps 9

greater than unity, the deconfining centrifugal force would win out over the
confining v x B force.

In order to close the system and solve for the density, one must determine
the potential ¢(r, z). This is done solving the Poisson equation with boundary
conditions given by the voltages on the cylindrical electrodes, and with density
in terms of ¢ given by Eq. (17) :

V2¢(r,z)=—qn(r,z)/go. 19)

2.3. The uniform background charge, the Brillouin limit, and fluid
drifts

There is another useful way to think about the effective potential that aids in
understanding the solution to Eq. (19). A quadratic radial potential can also be
produced by a cylinder of uniform density negative background charge. Using
the Poisson equation it is easy to show that the background density n required
to create an effective potential given by Eq. (18) is

me
1o =2q—20a)r(ﬂc —w)). (20)

Thus, one can think of the plasma as being radially confined by this cylindri-
cal neutralizing background charge rather than by rotation through a magnetic
field; Eq. (16) for the plasma density would be the same either way. Intuitively,
one would then expect that, in equilibrium, the plasma matches its density to
the negative background charge density, out to some surface of revolution (de-
termined by the total number of particles, the uniform background density n,
and the voltages applied to the electrodes) where the supply of plasma charge
is exhausted and the density approaches zero.!” In fact, this is just what the so-
lution to Egs. (19) and(17) show.!? At the plasma surface the density falls from
ny to zero on the scale of a few Debye lengths. Thus, within the plasma (i.e.
several Debye lengths away from the edge) the density is uniform and given by
Eq. (20), provided that the plasma length and radius are both large compared
to the Debye length.

Experiments with nearly-uniform density plasmas are often carried out in
a regime where w,/Q, < 1. In this regime one can easily solve Eq. (20) for the
rotation frequency in terms of the plasma density by approximating Q. — w, ~
Q. in Eq. (20), yielding
qno
2¢& ()B ’

This equation shows that, at low densities, increasing the density requires
a higher rotation frequency in order to produce a larger v x B confining force

(21)

w, R
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that balances the larger electrostatic repulsion. However, Eq. (20) shows that
this balance only works up to a point: if the rotation rate is raised too high,
centrifugal force begins to win out over the v x B force, and the density actually
decreases as the rotation rate increases. For this reason there is a maximum
possible plasma density that can be confined in thermal equilibrium, called the
Brillouin limit,.'® The Brillouin limit follows from the form of Eq. (20), which
implies that as one varies w, the density reaches a maximum value np when
w; =9./2, given by
meo§22

2q°

B2

- 2uomc?’

np=

(22)

where I have used the identity gouo = 1/c?. Equation (22) shows that the
plasma’s maximum rest energy density ngmc? is equal to the magnetic energy
B2%/2uy. This implies a fairly low maximum density for magnetic fields cur-
rently available in the laboratory. For electrons in a 1 Tesla field, the density at
the Brillouin limit is 4.8 x 1018 m~3.

Another useful equation relating the plasma rotation frequency to the
plasma density and potential is found by dividing Eq. (15) by mnr2, and re-
arranging terms so that the equation reads

f=———————+ L. 23
@ Br or qBrn&’r+Qc (23)

Thus, the uniform rotation frequency is a sum of three terms, which correspond
to three different effects. The first term on the rhs of Eq. (23) can be recognized
as the rotation frequency arising from the E x B drift discussed in other chap-
ters. At low rotation frequencies and in a cold plasma, this term dominates and
is responsible for the rotation frequency given by Eq. (21).

The last term in Eq. (23) is a correction to E x B drift caused by the cen-
trifugal force from rotation, which produces an extra F x B drift. The middle
term, proportional to the temperature, is a rotation of the plasma induced by
the diamagnetic drift. This drift is caused by cyclotron motion in a nonuniform
plasma. Figure 3 shows a close-up of a section of the plasma edge. The mag-
netic field is out of the page. In this figure the E x B and centrifugal drifts are
neglected, so charges simply undergo circular cyclotron motion. However, the
existence of a density gradient implies that there are more particles on the left
than on the right and consequently at any radius the particle cyclotron motion
causes a net fluid velocity downward (assuming positive charges), as depicted
in the figure.
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The diamagnetic fluid velocity is closely connected to the diamagnetic cur-
rents associated with diamagnetic materials. In these materials, an applied
magnetic field induces magnetic dipole moments in particles making up the
material, and these dipoles act to produce a surface current that creates a mag-
netic field opposed to the applied field. In the plasma, cyclotron motion due to
the applied magnetic field produces current loops (see Fig. 3) that also have
magnetic moments, and there is therefore also a net surface current. Fur-
thermore, one can show that this surface current creates a magnetic field that
opposes the applied magnetic field; it is, truly, a diamagnetic current. This
diamagnetic contribution to the magnetic field has been neglected (as have
the contributions from the E x B and centrifugal drifts) because these self-
generated fields are weak in most experiments (see Question 2 at the end of
the chapter).

Fig. 3.: The diamagnetic drift produces a contribution to the fluid velocity u at
the plasma edge.
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2.4. The velocity distribution, canonical momentum, and the vortex
Jfrequency

In thermal equilibrium the full distribution function f(r,v) is a product of the
equilibrium density given by Eq. (17) and a Maxwellian velocity distribution,
shifted by the fluid rotation velocityu=—w,r0:

C - : —m(v+w,r0)?
f(r’v):We q(@+¢er)/ T p—m(vtew,r07 /2T (24)
___ ¢ ~H T
“entimypr 2
where
m ~
HrE?(v—i-wrrH)Z+q¢(r,z)+q¢eff(r). (26)

The function H, is the particle energy as seen in a frame rotating with the
plasma: the particle velocity as seen in the rotating frame is v+ w, r8, and the
kinetic energy in this frame is proportional to the square of this apparent veloc-
ity. Also, this velocity is, on average, zero: the plasma is stationary when seen in
the rotating frame (i.e. the mean fluid velocity is zero in this frame) . The frame
is not inertial and consequently there is an effective potential e¢.s¢(r) due to
centrifugal and Lorentz forces arising from rotation. When viewed in the rotat-
ing frame, the distribution function for this apparently stationary equilibrium
plasma has the expected Boltzmann form, Eq. (25).16

It is useful to rewrite the particle kinetic energy in terms of the canonical
momentum p = mv+ gA, where A is the vector potential. For a uniform mag-
netic field B = BZ, the vector potential can be expressed as A = Br@/2. This
implies one may write the particle velocity v in terms of p as

p 1

v=——-Q.r0.
m 2

Applying this expression for the velocity to Eq. (26) yields
Hy = Z(p—mQr0/2F +q9(r,2)+qder/ (1), @7
where I have introduced the vortex frequency Q,, defined as
Q,=Q —2w,. (28)

The vortex frequency is the cyclotron frequency as seen in the rotating frame:
one can recognize Eq. (27) as the Hamiltonian of a charged particle as seen
in this frame. The cyclotron frequency is shifted by coriolis force effects. It is
well-known that coriolis force caused by rotation has a form equivalent to the
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Lorentz v x B force, so it should not be too surprising that it acts to shift the
cyclotron frequency.

Note that at the Brillouin limit, where the rotation frequency is half the cy-
clotron frequency, Eq. (28) implies that the vortex frequency vanishes. At the
Brillouin limit, particle motion as seen in the rotating frame is effectively un-
magnetized.

2.5. Total angular momentum

Constants of the motion can be useful in understanding the dynamics of the
plasma. Since the applied electromagnetic fields used to confine the plasma
are (ideally) cylindrically-symmetric, the total canonical angular momentum
Py is a conserved quantity. This quantity is a sum over the angular momentum
of each particle:

N qB
Py= (mvgiri+ 7rl?). (29)

i=1

The first term is the usual kinetic angular momentum, and the second term is
the vector-potential contribution arising from the uniform magnetic field. In
a strong magnetic field, this term dominates over the first term, and one may
write

N 4B
Py T (30)
i=1

In other words, the angular momentum is proportional to the mean square
radius of the plasma. Since the angular momentum is a conserved quantity,
the plasma mean square radius cannot change over time, which greatly lim-
its plasma loss in a Penning trap: if any plasma charge is lost to the electrodes
surrounding the plasma, other charges must compensate by moving inward so
that the mean square radius is unchanged.

Note also that in a neutral plasma, with both signs of charge present, angu-
lar momentum conservation does not aid confinement in this way: a positive
and a negative charge can move outward together without changing Py. This is
what makes neutral plasmas much more difficult to confine than non-neutral
plasmas.

Finally, note that in real traps, slight torques on the plasma from asymme-
tries in the confinement fields, or from collisions with neutral gas, cause the
angular momentum to change. These torques drag on the plasma, slowing its



July 21, 2015 8:47 World Scientific Review Volume - 9in x 6in "Les Houches master" page 14

14 Contents

rotation. This makes the plasma expand radially (as well as heat) as the confin-
ing Lorentz force decreases. However, by operating in ultrahigh vacuum con-
ditions, and by constructing the trap carefully so as to ensure a high degree
of cylindrical symmetry in the electrodes, these torques can be minimized, al-
lowing confinement times ranging from hours to even days. Also, a method
known as the "rotating wall" has been used to counter-act these effects and al-
low infinite-time confinement. The rotating wall method will be the subject of
another chapter in the series.

Question 2. Rotation of a long plasma column consisting of a single species
(say, positrons) with uniform density n¢ and radius r,, produces a magnetic
field. Ineglected this magnetic field in this chapter. Evaluate this self-generated
magnetic field, and explain why it is a good approximation to neglect it in typ-
ical Penning trap experiments. (Hint: in typical experiments, w,r, < c.) Does
the induced field enhance or reduce the applied magnetic field Bz?

2.6. Solutions to the exercises

Question 1:

(a) Square both sides of the relation L/Ap = 10 and substitute the definition
of the Debye length, Eq. (8), to obtain L?e?n/(eoT) = 100. Solve for ny using
T =10eV and L=0.01m, to obtain ny =5.5 x 1014m™3.

(b) At the stated density and temperature, the Debye length is, according to
Eq. (8), Ap =0.743m. This is much smaller than the size of the system, meeting
criterion (9). Also, the plasma parameter as given by Eq. (11) is 4 X 107, which is
much greater than unity, meeting criterion (10). At the given temperature and
density, the Orion Nebula is a plasma.

Question 2: An electron column with uniform charge density —en,, ro-
tating rigidly with fluid velocity u = —ew, 78, will produce a current density
j= enow,rf (where w, < 0 for electrons). Such a current density produces
a magnetic field B,(r)Z. According to Ampere’s law this magnetic field satisfies
the differential equation d B, /0 r = —ugjg(r). Solving this differential equation
for B,(r) using the boundary condition that outside the plasma B, = B (where
B is the constant externally-applied field), yields

Uo€nowy

B.(r)= 2

(rz—r§)+B,r<r,,. (31)
The total magnetic field is less than B inside the plasma (recall that for electrons
w; < 0). The maximum change from B occurs at the origin, and is given by
B—B,(0)=—uype nowrr;/z. Using Eq. (20), Q. = —e B/c, and the identity ugeg =
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1/c?, this expression can be rewritten as

wzrz
B—B,(0)=B C”’(l—&). 32)

2 Qc
Since |w;|r, < c in typical experiments, this expression shows that the self-
generated magnetic field is negligible compared to B.

References

1. Francis Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd. Ed.,
(Springer, New York, 2006), p. 2

2. S.Ichimaru, Basic Principles of Plasma Physics, (W. A. Benjamin, Reading MA, 1973),

p.7

ibid. Ref 1, pg. 11

ibid. Ref 1, Sec. 3.3

David Pine and David Bohm, Phys. Rev. 92, 609-625, (1953).

W.J. De Haas and P. M. Van Alphen, Amsterdam Ac., 33, 1106, (1930).

L. D. Landau Z. Physik, 64, 629, (1930).

Ronald Davidson, Theory of Nonneutral Plasmas, (Benjamin, Reading MA, 1974)

Ludwig Boltzmann, Wiener Berichte, 76, 373 (1887).

10. Setsuo Ichimaru, Rev. Mod. Phys. bf 54, 1017 (1982).

11. J. H. Malmberg and J. S. deGrassie, Phys. Rev. Lett. 35, 577 (1975).

12. G.B. Andresen et al., Phys. Rev. Lett. 106, 145001 (2011).

13. B.M.Jelenkovicitetal., Nuclear Instruments and Methods in Physics Research B192,
117 (2002).

14. A.Kabantseyv, private communication.

15. E M. Penning, Physica (Amsterdam) 3, 873 (1936).

16. D. H. E. Dubin and T. M. O’Neil, Rev. Mod Phys. 71, 87 (1999).

17. J. H. Malmberg and T. M. O’'Neil, Phys. Rev. Lett. 39,1333 (1977).

18. L. Brillouin, Phys. Rev. 67, 260 (1945).

19. S.A.Prasad and T. M. O’Neil, Phys. Fluids 22,278 (1979).

20. P K. Kundu, Fluid Mechanics, (Academic Press, San Diego, 1990)

©eND O W



July 21, 2015 8:47 World Scientific Review Volume - 9in x 6in "Les Houches master" page 16

16 Contents



July 21, 2015 8:47 World Scientific Review Volume - 9in x 6in "Les Houches master" page 17

Chapter 2

Plasma modes

This chapter explores several aspects of the linear electrostatic normal modes
of oscillation for a single-species non-neutral plasma in a Penning trap. Lin-
earized fluid equations of motion are developed , assuming the plasma is
cold but collisionless, which allow derivation of the cold plasma dielectric
tensor and the electrostatic wave equation. Upper hybrid and magnetized
plasma waves in an infinite uniform plasma are described. The effect of the
plasma surface in a bounded plasma system is considered, and the properties
of surface plasma waves are characterized. The normal modes of a cylindrical
plasma column are discussed, and finally, modes of spheroidal plasmas, and
finite temperature effects on the modes, are briefly described.

1. Introduction. The plasma dielectric tensor.

When a single-species plasma trapped in a Penning trap is perturbed away from
its equilibrium state, it rings at frequencies associated with normal modes of
oscillation. These plasma modes are the subject of the following chapter. To
describe the normal modes I will use a fluid theory approach as in the previous
chapter, but I will further simplify by assuming the plasma is cold, neglecting
the thermal pressure in the equations of motion. Also, I will describe the modes
in the rotating frame of the plasma, where in equilibrium it is stationary. I will
also only consider small amplitude perturbations from equilibrium, oscillating
in time with frequency w (where w is to be determined; note that this is the
frequency as seen in the rotating frame, Doppler-shifted with respect to the
lab-frame frequency w;qp).

Thus, within the plasma the density is n(r,t) = ng + én(r)e"i®t, where
on is the density perturbation, and the equilibrium density n, is given by
Eq. (20). Also, the fluid velocity is u(r, ) = 0+ du(r)e~i®?, and the potential is
o (x, 1) = ¢o(r,2) + 6¢p(r)e~i“! where ¢, is the equilibrium potential (including
the effective potential since we work in the rotating frame).

Then, to linear order in the perturbed quantities, the momentum equation,

17
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Eq. (12) of the previous chapter, becomes
—iwﬁuz—iv&ﬁ +Q,6uxz. (1)
m

The convective derivative u-Vu is dropped in Eq. (12) because it is nonlinear in
ou, and the vortex frequency appears rather than the cyclotron frequency be-
cause we are working in the rotating frame (see Eq. (28) of the previous chap-
ter).

Equation(1) is linear in 6u and can therefore be solved directly for ou (see
Question 1). It is convenient to write this solution as

o -Vogp
qno

where o is the conductivity tensor for the plasma, with components

ou= )

(o8] iO'zO
oc=i| —io, o7 0 |, 3)
0 0 o3

and where o, = Eowiw/(wz -Q2),0,= Eowiﬂy/(wz —Q2),and o3 = sowi/w.
Here, I introduce the plasma frequency w, defined in terms of the equilibrium
density ng by

wp =4/ q*no/eom. (4)

The plasma frequency is a natural frequency of oscillation in cold unmagne-
tized plasmas, as we will see.

The conductivity tensor o expresses the linear relationship between the
perturbed electric field —Vé ¢, and the perturbed current density gnoéu. The
conductivity is a tensor rather than a scalar because an electric field in the x
direction produces a current in both the x and y directions (an effect caused by
the magnetic field; see Question 1).

Question 1: Prove Egs. (2) and (3) by solving Eq. (1).

In order to obtain an equation for the mode frequencies, I will now combine
Eq. (2) with the continuity equation, describing the evolution of the particle
density:

on

5, TV (nw)=0. ()

When this equation is linearized one obtains

—iwén+V-(nygou)=0. (6)
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Substituting for éu from Eq. (2) and solving for on yields
fn=——V-(o -V&p). 7)
qw

Finally, I combine this equation with the linearized Poisson equation, V2§¢ =
—on/e, to obtain the following electrostatic wave equation:
V.-V =0. 8)

Here, ¢ = 1+ io/wey is the frequency-dependent plasma dielectric tensor
(where 1 is the unit tensor), with the following components:

&1 —i&'g 0
e=|ie, & 0], 9)
0 0 €3
and where the dielectric coefficients are
(1)2
p
e=1-———,
w* -0
wiQ,,
Gp=— 10
2 w(e? —B) (10)
CL)Z
_ p
e3=1— —-

These coefficients follow from the components of the conductivity tensor given
in Eq. (3). For example, €; = 02/(€ow). The dielectric tensor is not isotropic
because the applied magnetic field and plasma rotation break the isotropy of
the plasma. Note that if 2, is zero, the dielectric tensor takes the unmagnetized
isotropic form & = £31.

Equation (8) contains all the information about the electrostatic cold
plasma modes of oscillation. This equation shows that one can think of the
plasma as a dielectric medium; the motion of charges in a normal mode polar-
izes the dielectric producing an electric displacement D = —¢-V ¢ that satisfies
the Poisson equation for dielectric media, V-D = 0. The problem of finding the
plasma normal modes is then reduced to finding nontrivial solutions to this
equation.

2. Waves in an unmagnetized plasma

Within an unmagnetized uniform single species plasma with Q, =0 (i.e. at the
Brillouin limit), the dielectric is isotropic and Eq. (8) can be written as

£3V26¢ =0, (11)
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where ¢; is given by Eq. (10). Thus, either V2d¢ = 0 which by the Poisson equa-
tion implies there is no density perturbation (and hence no mode), or V25¢ # 0
and instead £3 = 0. By Eq. (10) this condition requires that w = w,. This is
the frequency of plasma oscillations in a cold unmagnetized uniform single-
species plasma. Interestingly, the spatial form of the plasma perturbation is
unimportant; all such perturbations oscillate at the plasma frequency!

To understand why the plasma rings at this frequency, consider the simple
perturbation sketched in Fig. 1. A portion of the plasma in the shape of a slab is
shifted slightly to the right by distance Ax. This increases the density to twice
its original value in a narrow region of width Ax on the right side, and reduces
it to zero in a narrow region of identical width on the left side. However, recall
that there is a uniform neutralizing background that allows the unperturbed
density to remain in equilibrium. Thus, the total charge density including the
background in the narrow region on the right side is gng, and on the left side
itis —gn,. This configuration produces a uniform electric field E, between the
two sides:

A A
Bo=—20 _ _dhax (12)

€o 0]

Fig. 1.: A positively-charged non-neutral plasma slab moves to the right by Ax,
uncovering the neutralizing background charge on the left and overlapping the
equilibrium plasma on the right

where Ao is the charge per unit area in the narrow region on the right side.
This electric field acts on the slab, pulling it back toward its equilibrium posi-
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tion where Ax =0. According to Newton,

Ax, (13)

where M and Q are the total mass and total charge of the slab respectively.
However, since Q/M = g/m in a single species plasma, Eq. (13) becomes
AX = —a)iAx (see Eq. (4)), a harmonic oscillator equation with frequency w,,.

3. Waves in a uniform magnetized plasma

If one neglects reflections from the plasma edges, assuming that the plasma is
large, one can use a Fourier representation for wave solutions in the plasma of
the form

Sp(r, t)=Aelkriet (14)

where w and k are the frequency and wavenumber of a traveling wave within
the plasma, and A is the wave amplitude. (Recall that for traveling waves mov-
ing in three-dimensions the wavenumber is a vector whose magnitude k = |k|
yields the wavelength through the relation A = 2n/k and whose direction
k =k/k is the direction of propagation of the phase fronts of the wave.)

Waves of this form allow direct solution of Eq. (8), since Vo¢ = iko¢. Ap-
plying Eq. (14) to Eq. (8) then yields the dispersion relation for waves in a cold
uniform magnetized plasma:

kf_81+k§€3=0, (15)

where k, is the component of the wave vector in the direction of the magnetic
field (the z-direction) and k, is the magnitude of the component of the wave
vector that is perpendicular to B: ki =kz+ k§

Substituting for the dielectric coefficients &; and ¢ from Egs. (10) and re-
arranging terms yields a quadratic equation for w?. The two solutions of this
quadratic correspond to two different types of propagating wave in the plasma.
The frequencies of each wave can be expressed in the form

2 204 2002 — 2 )2
wzz%i \/leuh+kz(Qu wp) (]_6)

2k ’

where I have introduced the upper hybrid frequency Q, (as seen in a rotat-

ing plasma) defined as
Quh:,/ﬂi+w§. 17
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Waves with frequencies given by the upper sign in Eq. (16) are generally
referred to as upper hybrid waves, while waves with frequencies given by the
lower sign are often called magnetized plasma waves. The dispersion relations
for each wave are plotted in Fig. 2. The frequency of each type of wave de-
pends on the wavenumber only through its direction with respect to the mag-
netic field, parametrized in the figure by the ratio k,/k, . For waves propagating
across the magnetic field, k,/k, = 0 and the wave frequencies for upper hybrid
and magnetized plasma waves are 2,5, and zero respectively. When the mag-
netic field vanishes, the upper hybrid waves become the unmagnetized plasma
waves discussed in Sec. 2, and the magnetized plasma branch disappears. How-
ever, when the magnetic field is large so that 2, > w, the dispersion relations
for each branch simplify to

w2—92+k—ia)2 u hybrid 18

=, + 7, upperhybrid wave (18)
k2

W= k—Zw;, magnetized plasma wave (19)

Quy upper hybrid
Max( Q1,00 = = = m = = o e e T
3
Min(IQ, | ) = = = == = = e
magnetized plasma
0 k/k.

Fig. 2.: Dispersion relation for upper hybrid and magnetized plasma waves in a
uniform cold plasma

In this regime upper hybrid waves can be thought of as essentially a type of
cyclotron motion with a frequency that is increased by the extra restoring force
associated with the plasma response (see the question below). The magnetized
plasma waves are like unmagnetized plasma waves but with motion restricted
to only the z direction by the strong magnetic field.

Question 2 Recall that in Sec. 2 I analyzed unmagnetized plasma oscilla-
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tions by considering a slab displaced in x by Ax. Redo this calculation but keep
a magnetic field pointed in the z-direction, with cyclotron frequency £2,.Show
that the plasma now rings at frequency €2, . (Hint: the slab moves in both the
x and y directions now).

4. Modes in a Bounded Plasma

In a Penning trap, the plasma is not infinite and homogenous. This has several
consequences. First, waves reflect from the plasma edges, setting up normal
modes of oscillation. Most of these modes can be understood qualitatively by
simply quantizing the possible values of k. and k in the previous dispersion
relations obtained for homogeneous plasmas, such as Eq. (16). For instance,
for a long plasma column of length L the modes have axial wave numbers that
roughly satisfy k, = m,n/L for integer m,. The lowest-order axial mode, m, =
0, corresponds to a potential perturbation with no z-dependence within the
plasma. The next axial mode, (m, = 1) has a single axial node in the center
of the plasma, and so on. The possible quantized values of the perpendicular
wavenumber k; for these modes are somewhat more difficult to categorize,
requiring some algebra involving Bessel functions.

Another important finite plasma effect is the appearance of new modes as-
sociated with the plasma surface. The next subsection will analyze two types of
surface plasma oscillations. For large magnetic fields they are referred to as a
diocotron mode, with low frequency that scales as 1/ B, and a surface cyclotron
mode, with a high frequency near the cyclotron frequency. (A third type of wave
associated with the plasma surface(s), E x B modes, is discussed qualitatively at
the end of the chapter.)

4.1. Surface Plasma Waves

Consider a plasma with density n and a sharp edge at x =0 as shown in Fig. 3.
As usual there is a uniform magnetic field in the z direction. Fig. 3 could be
thought of as a blow-up of a section of the plasma edge in a Penning trap
plasma, with the x direction the local direction of increasing plasma radius,
and the y direction in the direction of increasing 8. The plasma equilibrium
is disturbed by a surface plasma wave. Such waves have potentials that are
concentrated within a few wavelengths of the plasma surface. To simplify the
analysis I assume that the plasma radius and the distance to surrounding con-
ducting walls are both large relative to the wavelength of the waves.

The waves propagate along the surface of the plasma, with a perturbed po-
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Fig. 3.: A surface plasma wave perturbs the equilibrium surface (the dotted line)
atx=0.

tential of the form
5¢ x eikyy+ik117iwt‘ (20)

However, the x dependence of the potential is not so simple because of the
plasma surface. Outside the plasma, where x > 0, the perturbed potential must
satisfy the Laplace equation V26¢ = 0, which implies an exponential x depen-
dence:

5¢ — eiknyrikzzfiwt(Aeka +B€kx), x> 0, (21)

where A and B are undetermined constants, and k = kJZ, + kg. Since the po-
tential should not blow up at large x one must set B=0 in Eq. (21).

On the other hand, inside the plasma these surface waves satisfy Eq. (8).
Since the plasma is uniform, ¢ is a tensor with constant coefficients given by
Egs. (9) and (10). The equation then becomes

0%6¢p 0%6¢ 0%6¢
81( axz + ayz )+83 022 =0 (22)
Substituting the assumed form for 0¢, Eq. (20), implies that
0%6¢
015 = (ke + ke ) 69. (23)

This differential equation has the general solution

5¢:eikyy+ikzz—iwt(ce—1\‘x_,r_Dekx), x<0, (24)
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where k = kJ% + &3 kg /€1. (For surface waves, k is a real number, greater than
zero.) The coefficient C must equal zero in order to keep the solution from
blowing up at large negative values of x.

The remaining coefficients A and D are related by matching the solution
across the plasma boundary at x = 0. Continuity of the potential implies that
A = D. However, the laws of electromagnetism also require that the normal
component of the electric displacement D = —¢ - V¢ be continuous across the
boundary. When applied to Eq. (24) and (21), and taking A= D and B=C =0,
this requirement implies that

£V er+ikyy+ikzZ|x:0 — _keikyy+ikzZ. (25)
Applying Eq. (9) and evaluating the lhs then yields
ke +kye,=—k. (26)

This is the dispersion relation for surface plasma waves. Like the dispersion re-
lation for waves in a uniform plasma, Eq. (15), this dispersion relation depends
on the direction of the wavenumber k= k,y + k. Z, but not its magnitude.

These surface waves propagate along the plasma surface, causing ripples
in it’s shape, but their effect on the plasma falls off exponentially with distance
from the surface, with length scale k. The motion of the plasma surface can
be understood in linear wave theory as causing a surface charge (charge per
unit area) 00(y,z,t). Elementary electrostatics relates the surface charge to
the jump in electric field across the surface:

60 _ 259, 259,
€0 Ox VT oy
= A(k +K)e/ by thez-en, 27)

The surface charge is due to a small change 6 x in the position of the surface as
shown in Fig. 3,

60 =qnobx. (28)

Combining Egs. (27) and (28) gives the change in the position of the plasma
surface due to the wave:

5x =A—q6’;) (k + x)eikrythez=on), (29)
0

There are two cases where the surface wave dispersion relation can be fur-
ther simplified. First, for an ummagnetized plasma with 2, =0, Egs. (10) imply
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thate, =g =1— cof,/co2 and &, =0, from which one may conclude that x = k.
Equation (26) then becomes

602
1-—L=-1

(1)2

which has the solution w? = w?) /2. This gives the frequency of unmagnetized
surface plasma waves. Note that the frequency is the same for any wavenum-
ber. These unmagnetized surface plasma waves do not just appear in Penning
trap plasmas at the Brillouin limit. They are also observed propagating along
the surface of metals, where they are usually called surface plasmons.!

A second case that can be easily handled is when k, = 0, i.e. propagation
perpendicular to the magnetic field. In this case, k = k = k; (assuming that k,
is positive), and Eq. (26) becomes

81+82=—1. (30)

Substituting for the dielectric coefficients from Eq. (10) yields a quadratic equa-
tion for the wave frequency w with the following two solutions:

wz—é(Q,,:I:,/Qi+2wi). 31)

Assuming that Q, > 0, the upper sign gives the frequency of k, = 0 surface
cyclotron waves, and the lower sign yields the diocotron wave frequency. Al-
though the waves have different frequencies, they both have the same value
of k = k, and hence the same functional form. When the vortex frequency
is zero, Eq. (31) returns to the unmagnetized surface plasma frequencies, but
when [©,| >> w),, the two surface waves have the following approximate fre-

quencies:
0)2
w ~ —, — —, surface cyclotron wave (32)
2Q,
w?
w R , diocotron wave (33)
2Q,

The frequency of the diocotron wave in this large magnetic field regime scales
as 1/ B since in this regime Q, ~ Q. = g B/m. Also, in this regime the diocotron
wave frequency (as seen in the frame rotating with the plasma) is the same as
the plasma rotation rate itself (see Eq. (21) in the previous chapter).

The sign of the frequency for these two surface waves has physical signifi-
cance. Assuming k, =0, k, > 0, and a positively-charged plasma, the surface
cyclotron wave described by Eq. (32) has negative frequency and a phase veloc-
ity in the —y direction, while diocotron wave travels in the opposite +y direc-
tion (as seen in the rotating frame where the equilibrium plasma is stationary).
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On a cylindrical plasma the —y direction corresponds to the -8 direction, so
the surface cyclotron wave rotates around the plasma column in the same di-
rection as the cyclotron motion of single particles. This is as opposed to the
upper hybrid waves, which are in a similar frequency regime but can rotate in
either direction on the plasma column.

Question 3 Show that in general there are two solutions to Eq. (26) for the
surface wave frequency provided that w, /12| > |k.|/k.

Question 4 Show that these solutions are

—kyQ £ /2K 02 + Q2 (K2 +2k2)
2k '

w= (34)

Question 5 Show that the values of x for the two solutions are identical, for
given values of the other parameters.

The dispersion curves given by Eq. (34) are plotted in Fig. 4 versus the direc-
tion of propagation of the waves as parametrized by k,/k, and for three differ-
ent magnetic field strengths, assuming k, > 0 and a positively-charged plasma.
In Fig. 5 the value of «/k is plotted. Note that in the large magnetic field limit,
only k, = 0 surface waves are allowed, but when [Q,|/w, < 1 waves may prop-
agate along the surface in any direction. As |2, |/w, increases, the surface cy-
clotron frequency also increases in magnitude, following the (negative of) the
cyclotron frequency, while the behavior of the diocotron branch is a bit more
complicated: for small k, /k the frequency decreases with increasing |2, |, as ex-
pected from Eq. (31) or Eq. (33), while for larger k. /k the frequency can increase
with increasing |2, |. For propagation parallel to B (which requires |2,/ w), < 1),
the two surface waves have equal but opposite frequencies, w = £9,,/v2. In
this case one might refer to the waves as surface upper hybrid waves.

1.0F
0.5F
0.0F

N
3 05}

S
3 10t E Qufw,=1

-15¢ E Qfw,=2
-20F ]

00 02 04 06 08 10
k.Jk
Fig. 4.: Dispersion curves for the two surface plasma waves versus propagation
direction, for three different magnetic field strengths.
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Fig. 5.: Inverse decay length x for surface plasma waves versus propagation
direction, for three different magnetic field strengths.

4.2. Cylindrical Plasmas

Plasma modes can be determined analytically in several other geometries of
importance to Penning trap experiments. For a long uniform density plasma
column of radius r, and length L, running from z = 0 to z = L, and trapped
along the axis of a hollow conducting cylinder of radius r,,, the dispersion rela-
tion involves Bessel function solutions of Eq. (8), and is called the Trivelpiece-
Gould (TG) dispersion relation.? The following remarks assume the reader’s
familiarity with basic properties of Bessel functions.

Within the plasma, where the tensor € is uniform in space, Eq. (8) can be
expressed in cylindrical coordinates (r, 8, z) as

10 06 1 026 026
o (?Er 3r¢ = aej))ﬂs azj)zo' 39

This differential equation is separable and the solution that is finite at the origin
is

S¢(x,t)=AJm,(kLr)cos(k,z)e ™07t r <y, (36)

where the non-negative integer my is the azimuthal mode number, k, =
m,n/L where m is also a nonnegative integer, and J,,, is a Bessel function
of the first kind.!® The transverse wavenumber k, is a separation constant that
depends on k, and w through Eq. (15):

kiz—k§€3/€1. (37)

The cosine form of the z dependence is chosen so that the axial electric field
vanishes at the ends of the plasma column. For finite length plasma columns
this is a useful but rough approximation that improves as the length of the col-
umn increases. 820
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Outside the plasma, the potential satisfies Laplace’s equation (i.e. €; = €3 =
1in Eq. (35)), and also vanishes at the conducting cylinder. The solution in this
region is

5¢(r, t)=8B (IWls (k r)ng (kzrw)— I, (K rw)ng (K T))

x cos(k;z)e!™ 0ot p >y, (38)
where I,,, and K,,, are Bessel functions of the second kind.!® The coefficient
B and the mode frequency w are determined by matching the interior solu-
tion, Eq. (36), to the above exterior solution. The potential must be continuous,
implying that

ATy (k1 1p)= B (L (ke ) King (ks 7) = Iy (K 7u)Kimg (K2 7)) . (39)

Also, integration of Eq. (8) from r = r tor= r;“ implies that

256

feVqubI,; = er’:—.

(40)
This result merely expresses the continuity of the normal component of the
electric displacement D = ¢ - Vo ¢ across the plasma surface, as discussed pre-
viously (see Eq. (25)). Substituting for 6¢ from Egs. (36) and (38) and using
Eq. (10) yields

7 m
Aela_]mg(klrp)+A62_9]m9(kJ_rp) (41)
rp rp
17
= Bm (Img(kz rp)ng(kz Tw)— Img(kz rw)ng(kz rp)) .

Substituting for A from Eq. (39) yields the relation
17 m
€15 Ty (KLTp) + €2 Ty (KL Ty) 42)
ary Ip
] (k );;rp (Img(kzrp)ng(kzrw)_IMg(kzrw)ng(kzrp))
= r
Mol Img(kzrp)ng(kzrw)_Img(kzrw)ng(kzrp)

Equation (42) together with Eq. (37) is the Trivelpiece-Gould dispersion rela-
tion. In general it yields real solutions for the mode frequency w, but the solu-
tions must be determined numerically. However, there are several limits where
the dispersion relation can be simplified. For instance, when k,r,, < 1 the rhs
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simplifies to yield
%
€1rpa_]mg(klrp)+€2m9]mg(klrp)
Tp
1+(rp/rw)2m€
—mg—"+—my, Mg >0,
= Jmy(k11p) 1=y /1y (43)
ity Me=0.

Several other simplifications can be made in various regimes, as described be-
low.

The TG dispersion relation provides mode frequencies as seen in a frame
rotating with the plasma. In the lab frame, there is a Doppler-shift of the fre-
quency caused by this rotation. The lab coordinate 6,,, is related to the rotat-
ing framing coordinate 6 by a Galilean transformation, 6;,, = 8 — w,t. The
factor exp[img0 — iwt] in the mode potential can then be written in lab frame
coordinates as exp[img8;,, — i(w — mgw,)t]. This implies that the lab frame
frequency is

Wigh =W —Mewy. (44)

Figure 6 displays a sketch of the TG mode frequencies for a given value of
k; # 0 and mg # 0, versus magnetic field. Also shown, as dashed lines, are the
upper hybrid frequency and the vortex frequency. The plot for my = 0 has the
appearance of the upper half of Fig. 6 reflected about the x-axis into the lower
half (i.e. the my =0 modes come in £w pairs).

The modes fall into three classes: upper hybrid modes, magnetized plasma
modes, and two surface modes. The upper hybrid modes have frequencies
in the range max(wi,Qi) < w? < Q?,. The magnetized plasma modes are in
the range w? < min(w3,€). These ranges are the same as for a plasma with
no boundaries; see Fig. 2.These modes have an infinite number of possible
branches with different values of k, for each, corresponding to different num-
bers of radial oscillations within the plasma column.

As Q, becomes large, and provided that k, # 0, the positive frequency sur-
face mode converts to a magnetized plasma mode with no radial nodes. For
k., # 0 and mg > 0 the negative frequency surface mode joins the upper hy-
brid modes for large 2,,; and for mgy = 0 this mode instead joins the magnetized
plasma modes.

In the k, =0 limit, discussed below, the two surface modes remain separate
for all ©2,; they are the diocotron and surface cyclotron modes. In this limit all
the upper hybrid branches are degenerate with «w = +Q,,;, and the magnetized
plasma modes all have w =0, just as for an unbounded plasma (see Fig. 2).
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Fig. 6.: A sketch of the frequencies of TG modes on a cylindrical plasma column
versus the vortex frequency 2, for fixed values of k, > 0 and mg > 0. Dashed
lines show the positive and negative upper hybrid frequencies and the vortex
frequency. Modes labeled S, UH, and MP are surface modes, upper hybrid
modes, and magnetized plasma modes respectively. The infinite set of upper
hybrid modes are too close together to be distinguished in this sketch.

4.2.1. Trivelpiece-Gould magnetized plasma modes

The TG plasma modes are finite k, magnetized plasma oscillations on the
cylindrical column, with a frequency of order the plasma frequency or less. For
simplicity, I will consider the dispersion relation for these modes assuming that
k.r, < 1 and taking the strong magnetic field limit where w, < ,. One can
then approximate €; = 1. The mode frequency then follows from Eq. (37):

w? k?
W=t (45)
k2 + k2

This is the same as Eq. (19) for a plasma with no boundaries. These TG modes
are magnetized cold plasma waves with k, and k; quantized by the finite
plasma length and radius. The possible values of k; follow from Eq. (43), taking
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€1 =1and €, =0 (the latter assumes that k. /k1 > w, /I ):

1+(r /r“/)znlg
K —mep g M >0,
rparp ]mﬁ(klrp):]mg(klrp) 1 (rlp/rw) o (46)

Wy Me=0.

There are multiple solutions to Eq. (46) corresponding to waves with different
numbers of radial nodes within the plasma column. For example, for my =0
there is a solution with no radial nodes that roughly satisfies

2
kJ_rp:V m, 47)

assuming that r,, > r,. (This follows by Taylor expansion of the m¢ = 0 Bessel
functions in Eq. (46) around k1, =0, assuming that k; r, < 1.) The solutions
with more nodes roughly satisfy J,(k17,)=0, so that

kl:jl,n/rpy n=123,.. (48)

where jn,., is the n’th zero of the Bessel function J,,,,(x), counting out from,
but not including, the origin.

For mg > 0, and again assuming r,, > r,,, the rhs of Eq. (46) can be approx-
imated as —mg J,;,. Then a Bessel function identity!® allows one to write the
equation as k, 1, J,u,—1(k11,) =0, so that the solutions for k are

kJ-:jme—l,n/rp, n=12,3,... (49)

These solutions correspond to a potential with n — 1 radial nodes. The n =1
case with no radial nodes and with positive frequency (for 2, > 0) connects to
the positive frequency surface mode; see Fig. 6.

The formulae in this section, while useful in their regimes of validity, are
only approximate. The frequencies found by solving the full TG dispersion re-
lation can differ from these formulae, sometimes substantially, depending on
the circumstances. Two examples are shown in Fig. 7. The solid curves are fre-
quencies versus wavenumber k,, obtained from the full dispersion relation for
a plasma with r,, /1, =4,Q,/w, =10, and mg =0 in (a) and my =2 in (b). The
dotted curve in (a) is Eq. (47), and the dashed curves are Eq. (48), both com-
bined with Eq. (45). In Fig.7(b) the dashed curves are Eqgs. (49) and (45). The
approximate dispersion relations are just that, approximate, particularly for
small k,r, in the mg = 2 example, where the assumption that k,/k; > w,/Q,
is breaking down and the €, term in the TG dispersion relation cannot be ne-
glected. Here the upper TG mode is becoming a surface mode, poorly described
by Eq. (45), and the other modes are not well-described by Eq. (49). [In fact, one
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can show!8 that for k. /k; < w,/Q, and mg # 0 the TG modes (other than the
surface mode) are better-described by k| = ju,,n/7p rather than Eq. (49).]

0. o fr = O Jo,=1 ‘ T o3f ‘ ‘ ‘
=0 rulrp=4, (hftsp=10 =2,y fry=4, 0, /0,=10

wfw,

(b)

Fig. 7.: Frequency versus wavenumber for TG modes with |w| < w, . Solid
curves are solutions of the full TG dispersion relation, Eq. (42). Dotted and
dashed curves are approximate analytic dispersion relations described in the
text. Only the first six approximate dispersion curves are shown, correspond-
ing to waves with between zero and five radial nodes.

4.2.2. Upper hybrid modes

In the large magnetic field regime |Q,| > w, there is also a set of upper hybrid
modes whose frequencies have a magnitude close to that of the cyclotron fre-
quency |2, |. For these modes one can set €3 = 1, which implies through Eq. (37)
that e, = —k2/ k7. Using Eq. (10) this equation can be rewritten as

k.2
2_ 2 L 2
w =0+ w?, (50)
ki k2P

the upper hybrid dispersion relation in the strong magnetic field regime. This
dispersion relation is the same as Eq. (18), except that now k, and k, are quan-
tized. The possible values of k; follow from Eq. (42), or (43) if k,r,, < 1 (Iwill as-
sume this here for simplicity). In the large magnetic field regime with w ~ £,
one may set €; = —k2/k% and €; = +(1 — €;) = £(1 + k2/k7), so that Eq. (43)
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becomes
d
- kgrpﬁ]me(klrp)i(ki'i‘ kg)mﬂjmg(klrp)
p

1+H(rp /1)
= K2 I ur){ O g 0> 0 61
“hmoLny  Me= 0,

where the + sign in the equation corresponds to w ~ £Q,,. Upper hybrid modes
with positive w and my have a positive azimuthal phase velocity, and generally
do not have the same k; as modes which rotate on the column in the negative
azimuthal direction because the magnetic field breaks the reflection symmetry
normally associated with these two directions.

There are multiple solutions to Eq. (51) for k,, corresponding to upper hy-
brid modes with different numbers of radial nodes. One simple case is k; =0
(i.e m; = 0), where the solutions are ky = ju, /7y, n = 1,2,3,.... These
solutions correspond to a z-independent potential that vanishes outside the
plasma. These upper hybrid modes are internal waves with 7 radial nodes (not
counting the node at r = 0 for my # 0), one of which is at the plasma edge.
These modes have no effect outside the plasma, and hence cannot be observed
or excited using external electrodes. All of these waves have the same frequency
(as seen in the rotating frame), the upper hybrid frequency £Q,,.

Another simple case is w < 0, mg > 0, and (rp/rw)2m9 < 1, so that the
rhs in Eq. (51) can be approximated as —mg ki Jm,- Then for the lower sign in
the equation corresponding to w < 0, a Bessel function identity'® allows one to
rewrite Eq. (51) as —kg k11 Jmg-1(k11,)=0. Thus, in this case the solutions for
k. are

ki=jmg—1,n/1p, ,n=12,3,... (52)

These solutions have a potential with n — 1 radial nodes within the plasma col-
umn (again, not counting the node at r =0). The n =1 case has no radial nodes
and connects to a surface mode; see Fig. 6.

In using these formulae, remember that the same caveat with respect to
their approximate nature holds as for the magnetized plasma modes discussed
in the previous section.

4.2.3. Surface modes for an unmagnetized cylindrical plasma

At the Brillouin limit where 2, = 0, the plasma is unmagnetized when seen
in the rotating frame, and the TG mode dispersion relation simplifies. In this
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limit €, = 0 and €, = €3 so Eq. (37) implies k¥ = —k?; i.e. k, is imaginary. In
this case the Bessel functions of the first kind convert to Bessel functions of the
second kind through the identity J,,,(ix) = i™I,,,(x). These Bessel functions
of the second kind are exponentially large for large argument, implying that the
modes are surface modes concentrated at r = r,,. The frequency of these modes
follows from Eq. (42):

€3=1— wfﬂ/w2 =
_ Ims(kzrp) ;_rp (Img(kzrp)ng(kzrw)_Img(kzrw)ng(kzrp))
B %Img(kz Tp) Img(kz rp)ng(kz Tw)— Img(kzrw)ng(kzrp)

T

(53)

which can be easily solved for w?. In the limit of large my or large k,, the rhs
simplifies to —1, yielding w? = a)lzg /2, giving the surface plasma frequency fa-
miliar from the slab geometry case considered previously.

As the magnetic field increases from zero, eventually €;/€e;3 changes sign,
k) becomes real, and (for k, # 0) the two surface modes join the magnetized
plasma and (for my # 0) upper hybrid branches, as discussed in relation to
Fig. 6.

4.2.4. Diocotron modes and surface cyclotron modes

Another simplifying limit of the TG dispersion relation is when k, — 0 and
mg # 0. In this limit Eq. (37) implies k; — 0 as well, provided that €; # 0 so
that we avoid the upper hybrid modes discussed previously. Taylor expansion
of Eq. (43) in k, then yields

L+ (rp/rw )™

1_(rp/rw)2m9 .

This is the dispersion relation for k, = 0 surface waves on the cylindrical
plasma column. Comparing to Eq. (30), Eq. (54) differs from the previous slab-
geometry result only through the terms involving (1, /1, )*™. These terms en-
code the effect on the mode of image charges in the cylindrical electrodes,
which were neglected in the slab-geometry discussion of surface waves. The
slab geometry result is approached when my is large or when r,/r, — 0, so
that (r,/r,)?™ — 0, i.e. when image charge effects are negligible.
Equation (54) can be solved for w to yield two roots:

meg(e1+€2)=—myg (54)

w=——t | L4 —2 (55)

) \/Qi , 1= (/1 )2mo
2 4 p 2
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When 2, = 0 the roots are equal and opposite and correspond to the surface
plasma waves discussed in the previous section, shifted in frequency by image
charge effects. For large 2, these roots correspond to a high frequency surface
cyclotron mode and a low frequency diocotron mode. For Q2 > a),zo the low

frequency solution is
Cl)2 r 2my
p P
= 1—-|— , 56
@ 20, |: ( Tw ) :| 0

the diocotron frequency (as seen in the rotating frame). The surface cyclotron
frequency (as seen in the rotating frame) is given by 2, — w, where w is the
diocotron frequency. Equation (56) is identical to the slab geometry diocotron
wave frequency in the large magnetic field limit, Eq. (33), except for a frequency
shift caused by the effect of image charges in the conducting wall.

The functional form of the diocotron and surface cyclotron mode potential
inside and outside the plasma is given by Eq. (36) and (38), taking k; — 0 and
using Taylor expansions for the Bessel functions:

. rine, r<tp,
Gp(r,1)=Ce 007D 1 pmg g2 rymo (57)
O/, P r>Tp.

This potential corresponds to a z-independent distortion of the shape of the
plasma, producing a travelling wave on the plasma surface that propagates in
the 6 direction. The radial change 0r(6,t) in the position of the plasma sur-
face due to the mode can be obtained using an argument similar to that which
led to Eq. (29), and is left as an exercise (see below). For instance, the my =1
mode is a displacement of the entire column off of the axis of symmetry of the
conducting cylinder. The off-axis plasma is attracted to its image in the con-
ducting walls and this force, for the diocotron mode, causes the entire plasma
to E x B drift around the cylinder. The my = 1 surface cyclotron mode has the
same distortion, except that its motion is at higher frequency: it is essentially
cyclotron motion of the entire column, with a frequency slightly shifted by im-
age charge forces. Both modes rotate in the same direction as seen in the lab
frame: the direction of the cyclotron motion (i.e. the negative @ direction for
positive charges).

Question 6 Using Eq. (57) show that the radial change or in the position of
the plasma surface produced in a surface cyclotron or diocotron mode is given
by

mgfl
Srec 2eomgr, pime0-wr) (58)

qno [1=(ry/rw)?™] '
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4.3. Other geometries; E x B modes; finite temperature effects

Plasma modes can be determined analytically in a few other geometries of im-
portance to Penning trap experiments. For instance, for spheroidal plasmas of
small size compared to the distance to the electrodes, the dispersion relation
has been worked out in terms of Legendre functions.3® The functional form of
this dispersion relation will not be discussed further here; the interested reader
is referred to the references.

The modes of a spheroid consist of upper hybrid waves, magnetized plasma
waves, and surface waves, each with quantized wave numbers, just as for the
TG dispersion relation. However, in the strong magnetic field regime there is
also an extra set of modes: modes with low frequencies of order 1/ B, that con-
sist of vortical E x B motions in the x — y plane.* These modes differ from the
diocotron surface mode (which also has frequency of order 1/B) in that they
have finite frequency due only to the varying axial length of the spheroid as
a function of cylindrical radius. As an axial rod of plasma is convected radi-
ally by E x B motion, it feels a restoring force due to the different length of the
plasma at that radius, which compresses (or expands) the rod.® In a cylindrical
plasma column with flat ends, such motions would merely rearrange the fluid
elements within the column without changing the density or potential; there
would be no linear restoring force and the motions would be inherently non-
linear. These "zero-frequency" nonlinear motions are referred to as convective
cells, and are important in the study of plasma turbulence.® Variation of the
equilibrium length of the plasma column with radius breaks the degeneracy of
the convective cells, giving them a range of low but finite frequencies.

An analogy has also been drawn between these ExB modes and certain low-
frequency oceanic and atmospheric disturbances called Rossby waves.” Radial
variation of the plasma length can be thought of as analogous to the longitu-
dinal variation in coriolis force that drives these waves in the ocean and the
atmosphere.? This analogy could allow simulation of geophysical phenomena
in a non-neutral plasma.

Within the plasma spheroid these finite-length E x B modes are nearly z-
independent, and as |2, |/ w,is reduced below unity they convert to magnetized
plasma modes with small axial wave numbers and hence low frequencies, ap-
proaching zero frequency as Q, — 0 (see Fig. 2).

For simplicity, the theory of plasma waves considered in this chapter ne-
glected effects associated with finite temperature. Finite temperature effects
on magnetized plasma modes!®!! and diocotron modes'? have been observed
and studied theoretically; rather less is known concerning these effects on sur-
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face cyclotron and upper hybrid modes although work is ongoing.'>!4 For ex-
ample, the magnetized plasma mode frequencies are shifted upward by finite
temperature as plasma pressure increases the wave restoring force. These shifts
are sufficiently well-understood to be used as a plasma thermometer in some
experiments.!5-17

Furthermore, finite temperature effects can produce mode damping
through the process called Landau damping?' in which charged particles mov-
ing with nearly the same velocity as the wave phase velocity (due to the parti-
cle’s thermal speed) are resonantly accelerated by the wave potential and hence
remove energy from the wave.

In addition, a new set of temperature-dependent modes with frequencies
near multiples of the cyclotron frequency are predicted to occur at finite tem-
perature.!'¥22 These "Bernstein modes" have been observed in recent exper-
iments on non-neutral plasmas,'#?? but more work is needed to fully under-
stand their dispersion and damping in such plasmas.

4.4. Solutions to the exercises

Question 1
Equation (1) has three components,

. 206
—lwo Uy z—%a—j +Q,0uy,
a6
—iwdu, __49%% —Q0uy,
m Jy
—iwou, :—iaé(p.
m 0z

The last equation implies 6u, = —ig/(mw)do¢/0z. The first two equations
are coupled, but can be easily solved to yield

iqwdogp/0x+iQ,00¢/0y

OlUy=—— 5 > ,
m w —Qv

iqwddep/dy—iQ,00¢/dx

Ouy=—— > .
w*—Q

This solution can be written in matrix form as shown in Egs. (2) and (3).
Question 2
Referring to Fig. 1, there is now a magnetic field out of the page (in the z
direction). The magnetic field modifies the equations of motion of the plasma
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slab, so that Eq. (13) is replaced by the coupled equations
AX=—w] Ax+ A7,
Aj =—-AxQ,.

Integrating the second equation to obtain Ay = —Ax{,, and substituting this
into the first equation, yields A% = —(a)i +Q2)Ax. This harmonic oscillator
equation implies that position of the slab oscillates at the upper hybrid fre-
quency.

Questions 3,4

Write Eq. (26) as ke; = —k — k€2 , square both sides, and substitute K2 =
kZ+esk?/er. This yields k? +2kky e, + k2 €3= k? €1+ k2ez€,. Using the defini-
tions of €1, €,, and €3, this equation can be expressed as

2k2w? +2kk, 0, — kza)lzﬂ — k22 B

w? (w2 - Qi)

The numerator is a quadratic function of w, whose solution is given by Eq. (34).
However, this solution arises from squaring both sides of the original equation,
so there is an extra requirement : k¢, must have the same sign as —k — k€.
Assuming that « is real (see the solution to Question 5), the sign of €; must
be the same as —k — k; €,. We have already shown this to be the case at k, =0,
where €; =—1-¢€; (and k = k), so as k. / k increases from zero the sign changes
only where —k — ky €, passes through zero. This expression can be written as

kw2 — kwd — kyQ,,a)i

w(w?—02)

However, using Eq. (34) this becomes

k2w — k202

2k(w?—Q2)’
which changes sign when k2/k* = % /Q5.
Question 5
Substitute Eq. (34) into k2 = kJ% + €3k2/e1. After some algebra, one obtains
the expression
k2002 — k202 \ ?
W=j2l—r =Y , 59
Ko+ k20 9

independent of the sign of the square root in Eq. (34). This expression also
shows that « is real.
Question 6
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The change in radial position or of the plasma surface is related to a sur-
face charge 6o through 6r = 60 /(gny). The surface charge is related to the

jump in radial electric field across the surface (see Eq. (27)): 60 /€¢ = a;_r(p | r=r; =

50

5. Ir:,;. Substituting for 6 ¢ from Eq. (57) leads directly to Eq. (58).
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