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This paper discusses a novel “chaotic” form of superbanana transport and compares the theory to
experiments on non-neutral plasmas. Superbanana transport is caused by particles that cross local
trapping separatrices (magnetic or electric ripples) in the presence of field “errors” such as toroidal
magnetic curvature. Traditionally, collisions (at rate !) cause separatrix crossings, with resulting
transport that scales as !1=2B!1=2. The “chaotic” transport of interest here occurs when the separa-
trix is “ruffled” in the direction of plasma drift; then, collisionless particle orbits give random trap-
ping and detrapping. Prior theory assumed a “stellarator symmetry” and suggested that these orbits
give reduced transport scaling as !p with p " 1. Here, we fully characterize chaotic transport and
show that the transport is enhanced rather than reduced, scaling as !0B!1. Experiments on pure
electron plasmas provide quantitative transport measurements, with precise control of the overall
field error, and of the trapping separatrix with and without ruffles. The experiments show close
agreement with theory over a decade in B, for both collisional neoclassical transport, and for the
distinctive chaotic transport. At low magnetic fields, transport scaling as B!p with p& 2 becomes
dominant, showing preliminary agreement with bounce-resonant theory.
VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694053]

I. INTRODUCTION

This paper discusses theory of superbanana transport
and compares to measurements in cylindrical pure electron
plasmas. The measured transport agrees with superbanana
theory in the

ffiffiffi
!

p
regime, and the !1 regime1 only if a certain

“stellarator symmetry”2 is preserved. However, when this
symmetry is broken (and in some cases even when it is not)
the transport is enhanced, and a novel !0 regime occurs,
caused by chaotic scattering of trapped particles across
asymmetric separatices. As far as we know, this is the first
quantitative comparison of experiment to superbanana trans-
port theory.

In order to understand how stellarator transport can be
modeled in the much simpler cylindrical geometry of a
Penning-Malmberg trap, we note that the major ingredients
of superbanana transport are

(1) A global “field error” that causes particles to drift off of
flux surfaces. This is the toroidal curvature of the mag-
netic field in stellarators and is a controlled tilt of the
magnetic field in our experiments.

(2) Separate populations of locally trapped and untrapped
particles which experience different drifts. This is caused
by magnetic field ripples in stellarators; and by a con-
trolled electric potential barrier in our experiments.

(3) A separatrix between trapped and untrapped particles
which varies with poloidal angle around the flux surface.
In stellarators, the magnetic field ripples vary with poloi-
dal angle, so particles encounter different barrier heights
as they drift around the surface; in our experiments, the

electric potential has controlled azimuthal variations
termed “ruffles” (to distinguish these asymmetries from
the global error field).

Thus, all three superbanana transport features occur in
the cylindrical pure electron plasma, shown schematically in
Fig. 1. The plasma is confined for hundreds of seconds in a
quiescent, stable equilibrium, without the turbulent transport
that occurs in neutral plasmas. The magnetic field is tilted by
a small angle "B # B?=Bz . 10!3 radian in a chosen direc-
tion hB # tan!1 By=Bx, creating the global field error which
causes the dominant radial particle transport. The “squeeze”
voltage VsqðhÞ applied to the central electrode creates a trap-
ping barrier /sqðr; hÞ ¼ qVsqðr; hÞ, shown with a cosð2hÞ ruf-
fle. Control of the barrier allows us to distinguish between
the various types of neoclassical transport.

II. BOUNCE-AVERAGED TRANSPORT THEORY

Single particle orbits in these fields are shown schemati-
cally in Fig. 2. Cyclotron dynamics is assumed to be at suffi-
ciently high frequency so that it can be entirely neglected.
Particles with parallel energies E above /sq bounce from end
to end of the plasma, with a bounce frequency xbðEÞ. Par-
ticles with parallel energies less than /sq are trapped on one
or the other side of the squeeze barrier. All the particles per-
form E' B drifts in the magnetic field, which in the bounce-
averaged drift approximation are roughly circular orbits with
bounce-averaged frequency xEðEÞ. Because of the tilt in the
field (assumed to be a vertical tilt in the figure) these circular
orbits are shifted vertically; particles trapped on the right
side of the squeeze have orbits shifted upwards by an amount
Dr compared to passing orbits that average out the tilt field;
particles trapped on the left are shifted downward by thisb)Invited speaker.

a)Paper CI2 3, Bull. Am. Phys. Soc. 56, 56 (2011).
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amount. The shift is roughly proportional to the tilt angle "B
as well as to the plasma length Lp.

Superbanana transport occurs when the bounce-averaged
drift orbits randomly change from passing to trapped and
back to passing. These random separatrix crossings can be
caused either by collisions or by the chaotic nature of some
orbits near the separatrix energy.

The standard superbanana transport regimes arise when
collisions at frequency ! are considered to be the separatrix-
crossing mechanism. When xE < ! < xb, the transport is in
the 1/! regime.1,3 Collisions cause particles to change from
trapped to passing and back at a rate of !, as the particle par-
allel energy randomly diffuses above and below /sq. In the
time 1=! between trapping and de-trapping, particles com-
plete only a small fraction of their drift orbit, so they step
radially by only a small fraction of Dr, approximately
DrxE=!. Since particles are randomly trapped on either the
right or left sides of the squeeze, these steps are random in
direction and cause radial diffusion Dr at a rate

Dr " f!ðDrxE=!Þ2 / !!1B!2; (1)

where f is the fraction of trapped particles. However, this
1=! regime requires large collisionality and so has not been
observed in current experiments, because the experiments
always have ! < xE.

A second regime, which has been probed experimen-
tally, occurs when ! < xE < xb; this is the

ffiffiffi
!

p
regime.1,4,5

In this regime, transport is due to particles in a collisional
boundary layer that occurs around the separatrix energy /sq.
The boundary layer is caused by the difference in the orbits
of trapped and passing particles. This induces a discontinuity
in the collisionless distribution function across the separatrix,
which is smoothed out by collisions. The width of the colli-
sional boundary layer DWc is

6,7

DWc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T/sq!=xE

q
: (2)

Particles in this layer are driven by collisional parallel
energy diffusion back and forth across the separatrix every
rotation period. As the particles are trapped randomly on ei-
ther side of the squeeze potential, they take random steps of
size Dr, producing radial diffusion

Dr " xEðDrÞ2DWc=T / !1=2B!1=2; (3)

where the factor DWc=T is roughly the fraction of particles
in the collisional boundary layer.

When the separatrix is ruffled in h, this transport can be
either reduced or enhanced. A h-variation in separatrix
energy /sq by amount D/ allows particles with parallel
energy in this range around the separatrix energy to colli-
sionlessly change from trapped to passing and back as the
orbits drift in h. As these particles are retrapped randomly
each rotation period in the right or left trapping wells, radial
diffusion results scaling as

Dr " xEðDrÞ2D/=T / !0B!1: (4)

One can see that this result supercedes the previous
ffiffiffi
!

p
re-

gime result when the separatrix ruffle D/ is larger than the
collisional boundary layer width DWc.

III. SYMMETRY CONSIDERATIONS

However, there is an extra complication associated with
a certain type of “stellarator symmetry.”2 It is sometimes
possible to choose an orientation for the field errors such that
particles that collisionlessly change from trapped to passing
and back always do so on the same flux surface (radius). A
cylindrical example is shown in Figs. 3(a) and 3(b). The tilt

FIG. 1. (Color online) Cutaway view of
trapped non-neutral plasma used in superba-
nana transport studies. The plasma is con-
fined by applying voltages Vc to end
electrodes. The magnetic field is tilted by an
angle "B with respect to the z axis of sym-
metry, and the tilt is oriented in the x-y
plane at an angle hB with respect to the x
axis. A squeeze voltage VsqðhÞ is applied to
a central sectored electrode, shown end on
in the second view.

FIG. 2. (Color online) (a) Sketch of the
potential in the trap. Particles with energy
below /sqðr; hÞ are trapped. (b) Bounce-
averaged drift orbits in a vertically tilted
magnetic field. The green orbit is for a parti-
cle trapped in the left well and is shifted
down compared to red orbit, which is
trapped in the right well, as well as the pass-
ing orbit, shown by the dashed line.
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of the magnetic field is chosen to be in the vertical direction,
and the m¼ 2 separatrix ruffle is also chosen to have reflec-
tion symmetry along this vertical axis, as shown in Fig. 1. In
this symmetric case, denoted a ¼ 0, trapped and passing par-
ticle orbits are closed, (provided that the ruffle mode number
m is less than 3),9 so Dr ¼ 0, and no transport results from
the collisionless mechanism described previously. Moreover,
when collisions are added, the radial diffusion is no longer
identically zero, but it is reduced compared to the

ffiffiffi
!

p
re-

gime, scaling as

Dr " ! p B0 ðsymmetric caseÞ; (5)

where the exponent p " 1.5,8,9 [Reference 9 finds that p¼ 1
for ruffle mode number m¼ 1, and p " 11=12 for m¼ 2.]
This is the previously mentioned !1 regime predicted by
standard stellarator superbanana transport theory. Previous
work on superbanana transport often assumes this symmetry,
but here we consider the more general case.

In our experiments, the symmetry is easily broken by
orienting the direction of the magnetic tilt at an angle hB
which differs from the orientation angle of the ruffle hm, giv-
ing a # hB ! hm 6¼ 0, as shown in Figs. 3(c) and 3(d). Now
the drift orbits, which are shifted circles along the direction
of the tilt field B?, no longer close as the particles go from
passing to trapped and back. An analysis of the resulting

transport leads to collisionless diffusion which scales as Eq.
(4), and which is also proportional to sin2 a (provided that
m < 3),

Dr " xEðDrÞ2
D/
T

sin2 a: (6)

Stellarator symmetry can be seen to require a ¼ 0, in the fol-
lowing manner. Replicate the non-neutral plasma and exter-
nal fields using an even periodic extension about the end of
the plasma, and measure the origin of z from this point, and
the origin of h from hB. Then, the total electrostatic potential
due to the squeeze potential plus the induced potential from
the magnetic tilt will have a point-reflection symmetry about
z¼ 0 and h ¼ 0: /ðr;!h;!zÞ ¼ /ðr; h; zÞ (stellarator sym-
metry2) provided that a ¼ 0. Furthermore, this symmetry is
broken if a 6¼ 0. Of course, the radial transport is unaffected
by this periodic extension.

A summary of the different transport regimes is shown
in Fig. 4, which sketches the radial diffusion coefficient ver-
sus collision frequency.

IV. TRANSPORT MEASUREMENTS

We now turn to a discussion of the experiments that
have measured this radial superbanana transport in quiescent,

FIG. 3. (Color) (a) Separatrix potential
/sqðr; hÞ and the orbits rðhÞ for particles
with given energy shown by the red line,
for the symmetric case ða ¼ 0Þ when the
ruffles are aligned with the magnetic tilt.
Such particles transit from trapped to pass-
ing and back at the same radius. (b) End-
on view of the orbits for the case of (a).
The red orbits are trapped in the right well
and are shifted circles centered on the red
dot. The green orbits are trapped in the left
well and are shifted circles centered on
green dot. (c) Same as (a) but with broken
stellarator symmetry, a 6¼ 0. Now orbits
no longer close radially and particles take
random radial steps as they are randomly
trapped in the left or right wells. (d) Same
as (b) but for broken stellarator symmetry.
Orbits are followed as they transit once
from passing to trapped in either the left
(green) or right (red) wells.
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low-collisionality pure electron plasmas.10–12 Electrons are
confined radially by a nominally uniform axial magnetic
field 0:4 < B < 12 kG and are confined axially by voltages
Vc ¼ !100 V on end cylinders of radius Rw ¼ 3:5 cm. The
electron columns have length Lp ¼ 49 cm, and radial
density profile n(r) with central density n0 ( 1:6' 107

cm!3, giving line density NL ¼ pR2
pn0 ( 6:1' 107 cm!1.

The unneutralized charge results in an equilibrium potential
energy UeðrÞ with Ue0 ( þ28 eV at r¼ 0. This gives an
E' B rotation frequency fEðrÞ ¼ xE=ð2pÞ which decreases
monotonically from fE0 ( 230 kHz' ðB=1kGÞ!1. The bulk
electrons have a near-Maxwellian velocity distribution with
thermal energy T. 1 eV, giving axial bounce frequency
fb . 430 kHz, and electron-electron collision frequency
! " 200 s!1.

The electrostatic trapping barrier /sqðr; hÞ ¼ /s0ðrÞþ
D/mðrÞ cos½mðh! hmÞ+ is created by voltages applied to
h-sections of the central electrode. Here, we focus on m¼ 2
ruffles, created by voltages 6DV2 applied to four 60, sectors,
extending over Dz ¼ 3:8 cm near the z¼ 0 center. At every
radius, low energy particles are trapped in either the left or
right end, whereas higher energy passing particles transit the
entire length of the column. The characteristic separatrix
energy is ruffled in h by D/mðrÞ " qDVmðr=RwÞm, further
reduced inside the column by Debye shielding.

In the experiments, we diagnose the bulk expansion rate
!hr2i, defined as the rate of change of the plasma mean-
square radius

!hr2i #
1

hr2i
dhr2i
dt

; (7)

where hr2i # 1=N
Ð
d3rnðr; tÞr2. Fortunately, !hr2i can be

accurately and readily obtained by measuring the frequency
f2ðtÞ of a small amplitude mh ¼ 2; kz ¼ 0 diocotron mode, as
!hr2i ¼ !ð1=f2Þðdf2=dtÞ. This relation arises because
f2 / hni, and hni / 1=hr2i; and it has been verified by inde-
pendent camera-dump measurements of nðr; h; tÞ. The bulk
expansion rate !hr2i is an integral measure of the full radial
flux that includes both mobility and diffusive contributions,
both being proportional to the radial diffusion coefficient
DrðrÞ.9,13

An example of the expansion data obtained from this
diagnostic is shown in Fig. 5. In Fig. 5(a), !hr2i is measured
versus tilt direction hB, for various tilt magnitudes "B. The
striking sin2ðhB ! h2Þ dependence of the ruffle-induced
transport makes the data unambiguous over a wide range of
parameters. Figure 5(b) shows !hr2i versus "B, displaying the
expected "2B dependence for small "B. We note, however, that
scalings closer to "1=2B are observed for "B only 2–3 times
larger than displayed here. We compare this data, taken for
various values of B, and ruffle strengths, to theory as
described below.

A detailed analysis6,9 of random transitions between
equal trapping regions driven by rotation across m¼ 2 sepa-
ratrix ruffles gives neoclassical asymmetric superbanana ra-
dial diffusion coefficient

DrðrÞ ¼
1

4
FMð/s0ÞfEDr2 ' fDWcD̂c þ D/2D̂D/ sin

2 ag: (8)

The (dimensionless) collisional bounce-averaged transport
coefficient D̂c and the (dimensionless) ruffle coefficient D̂D/

are shown in Fig. 6 for m¼ 2, calculated in Ref. 9 as func-
tions of the normalized ruffle strength D/=DWc. While the
ruffle-induced transport coefficient D̂D/ is nearly independ-
ent of D/=DWc, the collisional coefficient D̂c shows a fast
decline as chaotic particle transitions become dominant, and

FIG. 4. (Color online) Schematic view of the different transport regimes.

FIG. 5. (Color online) (a) Measured trans-
port rates !hr2i versus tilt direction hB, for 6
tilt angles "B, showing the distinctive
sin2ðhB ! h2Þ signature of chaotic transport
from the m¼ 2 ruffled separatrix. (b) Meas-
ured transport rates versus tilt angle "B with
no applied ruffle with an "2B fit to the solid
data points only, showing the expected "2B
scaling of collisional neoclassical transport.
The same "2B scaling is observed for ruffle-
induced chaotic transport.
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smooth out the discontinuity of FM. In the case of aligned
m¼ 2 ruffles ðsin2 a ( 0Þ, this causes measurable suppres-
sion of collisional superbanana transport.

We obtain a prediction for the expansion rate by inte-
grating the theoretical expression for the diffusion versus ra-
dius across the measured density profile in the given trap
potentials

!hr2i ¼ Cc
"B
1mr

# $2
þCD/

"B
1mr

# $2 DV2

1V

% &
sin2 a: (9)

The first term Cc is due to the collisional diffusion D̂c, and
the second term CD/ is due to the chaotic D̂D/ diffusion
caused by separatrix ruffles. We note that evaluation of these
coefficients requires knowledge of the plasma density and
temperature as well as the error-field-induced potentials as a
function of radius. These potentials are obtained by deter-
mining the self-consistent linear response of the plasma to
the field errors, assuming collisionless bounce-averaged dy-
namics for the plasma. A more detailed discussion of this
algorithm will be presented elsewhere. The theory is plotted
for both 1 eV and 2 eV temperatures. The bulk temperature
near r¼ 0 is measured to be roughly 1 eV, but the effective
temperature at the radial edge, where most transport occurs,
may be somewhat hotter.

This theory result is compared to the experiments by fit-
ting the a and "B-dependence of the data to the dependences
in the theory. For D/ ¼ 0 (no ruffles), the expansion rate is
roughly independent of a as expected from the theory, and
the observed transport scales as "2B, with a small offset due to
background transport caused by small uncontrolled asymme-
tries. Performing similar fits for different values of D/ and B
leads one to experimentally determined values of the coeffi-
cients Cc and CDV shown in Fig. 7 for B¼ 4 T. The colli-
sional coefficient Cc shows a fall-off with increasing ruffle
strength, as expected in the !1 regime for the symmetric case
a ¼ 0. The chaotic coefficient CD/ is roughly independent of

ruffle strength, also as expected theoretically. Theory shows
fairly strong temperature dependence mainly because when
T increases the induced asymmetry potential due to the mag-
netic tilt is less shielded and penetrates further into the
plasma.

As the magnetic field is varied, the expansion coeffi-
cients also vary as expected theoretically, as shown in Fig. 8.
For large magnetic fields, the collisional coefficient Cc for
D/ ¼ 0 scales as 1=B0:62, which is close to the 1=

ffiffiffi
B

p
scaling

expected for the
ffiffiffi
!

p
regime when there are no ruffles. The

FIG. 6. (Color online) Predicted dimensionless diffusion coefficients D̂c and
D̂D/ for collisional and chaotic transport, versus the ruffle magnitude D/
scaled to the collisional separatrix layer width DWc, for an m¼ 2 ruffle. Ruf-
fles reduce Dc but cause large chaotic transport from DD/ unless the a ¼ 0
symmetry is perfect.

FIG. 7. (Color online) Comparison of theory (solid curves for a 1 eV plasma
and dashed curves for a 2 eV plasma) and experiments (points) for the total
radially averaged transport rates Cc and CD/ from collisional and chaotic
transport, for one data set at B¼ 4 kG.

FIG. 8. (Color online) Comparison of theory (solid and dotted-dashed
curves for a 1 eV plasma, and dashed curves for a 2 eV plasma) and experi-
ments (points, dotted power-law fits), for the radially averaged transport
rates from bounce-averaged collisional ðCcÞ, bounce-averaged chaotic
ðCD/Þ, and bounce-resonant collisional ðCcK1Þ neoclassical transport. The
data and theory for Cc and CcK1 are for DV2 ¼ 0, and for CD/ the data and
theory are for DV2 ¼ 1 V.
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chaotic coefficient CD/ scales as 1/B, also as expected from
the collisionless theory of Eq. (4). In this plot, the bounce-
averaged theory for each coefficient is plotted as the solid
and dashed lines, for 1 eV and 2 eV plasmas, respectively.

The 1 eV curve for Cc is a factor of
ffiffiffi
2

p
lower than a pre-

viously published theory curve11,12 due to a factor of 2 error
in the collision rate used previously. The corrected 1 eV
curve shown in Fig. 8 has the same scaling with B as the data
but is roughly a factor of 2 smaller than the measurements.
One explanation for this discrepancy is the possibility that
the plasma edge is at higher temperature, as shown by the
2 eV theory curve. Other possibilities also exist. For instance,
it may be the case that the energy-dependent Fokker-Planck
collision rate used in the theory,7 which assumes a Maxwel-
lian velocity distribution, underestimates the rate at which
particles scatter across the separatrix. The source of the dis-
crepancy will be the subject of further experimental and the-
oretical investigations.

V. BOUNCE-RESONANT TRANSPORT

There are also neoclassical fluxes13,14 caused by colli-
sions acting on bounce-rotation resonant orbits, and these
have been neglected in the bounce-averaged theory pre-
sented above. These fluxes lead to extra “kinetic” terms in
the expansion rate, which expand Eq. (9) to

!hr2i ¼ Cc
"B
1mr

# $2
þCDV

"B
1mr

# $2 DV2

1V

% &
sin2 a

þ CcK1
"B
1mr

# $2
þCcK2

DV2

1V

% &2

: (10)

The first two terms are the bounce-averaged terms as before,
while the last two terms arise from bounce-rotation resonan-
ces in the controlled error fields of the magnetic tilt ðCcK1Þ
and of the separatrix ruffles (CcK2). Experimentally, the coef-
ficient CcK2 can be extracted from the data due to its ðDV2Þ2
scaling. However, the coefficient CcK1 is distinguished from
Cc by its substantially stronger B-dependence, and by its
presence even without an applied Vsq barrier.

The two coefficients CcK1 and CcK2 can be calculated
theoretically by separately solving for the neoclassical fluxes

due to the magnetic tilt and the ruffled squeeze potential. We
do this by determining the self-consistent error potential
within the plasma due to a tilt and separately due to the
ruffled squeeze, both in the collisionless bounce-averaged
limit. We then use these linear error potentials to determine
perturbed distribution functions as the solution to the linear-
ized Boltzmann equation with Fokker-Planck collisions.
Each perturbed distribution function then yields a radial
transport coefficient, obtained by integrating the distribution
function over the perturbed potential as described in Ref. 13.
The resulting transport coefficient CcK1 is plotted as the
dotted-dashed line in Fig. 8 versus magnetic field for the
case of a magnetic tilt without separatrix ruffles, and agrees
reasonably well with the observed magnetic scaling both at
small and large magnetic fields. Preliminary work on CcK2

also shows a similar agreement, although the data have not
been fully analyzed yet.

VI. CHAOTIC TRANSPORT FOR HIGHER RUFFLE
MODE NUMBER

Significantly, theory9 and experiments show that strong
chaotic transport may persist even with “stellarator symmetry.”
For example, Fig. 9(a) shows chaotic transport with no depend-
ence on a # hB ! h4, from a DV4 cos 4ðh! h4Þ ruffle. With
DV4 ¼ 0, the lower points show collisional neoclassical trans-
port, with apparent weak hB-dependence due to imperfect
alignment of B. Application of a m¼ 4 ruffle with DV4 ¼ 1 V
causes strong chaotic transport which is also essentially inde-
pendent of a. Both the collisional and chaotic components scale
as "2B. In Fig. 9(b), measurements of !hr2i versus DV4 exhibit a
collisional component which decreases with DV4, and a chaotic
component proportional to DV4. This is analogous to the m¼ 2
ruffle theory and experiments, but for m¼ 4 there is no sin2 a
dependence. More broadly, theory and experiments both dem-
onstrate that there is no favored symmetric configuration where
transport is reduced by any ruffle with m - 3.
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FIG. 9. (a) Measured transport !hr2i versus
tilt direction hB, without and with m¼ 4 ruf-
fle voltage DV4. With ruffle, strong chaotic
transport occurs at all symmetry angles.
(b) Measured !hr2i versus ruffle strength
DV4, showing the decreasing collisional
contribution and linearly increasing chaotic
contribution as DV4 increases.
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