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NORMAIL MODES IN A CRYOGENIC PURE ION PLASMA
DANIEL HE. DUBIN
Department of Physics, University of California at San Diego, La Jolla CA 92093-0319, USA

When a single species plasma is confined in a harmonic Penning trap at cryogenic temperature and high den-
sity a confined thermal equilibdum exists in which the plasma is roughly a uniform density spheroid (ellipsoid
of revolution). Some of the normal modes of this magnetized plasma spheroid have recently been measured.
Here, a simple electrostatic cold fluid theory of the modes is presented. Although the magnetized plasma
dielectric is anisowropic (with cylindrical symmeiry) and the plasma boundary has a different-——spheroidal—
symimetry, a separable analytic solution nevertheless exists in an unusual frequency-dependent coordinate sys-
tem. Furthermore, those modes which correspond to quadrupole deformations of the spheroid have a simple
finite amplitude description {and it is these modes which were measured in the experiments). Preliminary
molecular dynamics simulation results exploring the effects of strong correlation on the normal mode frequen-
cies will also be presented.

1. INTRODUCTION

In recent experiments' a nonneutral plasma is confined for Jong periods of time in a Penning trap. The plasma
is at sufficiently low temperature T and sufficiently high density ny so that both the Debye length
Ap=(kT 14%g%n3)""% and the interparticle spacing ng® are much smaller than the size of the plasma (here g is the
ion charge). However, the plasma is itself much smaller than the distance to the trap electrodes, so that induced
image charges in the electrodes have a negligible effect on the plasma dynamics.

Normal modes have recently been excited and measured in such a plasma cloud.? This paper describes a
simple analytic theory for these modes. Although the magnetized plasma dielectric is anisotropic {(with cylindrical
symmetry) and the plasma is also bounded (with a different—spheroidal—symmetry), we show that a separable
solution for the partial differential equation governing the mode potential exists, and we obtain an analytic solution
for electrostatic fluid modes in a realistic confined nonneutral plasma of finite size. We also report on the
preliminary results of some computer simulations which have been performed in order to test the theory and which
also may be able to provide information on the viscosity of the strongly correlated plasma.

The confinement properties of nonneutral plasmas in Penning traps have been studied extensively. Radial
confinement is maintained by a strong uniform magnetic field B oriented along the trap axis {taken here (o be the z
direction). The plasma rotates through this magnetic field, providing a confining vxB force which balances the
repulsive radial electric force of the unneutralized plasma. Confinement in the z direction is provided by DC
voltages applied o end electrodes. The assumption that the plasma is small implies that image charges in the
electrodes can be neglected and the trap potential is approximately quadratic, of the form 22— (x2+y?)/2. A single
particle trapped in this potential oscillates in the z direction at frequency «,, the single particle axial bounce
frequency.

Furthermore, the existence of a confined thermal equilibrium state for plasmas confined in such a trap has
been demonstrated both theoretically’ and experimentally.** In thermal equilibrium, the plasma rotates with a
uniform "rigid” rotation frequency ,, and is at constant temperature T. If both 2, and 75’ are much less than
" the size of the plasma, one may neglect the effects of finite temperature and correlations and the resulting cold fluid
thermal equilibrium is a uniform density spheroid {ellipsoid of revolution) whose aspect ratio @ determines the
cloud’s rotation frequency w, for given trap fields (see Eq. (15) of Ref. 5). (The aspect ratio « is defined in terms
of the cloud’s axial length, 2z, and its diameter, 2rg, as a=zy/ry.) The rotation frequency in tumn is related to the
density® by ®f=2w, (Q-,), where Q=¢B/Mc is the cyclotron frequency, @, =VangZnyM is the plasma
frequency, and M is the mass of the charges in the plasma. '

2. FLUID DESCRIPTION OF THE NORMAL MODES

In corder to obtain a general solution for the normal modes several assumplions must be made. We assume
the cloud is near thermal equilibrium, and we assume the oscillations around this equilibrium are small so that we
can linearize the equations of motion. The temperature is assumed 1o be sufficiently small so that pressure effects
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on the fluid dynamics are negligible, and correlation effects are also neglected; these are good approximations
provided that both the Debye length and interparticle spacing are small compared to both the size of the cloud and
the wavelength of the mode. Electromagnetic effects are neglected since the cloud is small and the mode frequency
is relatively tow, and the effect on the dynamics of image charges in the ¢lectrodes is neglected.

These approximations apply well to present experiments on small cold ion ¢louds. The equations of motion
consistent with these approximations are the cold fluid equations lincarized around the T =0 spheroidal fluid
thermal equilibrium. The dynamics is described in a frame rotating with the plasma. In this frame the equilibrium
is stationary and the perturbed density 8n, velocity 8v and electrostatic potential  satisfy the linearized continuity,
momentum and Poisson equations:

ag;‘n+v-(n08v)=0 . (1a)
B 9 gy 5o

o +M Vy-8vx£,2=0 (1b)

Vig=—dng B 10

where Q,=Q-2w, is the vortex frequency (the cyclotron frequency as seen in the rotating frame), and Z is a unit
vector in the z-direction. Using the ansatz that the perturbed quantities have a time dependence of the form ¢~
in the rotating frame (so that o is the mode frequency as seen in this frame), a differential equation for y follows
from standard algebraic manipulations of Eqs. (1):

Ve Vy=0 (2a)
where g is the cold plasma dielectric tensor, In Cartesian coordinates
g, -igg 0
e=lie; g O (2b)
0 0 &

where €= 1-02H{w?—Q)), £=0, 020(0*-Q?) and &=1-0X0?. Equation (2a) is just Maxwell’s equation
V-D=0 for 2 medium with a linear frequency-dependent anisotropic dielectric tensor €,

The normal mode problem requires a solution to this equation subject to the boundary condition that w — 0 at
infinity, which is a problem in the theory of electrostatics. Outside the plasma g=1 and y satisfies Laplace’s
equation, V2y* =0. Inside the plasma the dielectric tensor is anisotropic and the solution of Eq. (2a) is more
‘complicated. The inner and outer solutions must be maiched across the plasma-vacuum boundary according 1o

‘Vm =y |baundnry ’ (3a)

fio- Vi = fi- Yy lb.,m,, ) (3b)

where fi is a unit vector normal to the plasma vacuum boundary.

The formulation of the problem as one in the theory of electrostatics is a step forward, but is hardly the end
of the story. Although the problem is well-posed, simple solutions are generally available only in one of the
standard geometries for which a separable solution exists, and this is not such a case. The surface of the plasma is
spheroidal, while the dielectric tensor is anisotropic with a different, cylindrical, symmetry. However, in Ref. 6 it
was shown that Eq. (2) does in fact have a separable solution in an unusual frequency dependent coordinate system,
This is the only known exact analytic solution for normal modes in a magnetized plasma of finite size. The
solution for the mode potential is

{A QrE /Y PIHEY) e ™2 (outside cloud)
(4)

B PPET) PPES) ™= (inside cloud)

where A and B are constants and Q;” and P;” are associated Legendre functions. Outside the cloud the solution is
expressed in terms of spheroidal coordinates (§;.£2.¢) defined by the relations

x = [(&f-d*1-EH*cost
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y = [EE-dD-EP)sing |
2 =5k .

The coordinate &; is a generalized distance coordinate taking the values &€ [zq,00) outside the cloud, &, is a
generalized latitude in the range [-1,1] and ¢ is the usual azimuthal angle. Surfaces of constant &; are confocal
spheroids with the surface of the cloud defined by &; =2y, and surfaces of constant &, are confocal hyperboloids.
The focii are a distance 2ld| apart, and d* = z¢ —r¢. The coordinates (£,.E,.9) become the usual spherical
coordinates (r,cos0.,0) when zg=rg. _

Inside the cloud the coordinates (£;.&,,4} are employed in order to obtain a separable solution. These
coordinates are transformed spheroidal coordinates defined by the equations

x = [&F- P)1-E]) P cosd |
y = [Ef-dH(1-EF1"2sing 5
z{gy/Ex)" = E\E;5

where d2=%%—rd and 7y=z4(ei/es)”. These coordinates are frequency-dependent; the different possible
topologies of the coordinate surfaces are discussed in Ref., 6,

Retuming 1o Eq. (4), we note that different normal modes are enumerated by the integers ! and m, where
120 and lmi<i. In fact, values of m less than zero do not give rise 10 new modes so m >0 is assumed
thronghout, and negative frequencies are allowed. Negative frequencies have the following interpretation. For
m #0, positive and negative frequency modes rotate about the z axis in opposite directions. We choose the
convention that modes with positive frequency rotate in the counter-clockwise sense when viewed from above the
x-y plane (so that 46/dr >0 for w>0). These two directions of rotation are not equivalent due to the applied
magnetic field.

For a given pair (! /) the mode potential outside the cloud decays away like s™!*1) at large distances 5 from
the cloud center (because QM(x)—x¢*" for large x and &, —s for large s). The modes can also be
differentiated by the number of oscillations in . For example, there are | —m zeroes in the potential as one moves
in &, along a given spheroid from one pole to the other (i.e., from &;=1 to -1 on a constant (§;,¢) curve). This is
because P*(x) has | —m zeroes in the range [-1,1].

For a given pair (/ jn) there are several possible frequencies of oscillation which we will enumerate presently.
The variation of the potential outside the cloud is independent of the mode frequency, up to the overall constant A.
However, inside the cloud, the frequency dependence of the coordinates (through their dependence on €, and €3)
implies that the behavior of the mode potential varies depending on the mode frequency, the plasma frequency and
voriex frequency (except for two exceptional cases described by Egs. (8) and (9) below). This behavior can be
understood qualitatively from the spatial Fourier transform of Eq. (2a),

E]kf +£3k:2 = 0 ’ (6)

where k; and k, are the components of wave vector perpendicular and parallel to the magnetic field respectively.
When w/@, and ,/0, are such that €)/e;<0, a solution of this equation exists with both k; and k, real, which is a
propagating mode. As the mode reflects off the cloud’s surface it sets up a standing wave pattern of nodes and
antinodes within the plasma. As an example, the zeroes of the potential for the four possible [ =4 m =0 potentials
are shown in Fig. 1 for the case of a spherical plasma with Q,/w, =0.5. Note that the zeroes of the mode intersect
the surface of the clond at the same points for all four frequencies since in all cases the potential ontside the clond
varies like P £ (cos6), and is continuous across the plasma vacuum boundary.

The relation €,/e;<0 is satisfied by frequencies in the ranges 0<[wl<minfw, , Q,] and max[w, , 1Q, <ol
< £, where Q,,:\}m,,gﬂ)\,i is the upper hybrid frequency. Propagating modes in the former range are called
magnetized plasma oscillations, whereas modes in the latter range are referred 1o as upper hybrid modes. Figures
l1a and 1b are upper hybrid modes and 1d is a magnetized plasma mode. Figure 1c corresponds to the case of a
mode with €,/e;>0, which we discuss below. The two (4,0) upper hybrid modes induce litfle potential variation
outside the cloud when 1Q,l<w,, and so may be difficult to observe in this regime if only electrostatic probes are
employed. This is because at the "Brillouin limit" defined by Q,=0, these modes become bulk plasma oscillations
with €3=0, and so Eq. (3} implies that y*“ =0. Furthermore, at the Brillouin limit the magnetized plasma modes
disappear into the w=0 resonance. Thus, only modes with €,/e,>0 may be observable near this limit (under
electrostatic detection).
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FIGURE 1

Figures a — d show the zeroes of the potential for the four / =4, m =0 modes in a spherical plasma cloud
with /00, = 1/2, in order of highest frequency to lowest frequency. Grey lines are the zeroes, and the black
line is the surface of the cloud,

When £,/8,>0, Eq. (6) implies that both &, and %, can no longer be real and the mode is evanescent,
decaying with distance into the plasma. There are in general two such modes when IQ,!<w,, with frequencies in
the range 1Q,|<lol<w, (when m =0 the two modes are degenerate, so only one, labelled c, is shown in Fig. 1).
Furthermore, if €;=¢3 (which can occur only at the Brillouin limit ©,=0) these evanescent modes satisfy Viyin =0,
which from Eq. (1¢} implies that there is no density perturbation except at the surface of the cloud. In this case the
evanescent modes induce incompressible deformations of the cloud’s shape, and for this reason such modes are
often referred to as surface modes.

Finally, there are two exceptional cases for which the form of the interior mode potential is independent of @,
w, and Q,. When I=m or I=m +1 one can substitute into Eq. (4) the general form of the Legendre function P*,

] ¢-mr 2 % l-m-2j -
PiMx)y= Y (1-x9 PimjX 1, g
Ju0
{where the p;,,;’s are given numbers), and use Eq. (5) to show that
Yinmy = Armeime=e) ®

and
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Yims1m = Brmzelné=en )

where A and B are constants. In these cases the form of the mode potential is independent of @, @, and Q,
because the mode satisfies 9%y™/822=0 and V2y™ =0 separately, and so Eq. (2a) is satisfied for any €, and &,. (In
fact, for all | and m W™ can be expressed as a finite-order multinomial in x, y and z.) Furthermore, these
particular modes satisfy VAy™ =0, so they cause incompressible deformations of the cloud for all @, and Q,, i.e.,
they are always surface modes. For example, for the case of the (2,1) mode w{%;,=58 e'“~“r z, which is the
potential inside a tilted cloud precessing at frequency ® around the z axis. The (1,0) and (1,1) modes are also
examples of incompressible cloud deformations, which correspond to the well-known axial center of mass and
magnetron modes,

The (2,2) mode is also an incompressible distortion of the cloud, in this case into a triaxial ellipsoid. The
ellipsoid then rotates about the z axis at one of two possible frequencies. In fact, all the I =2 modes comespond to
distortions of the plasma into a time varying ellipsoidal figure. A simple finite amplitude theory of these particular
modes has recently been developed.” Furthermore, the (/,]) modes are finite length extensions of the z-independent
diocotron and upper hybrid surface modes of cylindrical nonneutral plasmas.®

Although the | =m and / =m +1 surface modes appear to be fundamentally different from other magnetized
plasma, upper hybrid, and evanescent modes, in fact they display many characteristics which are similar to these
modes. For example, one of the three (2,1} oscillations can be thought of as the finite length versicn of a
magnetized plasma mode in a cylindrical column. The mode has m=1 and has half a wavelength potential
variation over the length of the column, Similarly, the other two (2,1) modes are finite length versions of diocotron
and upper hybrid oscillations which also have a half-wavelength variation over the column length, Modes with
larger values of [ simply have more wavelengths fitted into the column length, and so are not fundamentally
different. Indeed, we will soon see that the frequencies of these I=m and !=m+1 modes behave in a
qualitatively similar fashion as those of the other propagating and evanescent modes. When discussing the general
frequency dependence of the modes, we therefore need make no distinction between these modes and modes with
other values of ! and m.

Turning now to the normal mode frequencies, in Ref. 6 it was shown that substitution of Eq. (4) into Eq. (5)
leads to two homogencous lincar equations for A and B which have a nontrivial solution only if

P =0, (10)

where P"= P (o/(al—e481)"), Q=0 ov(a?~-1)"), a=zyr; and the primes denote differentiation with respect
to the entire argument.

The general behavior of the solutions 1o this equation was considered in Ref. 6, Here, we discuss a
simplification of Eq. (10) which aids in the determination of the solutions. Analysis of the roots of this nonlincar
equation is aided by the fact that it can be expressed as a polynomial in the frequency ©. This polynomial can be
derived by substitution of Eq. (7) into Eq. (10), which leads, after some algebra, to the expression

i—m
=3 ) m’
2N pimx ¥ Imateted+ (I —m—2j)es— o of

l-m—1pq_ 2 SR M
AT 5 @-D* or

0, (11

where x =o/(0*—e4/e;)”. The prefacior of the sum is nonzero and so can be discarded. Furthermore, since
x4 =(1-eya’,Y, and &, £, and £, are rational functions of o, the sum itself may be expressed as a polynomial
in 0. For example, €5/¢; = (07— Q2)(0* - 02/ - QD) and & +&;= (0 + 0, — 0)o{w+Q,). Substtution of
these results into Eq. (11) leads, afier some further reduction, to the following polynomial equation:

(-my2 , ,
Y a;bf gMmlt-m2ki = g | ] (12)
=0
where
or'
L= . l—m—~2jf 2 a2y o - 2
A = Pimj {(U)"'Q-v)[( m 1)(‘” 0, 21" oF w ]

+modole?-0Z+00,) },
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b = P’ - Q) - (- o) e?- QY ,
and
¢ = 2w -Q3F) .

This form of the dispersion relation is considerably simpler to solve numerically than Eq. (10) using any
polynomial root finding algorithm. Furthermore, the equation leads to some simple analytic results. For example,
one can count the number of normal modes by determining the order of the polynomial. One can see that the order
is 3+47m[( —m)2}; however, one must be careful to exclude any spurious roots generated in the derivation of
Eq. (12) through multiplication by resonant denominators of €, €, or £3. When m =0 and ! is odd there is a single
spunous root at w=-€2, (due to the (W+£,) term in a;). If m=0 and ! is even there are three spurious roots at
©0?=0 and w=—-LQ,. Subtracting out these roots from the tol:al one finds for m =0 there are 2/ normal modes.
However, when m =0 Eq. (12) is a polynomial of order [ in w? The roots then come in ! ‘pairs at +w, and the
pairs do not really correspond to two scparate modes; indeed, Eq. (4) shows that the mode potential is identical for
both £ when m =0.

When m #0 and when I =m is even, there is a single spurious root at w=0, while when [ ~m is 0dd there
are no spurious roots. Thus, when !/ —m is even there are 2({ —m)+2 modes, and when ! —m is odd there are
2{({ ~m)+1 modes. The roots no longer come in +® pairs because, for m #0, modes with positive and negative
frequencies rotate in opposite directions around the z-axis, and these directions are not equivalent because of the
magnetic field,

3. THE EFFECT OF STRONG CORRELATION: PRELIMINARY RESULTS

In order 10 determine the cffect of interparticle correlations on the normal modes we have performed
molecular dynamics computer simulations of ion clouds in which an oscillation has been induced.” The molecular
dynamics code follows the orbits of N charges under the influence of the external electric and magnetic fields as
well as the Coulomb interactions with the other charges. In order 10 remove the fast cyclotron timescale from the
dynamics we analytically average over the cyclotron motion, replacing the exact equations of motion by guiding
center equations of motion. The idea.here is that for a sufficiently strong magnetic field the cyclotron motion
decouples from the motions associated with normal modes at or below the plasma frequency. Details of the
molecular dynamics method can be found in Ref. 10. Each particle is described by a position x; and velocity along
the magnetic field, v,; (the other two components of velocity are determined by the ExB drift).

We begin the simulation by using for an initial condition the positions x{® and velocities v of charges
which have previously been allowed to equilibrate 10 some value of the cormrelation parameter I'= ezlakT We
determine the temperature as a long-lime average of the mean kinetic energy [i.e., T=<(I/N)YMv3i>]. Asis the

1
practice in OCP studies, we calculate the Wigner-Seitz radius a in terms of the background density (that is,

%na3no=l. where ng is determined in the simnlations from the time average of the rotation frequency [i.e.,

no=(B/2nec)<w,>]).

To these positions and velocities we add a perturbation associated with a given normal mode, The mode fluid
velocities and displacements can be oblained from Eq. (4). We then follow the evolution of the plasma through
several oscillations in order to determine the mode frequency and to observe collisional damping of the mode.
Some results are shown in Fig. 2 for a cloud of ¥ =768 particles which is initially spherical (@=1), In order t0
simulate a (2,0) mode we add to each particle’s velocity a small component proportional to z:

Xt =0)=x{ ,

vt =0y =vP?+005:,9,i=1-N .

This mode comresponds to a sinusoidal oscillation in the length of the spheroid. The radius of the plasma is
constant because we use guiding center dynamics for which the mean square radins, Zr,-z(t'). is a constant of the

]
motion.!® In a real plasma the radius could undergo small oscillations near the upper hybrid frequency, and we have
averaged over these small fast oscillations here. In the simulations times are normalized o ®, and distances 1o
(3e? M ?)', where w, is the frequency of axial oscillation of a single particle in the quadratic external trap
potential, The magnetic field is chosen so that Q=10w,. In a spherical cloud the plasma frequency is @, =V3q,.
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FIGURE 2

Molecular dynamics computer simulations of the (2,0) normal mode for an initially spherical cloud of 768
charges; Q=10w,. Kinetic energy K (¢) is plotted versus time. a) Initial T=v. Measured frequency over a
period of 4000 : =1.34180,. b) Initial T'=90. Mecasured frequency over a period of 400w
Wap=1.3423t»,. The dashed line is the envelope obtained from the fit of Eq. (13), corresponding to
1, =0.001 o, and ,=0.003 @,.

In Fig. (2a) we plot the kinetic encrgy of the cloud, K (t)= Y, M vZ(1)/2, which varies at twice the mode

i

frequency o as the spheroid expands and contracts along the magnetic field. For this case the cloud of N =768
charges was initially at zero temperature—i.e. in a crystallized state with v%®=0. The frequency of this oscillation
in fluid theory is casily obtained from either Eg. (10) or Eq. (12) in the large Q. (guiding center} limit:
wP=3~5w, =13416w,. This prediction matches the simulation 10 a part in 10, and there is little damping of the
oscillation. This is because this fluid oscillation corresponds closely to one of the 3N normal modes of the crystal.

On the other hand, if we begin with a spherical plasma of N =768 charges at I'~90 the mode frequency
remains within a part in 10* compared (o the fluid theory, but there is measurable damping of the oscillation, and a
concomitant increase in the thermal energy of the cloud (Fig, 2b). We fit X' (¢} to the form

K(0)=Are " cosH{nt) +AHAs—e 7). (13)

The term proportional to A; represents the kinetic energy in the mode damping at rate v,, while the term
proportional 10 A, represents the thermal energy of the plasma. In Fig. 2a, A;=1 and ¥; and 'y, are negligibly
small, whereas in Fig. 2b a damping rate of v;=0.001 &, and a heating rate of 1,=0.003 0, are observed,

It is interesting to note that this mode of oscillation is purely compressional in nature—there is no fluid shear
induced by a (2,0) oscillation in the length of the spheroid, only a uniform compression. The observed damping is
therefore a measure of the coefficient of bulk viscosity. The increase of viscous damping with decreasing
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correlation is a common feature of viscoelastic systems, describable in simple models through introduction of a
complex viscosity coefficient.!! However, this phenomenon is unlike the behavior of weakly coupled plasmas where
collisional viscosity decreases as temperature increases, and observation of this behavior may therefore be a useful
experimental diagnostic of the strongly correlated state,

We are currently supplementing these preliminary results with more computer simulations in order to
determing the scaling of the mode damping with plasma shape, particle number, magnetic field strength and T,
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