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1. INTRODUCTION

In a recent series of experiments' at the National Institute of Standards and Technology in
Boulder, Colorado a cloud of ions is trapped and confined for long periods of time. The
number of ions trapped, N, is sufficiently large so that the cloud may be regarded as a plasma,
i.e., a nonneutral or pure ion plasma. The ions are subsequently cooled to extremely low
temperature 7 at sufficiently high density ng so that the correlation parameter, T =q%a, kT is
much larger than unity there ¢ is the ion charge and g, =(3/(4rn)!? is the Wigner-Seitz
radius). The ions therefore become strongly correlated and it is possible to study in detail the
effects of strong correlation, including formation of liquid and even crystalline states.
Furthermore, as we will see, there is a direct correspondence between the thermal equilibrium
properties of these trapped ions and those of the so-called one-component plasma (OCP). All
this is quite exciting since there is a large body of theoretical work which has been generated
over several decades on the one-component plasma, and so it may be possible to test several of
the theoretical predictions. For instance, it has been predicted that a first-order phase transition
should occur from a liquid to a body-centered cubic (bcc) crystal at ['=180 in the infinite
homogeneous OCP.?

Does this result apply to the experiments? We will see that in fact the result does not
apply, because in present experiments the number of ions trapped is relatively small (N < 104
so that surface effects are important. However, because the number of ions is small, computer
simulation of the system in realistic geometry becomes possible. We will discuss the results of
such simulations,® which predict correlation behavior in the ion clouds which is quite different
from that of the homogeneous one-component plasma. Rather than undergoing a simple first-
order transition from a liquid to a bec crystal, the system passes through an intermediate regime
rather like the smectic phase of a liquid crystal, in which the ion cloud forms concentric
spheroidal shells. lons are confined to the shells but move randomly within each shell. At
larger I values, this diffusion is suppressed and a distorted 2-D hexagonal lattice forms in each
shell.
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Some of these properties can be understood by means of a simple slab model of the ion
cloud. This model will provide us with a simple first estimate for the size of system required
before the results of the infinite homogeneous computer calculations should apply to the pure
ion crystal.*

In Section 2 we discuss several important properties of nonneutral plasmas and consider the
confinement characteristics of such plasmas when trapped in the so-cailed Penning trap used in
the experiments. In Section 3 the results of computer simulations are discussed, and in Section
4 an analytic model is presented which is based on a finite-temperature slab geometry model of

a bounded ion crystal.

2. THERMAL EQUILIBRIUM OF STRONGLY-CORRELATED NONNEUTRAL PLASMAS

Nonneutral plasmas, that is, plasmas consisting of an unneutralized collection of charged
particles, have many properties in common with neutral plasmas. For instance, they exhibit the
phenomenon of Debye shielding and also exhibit collective effects such as plasma oscillations.
However, there are several differences between neutral and nonncutral plasmas. For instance,
when a nonneutral plasma is cooled to low temperature it suffers no recombination since there
is no oppositely charged species with which to recombine. (We will focus here on single-
species nonneutral plasmas—the experiments at NIST usually involve plasmas consisting of
Be* ions.) At sufficiently low temperature and high density, the kinetic energy per particle is
less than the interaction energy and the plasma becomes strongly correlated.

Another difference between the neutral and nonneutral plasma is that nonneutral plasmas
can be confined for very long periods of time using only static electric and magnetic fields. In
the experiments long-time confinement is provided by means of the cylindrical Penning trap
geometry shown schematically in Figure . This trap in its simplest form consists of three
electrically isolated conducting cylinders whose axes of symmetry are oriented parallel to a
uniform magnetic field. Confinement in the axial direction is provided by a potential well
induced by a voltage difference between the central cylinder and the end cylinders.
Confinement in the radial direction is provided by the uniform magnetic field B. The radial
confinement can be understood by analyzing the balance of forces in the radial direction. There
is a large radial electric field E, due to the unneutralized collection of ions in the trap. This
electric field is balanced by the magnetic component of the Lorentz force,

vy
E+B

pr—s0 )

where vy is the velocity of the particles in the azimuthal direction. Solving for the velocity vy,
we find that the entire plasma rotates about the axis of symmetry. This rotation is just the fam-
ikiar £ x 8 drift.

Another way to understand the radial confinement of the nonneutral plasma is to consider
the constants of the motion. Cylindrical symmetry implies that the total angular momentum in

the axial direction is a constant of the motion:
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where A o(p)=8p/2 is the vector potential associated with the magnetic field. If the magnetic
field is sufficiently strong the vector potential contribution to the angular momentum dominates

over the kinetic contribution and the angular momentum can be written in the following form:
L= 57 . @
i

This equation implies that the mean square radius of the plasma is a constant of the motion and
thus the plasma cannot expand. This simple argument has been made more rigorous by
O'Neil. In the actual experiments small imperfections in the trap cause slight cylindrical asym-
metries which allow the plasma to slowly expand. IHowever, by careful construction, these
asymmetries can be reduced and confinement times on the order of several days have been
achieved in experiments on pure electron plasmas at the University of California in San Diego.®

These confinement times are much longer than any internal time scales in the dynamics and
so the particles can come to a state of confined thermal equilibrium. The thermal equilibrium
is characterized by the angular momentum L and the energy H, where

N
H=Z%mv,-2+e(b(x],---xN) @)
i=1

and & is the potential energy of the system of charges, including electrostatic interactions and
external confining potentials, If one then assumes that the system is thermally isolated, a
microcanonical (constant /I and L) ensemble describes the statistics of the system. However,
it is often useful to use a canonical ensemble based on constant temperature 7 and rotation fre-
quency . For large N the two ensembles predict averages which differ only O(1/N). Such
differences are unimportant for the N values considered here even though we are interested in
effects stemming from the boundedness of the cloud. The probability density associated with a
given state is then given by the Gibb’s distribution f, where

Flxpvy, - - Xyvy)y=Z te PO rel) (5)

For given external confining fields N, f is characterized by the parameters 7 and o and these
parameters in turn determine the average values of the energy and angular momentum of the
system. Substituting Eq. (2) and (4} into Eq. (5) yields, after some simple algebra, the follow-
ing form for f:

P T (v, —op 82 PO+ T, —wkpd)

f=zle X ¢ (6)

One can see that the velocity dependence is Maxwellian in a frame rotating with frequency w.
As one expects, the thermal equilibrium distribution corresponds to a shear free flow. We call
such a flow a rigid rotor.

In Eq. (6), the spatial distribution of ions is determined by three potentials: the total elec-
trostatic potential <@, the centrifugal potential —m @’p?2 and the potential m €2, p%2. This
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latter potential is associated with the electric field induced by rotation through a magnetic field.
It is this field that provides the radial confinement. It dominates over the deconfining effect of
the centrifugal potential, since the cyclotron frequency is larger than the rotation frequency in
the experiments. These two potentials form an effective potential which is proportional to p?
and thus they can be interpreted as the potential energy of ions in a cylinder of uniform nega-
tive charge. The density of this effective neutralizing background charge ny may be found by

substituting the effective potential into Poisson’s equation:
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Thus, the static thermal equilibrium properties of the magnetically confined plasma are the
same as those of a one-component plasma, that is, a system of charges embedded in a uniform
neutralizing background charge. This OCP resides in the potential well that is produced by the
cylinder of uniform neutralizing charge and the end electrodes. For given potentials on the end
electrodes and a given value of ® (£, —®) one can determine the shape of this confining poten-
tial well. Of course, the shape of this well is important in determining the shape of the plasma.
For the simple case of a small plasma at the bottom of the well the effective confining potential
is approximately quadratic and can be wrillen as

2

mo;
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where (), is the single-particle axial bounce frequency in the external trap potential, and

. o), —~w) 1
w2 2

(8b)

is the "trap parameter” which determines the shape of the effective confining potential. For this
case Bollinget” and Turner® have shown that the plasma takes the shape of an ellipsoid as
T — 0, neglecting correlation effects. Correlations between charged particles in the plasma
then are set up within this overall shape.

The correlation properties of strongly correlated one-component plasmas have been the sub-
ject of several theoretical investigations. Computer simulations of unbounded homogencous
one-component plasmas predict that for I'>2 the system begins to exhibit the Tocal order
characteristic of a liquid and for T~ 180 there is a phase transition to a bee crystal.Z Current
experiments with cryogenic pure ion plasmas in a Penning trap have achieved I” values in the
range of several hundred, but the experiments involve a relatively small number of particles so
the theoretical studies of an infinite homogeneous one-component plasma cannot be trusted. On
the other hand, these small plasmas are ideally suited for numerical simulations with a realistic
number of particles. In order to study the correlation properties of these bounded plasmas we
have carried out molecular dynamic (MD) simulations and Monte Carlo (MC) calculations with

boundary conditions motivated by the experiments.
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In the MD simuiﬁtioﬁ, the equations of motion for N interacting charges in a Penning trap
are integrated forward in time until the charges come into thermal equilibrium with each other.
Average properties of the system such as the local density n(x) are then determined as long-
time averages: for instance,

N Tt
n(x)= z‘{— Sx—x () .
=15 T
In contrast, the MC calculation is a statistical game of chance based on the distribution for a
canonical ensemble. We find that the MD simulation and the MC calculation yield the same
answer for average quantities such as the local density, provided that N > 100 within the statisti-
cal error of the simulations. This is in general agreement with the previously stated result that
the canonical and microcanonical ensembles yield the same average properties for large N.
There is one subtlety which should be noted in our molecular dynamics simulations. In the
experiments the cyclotron radius typically is much smaller than the distance between particles,
or equivalently, the cyclotron period is much shorter than an interaction time. Under these cir-
cumstances it is useful to average out the high frequency cyclotron dynamics before turning to
the computer. This is accomplished by using the guiding center equations of motion rather
than the exact equations of motion. Although the guiding center equations are only approxi-
mate, the thermal equilibrium structure obtained with them is not. By substituting the guiding
center Harmiltonian and guiding center angular momentum into the Gibbs distribution (see
Ref. 3), one finds the guiding center system has the same thermal equilibrium structure as the
exact system for a slightly shifted magnetic field strength.
What follows are numerical results for the case of a small plasma at the bottom of the

effective potential well given by Eq. (8).

3. NUMERICAL RESULTS

For convenience in displaying results, we typically choose conditions so that the well and
plasma have spherical symmetry. The fact that the plasma radius is small compared to the
radius of the conducting cylinder also implies that the force due to an image charge is small, so
we take the interaction potential to be simply e x; —x ;1. For the molecular dynamics simu-
lation the guiding center equations of motion are solved using the fourth order Runga-Kutta
algorithm and a fourth-order corrector algorithm, both with a variable time step. The codes
have been tested against one another and have been vectorized to run efficiently on a CRAY
X-MP computer. In the code, times are normalized to @, ! and distances to ao= (3¢ %m w3,
[From Egs. (7) and (8b), ag=(2a+ niA a,,.] We typically integrate for times of order 10* o, )
and in all cases energy is conserved to better than 1% of the total kinetic energy, and angular
momentum to one part in 10°. The MC calculation follows a standard Metropolis-Rosenbluth
algorithm. Figure 2 shows the results of a MC calculation for I" values ranging from | to 1t}
The average density n(r) is plotted as a function of the spherical radius r for r values near the
plasma edge. The effective potential well and plasma have spherical symmetry. For I'=1 the
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Cylindrical Penning Trap MC results for density at the edge of a

trapped cloud for various values of T

density falls smoothly to zero, as it does for weak correlation, but for higher values of I" oscil-
lations are present near the plasma edge. These oscillations are evidence of local order. The
damping length for the oscillations is a measure of the correlation length., One may think of
the density maxima as embryonic lattice planes or more precisely spherical lattice shells. Such
oscillations have also been observed in previous Monte Carlo studies of the so-called one-
component plasma with an edge,? and were also observed by Totsuji for trapped ions, !¢
Schiffer has also studied the correlation propertics of cold ion clouds trapped in heavy ion
storage rings.?

As I is increased, the oscillations increase in magnitude until the density between peaks
goes to zero. For a spherical cloud with 100 particles, this occurs at I'~ 140 (Fig. 3). Thus the
jon cloud separates into concentric spheres. For N = 100 there are three spheres with four ions
in the innermost sphere, 26 in the middle sphere, and 70 in the outermost sphere. The areas
under each peak are about equal implying that the number of ions per unit area in each sphere
is the same, being set by the background density ng. Thus the number of jons per sphere
roughly scales as the surface arca of the sphere.

If one tags an individual particle on one of these shells, one finds that the particle is Tocal-
ized to the shell, but is not localized on the shell, For this value of T, the particles still diffuse
over the surface of the shell, that is, the system behaves like a crystal in the radial direction but
like a liquid along the surface of the shell as in a smectic liquid crystal. For the T'=140 and
N =100 case of Figure 3 we study the particle diffusion further by considering the mean square
displacement of the ions in time. For instance, we determine the average of dz 2(t) where

«:Eiz%(r):L % E {z,(; + 1) —z; (1P
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and f; —t;_ is a constant time increment and ¢ <#; —#;_y. This function increases linearly in
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time for <8212 small compared to the cloud radius, so that we may obtain the average
diffusion coefficient in the z direction, D,, through the definition <8z41)>=2D,t. For
"= 140 this diffusion is shown in Figure 4 and may be contrasted to a similar plot of <&rl>in
the same figure, where r is the spherical radius from the center of the cloud. While <8z2>
does indeed increase linearly with time, <8 2> is almost constant, showing that there is little

diffusion of ions from sphere to sphere.
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MD result for density of a cloud with =1, Diffusion in r and z for ions in cloud of
N =100, T'=140. Fig. 3; w,/Q2, =0.1.

For substantially higher values of " the particle diffusion along the surface of a shell also
goes to zero and an imperfect 2-D hexagonal crystal is formed on the shell. Figure 5 shows a
projection onto a plane of one-half of the outer shell for a N =256 spherical plasma. For
['>380, the ions were confined to the lattice sites shown; the sites form a local equilibrium
which may be thought of loosely as going to the 7 =0 or I'=eo limit. However, one should
note that there are many such local equilibria in the N particle potential energy. Nevertheless
there is a tendency toward a hexagonal crystal which one can identify in Figure 5. One may
confirm this intuition by calculating the spatial correlation ¢ (s) function of all ions within a
particular sphere. This function is defincd as the probability density that an ion is at a distance
s from another ion, counting only ions on a given shell. For T"=140 this correlation displays
decaying oscillations characteristic of a fluid. However, for larger values of I' the cotrelations
become more highly peaked and the peaks correspond in position to those of a 2-D hexagonal
crystal, and furthermore the number of ions in each peak correspond to that expected for 2-D
hexagonal symmetry (see Fig. 6).

Another useful correlation function which further characterizes the crystalline order is the
bond angle correlations cg(B) in the shell. This correlation function is defined as a probability

density that a bond angle is at angle 6, averaged over all ions in a shell. The set of bond
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FIGURE 5
T =0 equilibrium state for 1/2 of outer shell of an N =256 spherical cloud.
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FIGURE 6

Correlations within outer shell of N =256 cloud at '=380. a) Spatial correlations.
Vertical lines give positions and weights for 7 =0 2-D hexagonal lattice; b) Bond
angle correlations, using 6 nearest neighbors in shell,

angles for a given ion are those angles subtended by any two of the ion’s M nearest neighbors,
using the given ion as a vertex; there are M (M —1)/2 such angles for each ion. As plotted in
Figure 6 for the case of the outer shell of the N =256, I'=380 crystallized cloud, one sees that
the bond angle correlation function corresponds well to that expected for a 2-D hexagonal lat-
tice.

This lattice structure is guite different from the bee lattice predicted for an infinite homo-
geneous one-component crystal. Indeed, if one determines the three-dimensional spatial corre-
lation function within a large I” cloud one finds that even for large N the correlations bear little
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3-D bond angle correlations for N =256

I' =380 cloud, using 14 nearest neighbors in
cloud for each ion within inner shells.
Vertical lines are T =0 bee lattice bond
angles (14 n.n.).

3-D spatial correlations in N =2048, a =1,
I'=290 cloud, counting ions only within

r <4.8 (cloud extends to » =8). First peak
contains 14 ions.

resemblance to those of a body-centered cubic crystal. The three-dimensional bond angle
correlations are also quite different (see Fig. 7).

We have performed computer simulations for up to 2,048 ions and we observe no convinc-
ing evidence of a body-centered cubic structure in the bulk of the ion clouds. Presumably,
however, as N — oo, the system becomes infinite and homogeneous and the body-centered cubic
crystal structure should appear. So the question arises, how large must an ion cloud be before
this bulk behavior is observed?

4. SLAB MODEL OF THE BOUNDED COULOMB SYSTEM

In this section we consider in more detail how the boundedness of an jon system can aftect
its lattice structure. In the process, an estimate is obtained for the size of system required
before infinite volume behavior is achieved, and several other relations are derived, including
the approximate spacing between shells in the jon clouds, a result which can be compared to
numerical and experimental results.

In order to make theoretical progress we consider a slab model of a bounded Coulomb
crystal, which neglects the effect of curvature but still incorporates the effects of boundedness.
The model consists of a collection of ions trapped in planar geomeiry in a 1-D quadratic well
of the form mm&zzh’l. Note that this potential is that due to a uniform density background
(here ny=m@d/(4ng?)), so this system is an OCP. The system is infinite and homogeneous in
the x—y plane but bounded in the z-direction. This mode! allows us to make predictions
concerning the lattice structure of ion clouds which are large enough so that shell curvature is
small compared to the inter-ion spacing.

We find that the T =0 equilibria for this system consist of a series of 2-D lattice planes
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oriented parallel to the x—y plane. Sufficiently far into the bulk from the surfaces, these planes
become evenly spaced in z, setting up a 3-D bulk lattice (see Fig. B). The free energy F of
this system then depends on the density ng, the total number of ions per unit x—y area ©, the
temperature T, the type of 3-D bulk lattice (e.g. bee, fee, hep, etc.) and the orientation of the
bulk lattice with respect to the surfaces. These latter two thermodynamic parameters are writ-
ten in the language of solid state physicists by stating which bulk lattice plane lies parallel to
the surface; for instance an fcc(111) lattice is the bounded lattice consisting of an fcc lattice in
the bulk with the (111) plane oriented parallel to the surface.

In general the thermodynamically stable state is that which has minimum free energy. The
free energy per ion F can be written as a sum of bulk and surface terms:

F=F, +2F,iP ©)

where F), is the free energy per ion of the bulk lattice (including the "Vlasov" energy per ion
of a uniform slab of charge in the external guadratic well), P is the number of lattice planes in
the system {a function of @ and the lattice type), and F, is the (positive) surface free energy.
For a given T, ng, and lattice type, as G approaches infinity the number of planes P also
approaches infinity, and by Eq. (9) F —3 Fy,;. In this limit the system becomes infinite and
homogeneous and, as is well known, the lattice with minimum free energy is body-centered
cubic (bce). However, for finite P surface effects are important; ion-ion correlations in the z
direction are disrupted by the finite system size and bce symmetry in the bulk is no longer
necessarily the minimum free energy state,

We have determined F for this system as a function of Gnd> and I" for various lattice
types and orientations, in the "harmonic approximation,” in which the temperature is assumed
to be sufficiently small so that ions move only slightly from their lattice sites and the interion
force may then be linearized (i.e., the system is assumed to be an ideal gas of phonons).
Anharmonic effects, which are important near the liquid-solid phase transition, have not vet
been included. In this approximation the free energy per ion may be written as

F=¢V+Ew”+_k[.vf_3:"§3ln [20 ]+3len [T—kﬂ?] (10)
where E_,,, =E, +2E, /P is the T =0 electrostatic correlation energy per ion. Here, Ep is the
correlation energy per ion of the infinite homogeneous lattice and E; is the contribution to the
encrgy due to the two surfaces. The "Vlasov energy” ¢, gives the energy per ion of a uniform
slab of charge in the quadratic well; E,,,, is the additional energy due to the fact that the slab
is actoally made up of lattice planes.® The frequencies @, are the normal mode frequencics of
the bounded lattice; the sum over normal modes may be interpreted for N —ee as an average

over the reciprocal cell of the lattice, and is written as %—Zln(m,/wg)z <In{w, /wg)>. This
r

average approaches a constant "bulk” value as P — oo; the remainder for finite P is a surface
term, which may be written as <In(, /@g)>= <In(w, /@y)>, + 2<in(w, /vg)>,/P. Comparison
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of Eqs. (%) and (10) then lead to the following identification for Fp, and F,:

T
F,=®,+E, +3kT I (k—;)+ KT <ln(w, logy>,

F,=E, +KkT <In(0, /0,)>,

We have determined E,, E,, <In{w,/0g)>, and <In{w,/wp)>, for various lattices. The
values of E, for bee, hep and fec lattices are well-known, and <In{w, /my)>, has been deter-
mined for the bee lattice.? (A previously-published value for the fce lattice 1! is incorrect due to
numerical error.) Values for £, and E; are found in Ref. 4 for these lattices as well as for
other lattices, and we include in Table 1 some of our results for <In(w,/w,)>;, and
<In{m, /ay, )>,. Details of this calculation will appear elsewhere.

These results allow us to compare the free energy of the various lattice types as a function
of Gn &’3 and I". We find that for 6‘:1&’3 >33 (comresponding to about 60 bec(110) planes), the
minimum free energy lattice always has bee(110) symmetry, regardless of I. However for
Gnﬁm below this value, a competition occurs between the fee(111) and bee(l10) lattices; the
winner is usually fee(111). (The rather complex phase diagram is shown in Fig. (9). Precise
details of the diagram in the small I" region should not be taken too seriously since our free
energies neglect anharmonic effects. However, the general structure—bands of alternating fcc
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Table 1

lattice type  <in{m,/og)>,  <In{0,/tg)>g
fee (001) -2.45373(1) 0.105(1)
fce (111) -2.45373(1) 0.240(2)
bee (001) -2.49384(1) -0.20(1)
bee (110) -2.49384(1) 0.233(1)

and bec symmetry—is probably correct. It should also be noted that for large I' metastable
equilibria may exist for long times before thermodynamic equilibrium is achieved.) The dom-
inant fec structure may be understood through the fact that fce(111) lattice planes are 2-D hex-
agonal lattices, which is the most efficient 2-D packing method, so planes are spaced far apart
and correlations between planes are minimized. Surface effects, which raise F, depend on in-
terplane correlations and are therefore also minimized. These surface effects are important
even for large @ because F, is almost the same for fcc and bee lattices, so only small
differences in F, are needed to affect the lattice structure.

Note that in the simulations a distorted 2-D hexagonal lattice also appears on each shell.
The distance D between (111) planes in the fec lattice is, for & large and T =0, given by
Dnf? = 22313 =0.9165, which corresponds closely to the numerical results, which give slight-
ly larger values, of approximately .92 - .93 (see Fig. 3). However, the spheroidal shells are not
as closely correlated as are fcc(111) planes (see Fig. 7). This is because shell curvature causes
a loss of correlation from shell to shell since 2-D lattices on different shells get "out of phase”
as one moves from point to point on the shell surfaces. If one entirely neglects cormrelations
between shells one finds* that for large clouds the intershell distance is now Dnl? =0.956; the
intrashell lattice remains 2-D hexagonal. The simulation results lic between no intershell cotre-
lation and perfect fcc(111) correlation.
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