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Abstract

Magnetically confined electron columns evolve in (7, 6) as essentially inviscid,
incompressible 2D fluids with a single sign of vorticity. Turbulent initial states
with 50-100 vortices relax due to vortex merger and filamentation, in general
agreement with a recent dynamical scaling theory. However, this relaxation
sometimes halts when 3-20 vortices “anneal” into a fixed pattern, or “vortex
crystal.” A new “regional maximum fluid entropy” theory predicts the crystal
patterns and background vorticity distribution, by assuming conservation
of the robust flow invariants and preservation of the intense vortices. However,
simulations show that the character of the relaxed state generally depends
strongly on initial conditions and dynamics.

1. Electron plasmas and Euler flows

Magnetically confined pure electron columns are excellent
systems for quantitative observations of 2D fluid vortices,
turbulence and self-organization [1]. A “‘generic”
experimental apparatus is shown schematically in Fig. 1.
The electrons of density n ~ 107 cm™3 are contained within
a grounded conducting wall (2R,, = 7 cm). A uniform axial
magnetic field (B < 1T) provides radial confinement, and
negative voltages (V< 50 Volts) applied to end cylinders
provide confinement at the ends. The confined plasma is dia-
gnosed and manipulated by antennas on the wall. Finally,
the z-integrated electron density n(r, 6, ¢) is measured
(destructively) by accelerating the electrons onto a phosphor
screen and imaging the resulting light with a CCD camera.

The (r, 0) flow of the electrons across the magnetic field
occurs due to the strong electric field E(r,0,z) =
—V¢(r, 0, z) from the unneutralized electron plasma. The
cross-magnetic-field  “drift”  wvelocity is v(r,0,1) =
E x B/B?>, giving a bulk plasma rotation fz(r)=
vo(r)/2nr ~ 10* s!. Since the individual electrons move
rapidly along the magnetic field lines, electrons behave as
rigid “rods” of charge.

In this approximation, the (r, 8) flow of the electrons is
described by the 2D drift-Poisson equations [1], which
can be written in terms of the  vorticity
{(r,0,t) = (4rn|e|c/B)n and the scaled electrostatic potential

Y(r, 0,1 = (c/B)(r, 0, 1) as

8—§+V~V€:0,

ar
Vi = (.

These drift-Poisson equations are isomorphic to the Euler
Equations. The flow vorticity { is proportional to the elec-
tron density 7, which is directly measured. A column of elec-
trons in vacuum surrounded by a conductor thus evolves as

v=—V x Z,
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would a 2D vortex in an incompressible inviscid fluid sur-
rounded by a circular free-slip boundary. We emphasize that
here, there is only one sign of vorticity (taken to be positive),
because the density of electrons can only be positive, and
there are no charges of opposite sign.

There are also small unwanted diffusive effects due to the
end confinement fields [2], and weak ‘““viscous” effects on
small spatial scales due to electron-electron collisions [3],
but these are not modelled by the Euler or the Navier-Stokes
equation. However, we believe the effects described in this
paper do not depend on the details of the fine-scale dis-
sipation.

Euler flows are strongly constrained by integral
invariants. The total circulation (number of electrons)
I'ot, scaled angular momentum Py, and scaled electrostatic
energy H are well conserved. However, less robust
invariants such as the entropy S and enstrophy Z, vary
significiantly, due to measurement coarse-graining or dissi-
pation of small spatial scales.

2. Waves on a vortex

The simplest stable flow is a centered, symmetric vortex with
monotonically decreasing vorticity profile {(r) and azi-
muthal flow velocity vy(r). Small shape distortions of this
nominally symmetric equilibrium can be analyzed as a
spectrum of waves with azimuthal and radial mode numbers
(m, k), varying as g (r) exp(imf — iwyt). These waves are gen-
eralizations of the surface distortions on vortex patches
referred to as Kelvin waves [4]. Recent analyses have
elucidated the process of inviscid damping due to wave-fluid
interactions at critical radii . where wy /21 = mfg(r.) [5,6],
and this damping is routinely observed in electron plasma
experiments [7]. These modes have recently been analyzed
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Fig. 1. The cylindrical experimental apparatus with phosphor screen/CCD
camera diagnostic.
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Vorticity (103 sec™!)

Fig. 2. Images of vorticity at five times for two sequences from similar initial conditions.

in terms of ““discrete” and ““‘continuum’ eigenfunctions [8,9],
with application to atmospheric circulations [9].

For even moderate wave amplitudes, this observed
damping is typically nonlinear, and the damping may
decrease [6,7] or cease when the resulting “cat’s-eye’ flows
generate fine-scale filaments inside the vortex. For
“sharp-edged” vorticity profiles, the resonant radii r, can
be completely outside the vortex, in which case no direct
resonance damping occurs. Also, experiments have shown
the importance of nonlinear wave-wave couplings: even
otherwise stable modes may exhibit ‘““beat-wave damping”
[10], whereby energy is observed to flow to longer azimuthal
wavelengths.

If the vorticity profile {(r) is “hollow” rather than
monotonically decreasing, some of these modes may be
unstable, giving the Kelvin-Hemlholtz (shear-flow) insta-
bility [11,12]. Both the frequencies and growth rates of these
unstable modes are reasonably well characterized by com-
putational solution of the eigenvalue equation using the
measured density profiles [13]. One exception is m =1,
where we observe a robust exponential instability [14] where
cold fluid theory predicts only algebraic growth; here, finite
length effects may cause the instability [15,16].

3. Vortex Merger and the Relaxation of Turbulence

The merger of like-sign vortices is fundamental to the relax-
ation of 2D turbulence at high Reynolds numbers. Exper-
imentally [17], two vortices are observed to merge within
a few orbit times when the spacing between vortex centers
D is less than 1.6 times the individual vortex diameter
2R,; and to orbit without merger for more than 10* orbits
when D/2R, > 1.7. The merger after 10* orbits apparently
results from weak non-ideal effects causing R, to increase,
thereby satisfying D/2R, < 1.6. However, the 10*: 1 ratio
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attests to the weakness of “viscous’ effects, and suggests
an effective Reynolds number Re &~ 10* — 10°.

Some of the circulation originally trapped in the two indi-
vidual vortices is “‘lost” to filamentation; these filaments
eventually get stretched and mixed to finer spatial scales than
can be imaged, so they form a weak ‘“background” of
vorticity.

To study the relaxation of fully developed turbulence, we
start with highly filamented initial conditions, which rapidly
form many individual vortices, and then freely relax toward
a 2D meta-equilibrium [18]. In the initial inviscid relaxation,
chaotic mutual advection and vortex merger are clearly
important dynamical processes. The final “‘generic”
meta-equilibrium is typically strongly peaked on center,
reflecting the single intense vortex resulting from repeated
mergers, superimposed on a weaker background vorticity.

Surprisingly, this relaxation is sometimes halted when
individual vortices settle into a stable, rotating ‘““‘vortex
crystal” pattern which persists for thousands of rotation
times. Figure 2 shows the measured z-averaged electron den-
sity n(r, 0, t) at five times for two slightly different initial con-
ditions: the upper sequence forms vortex crystals, whereas
the lower sequence relaxes rapidly to a mono-
tonically-decreasing profile. The observed vortex crystal
states consists of 5-20 individual vortices each 4-6 times
the background vorticity, arranged in a lattice pattern which
rotates with the background.

Figure 3 shows the number of distinct vortices N, for the
two sequences. In each sequence, the unstable filamentary
initial condition forms N, = 50 — 100 vortices of roughly
equal circulation, after which N, initially decreases as
N, ~ t=¢. This relaxation is generally consistent with a
dynamical Punctuated Scaling Theory based on conserved
quantities in repeated vortex merger [19]. The observed ¢
range from 0.2 to 1.1 as the initial conditions are varied,
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Fig. 3. Number of surviving vortices Ny, the enstrophy Z,, and the average
random velocity |dV|.

with 0.8 being commonly observed. In the evolution of the
top sequence in Fig. 2, vortex crystals form by 107z, and
survive for about 10*tx. (Here, 1z = 1/fz(0) = 170us.) Since
the surviving vortices all have about the same circulation,
the patterns are quite regular, as seen at 600tg in Fig. 2.
After 10%tg, N, decreases to 1 as the individual vortices
decay away in place due to non-ideal “viscous” effects.
The measured integral quantities for both sequences are
consistent with 2D inviscid motion on large scales and dis-
sipation on fine scales. Experimentally, the circulation,
angular momentum, and energy are robust invariants. In
contrast, the enstrophy Z, is a ‘““fragile” invariant, and
initially decays a factor of about 2 in both sequences.
Reduction of the chaotic advective motions of the individ-
ual vortices is required to form the vortex crystal states.
Figure 3 also shows the average magnitude of the random
velocities |0 V| of the individual vortices, with respect to their
common rotating frame. The random velocities decrease by
a factor of 6 between 2tz and 100tz for the crystals
sequence, whereas only slight cooling is seen before relax-
ation to N, = 1 for the monotonic sequence. We believe this
cooling and cessation of relaxation through mergers is a
near-inviscid 2D fluid effect, i.e. independent of the details
of the fine-scale dissipation. However, the non-zero total
circulation is essential: because there is no ‘‘negative”
vorticity, the diffuse background necessarily persists, and
the vortex/background interactions are more pronounced.
In order to show that the cooling of turbulent flow to
vortex crystals is a 2D inviscid effect, we have compared
the experiments directly to vortex-in-cell simulations with
up to 10° point vortices [20] to approximate 2D Euler
dynamics. The cooling curves are approximately the same
in simulation and experiment, and they appear to follow
power law decay as [0V] o 7%,
Simulations with different numbers of point vortices have
verified that the vortex cooling and crystallization is not
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sensitive to the discreteness. The point vortex gas is equiv-
alent to an ideal Euler fluid only in the mean field
approximation. Microscopic fluctuations of the vorticity
about the mean field give rise to ‘“‘collisional viscosity,”
and cause distributions of point-vortices to eventually relax
to global 2D maximum entropy states.

We believe that cooling occurs through the chaotic mixing
of background vorticity by the strong vortices, as opposed to
processes such as deformations of individual vortices in the
crystal pattern. To test this, we artificially multiply all
“background” vorticity by a constant ranging from 0 to
3. Evolving this artificial system forward, we observe cooling
which depends on the strength of the background vorticity.
There is no cooling in the absence of the background,
and there is no cooling if almost all of the circulation is
in the background. When the background is too strong,
cooling is apparently countered by shears and fluctuations
in the background vorticity.

4. Dynamics and entropy

In recent years, two radically different theories have had
some success in describing the free relaxation of 2D
turbulence. One is the Punctuated Scaling Theory (PST)
referred to above [19], which postulates that the turbulent
flow is dominated by strong vortices which generally follow
Hamiltonian dynamics of point vortices, punctuated by
the occasional merger of like-sign vortices. The relaxed state
is then one single vortex of each sign, or just one vortex in
our case. The PST agrees with the observed power law
decrease in the number of strong vortices [18,19], but the
theory can not explain why several strong vortices remain
and anneal into an equilibrium pattern in the final state
of the turbulent relaxation.

A diametrically opposite approach is incorporated in the
global maximum fluid entropy (GMFE) theory [21]. This
approximates the turbulent flow as a collection of
non-overlapping, incompressible microscopic vorticity
elements that become ergodically mixed in the relaxed state.
Clearly, the GMFE theory can not explain the vortex
crystals, since the theory predicts a smooth vorticity dis-
tribution.

A new Regional Maximum Fluid Entropy (RMFE)
theory approach [22,23] characterizes the vortex crystal
states by maximizing the fluid entropy S [21] of the
background. The key idea is that some regions of the flow
are well-mixed, while other regions are not. The strong
vortices ergodically mix the background, driving it into a
state of maximum fluid entropy. This mixing, in return,
affects the punctuated dynamics of the strong vortices,
“cooling” their chaotic motion, and driving them into an
equilibrium pattern. However, the vorticity in the strong
vortices is trapped and remains unmixed with the
background.

The global quantities that determine the RMFE state are
the total circulation Iy, the angular momentum Py, and
the energy H. The diffuse background vorticity is assumed
to consist of incompressible microscopic vorticity elements
of fixed strength (;, with {; taken to be the maximum
observed vorticity. Coarse-graining over these randomized
vorticity elements then gives the observed background
vorticity {p(r).
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VORTICITY

Fig. 4. Measured and predicted theta-averaged vorticity distributions for 5
vortex crystal states.

In addition to the above quantities, the RMFE state
depends on the number M of surviving strong vortices
and their vorticity distributions {{;(r), i = 1,2... M}. These
properties of the strong vortices depend on the details of
the early dynamical evolution of the flow, and are beyond
the scope of any statistical theory. The statistical theory
treats the flow only after the mergers of the strong vortices
have ceased.

Given these inputs, two properties of the relaxed vortex
crystal state can be predicted: the coarse-grained vorticity
distribution of the background {(r), and the equilibrium
positions {R;} of the strong vortices [22]. The resulting
backgrond distributions are of the form

L) = /@7 +1),

where ¥ =y + %Qr2 4+ u is the stream function in the
rotating frame, and (f, Q, u) are parameters. This “Fermi
distribution” occurs because the microscopic vorticity
elements are assumed to be incompressible. The RMFE sol-
utions reproduce the observed vortex crystal patterns and
background distribution, as can be seen in the f—averaged
vorticity profiles shown in Fig. 4.

Thus, the following physical picture of vortex crystal for-
mation emerges: the strong vortices undergo chaotic mergers
described by punctuated scaling theory, but they also
ergodically mix the low vorticity background. The mixing
of the background, in return, cools the chaotic motion of
the vortices, and drives the vortices into a vortex crystal
equilibrium. The interaction between the strong vortices
and the background, a process neglected in the PST, may
be important in understanding the relaxation of 2D turbu-
lence in other situations as well.

Interestingly, recent theory [23] has established estimates
for the number of vortices which survive to form the vortex
crystal state, by equating the time to merge to the time
to cool. Here, the estimates are based on the dynamical
scaling exponents ¢ and #x, which determine the number
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Fig. 5. Gradient-driven radial separation of a clump and hole in a circular
shear flow.

of surviving vortices Ny(¢) and their total circulation I'y(f) as

A ¢ N
Nv([) = NvUO)(%) ) Fv(t) = FV(IO) (%)

Note that the assumptions of PST imply # = 1/2, but some-
what different values (0.2 < n < 0.8) are observed in exper-
iments and simulations. The time to merge is given by
1/7,,(t) = —(d/d?) Ny, and the cooling time is estimated from
mixing arguments as t.(¢) = 4/aN,I"y, where A is the area of
the vorticity patch, and o ~ 0.03. Surprisingly, these simple
estimates predict N, to within about a factor of two.

Other recent theory work has analyzed the dynamics of
intense positive vortices (clumps) or negative vortices (holes)
on a non-uniform background of (positive) vorticity [24].
The analysis clearly shows that clumps move up the vorticity
gradient, and holes move down the gradient. Figure 5 shows
this effect in a numerical simulation used to check the theor-
etical analysis. The full analysis necessarily treats the flow
shear dfg/or separately from the vorticity gradient da(/dr,
since they are related only by a spatial integral. The analysis
also shows that there can also be stationary self-trapped
states for small ratios of (d(/dr)/(dfr/0r).

5. Minimum enstrophy state

Theorists often suggest that relaxed states may be deter-
mined from the robust invariants I', Py, H by either
maximization of entropy S [21], or by minimization of
the enstrophy Z, [25-28], including generalizations thereof
[29]. Obviously, the occurrence of vortex crystal states shows
that neither principle holds universally.

Nevertheless, early electron plasma experiments found
that a range of unstable initial conditions relaxed to near
the minimum enstrophy state. Specifically, minimization
of enstrophy accurately predicts the meta-equilibrium pro-
files for hollow initial conditions of moderate energy [30].

These experiments suggested that the relaxed states could
indeed be predicted by the robust invariants. However,
recent computer simulations starting from unstable annuli
of vorticity show that different dynamics and therefore dif-
ferent relaxed states can be obtained from the same
invariants [31].
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Fig. 6. Types of relaxed states observed in simulations of two annuli with
vorticity levels (o1, g2). Extreme initial vorticity levels lead to persistent strong
vortices, giving vortex crystals or generic profiles. Less extreme initial con-
ditions lead to vorticity holes, filamentation, and near-minimum-entropy
states.

Specifically, the simulations were started from two annuli
of vorticity given by

ar <r < b
a <r<by.

o, for
{(r)=14 oo for
0 elsewhere

The six parameters {01, a1, b1, 62, az, by} were chosen subject
to fixed {I', Py, H}, leaving 3 parameters which were chosen
to be {o1,0,,by} for comparison to the experiments.
{I', Py, H} were chosen to give Hee=6x 1073, and b,
was generally near 0.5 R,,. The initial annuli also had a small
m =1 or m =2 seed asymmetry.

Figure 6 shows that completely different relaxed states can
be obtained, depending on the details of these initial con-
ditions. The relaxed states were characterized as
(1) “generic,” meaing peaked on center due to complete
vortex merger and centerization; (2) “‘vortex crystals,”
where the ‘“‘cooling” process prevented complete merger
from occurring; and (3) “minimum enstrophy,” where no
strong vortices persist, because filamentation dynamics
dominated the evolution. We note that the minimum
enstrophy profiles are always closer to the minimum
enstrophy prediction than to the maximum entropy
prediction, suggesting that there may be some validity to
Batchelor’s inverse cascade hypothesis [28], due to the for-
mation of arbitrarily fine-scale filaments.
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Thus, at present, we can only conclude that both dynamics
and statistics contribute to the inviscid relaxation of 2D tur-
bulence with a single sign of vorticity.
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