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Recent experiments quantify the strong centrifugal separation effects in e-/H- plasmas,
here cylindrical columns with ne~1027/cm3, Bz~10.kG, T~25.meV, and H- fractions from 1% to 10%.

-- Most striking is the outward transport of H- on the sub-second timescale, substantially faster than
the 1074 sec predicted for collisional drag between species. [1] Here, the H- ions couple to the
collective diocotron mode, causing algebraic damping of the mode at a rate proportional to the H-
creation and outward transport

-- The thermalization of axially hot H- ions onto cold electrons is observed to be 20-40 times slower
than expected for radially-overlapping species. In contrast, H- ions perp-heated by ICRH couple
energy rapidly into parallel e- motion, suggesting a collective process. Similarly, the "inter-species”
drag" damping of excited TG waves depends strongly on their radial mode number.

-- The recently developed "plasma modes thermometer" comparing diocotron and TG mode
frequencies provides quantitative non-destructive information on the plasma temperature and H-
fraction evolutions; but quantitative analysis of collisional and collective species couplings
necessitates a MCP dump diagnostic for imaging H-.

[1] A.A. Kabantsev et al, AIP Conf. Proc 1928, 020008 (2018)
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"Pure" electron plasmas: excellent confinement properties,

T(B) ~ 104 10° sec
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CAMV is a Penning-Malmberg trap with a phosphor
and CCD camera downstream of G10 for
guantitative dump diagnostic of electrons.

Electrons are emitted from a hot tungsten filament
adjacent to G1.

Cyclotron radiation causes the un-neutralized
electron plasma to cool to ~25.meV within 10.sec.
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magnetic field: B=8—-16 kG

collision frequency v, =20—0.1 kHz

ExB rotation frequency: fz~ 10 kHz

axial bounce frequency:  f,, ~100—600 kHz
electron plasma frequency: f,. ~30MHz, fr5 *2.9MHz
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>This temperature evolution can be quantitatively

diagnosed by simultaneously measuring the
frequencies of several diocotron (drift) modes and
Trivelpiece-Gould (plasma) modes.

Hydrogen-minus ions are observed to form within
the electron column, by electron
attachment/replacement reactions on excited H,
molecules transiting the column. The H- has
binding energy E, ;4 ~ 0.74eV .

J

That is, each (well-confined) electron may become
a (less-well-confined) heavy H- ion at a rate
~1./ksec .

This rate is about 10x lower when the apparatus
walls are "cold", so experiments can be done at
various "controlled" e-to H- conversion rates.
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Frequency of the primary (m,= 1) diocotron mode represents
the total (net) charge line density of the plasma, V,(7), as

N, ()= N,()+ Ny ()= Ny (1), and

-

ceN R _j
)= —2>L 31+ 2| 2
Jia(?) 7BR?, L| 2

\

Frequency of the primary (my=0, k,= 1) eTG-mode represents

1

—+In—2+

4

R

T

R

p

2
e"N,

—-0.671

—

| 1+ 0o

—J

the electron charge line density of the plasma, N (7), as
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Dissociative electron attachment (the main
in plasma volume H ~ production process)

conserves the total charge line density /V, (¢)
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The m0=1, kz=0 diocotron (drift) mode
frequency f,, depends equally on the
electron and H- charge densities.

This mode shows weak exponential growth
exp(I t) due to "wall resistance".

The m0=0, kz=1 Trivellpiece-Gould (plasma)
mode frequency f.;5; depends only on the
electron density, since the heavier H- ions
would oscillate at a 45x lesser frequency.

These mode frequencies depend
differently on line-charge denity N, plasma
radius Rp, plasma length L, and
temperature T.

The plasma temperature can thus be
obtained from comparison of these and
other (m0, kz) modes

e+H,(V,)—>(H,)) >H +H
N, (t)=N_ )+ N, ()= const
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eTG1 mode frequencies decrease as electrons "convert' to H-.
Shown are 2 "controlled" conversion rates py-=0.19 and 1.2 /ksec,
giving H- accumulation of 1.9% and 12% in 100.sec
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The m0=0, kz=1 Trivellpiece-Gould
(electron plasma) mode frequency f.;¢;
decreases as electrons convert to H-,
since the H- do not respond at the
electron oscillation frequency.

Here, thermally-excited TG modes are
observed in 0.1msec time slices every
few seconds, under "slow" and "fast"

py. conversion conditions.

The central plot shows the observed

f;5, decreasing proportional to H-
accumulation.
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iTG-shaked cleaning

of accumulated H ~
gives the instant
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The injected electron plasma cools
from T~1eV to T~25.meV in 10.sec.

When cold, plasma electrons become
heavy H- ions at (controlled) rates:
1/ksec (green) or 0.2/ksec (cyan),
accumulating to 2% or 8% in 100.sec.

The TG mode frequency varies strongly
during cooling, and further decreases
proportion to H- accumulation rate
(cyan vs green).

The diocotron mode frequency is
insensitive to H- mass accumulation,
but the mode is weakly unstable due to
finite wall resistance.

>> We observe algebraic damping of
the diocotron mode proportional to the
number of accumulated H- ions,

and this damping may overcome the
weak wall instability.

Cleaning the H- ions from the system
by ion-TG-frequency "shaking"
immediately decreases f1d and
restores the weak exponential growth.
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Exponential growth is sustained
by continuous cleaning of H ™
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Exponential growth is restored
(algebraic damping is halted)
by heating of electrons
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Right Plot : The slow exponential
diocotron growth (due to the resistive
wall) is negated by outward H-
transport and algebraic mode damping
when sufficient H- is accumulated.

Exciting a 2x larger mode establishes 2x
larger (algebraic) damping.

Heating the plasma to T~0.2eV restores
the weak exponential growth, by
killing the H- induced damping.

Left Plot : Similarly, cleaning" the H-

axially out of the plasma prevents the
H- algebraic damping.
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H ~ fraction up to 10% is accumulated in a cold electron plasma during ~ 100 sec.

Then, an excited diocotron mode shows algebraic damping at rate Y,
equilibrating to ~2x the H ~ production (and loss) rate
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Left Plot : A diocotron mode is excited
after 150.sec of H- accumulation and
outward expansion. d(t) clearly
shows algebraic rather than
exponential damping.

Then, "cleaning" the H- ions by axial
ejection causes a 9% decreace in total
charge, as indicated by f,,. It also
reduces the H- damping to near zero.

Right Plot : Performing the "cleaning"

at various times establishes the H-
production rate p,,._.
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Algebraic damping rate y; is compatible with the concurrent plasma transport rate
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Summary

* In the first ¢ "/ H~ plasma experiments we have found that accumulation
(production) of H ™ ions causes algebraic damping of diocotron modes, with a
corresponding accelerated radial transport (mass separation) of the H " ions.
The observed centrifugal separation time (< 1sec) is much faster than expected

from inter-species collisional drag (~10%sec), and independent of B.

Some other interesting effects observed in the first ¢ "/ H ~ experiments:

* Enhanced cooling of electrons in collisions with H ~ ions (cooled by neutrals)
* Enhanced damping of plasma waves due to ¢ / H ™ collisional (viscous) drag
» Effective resonant acceleration (cleaning) of H ~ ions at the i7G frequency

* Strong exponential damping of diocotron modes in a "floppy" H~ plasmas

(after ejecting axially the electron component)
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