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A somewhat unconventional traveling wave tube was built to investigate the nonlinear behavior of the
beam-plasma instability beyond the first trapping oscillation of the wave amplitude. In the small cold
beam limit, the equations governing the evolution of the beam-plasma instability are mathematically
identical to those describing the traveling wave tube. The traveling wave tube has the advantage that the
slow wave structure will remain linear for the wave amplitudes reached in the experiments; furthermore,

it does not introduce noise. Five trapped particle oscillations are observed following the saturation of a
single launched wave. Two mechanisms for destroying these oscillations have been found. The first
involves wave damping and can occur for decrements smaller than 0.01 k,. The second is a result of the
modulation of the main wave by unstable sidebands. In addition to the experiments, the equations which
describe the interaction are solved numerically. The experimental observations are in excellent agreement

with the results of the numerical calculations.

. INTRODUCTION

The single wave trapping model'™ has been very suc-
cessful in describing the initial stage of the nonlinear
interaction between a small cold beam and a plasma.
The essential feature of the model is that after many
e foldings, the bandwidth of this instability is so narrow
that the beam electrons interact with a wave which is
nearly monochromatic, namely, the fastest growing
wave, This wave grows until it traps the beam elec-
trons, thereby saturating the instability. As the trapped
particles slosh back and forth in the wave potential, the
amplitude oscillates as a result of energy conservation
in the laboratory frame.

The predictions of the single wave model agree com-
pletely with the experimental observations®™*° through
the initial trapping and up to the first amplitude oscilla-
tion. Beyond this point, the plasma experiments uni-
versally exhibit a rapid decay of the saturated wave
rather than the persistent trapped particle oscillations
predicted by the theory. % During the first amplitude
oscillation the wave spectrum is broadened and (as was
expected!) the single wave model is no longer applicable.
Therefore, the initial nonlinear development of this in-
stability is well understood, but the subsequent develop-
ment remains to be explained.

The decay of the main wave is not well understood
experimentally because there are many processes which
may be responsible. They fall into the following three
classes: (1) mechanisms involving the nonlinear motion
of the beam electrons and the linear response of the
plasma, (2) nonlinearities in the background plasma, and
(3) characteristics of laboratory plasmas. An example
of the first class is the sideband instability''™* in which
waves at neighboring frequencies grow to large ampli-
tude and detrap the particles. The second class is com-
prised of the nonlinearities**”" in the background plas-
ma which occur for large beam strengths, typically »,/
n,=1%. Simulations by Kainer et al.'* show that plasma
electrons can be trapped by the saturated wave when the
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trapping width is large. In this case, the background
plasma is not a linear dielectric and the wave ampli-
tude oscillations do not occur. Others!*™'” have demon-
strated that if the amplitude of the main wave exceeds
certain thresholds, the plasma is susceptible to a vari-
ety of parametric instabilities which may compete with
trapping as a saturation mechanism. Since many beam-
plasma systems employ strong beams, these nonlinear
processes may contribute to the nonlinear decay of the
main wave in these experiments. Third, laboratory
plasmas suffer from density gradients, which may af-
fect the evolution of the instability, and low frequency
potential fluctuations, which can confuse the measure-
ments.

In order to avoid problems associated with the back-
ground plasma, we built a somewhat unconventional
traveling wave tube!® to investigate the late-time devel-
opment of the beam-plasma instability. The replace-
ment of the plasma with a slow wave structure allows
us to isolate effects which are due solely to the beam
dynamics from those which result from the background
plasma. In the small cold beam limit, the plasma acts
essentially as a linear dielectric medium capable of sup
porting slow space charge waves. Therefore, this re-
placement does not alter the basic features of the wave-
particle interaction. This is demonstrated by the fact
that the equations of the single wave model®™ are iden-
tical to Nordsieck’s'® working equations for the nonlin-
ear interaction in a traveling wave tube. The traveling
wave tube, however, has advantages over beam-plasma
systems in that the slow wave structure (i) will remain
linear for all amplitudes reached in our experiments and
(ii) does not introduce noise.

Of course, traveling wave tubes have been investi-
gated extensively. *~® The equations for the nonlinear
interaction were first solved by Nordsieck.!® The satur-
ation mechanism was established experimentally as
beam trapping by Cutler?! with measurements of the
phase space distribution. However, the investigation
of the nonlinear interaction has been limited to the initial
saturation region because the primary application for
traveling wave tubes is as a broadband and/or high pow-
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er amplifier. Consequently, the investigators had no
compelling reasons to study the interaction much beyond
saturation.

In addition to the experiments, we have numerically
solved the working equations of Tien’s® model, which
is essentially the single wave model with detuning,
damping, and finite beam strength corrections included.
This allows us to compare theory directly with our ex-
perimental results. Also, the diagnostic capability in-
herent in the computer simulation is helpful in clarifying
the behavior of this instability.

Our basic findings are as follows: Experimentally,
we observe over five trapped particle oscillations in the
wave amplitude following the growth and saturation of a
single launched wave. The accompanying nonlinear
wave phase is also measured. It oscillates at half the
bounce length in agreement with theory. In addition,
we find that the wave phase oscillations influence the
bounce length in a significant way. We have found two
ways of destroying the trapping oscillations. The first
mechanism involves the main wave only. As a result of
dissipation in the slow wave structure, the trapping os-
cillations of the wave amplitude can have very deep
minima. These trigger large and rapid phase shifts
which disrupt the delicate phase relation between the
trapped particles and the wave potential in such a man-
ner as to abruptly detrap the particles. The second
mechanism is a result of unstable sidebands growing to
large amplitude. These modulate the main wave to pro-
duce beat minima which allow the particles to become
detrapped. The detrapping, induced by either method,
leads to particle mixing in phase space which precludes
further trapping oscillations.

Our measurements agree with our numerical solu-
tions. Both detrapping processes are well described by
theory.

The remainder of the paper is organized as follows:
in Sec. II the theory is reviewed. Section II contains a
description of the experimental apparatus and the mea-
surement techniques. In Sec, IV we present the results
of the single wave experiments. In Sec. V we describe
the destruction of the trapping oscillations as a result
of wave dissipation. In Sec. VI we investigate the in-
fluence of the wave phase shifts on the bounce length.

In Sec. VII we describe the effects of unstable sidebands
on the main wave. Our conclusions form Sec. VIII.

Il. THEORY

In this section we review the theory of the wave-par-

ticle interaction in a traveling wave tube and compare

it with the corresponding plasma theory. The linear
theory is that of Pierce. ® For the nonlinear descrip-
tion we adopt Tien’s model, ® which extends Nord-
sieck’s!® analysis to include finite beam strength. How-
ever, the space charge force will be neglected in the
nonlinear calculations for reasons discussed in part B.
We solve the model equations numerically in order to
compare the theoretical predictions directly with our
experimental results.
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A. Linear theory

In linear theory Pierce!® treats the slow wave struc-
ture (circuit) as an equivalent transmission line which
supports an electromagnetic wave capable of interacting
resonantly with an electron beam through an interaction
impedance

R=(E}), /2K P, Y

where (E2), is the square of the axial electric field av-
eraged over the beam cross section, %, is the real part
of the wavenumber, and P is the average power in the
wave, all in the absence of the beam. The spatial evolu-
tion of the wave potential is described by a wave equa-
tion which has a source term due to the beam charge
density. The motion of the beam particles is described
by the equations of motion and continuity. They will be
discussed further in part B. If we consider perturba-
tions of the form exp[i(wt - kz)] and look for spatially
varying solutions, the determinental equation, Eq. (7.9)
of Ref. 18, becomes

2koR2C3 w/uy

= /o)==

+4QC C%R2 | (2
where w is the wave frequency, and %, is the unperturbed
beam velocity. Fkg="F,, +iky; is the complex wavenumber
in the absence of the beam, where k; is the damping
decrement, C is Pierce’s gain parameter, and QC is

the space charge parameter.

The gain parameter C is defined by Pierce as
C=(I,R/av)'* (3)

where I is the dc beam current and V, is the beam vol-
tage. If the slow wave structure is the plasma of a
beam-plasma system of infinite extent, C becomes
{(wl,,,/k(,,uo)a[uo/w(ae/ak)w',W]}”3 which corresponds to
the basic scaling parameter of the small cold beam the-
ory,*i.e., (n'/2)!/%. w, is the plasma frequency of
the beam and € = ¢(w, %) is the dielectric constant of the
plasma.

The space charge parameter QC in Eq. (2) is calcu-
lated® to be

_L wﬂ,Rq/w 2~ (-Uprq 2
C =3¢ (1+w,qu/w ‘<2Cw ‘ @

The finite size plasma frequency reduction factor R is
calculated by Branch and Mihran® for various geome-
tries. The QC parameter is basically a measure of the
electrostatic force between beam electrons which results
from the linear density perturbation produced by the cir-
cuit wave; as such it separates the fast and slow branches
of the beam dispersion relation. In beam-plasma sys-
tems, this force is significant unless (n,/n,)!/*<«< 1. By
solving Eq. (2) numerically, Birdsall and Brewer?*
showed that the fastest growing wave occurs for a de-
tuning near &y, u, - @ = w,,R, ~ wC(4QC)"/ 2, that is, near
the intersection of the circuit dispersion relation and

the unperturbed slow beam branch.

We define the detuning parameter
b= (kg g~ w)/wC (5)

the damping coefficient
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d=-koue/Cw (8)
and expand % about w/u, to obtain
E=(1+iCow/u, , (7

where 0 is complex and O(1). Then, Eq. (2) can be re-
arranged to the form found in Ref. 24

i(4QC)1/z i(4QC) /2
(5““ i- C(4QC)"2) (6‘ 1+C(4QC)“2)

% (6+ b +d)[C(6 = b~ d) — 2i]

1+Cb—iCd)

-2ec- (T

(8)
In the limit C - 0 and QC ~ 0, Eq. (8) takes the familiar
form?® 6%(6 +ib+d) =~ i.

We solve Eq. (8) numerically for the scaled growth
rate 6 as a function of C, b, d, and @C. Since these
parameters also characterize the nonlinear interaction,
it is essential to determine them using linear measure-
ments such as the growth rate. This is done in Sec. III.

B. Nonlinear theory: Single wave

The equations describing the nonlinear interaction in
a traveling wave tube consist of (i} the transmission line
wave equation for the electric field, (ii) the equation of
motion for the beam electrons, and (iii) the charge con-
tinuity equation. For the electrostatic modes of a beam-
plasma system, the wave equation is replaced with Pois-
son’s equation. ™ When C, i.e., (7'/2)"/% is small, the
plasma may be treated linearly and the two calculations
lead to an identical set of equations. Nordsieck solved
these equations for C «< 1. The analysis has been ex-
tended®®'?® to higher order in C and to include space
charge forces. Hess? compares the slightly different
approaches and finds that they yield similar results.
We adopt Tien’s model (with wave damping included) be-
cause the equations are easier to solve numerically.

We neglect the space charge force, which is the re-
pulsive force between beam electrons. For finite C, the
model used to evaluate this force is questionable beyond
the point where the electrons overtake one another be-
cause the calculated space charge potential energy de-
creases as the particles are bunched.?" For QC <0. 28
and b<1.5, Hess finds that the space charge force does
not qualitatively alter the solution. Consequently, the
inclusion of this force is of dubious benefit and it in-
creases the computational cost considerably (one hun-
dredfold for 600 particles). Of course, this simplifica-
tion limits the applicability of our calculations, but only
in a minor way for the parameter range in which we op-
erate, i.e., QC <0.30. When weak beams are em-
ployed, the predictions of the calculations (e, g., satur-
ation power, bounce length, etc.) agree with measure-
ments to within a few percent. For strong beams, the
discrepancy increases to 20%. We attribute this error
in the calculations for strong beam cases to our neglect
of the space charge force.

If the slow wave structure is viewed as a transmission
line and the beam is treated as a distributed generator,
the circuit equation takes the form®
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Y o or
stz " kR, azt ot k,, 0t
where V=V(z,{) is the wave potential and p=p(z,t) is the
beam charge density (charge per unit length). In the

small cold beam theory, a4 Eq. (9) would be replaced
by Poisson’s equation. The equation of motion is

m-e-—==e-— (10)

The orbit solutions of Eq. (10) determine the behavior
of p through a Lagrangian formulation of the problem.
As such, the solution will be a function of the initial po-
sition of an electron z,, i.e., 2=2(2,,¢. Then, charge
conservation requires that the charge p(z,, 0)dz, due to
electrons whose initial positions lie in the range z, to
zo+dz, equal the charge p(z,t)dz at some position z,
that is,

plz,Hdz =p(z,, 0)dz,y . (11)

If z, is taken to be near the entrance to the tube where
the beam is unmodulated, the initial charge density is
p(z4, 0) =1 /uy.

We now introduce the independent variables. The
scaled distance along the tube is
y=Cwz/u, . (12)
The entrance phase for an electron is
Po=wly=wzy/uy (13)

where £, is the time at which an electron enters the tube
at z=0. This can be thought of as a “tag” for electrons,
When, for computational purposes, the beam is divided
into N charge sheets per period, the initial phases are
¢oj:2‘"j/]\r, j:1J2’~'-s N.

We define the dependent variables; the phase displace-
ment

o(y, bg) = wlz/ug-1 , (19)
the instantaneous velocity

dz/dt=u1+Cqly, dx)] , (15)
and the wave potential

Viz,t) =V (2,1 + Vi2,8) , (18)
where

V,=4C2V,A(y) cosl¢ - 8(»)] ,

27 (1+Ch)

x {A(y) (d—;J—El) + b) cos[o - 8( )]
_dA(y)

5 sin[¢ - 6(5)] } ,

where A(y) and 6(y) are the slowly varying amplitude
and phase of the wave, respectively. V, is a finite C
correction to the first-order term in the wave potential
V,. Since C <1, we notice that V,«< V..

In terms of the normalized variables Eqs. (9)-(11)
become
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dA(y) _ (7 deo sinle(y, d0) - 6()]
dy "L o2r 1+Cq(y, ¢p) -da(y) (17
do(y) , _ 2'd¢>o coslo(y, ¢g) - 6(3)]
LTl M A o oy (19
doly, o) __a(y, o)

dy  “1+Caly, b9 ’ (19)
[1+Caly, 6] ‘%"”—) ~24(9) sin[(, ¢9) - (3]

—C{‘—i%;—@ cos[o(y, ¢o) - 6(9)]

+A( )(de(y)-b> sin[é(y, ¢,) - e(y)]} (20)

Terms O(C? and O(Cd) have been neglected. In the limit
where C - 0, Egs. (17)-(20) reduce to Egs. (17) and (20)
of Ref. 4. The additional terms in (17)-(20) enter be-
cause the perturbations in the particle velocity and the
wave amplitude and phase are finite; that is, they are
finite C corrections for spatially evolving systems.
Analogous terms would appear in the small cold beam
theory if the calculation is carried out to one higher
order in (n'/2)'/%.

In terms of the normalized variables, the wave power
averaged over a period becomes® to O(C?

(P)p,=2CAH ) I,V . (21)

Equations (17)~(20) lead to two interesting conserva-
tion equations. If we divide Eq. (20) by 1+ Cgq, integrate
over all initial particle phases and combine with Eqgs.
(17) and (18), we find momentum balance

Laien [ 52 aty, 90+ 4] =- 22 (5)

(22)
in the initial beam frame. This momentum balance re-
quires that the wave amplitude oscillate as the particles
rotate coherently in phase space. Notice that the wave
phase shifts do not enter. In the limit C~ 1 we can mul-
tiply Eq. (20) by ¢=d®/dy, integrate over all initial par-
ticle phases and combine with Eqs. (17) and (18) to ob-
tain a simplified expression for energy balance in the
initial beam frame

b> A¥( y)]

dy“ dzﬁ qa(y2 bo) (deejy)+

de(y)

=-2d A¥(y) . (23)
Since the wave amplitude varies in order to satisfy mo-
mentum balance, wave phase shifts d0/dy are necessary
to simultaneously balance energy flow according to Eq.
(23). In the absence of damping Egs. (22) and (23) cor-
respond to conservation of momentum and energy, 4 re-
spectively, in the initial beam frame,

C. Nonlinear theory: Many waves

The nonlinear model can be expanded to include many
waves, ¥'# Experimentally, we find that two additional
waves are sufficient to destroy the trapping oscillations
of the main wave; therefore, we shall consider a sys-
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tem with only three waves. In general, the interaction
impedance R is a function of w and 2. However, in or-
der to reduce the number of characteristic parameters
to a manageable level, we assume R is identical for all
three waves and that the wave-particle interaction is
weak, C < 1.

We consider three waves of frequency w; = wy+jAw,
j=0, +1 where w, is an integer multiple of Aw, w,
=mAw, The latter requirement is necessary to satisfy
the periodic boundary conditions imposed in the calcula-
tion. Each wave has a wavenumber &;; which satisfies
the circuit dispersion relation in the absence of the
beam. ‘The potential for the jth wave is assumed to have
the form

Vi{z,t) =4V CPAZ cos(ay ¢ - 6;) (24
where

P(z,1) = wolz/uy~ 1) , (25)

a;= w/wy=1+j/m , (26)

where A,(z) and 6;(z) are the slowly varying amplitude
and phase of the jth wave. Each mode satisfies the wave
equation independently. The equation of motion becomes

déz av;
mmee L 5

i=0.1

(27)
The instantaneous particle velocity remains defined by
Eq. (15). Charge conservation is given by Eq. (11).
We define the two independent variables,
y=wCa/uy ; ¢g=w Ty , (28)
the detuning parameter
by=(kgpstig— ;) /C w;

and the damping coefficient

(29)
dy= - ko34, /Cw; . (30)

In terms of the dimensionless variables, the wave equa-
tions and the equations of motion and continuity reduce to

dA;(y)
dy
=_oz,f0 21,?,(: sin[a;(y, ¢o) - 0,(9)]- a;d, A,(y) ,
(31)
d9 (3’) _ a;
XLW %rq_;% coS[Ol,¢(y,¢o)—9j(y)] s j=0,d:1 ,
(32)
d¢—fi§:’ipl) =q(y, do) , (33)
dqfiz,¢o)=2 Z a,A,(y)sin[a,qS(y,q)o)_gj(y)] . (34)
J=0u1

These scaled equations are similar to those in Matsi-
borko ef al.® and are given in more generality by

Scherba and Rowe. #
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FIG. 1. Schematic diagram of traveling wave tube (not drawn to scale).

D. Method of solution

In order to solve Eqgs. (17)-(20) and (31)-(34) we rep-
resent the beam by N charge sheets/wavelength and
solve for the exact nonlinear dynamics numerically.

We typically employ a total of 600 charge sheets. The
equations are integrated with the Runge-Kutta method
described by Hess? with a step size of Ay=0.01. The
linear solutions to the working equations form the en-
trance conditions for the numerical computations. The
initial wave amplitudes are less than or equal to 0. 03.
We must specify the characteristic parameters C, b,
and d for Eqgs. (17)-(20) and b; and d,, j =0,+1 for Eqgs.
(31)-(34). Our numerical solutions agree with previ-
ously published results for the corresponding values of
the characteristic parameters.

The integrity of the solutions to Eqs. (17)-(20) is
monitored by integrating Eq. (22). We compute the in-
tegral

v
- Zd] A%(y'ydy' (35
0
and compare it to
1 ™ doe 2
(1+Cb) o 21’_ CI(S’; ¢0)+A (3’) . (36)

The discrepancy remains smaller than 0. 015 throughout
a run of 2500 steps for finite damping. For d=0, it is
less than 0. 001.

I1l. EXPERIMENTAL APPARATUS AND LINEAR
PROPERTIES

A. Experimental apparatus

When measured in wavelengths and total gain our
traveling wave tube is 3-4 times longer than commer-
cially available tubes. A schematic diagram is shown
in Fig. 1. The principal parts are the electron gun,
the slow wave structure including the probing system,
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the beam collector and analyzer, and the focusing sole-
noid.

The main element of the slow wave structure is BeCu
tape (0. 25 mm X 1. 25 mm) helix which has a length L=3
m, an average radius a=8.06 mm, and a pitch p=2.54
mm. The pitch is maintained by three alumina rods
which are epoxied to the helix 120° apart, This assem-
bly is contained within a glass tubing (2. 64 cm i.d.

% 2.4 mm wall thickness) vacuum jacket which is cen-
tered on the axis of a conducting cylinder of radius 3.8
cm. The cylinder has four slots through which axially
moveable electrostatic probes are inserted to transmit
and recieve the electromagnetic waves.

Lossy resistive tapers terminate the helix at both
ends. These imperfect impedance matches (voltage
standing wave ratio= 1. 1) and variations along the slow
wave structure reflect a small portion of the incident
wave. The beating of the forward and reflected waves
results in a small amplitude spatial oscillation of the
measured wave power at 2%,,. However, the backward
wave does not significantly affect the beam dynamics
because it is far from synchronism with the wave.

The distributed loss %,; can be varied by adding re-
sistive strips which span the entire length of the tube.
Adding these “attenuators” decreases the wavelength by
less than 0.2%. The damping decrement 2, is measured
using wave transmission in the absence of the electron
beam.

The electron beam source is a directly heated flat
spiral filament of thoriated (1%) tungsten wire. The
beam radius is v, =3 mm. It is confined on axis by a
440 G magnetic field which is uniform to + 1% in the in-
teraction region. The beam is formed with apertured
accelerating electrodes by immersed flow. We can
vary the beam current and voltage in the range 0-30 mA
and 0-3.8 kV,
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A simple three-piece retarding field analyzer is used
to both collect and velocity analyze the spent beam. The
front collector allows 0. 5% of the beam to pass. This
is followed by an apertured discriminating electrode and
back collector. We measure the beam power by inte-
grating the current collected at the back collector versus
the retarding voltage. We also measure the velocity
distribution by electronically differentiating this signal.
Prior to reaching the analyzer, the electrons drift
through the helix termination region and their rf phases
become confused. Consequently, we measure only the
time-averaged velocity distribution, The analyzer posi-
tion is fixed. However, the beam can be analyzed at
different positions in the evolution of the instability by
changing the position of the rf transmitter,

The wave power is measured continuously along the
tube. A spectrum analyzer is used as a variable band-
width detector. Broadband power measurements are
made with a standard square-law detector. The probes
are calibrated by measuring, with the velocity analyzer,
the power lost by the beam when a single wave is ex-
cited. By equating the lost beam power to the wave pow-
er, we measure the probe coupling within an accuracy
of +1 dB. The error is due to the small but finite dis-
sipation (&y;/k,, <0.3%) and to wave reflections.

An interesting effect which occurs in a traveling wave
tube and in the beam-plasma instability is the nonlinear
wave phase shift. Since conventional interferometers
have a limited spatial resolution, we use a special cir-
cuit to measure the wave phase continuously along z.
The received rf signal is fed into the vertical input of an
externally triggered sampling scope. The scope is op-
erated in the external horizontal input mode., The time
at which the rf signal is sampled following the scope
triggering (sampling time) is determined by the output
of a delya voltage generator. This generator simply
steps its output voltage incrementally in the direction
of the polarity of its input signal. Each voltage incre-
ment changes the sampling time by 1/1024 of the full
horizontal time scale of the sampling scope. The verti-
cle output of the sampling scope is connected to the de-
lay voltage generator. The delay voltage adjusts auto-
matically to lock onto a stable null, i.e., one with a
negative slope, of the scope input signal. As the re-
ceiver probe moves a distance Az, the scope triggers at
a different rf phase of its input signal and the delay vol-
tage for the tracked null V, changes by AV, xk,(z2) Az.
Integrating from the transmitter position and electron-
ically subtracting the linear phase %;,.2, we obtain the
slowly varying phase

Z
V,(2) f [k,(2") - By, Jdz' . (37)
g
According to Egs. (14) and (16) this can be expressed in
terms of the scaled variables of the nonlinear theory as

e - ko Jaz' == o) - 23], - (38)

where we have neglected V, since V,< V| for small C.
We call this the active wave phase because it is the
slowly varying contribution to the wave phase which re-
sults from the presence of the beam. The left side is
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FIG. 2. Measured (points) and calculated (line) disperison
relation for slow wave structure.

measured and the right side is computed in our numeri-
cal solutions.

B. Dispersion properties

An electromagnetic wave on the helix can be thought
of as propagating along the windings at nearly the speed
of light. Consequently, the axial phase velocity is re-
duced by p/2ma. The dielectric supports also reduce
the phase velocity slightly. The dispersion relation re-
sembles that of a finite size plasma with a finite temper-
ature, ’

In Fig. 2 we compare the measured dispersion rela-
tion (points) with the theoretical prediction (line). The
dispersion of the axisymmetric mode was calculated by
solving Maxwell’s equations across the waveguide area
using two simplifying assumptions. First, we use the
sheath helix model, ® which assumes that the helix can
be represented by an infinitely thin conducting cylinder
in which the skin current is confined to flow in the direc-
tion of the windings. Second, we replace the three di-
electric support rods by a uniform shell whose effective
dielectric constant is the average €. =1+3(c, - 1) A4, /A,
where ¢, = 8. 6 is the dielectric constant of the alumina
rods and A, is their cross-sectional area. The shell
area, A;, is the area of the region between the helix and
the inner surface of the glass tube. The difference be-
tween the calculated and measured dispersion relation
is less than 1% with no adjustable parameters.

C. Linear properties

In order to compare theory directly with experiment
the characteristic parameters C, b, d, and @QC must be
known. We determine them experimentally be measuring
the well understood linear properties of the traveling
wave tube. 182

The fundamental scaling parameter is Pierce’s gain
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FIG. 3. Measured (points) and calculated (line) interaction
impedance vs k,a for our slow wave structure.

parameter C. To obtain C the interaction impedance R
for our slow wave structure must be known. It can be
calculated by using the radial eigenfunction we obtained
while solving for the dispersion relation. The axial com-
ponent of the normalized Poynting vector, (ExB),/(EZ2),
is integrated across the waveguide area to compute R
from Eq. (1). Space harmonics due to the periodicity of
the helix are accounted for in the manner described by
Tien. 3 The result of this calculation is shown by the
line in Fig. 3. The interaction impedance decreases
dramatically as %;,a increases because the radial eigen-
function, in particular k,, becomes concentrated near
the helix away from the beam for large %g,a.

The interaction impedance is obtained experimentally
by using the Kompfner dip. ® Launching a small mono-
chromatic signal with a point source establishes three
waves, i.e., one helix and two beam modes, each with
a different phase velocity. For C <« 1, these modes re-
main of comparable amplitude and can interfere de-
structively to yield a null signal at some distance Z,
downstream from the transmitter. This null is known
as the Kompfner dip. The conditions for its occurence
are

wCZ,/2muy=g(d,QC) , (39)

and
(kor - w/uo) Zy =gz(d, QC) »

where g, and g,, which are calculated by Johnson, ®! are
weak functions of d and QC for smalld and QC. By
measuring k,, I,, V,, and Z,, one can solve Eq. (39) to
determine R at each frequency. For the weak beams
employed in these measurements QC was negligible in
Eqs. (39) and (40). The measured values of R are the
points in Fig. 3 and they agree to within + 6% of the cal-
culated values. Since w and 2, are measured indepen-
dently, Eq. (40) can be used to obtain the beam drift ve-
locity #,. This measurement yields u, to within 0. 5% of
that measured with the velocity analyzer.

(40)

The experimentally determined interaction impedance
is combined with measurements of I; and V, to compute
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C according to Eq. (3). With the measured values of u,
and vy, = w/k,,, we obtain b according to Eq. (5) towithin
b=+0.2. The damping decrement k,;, measured in the
absence of the beam, is used to determine d according
to Eq. (6).

The remaining unknown parameter is QC. It can be
determined from measurements of the linear growth
rates over the instability bandwidth, ® Since I, u,, and
7, are measured with the velocity analyzer, w,, is
known and the only unknown quantity in Eq. (4) is the
finite size reduction factor R,. In general, it is a com-
plicated function of many parameters, but it can be ap-
proximated by3?

R, ~[1+ (vup/wry) T2, (a1)

where 7 is an unknown geometrical constant.

To determine ¥, we plot the normalized linear growth
rate versus b in Fig. 4. The points are measurements
at wave frequencies ranging from 80 MHz to 260 MHz
for I3=10 mA and V=920 V. The curves are computed
in the following way: Measured quantities are used to
obtain QC at each frequency according to Eqs. (4) and
(41) with y as a free parameter. We then insert QC and
the experimentally determined values of C, b, and d in-
to Eq. (8) and solve it numerically for 6. The only ad-
justable parameter y is varied to obtain agreement be-
tween the measured and calculated growth rates. The
best visual fit occurs for y=1.0+0.1, This yields a
reduction factor which agrees with calculated values®
for a constant density beam in a conducting tube of ra-
dius 37»,. The same value 7 is obtained for many beam
currents and voltages.

The role of @C in determing which wave grows the
fastest is illustrated by the data in Fig. 4. It is near
the intersection of the unperturbed slow branch of the
beam dispersion and the helix dispersion relation, i.e.,
b~(4QC)2, This is satisfied at b=0. 85 where we cal-
culate QC =0. 19.

IV. NONLINEAR PROPERTIES

The spatial evolution of a single launched wave in the
presence of a strong beam is shown in Fig. 5. The

0.4}

o2 M \{

Ll i
0% /=09

1 I L 1 1 4

N 0 i 2 3

FIG. 4. Normalized growth rate ku,/Cw vs the detuning
parameter b, Points are measured. Lines are calculated
with ¥ as free parameter. Best fit occurs for y=1.0=0.1.
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vs distance from the transmitter, (b) Active wave phase vs z.
Baseline is measured in absence of beam. w/27=220 MHz,
Iy=30 mA, Vy=1kV, From linear measurements these corre-
spond to C=0.15, b=1.6, d=0.025, and QC=0.32.

wave power is normalized to the injected beam power
and plotted versus the distance from the transmitter.
The power grows by a factor of 10° to saturation and
then executes five trapped particle oscillations. This
contrasts the typical behavior in beam-plasma systems
where the wave decays away rapidly following the first
oscillation. In this case, the wave power at the peak of
the oscillations decreases by 4 dB from saturation to
the end of the interaction region because of the finite
dissipation in the slow wave structure. Over the same
distance the bounce length increases by only 10%. As
previously described, the fast oscillations at 2%,, are

a result of wave reflections. The frequency spectrum,
measured in the range 1-500 MHz, is dominated by the
fundamental mode and its first harmonic, Unstable
noise grows in the nonlinear region, but it is still 40 dB
below the main wave power level at z =240 cm.

Figure 5(b) is the active wave phase [defined by Eq.
(38)] plotted as a function of position. The measurement
technique is described in Sec. IIA. In the absence of
the beam we obtain the almost straight baseline. With
the beam, the phase departs from linearity near the po-
sition where the wave power saturates because the phase
velocity of the wave decreases. The wave slows down
in the nonlinear region to accommodate the beam parti-
cles, which decelerate in the laboratory frame as they
transfer energy to the wave. The average slope of the
wave phase following saturation yields (0%, = 0. 021
cm™, For C=0.15, b=1.5, and d=0. 03 the numerical
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solution predicts (5k,,)=0.020 cm™. Careful inspection

of the wave phase in the nonlinear region reveals that
the slope, i.e., Ok, oscillates at 2k,=4n/A,, where %, is
the bounce length. This agrees with theory and follows
from Eq. (23) since ¢°® oscillates at twice the rate that
A% does. Similar 6k oscillations have been predicted®?
and observed®® for large amplitude plasma waves.

The amplitude oscillations occur because the particles
are sloshing back and forth in the wave trough. How-
ever, the phase oscillations reveal that the wave poten-
tial oscillates under the particles as well. These varia-
tions in the wave amplitude and phase have important
consequences with regard to the stability of the trapped
particle equilibrium. They also modify the relationship
between the bounce length and the wave amplitude. We
shall elaborate on these points in the following sections,

The normalized wave power at the initial saturation
point is plotted vs C in Fig. 6. The line represents our
calculations for b=1.0 and d=0. To obtain the experi-
mental points the beam voltage was held constant while
the current was varied to change C. Since the satura-
tion power is sensitive to the detuning, the wave fre-
quency was adjusted at each point to keep b=1.0. Under
these conditions, the space charge parameter increases
when the beam current is increased. For small C the
experimental points agree with the calculations. As C
increases, the agreement deteriorates because the beam
space charge, which is neglected in the calculations,
becomes important. The results in Fig. 6 are consis-
tent with previous measurements?! of the saturation
power. As in the beam-plasma instability, the satura-
tion power is indeed proportional to CI;V, for small C.
However, this is relaxed for strong beams by the large
decrease in the particle velocity and the beam space
charge.

0.4
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Io Vo

a.

0.2

0.1} >
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b=1.0 d:=0

clio?d
FIG. 6. Wave saturation power normlaized to the injected
beam power vs C. For measured points the detuning was held
constant at 5=1,0. Line computed with b=1.0 and d=0.
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FIG. 7. Lost beam power at saturation normalized to CI;V,
vs detuning parameter . Points taken for /y=1.25 mA and
Vy =902 V, Detuning varied by changing frequency. Line
calculated with C=0.065 and d=0.

The dependence of the saturation power on the detun-
ing is shown in Fig. 7. The detuning parameter b was
varied experimentally by changing the frequency while
the beam current and voltage were kept constant. Since
C varies slightly with frequency, the saturation power
is normalized to C IV, to facilitate comparison between
theory and experiment. For the experimental points,

C varied by 10% about its average of 0.065. The line
corresponds to our calculation for C =0.065, d=0. The
measurements agree with theory within the experimen-
tal error. That the saturation power increases with b
can be understood qualitatively from the trapping model.
The difference between the beam injection velocity and
the linear phase velocity of the unstable wave Av in-

4}
LOST
BEAM
|- 3k POWER
S
. |
2 -
WAVE
1 POWER
1 i 1 1 1 1 L 1 1
0 0.1 02 03 04 05 06 07 08 09
d
FIG, 8. Lost beam power and wave power (both at saturation)

vs damping coefficient 4. Points are measured for I;=0.4 mA
(C=0.044) and 0.8 mA (C=0,055) and V=920 V with frequency
chosen to set b=1.0. Lines computed with 5=1.0 and C=0.05.
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FIG. 9. Normalized bounce wavenumber kuo/w for first trap-
ping oscillation vs C. Measured points taken with b=1.0.
Line computed with 5=1.0 and d=0.04.

creases with . Strictly speaking, the wave saturates
when the net energy exchange between the electrons and
the wave becomes zero. According to the trapping mod-
el, this occurs near the bottom of the electron vortex
motion in phase space, which corresponds roughly to a
decrease of 2Av in the beam velocity., Since the wave
gains the power lost by the beam, the wave saturation
power increases accordingly. This simple model ne-
glects finite beam strength effects, i. e., finite C and
QC, but still gives the correct qualitative behavior.

Figure 8 shows the effect of damping on the saturation
power. The damping rate is varied by means of the at-
tenuators described in Sec. III. The saturation wave
power is measured with a calibrated probe. The differ-
ence between the injected beam power and the beam pow-
er at saturation (lost beam power) is measured with the
velocity analyzer. Both quantities are normalized to
C1,V,. The data were taken at two beam currents at a
constant voltage such that C =0. 044 and 0. 055, with the
frequency chosen to set b=1.0. The lines are the theo-
retical predictions for 5=1.0 and C =0.05. They agree
with the measurements within the experimental error.

It is not surprising that damping dissipates wave power
in proportion to d. However, these data indicate the dy-
namic role of wave damping in this instability. Prior

to saturation, the wave is on average a decelerating
force on the beam. This is evident because the wave
grows at the expense of the beam. When the damping is
increased, the wave amplitude is generally smaller
throughout the growth region. The average decelerating
force is reduced and, as a result, the wave extracts
less energy from the beam. Consequently, the lost beam
power at saturation decreases as d increases.

We plot the normalized bounce wavenumber kyuy/w vs
C in Fig. 9. The detuning parameter is kept constant at
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FIG. 10. (a) Wave power normalized to injected beam power
vs distance. (b) Active wave phase vs distance. Solid lines
are measured with w/27=195 MHz, I,=11 mA, V;=960 V
corresponding to C=0.12, b=1.2, d=0.033, and QC=0.2.
They are plotted vs z, Dashed lines computed with C=0.12,
b=1.0, and d=0.03. They are plotted vs y.

b=1.0. According to theory k,u,/w=27C/y, is the dis-
tance between amplitude maxima in the computations.

It is a function of the characteristic parameters and
varies as the instability evolves for d+#0. The calcu-
lated result for the first bounce length for b=1.0 and d
=0.04 is represented by the line in Fig. 9. It agrees
with the measurements for C £0.06. For larger values
of C the theory predicts shorter bounce lengths than ob-
served by 20%. We believe this decrepancy is due to
our neglect of the space charge forceinthe calculations #’

The basic results of this section are (1) that the trap-
ping oscillations can persist for many bounces and (2)
the theory accurately describes the nonlinear behavior
of the instability. This provides the basis for studying
the stability of the trapped particle state.

V. WAVE DAMPING

The trapping oscillations of a single wave can be de-
stroyed through dissipation in the slow wave structure.
The details of the nonlinear evolution of the instability
in the presence of damping vary for different values of
the characteristic parameters, in particular, the damp-
ing coefficient d. However the detrapping process it-
self remains basically the same over a wide range of
values of C, b, and d. In this section, we investigate
the basic detrapping mechanism causged by the circuit
damping.
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For reference, Fig. 10 shows three trapping oscilla-
tions when the damping rate is very small, i.e., &y;
=2.7x10" cm™. The solid line in Fig. 10(a) is the
measured power of a single launched wave vs 2 (indi-
cated across the bottom of the figure). The character-
istic parameters are C=0.12, b=1.2, and d=0. 033.
The dashed line is the calculated power vs y (indicated
across the top of the figure) for C=0.12, b=1.0, and
d=0.03. The theoretical wave power is computed with
the numerically obtained A(y) according to Eq. (21) and
agrees within +2 dB in absolute magnitude with the mea-
sured wave power. The y axis had to be rescaled with
respect to z in order to obtain the best spatial fit. In
absolute terms, the distances predicted by z=uyy/C w
were 17% shorter than those measured. For example,
the predicted distance between the first and third peak
is uy Ay,3/Cw=110 cm while the measured distance is
Az,3=132 cm. As in Fig. 9, we believe this discrepancy
is due to neglect of the beam space charge in the non-
linear calculations.

The solid line in Fig. 10(b) is the measured active
wave phase vs z. Once again the phase velocity de-
creases in the nonlinear region and oscillates at 2%,.
The average slope yields a wavenumber shift of (5%,,)
=0.026 cm™. The dashed line is the calculated phase
— (6 + by) plotted vs y.

Figure 11 shows the development of the instability

WAVE POWER {dB)
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FIG. 11. (a) Wave power normalized to injected beam power

vs distance. (b) Active wave phase vs distance. Measurements

(solid lines) have same characteristic parameters as in Fig,

10 except the damping is increased to d=0.082. Calculations

(dashed lines) gives best fit for C=0.12, p=1.0, and d=0.078.

G. Dimonte and J. H. Malmberg 1197



| |
L 3r 2w
2

¢-0
Schematic of phase space disttibution at three posi-
tions in a trapping oscillation with damping. The abscissa is
the particle phase in the instantaneous wave frame.

ol |

FIG. 12.

when the damping rate is increased to ky;=6.6x 107
cm™ (d=0.082) by adding attenuation as described in
Sec, HTI. All other parameters are identical to those
in Fig. 10. Prior to the second peak, the additional
damping does not significantly alter the spatial evolu-
tion of the wave, However, following the second maxi-
mum the power falls dramatically and fails to regrow to
the previous large level. At the deep power minimum
at z=180 cm the wave undergoes a rapid phase shift,
shown in Fig. 11(b), of 1.9 rad over a distance of 10
cm, which corresponds to Ak/k,, = - 25%. At the fol-
lowing power minimum the phase shift is 3.6 rad over
22 ¢m, which corresponds to Ak/kg, =+ 21%.

The dashed lines in Fig. 11 are the computed wave
amplitude and phase plotted vs y for C=0.12, 4=1.0,
and d=0.078. These values of the characteristic pa-
rameters give the best agreement with the measure-
ments and are within the experimental error of the val-
ues inferred from linear measurements. As in Fig. 10,
the y axis was rescaled with respect to z to obtain the
best spatial fit. In absolute terms, the predicted dis-
tances are 26% shorter than those measured. (This re-
normalization is responsible for most of the discrepancy
in the linear growth rate.) Nevertheless, the numeri-
cal solutions reproduce the essential features of the ex-
perimental results. Following the second maximum the
trapping oscillations are dramatically altered; the wave
experiences very deep power minima and large phase
shifts,

As a result of our computer studies, we can explain
the salient features in Fig. 11 by tracing the motion of
the particles in phase space. We indicate the motion
schematically in Fig. 12 to accentuate the main points.
Instead of plotting just the particle phase ¢, the abscis-
sa, is the particle phase in the instantaneous frame of
the wave ¢ - g because, according to Eq. (20), this is
the phase which determines the force. This is an im-
portant point because the wave phase shifts A9 move the
potential with respect to the particles and affect their ac-
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celeration. The potential minimum is at ¢ - g=7. The
ordinate is the scaled particle velocity.‘ At the second
power maximum in Fig. 11, the bulk of the particles
are at the bottom of their phase space orbit, denoted by
the shaded region'l, and are moving into the accelerating
region 0<¢ - g <7, While they are accelerated, the par-
ticles regain momentum (energy in the laboratory frame)
at the expense of the wave. However, since it has been
attenuated, the wave is energetically incapable of forc-
ing the particles out of the accelerating region before
vanishing. For example, the particles may reach posi-
tion 2 as the wave amplitude approaches zero. At this
point, the wave shifts its phase § so as to transfer the
majority of the particles into the decelerating region of
the wave potential, e.g., position 3. The wave now ex-
tracts energy from the particles on the average and re-
grows. Since they have finite spread in phase, not all
particles reach the decelerating region as a result of
the wave shift. Some remain within the accelerating
region as shown at position 3. In cases where the parti-
cles being decelerated only slightly outnumber those
being accelerated, the subsequent net energy exchange
between the wave and particles is small. Consequently,
the peak wave power levels following these phase shifts
will be relatively low, as shown in Fig. 11.

That the phase shifts tend to move the particles from
the accelerating region toward the decelerating region
of the wave potential can be seen by inspecting Eq. (18).
For simplicity, assume that the particles are tightly
bunched at a single phase x=¢ - ¢ and that C <1, For
phase shifts which occur rapidly enough to ignore parti-
cle velocities, the predominant change in the clump
phase is given by Eq. (18)

I eosy
Ay~ ~ AD 'z-j It o3
X . A

The sign of &y is determined by ~ cosy, which has a
positive slope at the zero y=17/2 and a negative slope at
the zero xy=37/2. Consequently, the phase shifts tend
to transfer the clump away from the unstable node x
=71/2 toward the stable node x=37/2, which lies in the
decelerating region of the wave potential. If the parti-
cle clump has a finite spread in phase space, the analy-
sis becomes complicated. However, our numerical
studies indicate that the phase shifts remain a survival
mechanism for the wave.

dy’ . (42)

The large and rapid phase shifts occur when the amp-
litude decreases to

d¢o

g N (43)

A<

27
So cos({¢ - 8)

which can be quite small if most of the particles are
near the unstable node. In this case, shifts of order

£ 7 can oceur since the clump originates near /2 and
stops at 37/2. The = sign depends on which side of 7/2
the move originated. This is illustrated nicely in Fig.
11(b). The phase shift at the second minimum is A4,
=~ 1.9 rad and A§;=3.6 rad at the third. The larger
phase shift occurs at the deeper minimum and has the
opposite sign.

The particle phase mixing is evident in Fig. 13,
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where we show the spatial development of phase space
for the computation in Fig. 11. As in Fig. 12, the ab-
scissa is the particle phase in the instantaneous wave
frame ¢ - 6 because this is the phase that determines
the force. As a result of the reduced amplitude and
phase shifts, particles spill into adjacent wave troughs,
Prior to the second amplitude peak near y=8,6, only an
insignificant number of particles in the filamentary tail
are affected. However, at the first deep amplitude min-
imum near y=10.1, the wave shifts its phase and trans-
fers the clump to the potential maximum at ¢ - §=0;
there the clump is broken in half. There are nearly as
many particles being accelerated as there are being de-
celerated. Consequently, little net energy exchange
will occur and the wave will remain at a relatively low
power level. Another phase shift follows at the next
amplitude minimum near y=12.6 to increase the spill-
age. The spilled particles rotate out of synchronism
with the unspilled particles and, in general, along dif-
ferent phase trajectories. Since the bounce frequency
depends on their oscillatory energy, *° the particles ro-
tate at different rates and eventually phase mix.

The phase average velocity distribution, near the po-
sition of the last power maximum in Fig. 11, is shown in
Fig. 14. The histogram is computed at y=15.3 and the
curve is measured at z=265 cm. The basic character-
istic is the double peak within a velocity spread of the
trapping width Au=1+2Cu;=+0. 24u,. Nearly half of the
particles have a velocity near the injection velocity,
with some actually moving faster than at injection. This
distribution may lead to further instability, but we have
not yet investigated the next stage in its development.
By z =265 cm, 19% of the injected beam power, or
roughly half of the wave saturation power, has been dis-
sipated through wave damping. This agrees with the
predicted value of 18%.

To demonstrate that this detrapping process is due to
just a single wave, we show the spatial evolution of the

flullaw)

05 06 07 08 09 1.0 11 1.2

ulug

FIG. 14. Phase averaged velocity distribution vs velocity
normalized to the injection velocity. Solid line is measured
at 2=260 cm in Fig. 11, Histogram is computed result at
y=15.3.
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frequency spectrum in Fig. 15. Near the first deep
minimum, the noise is more than 60 dB below the main
wave power level. As the instability progresses, side-
bands characteristic of a trapped particle instability
develop. The upper sidebands achieve larger ampli-
tudes because they are resonant with the slowed beam.
By z=250 cm these sidebands have attained a power
level 60 dB below the saturation power. According to
our sideband experiments, this is orders of magnitude
below the level at which sidebands cause detrapping.
This detrapping process is indeed single wave although
the subsequent development may be affected by the side-
bands.

Figure 11 demonstrates that a small damping rate,
ko;/fq,~0.08 C {(=0.01 in our example) can have a cat-
astrophic effect on the trapping oscillations. We expect
a similar behavior in beam-plasma systems. However,
one must be careful in applying our result if the damp-
ing mechanism is some form of Landau damping. The
saturated wave alters the plasma distribution near the
phase velocity of the wave by capturing the resonant
particles. Therefore, the linear Landau damping rate
in the absence of the beam does not apply in the nonlin-
ear region, However, there are damping mechanisms
which do apply in the nonlinear beam-plasma instability,
such as, (1) collisional wave damping and (2) an effec-
tive damping of the saturated wave through nonlinear de-
cay processes. In these cases, we would expect a be-
havior similar to that describe here.

VI. EFFECT OF WAVE PHASE SHIFT IN BOUNCE
LENGTH

The nonlinear wave phase shifts alter the relation be-
tween the bounce length and the wave amplitude, which
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is usually found to be® &, ~ w, /uy~ (e E/mud) /2, How-
ever, in obtaining this result, the ability of the wave
to change its phase velocity is neglected. According to
Eq. (20), the force on a particle depends on its phase
in the instantaneous wave frame ¢ - 6. However, wave
phase shifts can alter the force by shifting the potential
with respect to the particles. The effect this has on the
bounce length can easily be determined for a single
macro-particle which is trapped in a traveling wave.
The self-consistent equations for this interaction can
be derived by simply assuming that the beam particles
are premodulated and enter the interaction region at a
single phase x=¢ - 6. Then for C <1, Eqs. (17)-(20)

become
dA /dy=— sinx-dA , (44)
dg/dy =cos(x)/A-b, (45)
do/dy=q , (46)
dq/dy =2A siny , (47)

where the subscript j has been dropped. For simplic-
ity, assume that d<< 1, and the particles are deeply
trapped such that 0x=x~ 7< 1. By applying these ap-
proximations to Eqs. (44)-(47), we obtain the equation
of motion in the instantaneous wave frame to O(5y)

d%y _d*¢ d*o ox

W_W—E;E—-ZAG -1z - (48)
The first term on the right-hand side is the ordinary re-
storing force at the bottom of the wave potential. The
second term is an “inertial force” which results from
the wave phase shifts. Notice that, for this deeply
trapped particle, it is a restoring force whose magni-
tude is proportional to the displacement of the particle
from the bottom of the potential well and inversely pro-
portional to the square of the wave amplitude. This
term becomes appreciable at small amplitudes; remem-
ber the large phase shifts in Fig. 11 occurred at power
minima. Solving Eq. (48) we find

KbZZ“/yb:(on'*'A(;a)l/z s (49)

where A, is the normalized wave amplitude averaged
over a bounce length. This relation is independent of

b. For large amplitudes, the phase shifts are unimpor-
tant and we obtain the usual result, &, ~(24,)/2. For
Ay« 1, the inertial force dominates and we obtain «,
=~1/A,, i.e., the bounce length increases with ampli-
tude.

We have also solved Eqs. (44)-(47) numerically using
the method described in Sec. II. The result of a repre-
sentative run is denoted by the dots in Fig. 16. The or-
dinate is the scaled distance y, that the macro-particle
travels in the laboratory frame while it executes one
complete rotation in phase space. For small damping
rates this corresponds to the distance between succes-
sive amplitude maxima. The value of A, for each point
is calculated by averaging the solution A(y) over the
corresponding y,. As the solution progresses in y the
amplitude decreases due to damping and the bounce
length changes accordingly. The particle remains
trapped throughout. The computed points agree to with-
in 5% with our approximate analytical solution.
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FIG. 16. Normalized bounce length vs wave amplitude (aver-
aged over bounce length). Lines are analytical results with and
without the wave phase shifts. Solid points are from numerical
solutions to Eqs. (44)—(47). Open circles are computed with
cos (x)/A term in Eq. (45) omitted.

In this example, 0X ., =0.9, which means that the
particle samples the nonlinearity in the sinusoidal elec-
tric field. This is the source of the small discrepancy.
Numerical solutions for various values of b, 4 andinitial
conditions give similar agreement.

In the case of many particles the analysis becomes
complicated. However, the data in Fig. 11 support the
result found here. The distance between the second and
third and the third and fourth power maxima are both
shorter than the first bounce length even though the am-
plitude is far smaller. We attribute this to the large
wave phase shifts. Under less dramatic conditions, the
phase shifts are not as pronounced and merely regulate
the bounce length. For example, the bounce length in
Fig. 5 increased by only 10% while the wave amplitude
decreased by 40% over the same distance.

VIil. MANY WAVE EXPERIMENT

The trapping oscillations of the saturated wave can
also be destroyed by launching waves at neighboring fre-
quencies. This is illustrated in Fig. 17. The dashed
line in Fig. 17(a) is the total wave power when we launch
only the main wave at w,/27=183.5 MHz. It undergoes
three trapping oscillations while the peak wave power
falls by 3 dB due to the finite circuit damping. The sol-
id line is the total wave power when we launch the main
wave and a smaller amplitude (by 11 dB) wave at w,,/27
=220. 2 MHz (w,;=6w,/5). The presence of the addition-
al wave destroys the trapping oscillations near the sec-
ond minimum. When we increase the initial amplitude
of w,,, the oscillations are destroyed earlier. Since the
two curves in Fig. 17(a) do not begin to separate until
the second maximum, the disruption occurs over a short
distance, i.e., a fraction of a bounce length. Following
the destruction, the power remains farily constant at a
level significantly below the power maxima. Most of the
available wave power has returned to the beam,
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The behavior of the dominant spectral components is 40 Z:78¢m 18 cm
shown in Fig., 17(b). The upper solid line is the main sk
wave when we launch it alone. The lower solid line is
the main wave when we launch both w; and w,,;. The lin- 20r
early unstable wave w,, (dashed line) continues to grow ok l ‘
in the nonlinear region until the trapping oscillations 0 ] ! l ) l L L L . l A l 1,
are destroyed near the second minimum. The dotted ol 148 cm 178em
line is the nonlinear product at 146. 8 MHz. It grows =
dramatically when the dynamics become nonlinear, = 30
namely, within the last e folding before saturation. % 20
Of course, other nonlinear products®® appear at fre- 10} l g E
quencies w,=wy+nAw, where Aw=w, ~ wyandn=zx1, 0 Lol et Ltlil )
+2,.... Frequency spectra at various positions are 30k 228 ¢m 253 ¢m
shown in Fig. 18. Prior to the destruction, the domi- 20l
nant modes are w,, w,;, and w.,. However, some higher
order products grow inthe nonlinear region, They final- 10 l h l \ l
ly attain amplitudes comparable to that of the main wave 0 l : . L l L. | il
near the end of the tube. 0 100 200 300 400 O 100 200 300 400
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Since the dynamics prior to the destruction are domi- FIG. 18, Measured frequency spectrum at six positions in
nated by only three waves whose phases are not random, Fig. 17,
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FIG. 19. Real time wave amplitude at four positions in Fig.
17.

the disruption process is not statistical. We have mea-

sured the real-time waveform produced by the interfer-

ence of these waves. This is shown in Fig. 19 at vari-
ous positions. At z=78 cm, which is near saturation,

the modulation is slight because the sidebands are small.

As they grow, the modulation becomes quite pronounced
as seen at z2=167 cm. The particles within these beat
minima become untrapped, spread in phase space, and
eventually phase mix. This results in a beam “random-
ization” which precludes further trapping oscillations.

Figure 20 shows the time-averaged velocity distribu-
tion measured with and without the sidebands at three
positions in Fig. 17. In the single wave case, Fig.
20(a), the distribution is peaked in accordance with the

{a) {b)
E
=
(=)
=
oD
a
«
[
o
5 i 1 i 1 1
= 256 ¢cm
o Vol Vo Vo Vo
E (R BRI
>
04 0.6 0.8* 10 1.2

Ugy
u/ug u/u,

FIG. 20. Phase averaged velocity distribution vs velocity
(normalized to injection velocity) at three positions in Fig. 17.
(a) Launch « only. (b) Launch wy and w,;.
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FIG. 21. Computed wave amplitudes vs y for parameters
pertinent to experiment in Fig. 17. A, (0)=0.03, A,,(0)=A_
(0)=0.005, by=0.75, b,y=1.75, b1=0, and dy=d,=d.;=0.03.

trapping model. At z=223 cm the power in the beam is
near its maximum value. As the wave power decreases
during the trapping oscillation, the beam regains energy
and the peak of the distribution moves back toward the
injection velocity. In contrast, Fig. 20(b) shows that
when the sidebands destroy the trapping oscillations, the
beam distribution is no longer peaked and it changes
very little as the instability evolves. These are consis-
tent with the distributions we have obtained in our calcu-
lation in which the particles have been mixed in phase
space by the additional waves. The linear phase veloci-
ties of the larger amplitude waves are indicated. At
z=256 cm the average velocity of the flattened distribu-
tion is u,, = 0. 87 u, which is slightly slower than the
phase velocity of the main wave. The width of the dis-
tribution (90% of the particles) is Au=x0. 254, which is
roughly equal to the trapping width. Nearly 23% of the
particles have velocities greater than the injection ve-
locity.

The destruction of the trapping oscillations by side-
bands is described well by the numerical solutions to
Egs. (31)-(34). Figure 21 shows the computed ampli-
tudes of the main (j=0), the slow (j=+ 1), and the fast
(j=-1) waves vs distance for parameters pertinent to
the experiment in Fig. 17. Experimentally, we chose
the wave frequencies so that w,/Aw has an integer value;
in Fig. 17 w,/Aw=5. Consequently, we need to follow
only the particles whose initial phases are in the inter-
val 0= ¢, <107 to satisfy the periodic boundary condi-
tions. We keep only the three modes j=0, +1 because
experimentally we find that these are the modes which
dominate prior to the destruction of the trapping oscilla-
tions. They each have the damping coefficient d = 0. 03.
The initial amplitudes are A,(0) = 0. 03 and A, ,(0) = 0. 005.

The solutions reproduce the salient features in Fig.
17(b). While the amplitude of the main wave exceeds
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those of the satellites, the main wave evolves with the
characteristic single wave behavior. However, the sat-
ellites continue to grow in the nonlinear region. When
they attain amplitudes comparable to the amplitude of
the main wave, the trapping oscillations are destroyed.
The slow wave overtakes the main wave andthenremains
50% larger in amplitude with only mild spatial variation.
Its equilibrium amplitude is smaller than the saturation
amplitude of the main wave. The predicted amplitudes
are 30% larger than observed because the finite C cor-
rections have been neglected.

The particle phase mixing is evident in the phase
space plots in Fig. 22. Unlike Fig. 13 the abscissa is
the particle phase ¢ in the initial beam frame. In addi-
tion to the scaled velocity g, we plot the total electric
field, given by Eq. (34), to show the modulation.®” The
force is positive when the field is above the straight line,
which indicates E=0. When the main wave dominates,
the trapped particles oscillate about the zero of E which
has a negative slope. As the satellites grow the field
becomes modulated. When the interference is destruc-
tive, the field is small. The particles within the beat
minimum become untrapped momentarily. These pre-
viously bunched particles spread and lose their phase
relation with the main wave, with many particles actual-
ly spilling into adjacent troughs. This results in a local
mixing; however, the velocity of the beat minimum,
given by the nonlinear group velocity, is generally not
equal to the average particle velocity. Consequently,
most particies eventually experience the perturbation.
The bunches are destroyed and the particles become
thoroughly phase mixed as seen at y=19.

At y=17,5 the average scaled velocity of the particles
is ¢=-~ 1.3 with 88% of the particles being within a ve-
locity spread of Ag=+2.25. According to Eq. (15) with
C =0.12, these transform to an average velocity u,,
=0.84%, and a velocity spread Ax=1x0.27u,. Both val-
ues agree with the corresponding quantities measured
at z=256 cm.

In typical beam-plasma experiments, °~'° the main
wave is observed to evolve into a broad spectrum during
the first trapping oscillation. The beam electrons are
spread in velocity and the trapping oscillations are de-
stroyed. We observe similar behavior when we launch
broadband noise in addition to the main wave. The noise
within the instability bandwidth continues to grow in the
nonlinear region until the trapping oscillations are de-
stroyed in a manner similar to that in Fig, 17. How-
ever, our result with the single test wave suggests that
the statistical nature of the noise is incidental and that
the modulation of the main wave, be it statistical or not,
is pre-eminent in destroying the trapping.

The disruption process which we have described in
this section does not depend on the nature of the linear
slow wave structure. Thus, we expect an analogous be-
havior in a beam-plasma system.

Vill, CONCLUSIONS
We have shown that the trapping oscillations in a trav-
eling wave tube can persist for at least five bounces. In
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the nonlinear region the wave phase velocity oscillates
at 2k, and decreases on average to accommodate the
slowed beam particles. Therefore, not only do the
trapped particles slosh back and forth in the wave po-
tential, but the phase of the potential oscillates as well.
This not only modifies the relation between the bounce
length and the wave amplitude, but it also has important
consequences with regard to the stability of the trapping.

We have found two ways of destroying the trapping os-
cillations, The first mechanism involves the main wave
only and occurs for finite dissipation in the slow wave
sturcture, namely ky; ~0.08 Cw/u,. As a result of
damping, the wave experiences deep amplitude minima
during the trapping oscillations. These trigger large
and sudden wave phase shifts which, in effect, transfer
many of the particles to phases near the potential maxi-
mum in such a manner as to abruptly detrap them. The
second mechanism is a result of unstable sidebands
growing to amplitudes comparable to the main wave.
These sidebands modulate the main wave to produce tiny
beat minima which allow the particles to become de-
trapped. Both detrapping mechanisms lead to particle
mixing in phase space which precludes further trapping
oscillations, It is noteworthy that these two mechanisms
are not statistical in nature.

Following the phase mixing, triggered by either meth-
od, the time-averaged velocity distribution is centered
near the phase velocity of the main wave and has a ve-
locity spread roughly equal to the trapping width, This
state may still be unstable. We have not yet investigated
its subsequent relaxation.

All of our experimental results, including the detrap-
ping mechanisms, are corroborated by the numerical
solutions of the scaled equations which describe the in-
teraction. Since the interaction in a traveling wave tube
is identical to the beam-plasma instability in the small
cold beam limit, we expect an analogous behavior in a
beam-plasma system.
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